tls: fix whitespace in P256 code

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c
index 97b2d3d..8527e78 100644
--- a/networking/tls_sp_c32.c
+++ b/networking/tls_sp_c32.c
@@ -92,30 +92,30 @@
  */
 static void sp_256_to_bin(sp_digit* r, uint8_t* a)
 {
-    int i, j, s = 0, b;
+	int i, j, s = 0, b;
 
-    for (i = 0; i < 9; i++) {
-        r[i+1] += r[i] >> 26;
-        r[i] &= 0x3ffffff;
-    }
-    j = 256 / 8 - 1;
-    a[j] = 0;
-    for (i=0; i<10 && j>=0; i++) {
-        b = 0;
-        a[j--] |= r[i] << s; b += 8 - s;
-        if (j < 0)
-            break;
-        while (b < 26) {
-            a[j--] = r[i] >> b; b += 8;
-            if (j < 0)
-                break;
-        }
-        s = 8 - (b - 26);
-        if (j >= 0)
-            a[j] = 0;
-        if (s != 0)
-            j++;
-    }
+	for (i = 0; i < 9; i++) {
+		r[i+1] += r[i] >> 26;
+		r[i] &= 0x3ffffff;
+	}
+	j = 256 / 8 - 1;
+	a[j] = 0;
+	for (i = 0; i < 10 && j >= 0; i++) {
+		b = 0;
+		a[j--] |= r[i] << s; b += 8 - s;
+		if (j < 0)
+			break;
+		while (b < 26) {
+			a[j--] = r[i] >> b; b += 8;
+			if (j < 0)
+				break;
+		}
+		s = 8 - (b - 26);
+		if (j >= 0)
+			a[j] = 0;
+		if (s != 0)
+			j++;
+	}
 }
 
 /* Read big endian unsigned byte aray into r.
@@ -126,37 +126,37 @@
  */
 static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n)
 {
-    int i, j = 0, s = 0;
+	int i, j = 0, s = 0;
 
-    r[0] = 0;
-    for (i = n-1; i >= 0; i--) {
-        r[j] |= ((sp_digit)a[i]) << s;
-        if (s >= 18) {
-            r[j] &= 0x3ffffff;
-            s = 26 - s;
-            if (j + 1 >= max)
-                break;
-            r[++j] = a[i] >> s;
-            s = 8 - s;
-        }
-        else
-            s += 8;
-    }
+	r[0] = 0;
+	for (i = n-1; i >= 0; i--) {
+		r[j] |= ((sp_digit)a[i]) << s;
+		if (s >= 18) {
+			r[j] &= 0x3ffffff;
+			s = 26 - s;
+			if (j + 1 >= max)
+				break;
+			r[++j] = a[i] >> s;
+			s = 8 - s;
+		}
+		else
+			s += 8;
+	}
 
-    for (j++; j < max; j++)
-        r[j] = 0;
+	for (j++; j < max; j++)
+		r[j] = 0;
 }
 
 /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
 static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
 {
-    memset(p, 0, sizeof(*p));
-    /*p->infinity = 0;*/
-    sp_256_from_bin(p->x, 2 * 10, bin2x32, 32);
-    sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32);
-    //static const uint8_t one[1] = { 1 };
-    //sp_256_from_bin(p->z, 2 * 10, one, 1);
-    p->z[0] = 1;
+	memset(p, 0, sizeof(*p));
+	/*p->infinity = 0;*/
+	sp_256_from_bin(p->x, 2 * 10, bin2x32, 32);
+	sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32);
+	//static const uint8_t one[1] = { 1 };
+	//sp_256_from_bin(p->z, 2 * 10, one, 1);
+	p->z[0] = 1;
 }
 
 /* Compare a with b.
@@ -166,14 +166,14 @@
  */
 static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b)
 {
-    sp_digit r;
-    int i;
-    for (i = 9; i >= 0; i--) {
-        r = a[i] - b[i];
-        if (r != 0)
-            break;
-    }
-    return r;
+	sp_digit r;
+	int i;
+	for (i = 9; i >= 0; i--) {
+		r = a[i] - b[i];
+		if (r != 0)
+			break;
+	}
+	return r;
 }
 
 /* Compare two numbers to determine if they are equal.
@@ -182,56 +182,56 @@
  */
 static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b)
 {
-    return sp_256_cmp_10(a, b) == 0;
+	return sp_256_cmp_10(a, b) == 0;
 }
 
