| /* |
| * Copyright (C) 2017 Denys Vlasenko |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| */ |
| |
| /* This AES implementation is derived from tiny-AES128-C code, |
| * which was put by its author into public domain: |
| * |
| * tiny-AES128-C/unlicense.txt, Dec 8, 2014 |
| * """ |
| * This is free and unencumbered software released into the public domain. |
| * |
| * Anyone is free to copy, modify, publish, use, compile, sell, or |
| * distribute this software, either in source code form or as a compiled |
| * binary, for any purpose, commercial or non-commercial, and by any |
| * means. |
| * |
| * In jurisdictions that recognize copyright laws, the author or authors |
| * of this software dedicate any and all copyright interest in the |
| * software to the public domain. We make this dedication for the benefit |
| * of the public at large and to the detriment of our heirs and |
| * successors. We intend this dedication to be an overt act of |
| * relinquishment in perpetuity of all present and future rights to this |
| * software under copyright law. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * """ |
| */ |
| /* Note that only original tiny-AES128-C code is public domain. |
| * The derived code in this file has been expanded to also implement aes192 |
| * and aes256 and use more efficient word-sized operations in many places, |
| * and put under GPLv2 license. |
| */ |
| #include "tls.h" |
| |
| // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM |
| // The numbers below can be computed dynamically trading ROM for RAM - |
| // This can be useful in (embedded) bootloader applications, where ROM is often limited. |
| static const uint8_t sbox[] = { |
| 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, |
| 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
| 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, |
| 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
| 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, |
| 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
| 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, |
| 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
| 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, |
| 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
| 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, |
| 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
| 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, |
| 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
| 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
| 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
| 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, |
| 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
| 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, |
| 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
| 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, |
| 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
| 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, |
| 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
| 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, |
| 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, |
| 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
| 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, |
| 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, |
| 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, |
| }; |
| |
| static const uint8_t rsbox[] = { |
| 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, |
| 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
| 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, |
| 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
| 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, |
| 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
| 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, |
| 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
| 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, |
| 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
| 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, |
| 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
| 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, |
| 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
| 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, |
| 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
| 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, |
| 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
| 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, |
| 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
| 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, |
| 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
| 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, |
| 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
| 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, |
| 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
| 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, |