 /* Normalize the values in each word to 26 bits. */
 static void sp_256_norm_10(sp_digit* a)
 {
-    int i;
-    for (i = 0; i < 9; i++) {
-        a[i+1] += a[i] >> 26;
-        a[i] &= 0x3ffffff;
-    }
+	int i;
+	for (i = 0; i < 9; i++) {
+		a[i+1] += a[i] >> 26;
+		a[i] &= 0x3ffffff;
+	}
 }
 
 /* Add b to a into r. (r = a + b) */
 static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
 {
-    int i;
-    for (i = 0; i < 10; i++)
-        r[i] = a[i] + b[i];
+	int i;
+	for (i = 0; i < 10; i++)
+		r[i] = a[i] + b[i];
 }
 
 /* Conditionally add a and b using the mask m.
  * m is -1 to add and 0 when not.
  */
 static void sp_256_cond_add_10(sp_digit* r, const sp_digit* a,
-        const sp_digit* b, const sp_digit m)
+		const sp_digit* b, const sp_digit m)
 {
-    int i;
-    for (i = 0; i < 10; i++)
-        r[i] = a[i] + (b[i] & m);
+	int i;
+	for (i = 0; i < 10; i++)
+		r[i] = a[i] + (b[i] & m);
 }
 
 /* Conditionally subtract b from a using the mask m.
  * m is -1 to subtract and 0 when not.
  */
 static void sp_256_cond_sub_10(sp_digit* r, const sp_digit* a,
-        const sp_digit* b, const sp_digit m)
+		const sp_digit* b, const sp_digit m)
 {
-    int i;
-    for (i = 0; i < 10; i++)
-        r[i] = a[i] - (b[i] & m);
+	int i;
+	for (i = 0; i < 10; i++)
+		r[i] = a[i] - (b[i] & m);
 }
 
 /* Shift number left one bit. Bottom bit is lost. */
 static void sp_256_rshift1_10(sp_digit* r, sp_digit* a)
 {
-    int i;
-    for (i = 0; i < 9; i++)
-        r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff;
-    r[9] = a[9] >> 1;
+	int i;
+	for (i = 0; i < 9; i++)
+		r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff;
+	r[9] = a[9] >> 1;
 }
 
 /* Multiply a number by Montogmery normalizer mod modulus (prime).
@@ -241,188 +241,188 @@
  */
 static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
 {
-    int64_t t[8];
-    int64_t a32[8];
-    int64_t o;
+	int64_t t[8];
+	int64_t a32[8];
+	int64_t o;
 
-    a32[0] = a[0];
-    a32[0] |= a[1] << 26;
-    a32[0] &= 0xffffffff;
-    a32[1] = (sp_digit)(a[1] >> 6);
-    a32[1] |= a[2] << 20;
-    a32[1] &= 0xffffffff;
-    a32[2] = (sp_digit)(a[2] >> 12);
-    a32[2] |= a[3] << 14;
-    a32[2] &= 0xffffffff;
-    a32[3] = (sp_digit)(a[3] >> 18);
-    a32[3] |= a[4] << 8;
-    a32[3] &= 0xffffffff;
-    a32[4] = (sp_digit)(a[4] >> 24);
-    a32[4] |= a[5] << 2;
-    a32[4] |= a[6] << 28;
-    a32[4] &= 0xffffffff;
-    a32[5] = (sp_digit)(a[6] >> 4);
-    a32[5] |= a[7] << 22;
-    a32[5] &= 0xffffffff;
-    a32[6] = (sp_digit)(a[7] >> 10);
-    a32[6] |= a[8] << 16;
-    a32[6] &= 0xffffffff;
-    a32[7] = (sp_digit)(a[8] >> 16);
-    a32[7] |= a[9] << 10;
-    a32[7] &= 0xffffffff;
+	a32[0] = a[0];
+	a32[0] |= a[1] << 26;
+	a32[0] &= 0xffffffff;
+	a32[1] = (sp_digit)(a[1] >> 6);
+	a32[1] |= a[2] << 20;
+	a32[1] &= 0xffffffff;
+	a32[2] = (sp_digit)(a[2] >> 12);
+	a32[2] |= a[3] << 14;
+	a32[2] &= 0xffffffff;
+	a32[3] = (sp_digit)(a[3] >> 18);
+	a32[3] |= a[4] << 8;
+	a32[3] &= 0xffffffff;
+	a32[4] = (sp_digit)(a[4] >> 24);
+	a32[4] |= a[5] << 2;
+	a32[4] |= a[6] << 28;
+	a32[4] &= 0xffffffff;
+	a32[5] = (sp_digit)(a[6] >> 4);
+	a32[5] |= a[7] << 22;
+	a32[5] &= 0xffffffff;
+	a32[6] = (sp_digit)(a[7] >> 10);
+	a32[6] |= a[8] << 16;
+	a32[6] &= 0xffffffff;
+	a32[7] = (sp_digit)(a[8] >> 16);
+	a32[7] |= a[9] << 10;
+	a32[7] &= 0xffffffff;
 
-    /*  1  1  0 -1 -1 -1 -1  0 */
-    t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6];
-    /*  0  1  1  0 -1 -1 -1 -1 */
-    t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7];
-    /*  0  0  1  1  0 -1 -1 -1 */
-    t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7];
-    /* -1 -1  0  2  2  1  0 -1 */
-    t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7];
-    /*  0 -1 -1  0  2  2  1  0 */
-    t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6];
-    /*  0  0 -1 -1  0  2  2  1 */
-    t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7];
-    /* -1 -1  0  0  0  1  3  2 */
-    t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7];
-    /*  1  0 -1 -1 -1 -1  0  3 */
-    t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7];
+	/*  1  1  0 -1 -1 -1 -1  0 */
+	t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6];
+	/*  0  1  1  0 -1 -1 -1 -1 */
+	t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7];
+	/*  0  0  1  1  0 -1 -1 -1 */
+	t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7];
+	/* -1 -1  0  2  2  1  0 -1 */
+	t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7];
+	/*  0 -1 -1  0  2  2  1  0 */
+	t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6];
+	/*  0  0 -1 -1  0  2  2  1 */
+	t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7];
+	/* -1 -1  0  0  0  1  3  2 */
+	t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7];
+	/*  1  0 -1 -1 -1 -1  0  3 */
+	t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7];
 
-    t[1] += t[0] >> 32; t[0] &= 0xffffffff;
-    t[2] += t[1] >> 32; t[1] &= 0xffffffff;
-    t[3] += t[2] >> 32; t[2] &= 0xffffffff;
-    t[4] += t[3] >> 32; t[3] &= 0xffffffff;
-    t[5] += t[4] >> 32; t[4] &= 0xffffffff;
-    t[6] += t[5] >> 32; t[5] &= 0xffffffff;
-    t[7] += t[6] >> 32; t[6] &= 0xffffffff;
-    o     = t[7] >> 32; t[7] &= 0xffffffff;
-    t[0] += o;
-    t[3] -= o;
-    t[6] -= o;
-    t[7] += o;
-    t[1] += t[0] >> 32; t[0] &= 0xffffffff;
-    t[2] += t[1] >> 32; t[1] &= 0xffffffff;
-    t[3] += t[2] >> 32; t[2] &= 0xffffffff;
-    t[4] += t[3] >> 32; t[3] &= 0xffffffff;
-    t[5] += t[4] >> 32; t[4] &= 0xffffffff;
-    t[6] += t[5] >> 32; t[5] &= 0xffffffff;
-    t[7] += t[6] >> 32; t[6] &= 0xffffffff;
+	t[1] += t[0] >> 32; t[0] &= 0xffffffff;
+	t[2] += t[1] >> 32; t[1] &= 0xffffffff;
+	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
+	t[4] += t[3] >> 32; t[3] &= 0xffffffff;
+	t[5] += t[4] >> 32; t[4] &= 0xffffffff;
+	t[6] += t[5] >> 32; t[5] &= 0xffffffff;
+	t[7] += t[6] >> 32; t[6] &= 0xffffffff;
+	o     = t[7] >> 32; t[7] &= 0xffffffff;
+	t[0] += o;
+	t[3] -= o;
+	t[6] -= o;
+	t[7] += o;
+	t[1] += t[0] >> 32; t[0] &= 0xffffffff;
+	t[2] += t[1] >> 32; t[1] &= 0xffffffff;
+	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
+	t[4] += t[3] >> 32; t[3] &= 0xffffffff;
+	t[5] += t[4] >> 32; t[4] &= 0xffffffff;
+	t[6] += t[5] >> 32; t[5] &= 0xffffffff;
+	t[7] += t[6] >> 32; t[6] &= 0xffffffff;
 