| 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
| 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, |
| 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
| 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, |
| 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, |
| }; |
| |
| // SubWord() is a function that takes a four-byte input word and |
| // applies the S-box to each of the four bytes to produce an output word. |
| static uint32_t Subword(uint32_t x) |
| { |
| return (sbox[(x >> 24) ] << 24) |
| | (sbox[(x >> 16) & 255] << 16) |
| | (sbox[(x >> 8 ) & 255] << 8 ) |
| | (sbox[(x ) & 255] ); |
| } |
| |
| // This function produces Nb(Nr+1) round keys. |
| // The round keys are used in each round to decrypt the states. |
| static int KeyExpansion(uint32_t *RoundKey, const void *key, unsigned key_len) |
| { |
| // The round constant word array, Rcon[i], contains the values given by |
| // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8). |
| // Note that i starts at 2, not 0. |
| static const uint8_t Rcon[] = { |
| 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 |
| //..... 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6,... |
| // but aes256 only uses values up to 0x36 |
| }; |
| int rounds, words_key, words_RoundKey; |
| int i, j, k; |
| |
| // key_len 16: aes128, rounds 10, words_key 4, words_RoundKey 44 |
| // key_len 24: aes192, rounds 12, words_key 6, words_RoundKey 52 |
| // key_len 32: aes256, rounds 14, words_key 8, words_RoundKey 60 |
| words_key = key_len / 4; |
| rounds = 6 + (key_len / 4); |
| words_RoundKey = 28 + key_len; |
| |
| // The first round key is the key itself. |
| for (i = 0; i < words_key; i++) |
| RoundKey[i] = get_unaligned_be32((uint32_t*)key + i); |
| // i == words_key now |
| |
| // All other round keys are found from the previous round keys. |
| j = k = 0; |
| for (; i < words_RoundKey; i++) { |
| uint32_t tempa; |
| |
| tempa = RoundKey[i - 1]; |
| if (j == 0) { |
| // RotWord(): rotates the 4 bytes in a word to the left once. |
| tempa = (tempa << 8) | (tempa >> 24); |
| tempa = Subword(tempa); |
| tempa ^= (uint32_t)Rcon[k] << 24; |
| } else if (words_key > 6 && j == 4) { |
| tempa = Subword(tempa); |
| } |
| RoundKey[i] = RoundKey[i - words_key] ^ tempa; |
| j++; |
| if (j == words_key) { |
| j = 0; |
| k++; |
| } |
| } |
| return rounds; |
| } |
| |
| // This function adds the round key to state. |
| // The round key is added to the state by an XOR function. |
| static void AddRoundKey(unsigned astate[16], const uint32_t *RoundKeys) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i += 4) { |
| uint32_t n = *RoundKeys++; |
| astate[i + 0] ^= (n >> 24); |
| astate[i + 1] ^= (n >> 16) & 255; |
| astate[i + 2] ^= (n >> 8) & 255; |
| astate[i + 3] ^= n & 255; |
| } |
| } |
| |
| // The SubBytes Function Substitutes the values in the |
| // state matrix with values in an S-box. |
| static void SubBytes(unsigned astate[16]) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| astate[i] = sbox[astate[i]]; |
| } |
| |
| // Our code actually stores "columns" (in aes encryption terminology) |
| // of state in rows: first 4 elements are "row 0, col 0", "row 1, col 0". |
| // "row 2, col 0", "row 3, col 0". The fifth element is "row 0, col 1", |
| // and so on. |
| #define ASTATE(col,row) astate[(col)*4 + (row)] |
| |
| // The ShiftRows() function shifts the rows in the state to the left. |
| // Each row is shifted with different offset. |
| // Offset = Row number. So the first row is not shifted. |
| static void ShiftRows(unsigned astate[16]) |
| { |
| unsigned v; |
| |
| // Rotate first row 1 columns to left |
| v = ASTATE(0,1); |
| ASTATE(0,1) = ASTATE(1,1); |
| ASTATE(1,1) = ASTATE(2,1); |
| ASTATE(2,1) = ASTATE(3,1); |
| ASTATE(3,1) = v; |
| |
| // Rotate second row 2 columns to left |
| v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v; |
| v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v; |
| |
| // Rotate third row 3 columns to left |
| v = ASTATE(3,3); |
| ASTATE(3,3) = ASTATE(2,3); |
| ASTATE(2,3) = ASTATE(1,3); |
| ASTATE(1,3) = ASTATE(0,3); |
| ASTATE(0,3) = v; |
| } |
| |
| // MixColumns function mixes the columns of the state matrix |
| static void MixColumns(unsigned astate[16]) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i += 4) { |
| unsigned a, b, c, d; |
| unsigned x, y, z, t; |
| |
| a = astate[i + 0]; |
| b = astate[i + 1]; |
| c = astate[i + 2]; |
| d = astate[i + 3]; |
| x = (a << 1) ^ b ^ (b << 1) ^ c ^ d; |
| y = a ^ (b << 1) ^ c ^ (c << 1) ^ d; |
| z = a ^ b ^ (c << 1) ^ d ^ (d << 1); |
| t = a ^ (a << 1) ^ b ^ c ^ (d << 1); |
| astate[i + 0] = x ^ ((-(int)(x >> 8)) & 0x11b); |
| astate[i + 1] = y ^ ((-(int)(y >> 8)) & 0x11b); |
| astate[i + 2] = z ^ ((-(int)(z >> 8)) & 0x11b); |
| astate[i + 3] = t ^ ((-(int)(t >> 8)) & 0x11b); |
| } |
| } |
| |
| // The SubBytes Function Substitutes the values in the |
| // state matrix with values in an S-box. |
| static void InvSubBytes(unsigned astate[16]) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| astate[i] = rsbox[astate[i]]; |