-    r[0] = (sp_digit)(t[0]) & 0x3ffffff;
-    r[1] = (sp_digit)(t[0] >> 26);
-    r[1] |= t[1] << 6;
-    r[1] &= 0x3ffffff;
-    r[2] = (sp_digit)(t[1] >> 20);
-    r[2] |= t[2] << 12;
-    r[2] &= 0x3ffffff;
-    r[3] = (sp_digit)(t[2] >> 14);
-    r[3] |= t[3] << 18;
-    r[3] &= 0x3ffffff;
-    r[4] = (sp_digit)(t[3] >> 8);
-    r[4] |= t[4] << 24;
-    r[4] &= 0x3ffffff;
-    r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff;
-    r[6] = (sp_digit)(t[4] >> 28);
-    r[6] |= t[5] << 4;
-    r[6] &= 0x3ffffff;
-    r[7] = (sp_digit)(t[5] >> 22);
-    r[7] |= t[6] << 10;
-    r[7] &= 0x3ffffff;
-    r[8] = (sp_digit)(t[6] >> 16);
-    r[8] |= t[7] << 16;
-    r[8] &= 0x3ffffff;
-    r[9] = (sp_digit)(t[7] >> 10);
+	r[0] = (sp_digit)(t[0]) & 0x3ffffff;
+	r[1] = (sp_digit)(t[0] >> 26);
+	r[1] |= t[1] << 6;
+	r[1] &= 0x3ffffff;
+	r[2] = (sp_digit)(t[1] >> 20);
+	r[2] |= t[2] << 12;
+	r[2] &= 0x3ffffff;
+	r[3] = (sp_digit)(t[2] >> 14);
+	r[3] |= t[3] << 18;
+	r[3] &= 0x3ffffff;
+	r[4] = (sp_digit)(t[3] >> 8);
+	r[4] |= t[4] << 24;
+	r[4] &= 0x3ffffff;
+	r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff;
+	r[6] = (sp_digit)(t[4] >> 28);
+	r[6] |= t[5] << 4;
+	r[6] &= 0x3ffffff;
+	r[7] = (sp_digit)(t[5] >> 22);
+	r[7] |= t[6] << 10;
+	r[7] &= 0x3ffffff;
+	r[8] = (sp_digit)(t[6] >> 16);
+	r[8] |= t[7] << 16;
+	r[8] &= 0x3ffffff;
+	r[9] = (sp_digit)(t[7] >> 10);
 }
 
 /* Mul a by scalar b and add into r. (r += a * b) */
 static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
 {
-    int64_t tb = b;
-    int64_t t = 0;
-    int i;
+	int64_t tb = b;
+	int64_t t = 0;
+	int i;
 
-    for (i = 0; i < 10; i++) {
-        t += (tb * a[i]) + r[i];
-        r[i] = t & 0x3ffffff;
-        t >>= 26;
-    }
-    r[10] += t;
+	for (i = 0; i < 10; i++) {
+		t += (tb * a[i]) + r[i];
+		r[i] = t & 0x3ffffff;
+		t >>= 26;
+	}
+	r[10] += t;
 }
 
 /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
 static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
 {
-    sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1));
-    sp_256_norm_10(r);
-    sp_256_rshift1_10(r, r);
+	sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1));
+	sp_256_norm_10(r);
+	sp_256_rshift1_10(r, r);
 }
 
 /* Shift the result in the high 256 bits down to the bottom. */
 static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
 {
-    int i;
-    sp_digit n, s;
+	int i;
+	sp_digit n, s;
 
-    s = a[10];
-    n = a[9] >> 22;
-    for (i = 0; i < 9; i++) {
-        n += (s & 0x3ffffff) << 4;
-        r[i] = n & 0x3ffffff;
-        n >>= 26;
-        s = a[11 + i] + (s >> 26);
-    }
-    n += s << 4;
-    r[9] = n;
-    memset(&r[10], 0, sizeof(*r) * 10);
+	s = a[10];
+	n = a[9] >> 22;
+	for (i = 0; i < 9; i++) {
+		n += (s & 0x3ffffff) << 4;
+		r[i] = n & 0x3ffffff;
+		n >>= 26;
+		s = a[11 + i] + (s >> 26);
+	}
+	n += s << 4;
+	r[9] = n;
+	memset(&r[10], 0, sizeof(*r) * 10);
 }
 