| } |
| |
| static void InvShiftRows(unsigned astate[16]) |
| { |
| unsigned v; |
| |
| // Rotate first row 1 columns to right |
| v = ASTATE(3,1); |
| ASTATE(3,1) = ASTATE(2,1); |
| ASTATE(2,1) = ASTATE(1,1); |
| ASTATE(1,1) = ASTATE(0,1); |
| ASTATE(0,1) = v; |
| |
| // Rotate second row 2 columns to right |
| v = ASTATE(0,2); ASTATE(0,2) = ASTATE(2,2); ASTATE(2,2) = v; |
| v = ASTATE(1,2); ASTATE(1,2) = ASTATE(3,2); ASTATE(3,2) = v; |
| |
| // Rotate third row 3 columns to right |
| v = ASTATE(0,3); |
| ASTATE(0,3) = ASTATE(1,3); |
| ASTATE(1,3) = ASTATE(2,3); |
| ASTATE(2,3) = ASTATE(3,3); |
| ASTATE(3,3) = v; |
| } |
| |
| static ALWAYS_INLINE unsigned Multiply(unsigned x) |
| { |
| unsigned y; |
| |
| y = x >> 8; |
| return (x ^ y ^ (y << 1) ^ (y << 3) ^ (y << 4)) & 255; |
| } |
| |
| // MixColumns function mixes the columns of the state matrix. |
| // The method used to multiply may be difficult to understand for the inexperienced. |
| // Please use the references to gain more information. |
| static void InvMixColumns(unsigned astate[16]) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i += 4) { |
| unsigned a, b, c, d; |
| unsigned x, y, z, t; |
| |
| a = astate[i + 0]; |
| b = astate[i + 1]; |
| c = astate[i + 2]; |
| d = astate[i + 3]; |
| x = (a << 1) ^ (a << 2) ^ (a << 3) ^ b ^ (b << 1) ^ (b << 3) |
| /***/ ^ c ^ (c << 2) ^ (c << 3) ^ d ^ (d << 3); |
| y = a ^ (a << 3) ^ (b << 1) ^ (b << 2) ^ (b << 3) |
| /***/ ^ c ^ (c << 1) ^ (c << 3) ^ d ^ (d << 2) ^ (d << 3); |
| z = a ^ (a << 2) ^ (a << 3) ^ b ^ (b << 3) |
| /***/ ^ (c << 1) ^ (c << 2) ^ (c << 3) ^ d ^ (d << 1) ^ (d << 3); |
| t = a ^ (a << 1) ^ (a << 3) ^ b ^ (b << 2) ^ (b << 3) |
| /***/ ^ c ^ (c << 3) ^ (d << 1) ^ (d << 2) ^ (d << 3); |
| astate[i + 0] = Multiply(x); |
| astate[i + 1] = Multiply(y); |
| astate[i + 2] = Multiply(z); |
| astate[i + 3] = Multiply(t); |
| } |
| } |
| |
| static void aes_encrypt_1(unsigned astate[16], unsigned rounds, const uint32_t *RoundKey) |
| { |
| for (;;) { |
| AddRoundKey(astate, RoundKey); |
| RoundKey += 4; |
| SubBytes(astate); |
| ShiftRows(astate); |
| if (--rounds == 0) |
| break; |
| MixColumns(astate); |
| } |
| AddRoundKey(astate, RoundKey); |
| } |
| |
| #if 0 // UNUSED |
| static void aes_encrypt_one_block(unsigned rounds, const uint32_t *RoundKey, const void *data, void *dst) |
| { |
| unsigned astate[16]; |
| unsigned i; |
| |
| const uint8_t *pt = data; |
| uint8_t *ct = dst; |
| |
| for (i = 0; i < 16; i++) |
| astate[i] = pt[i]; |
| aes_encrypt_1(astate, rounds, RoundKey); |
| for (i = 0; i < 16; i++) |
| ct[i] = astate[i]; |
| } |
| #endif |
| |
| void aes_cbc_encrypt(const void *key, int klen, void *iv, const void *data, size_t len, void *dst) |
| { |
| uint32_t RoundKey[60]; |
| uint8_t iv2[16]; |
| unsigned rounds; |
| |
| const uint8_t *pt = data; |
| uint8_t *ct = dst; |
| |
| memcpy(iv2, iv, 16); |
| rounds = KeyExpansion(RoundKey, key, klen); |
| while (len > 0) { |
| { |
| /* almost aes_encrypt_one_block(rounds, RoundKey, pt, ct); |
| * but xor'ing of IV with plaintext[] is combined |
| * with plaintext[] -> astate[] |
| */ |
| int i; |
| unsigned astate[16]; |
| for (i = 0; i < 16; i++) |
| astate[i] = pt[i] ^ iv2[i]; |
| aes_encrypt_1(astate, rounds, RoundKey); |
| for (i = 0; i < 16; i++) |
| iv2[i] = ct[i] = astate[i]; |
| } |
| ct += 16; |
| pt += 16; |
| len -= 16; |
| } |
| } |
| |
| static void aes_decrypt_1(unsigned astate[16], unsigned rounds, const uint32_t *RoundKey) |
| { |
| RoundKey += rounds * 4; |
| AddRoundKey(astate, RoundKey); |
| for (;;) { |
| InvShiftRows(astate); |
| InvSubBytes(astate); |
| RoundKey -= 4; |
| AddRoundKey(astate, RoundKey); |
| if (--rounds == 0) |
| break; |
| InvMixColumns(astate); |
| } |
| } |
| |
| #if 0 //UNUSED |
| static void aes_decrypt_one_block(unsigned rounds, const uint32_t *RoundKey, const void *data, void *dst) |
| { |
| unsigned astate[16]; |
| unsigned i; |
| |
| const uint8_t *ct = data; |
| uint8_t *pt = dst; |
| |
| for (i = 0; i < 16; i++) |
| astate[i] = ct[i]; |
| aes_decrypt_1(astate, rounds, RoundKey); |
| for (i = 0; i < 16; i++) |
| pt[i] = astate[i]; |
| } |
| #endif |
| |
| void aes_cbc_decrypt(const void *key, int klen, void *iv, const void *data, size_t len, void *dst) |
| { |
| uint32_t RoundKey[60]; |
| uint8_t iv2[16]; |
| uint8_t iv3[16]; |
| unsigned rounds; |
| uint8_t *ivbuf; |
| uint8_t *ivnext; |
| |
| const uint8_t *ct = data; |
| uint8_t *pt = dst; |
| |
| rounds = KeyExpansion(RoundKey, key, klen); |
| ivbuf = memcpy(iv2, iv, 16); |
| while (len) { |
| ivnext = (ivbuf==iv2) ? iv3 : iv2; |
| { |
| /* almost aes_decrypt_one_block(rounds, RoundKey, ct, pt) |
| * but xor'ing of ivbuf is combined with astate[] -> plaintext[] |
| */ |
| int i; |
| unsigned astate[16]; |
| for (i = 0; i < 16; i++) |
| ivnext[i] = astate[i] = ct[i]; |
| aes_decrypt_1(astate, rounds, RoundKey); |
| for (i = 0; i < 16; i++) |
| pt[i] = astate[i] ^ ivbuf[i]; |
| } |
| ivbuf = ivnext; |
| ct += 16; |
| pt += 16; |
| len -= 16; |
| } |
| } |