 /* Add two Montgomery form numbers (r = a + b % m) */
 static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
-        const sp_digit* m)
+		const sp_digit* m)
 {
-    sp_256_add_10(r, a, b);
-    sp_256_norm_10(r);
-    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
-    sp_256_norm_10(r);
+	sp_256_add_10(r, a, b);
+	sp_256_norm_10(r);
+	sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
+	sp_256_norm_10(r);
 }
 
 /* Double a Montgomery form number (r = a + a % m) */
 static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
 {
-    sp_256_add_10(r, a, a);
-    sp_256_norm_10(r);
-    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
-    sp_256_norm_10(r);
+	sp_256_add_10(r, a, a);
+	sp_256_norm_10(r);
+	sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
+	sp_256_norm_10(r);
 }
 
 /* Triple a Montgomery form number (r = a + a + a % m) */
 static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
 {
-    sp_256_add_10(r, a, a);
-    sp_256_norm_10(r);
-    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
-    sp_256_norm_10(r);
-    sp_256_add_10(r, r, a);
-    sp_256_norm_10(r);
-    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
-    sp_256_norm_10(r);
+	sp_256_add_10(r, a, a);
+	sp_256_norm_10(r);
+	sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
+	sp_256_norm_10(r);
+	sp_256_add_10(r, r, a);
+	sp_256_norm_10(r);
+	sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
+	sp_256_norm_10(r);
 }
 
 /* Sub b from a into r. (r = a - b) */
 static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
 {
-    int i;
-    for (i = 0; i < 10; i++)
-        r[i] = a[i] - b[i];
+	int i;
+	for (i = 0; i < 10; i++)
+		r[i] = a[i] - b[i];
 }
 
 /* Subtract two Montgomery form numbers (r = a - b % m) */
 static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
-        const sp_digit* m)
+		const sp_digit* m)
 {
-    sp_256_sub_10(r, a, b);
-    sp_256_cond_add_10(r, r, m, r[9] >> 22);
-    sp_256_norm_10(r);
+	sp_256_sub_10(r, a, b);
+	sp_256_cond_add_10(r, r, m, r[9] >> 22);
+	sp_256_norm_10(r);
 }
 
 /* Reduce the number back to 256 bits using Montgomery reduction.
@@ -433,60 +433,60 @@
  */
 static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp)
 {
-    int i;
-    sp_digit mu;
+	int i;
+	sp_digit mu;
 
-    if (mp != 1) {
-        for (i = 0; i < 9; i++) {
-            mu = (a[i] * mp) & 0x3ffffff;
-            sp_256_mul_add_10(a+i, m, mu);
-            a[i+1] += a[i] >> 26;
-        }
-        mu = (a[i] * mp) & 0x3fffffl;
-        sp_256_mul_add_10(a+i, m, mu);
-        a[i+1] += a[i] >> 26;
-        a[i] &= 0x3ffffff;
-    }
-    else {
-        for (i = 0; i < 9; i++) {
-            mu = a[i] & 0x3ffffff;
-            sp_256_mul_add_10(a+i, p256_mod, mu);
-            a[i+1] += a[i] >> 26;
-        }
-        mu = a[i] & 0x3fffffl;
-        sp_256_mul_add_10(a+i, p256_mod, mu);
-        a[i+1] += a[i] >> 26;
-        a[i] &= 0x3ffffff;
-    }
+	if (mp != 1) {
+		for (i = 0; i < 9; i++) {
+			mu = (a[i] * mp) & 0x3ffffff;
+			sp_256_mul_add_10(a+i, m, mu);
+			a[i+1] += a[i] >> 26;
+		}
+		mu = (a[i] * mp) & 0x3fffffl;
+		sp_256_mul_add_10(a+i, m, mu);
+		a[i+1] += a[i] >> 26;
+		a[i] &= 0x3ffffff;
+	}
+	else {
+		for (i = 0; i < 9; i++) {
+			mu = a[i] & 0x3ffffff;
+			sp_256_mul_add_10(a+i, p256_mod, mu);
+			a[i+1] += a[i] >> 26;
+		}
+		mu = a[i] & 0x3fffffl;
+		sp_256_mul_add_10(a+i, p256_mod, mu);
+		a[i+1] += a[i] >> 26;
+		a[i] &= 0x3ffffff;
+	}
 
-    sp_256_mont_shift_10(a, a);
-    sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0));
-    sp_256_norm_10(a);
+	sp_256_mont_shift_10(a, a);
+	sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0));
+	sp_256_norm_10(a);
 }
 
 /* Multiply a and b into r. (r = a * b) */
 static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
 {
-    int i, j, k;
-    int64_t c;
+	int i, j, k;
+	int64_t c;
 
-    c = ((int64_t)a[9]) * b[9];
-    r[19] = (sp_digit)(c >> 26);
-    c = (c & 0x3ffffff) << 26;
-    for (k = 17; k >= 0; k--) {
-        for (i = 9; i >= 0; i--) {
-            j = k - i;
-            if (j >= 10)
-                break;
-            if (j < 0)
-                continue;
-            c += ((int64_t)a[i]) * b[j];
-        }
-        r[k + 2] += c >> 52;
-        r[k + 1] = (c >> 26) & 0x3ffffff;
-        c = (c & 0x3ffffff) << 26;
-    }
-    r[0] = (sp_digit)(c >> 26);
+	c = ((int64_t)a[9]) * b[9];
+	r[19] = (sp_digit)(c >> 26);
+	c = (c & 0x3ffffff) << 26;
+	for (k = 17; k >= 0; k--) {
+		for (i = 9; i >= 0; i--) {
+			j = k - i;
+			if (j >= 10)
+				break;
+			if (j < 0)
+				continue;
+			c += ((int64_t)a[i]) * b[j];
+		}
+		r[k + 2] += c >> 52;
+		r[k + 1] = (c >> 26) & 0x3ffffff;
+		c = (c & 0x3ffffff) << 26;
+	}
+	r[0] = (sp_digit)(c >> 26);
 }
 
 /* Multiply two Montogmery form numbers mod the modulus (prime).
@@ -499,39 +499,39 @@
  * mp  Montogmery mulitplier.
  */
 static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
-        const sp_digit* m, sp_digit mp)
+		const sp_digit* m, sp_digit mp)
 {
-    sp_256_mul_10(r, a, b);
-    sp_256_mont_reduce_10(r, m, mp);
+	sp_256_mul_10(r, a, b);
+	sp_256_mont_reduce_10(r, m, mp);
 }
 
 /* Square a and put result in r. (r = a * a) */
 static void sp_256_sqr_10(sp_digit* r, const sp_digit* a)
 {
-    int i, j, k;
-    int64_t c;
+	int i, j, k;
+	int64_t c;
 
-    c = ((int64_t)a[9]) * a[9];
-    r[19] = (sp_digit)(c >> 26);
-    c = (c & 0x3ffffff) << 26;
-    for (k = 17; k >= 0; k--) {
-        for (i = 9; i >= 0; i--) {
-            j = k - i;
-            if (j >= 10 || i <= j)
-                break;
-            if (j < 0)
-                continue;
+	c = ((int64_t)a[9]) * a[9];
+	r[19] = (sp_digit)(c >> 26);
+	c = (c & 0x3ffffff) << 26;
+	for (k = 17; k >= 0; k--) {
+		for (i = 9; i >= 0; i--) {
+			j = k - i;
+			if (j >= 10 || i <= j)
+				break;
+			if (j < 0)
+				continue;
 
-            c += ((int64_t)a[i]) * a[j] * 2;
-        }
-        if (i == j)
-           c += ((int64_t)a[i]) * a[i];
+			c += ((int64_t)a[i]) * a[j] * 2;
+		}
+		if (i == j)
+		   c += ((int64_t)a[i]) * a[i];
 
-        r[k + 2] += c >> 52;
-        r[k + 1] = (c >> 26) & 0x3ffffff;
-        c = (c & 0x3ffffff) << 26;
-    }
-    r[0] = (sp_digit)(c >> 26);
+		r[k + 2] += c >> 52;
+		r[k + 1] = (c >> 26) & 0x3ffffff;
+		c = (c & 0x3ffffff) << 26;
+	}
+	r[0] = (sp_digit)(c >> 26);
 }
 
 /* Square the Montgomery form number. (r = a * a mod m)
@@ -542,10 +542,10 @@
  * mp  Montogmery mulitplier.
  */
 static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m,
-        sp_digit mp)
+		sp_digit mp)
 {
-    sp_256_sqr_10(r, a);
-    sp_256_mont_reduce_10(r, m, mp);
+	sp_256_sqr_10(r, a);
+	sp_256_mont_reduce_10(r, m, mp);
 }
 
 /* Invert the number, in Montgomery form, modulo the modulus (prime) of the
@@ -557,8 +557,8 @@
 #if 0
 /* Mod-2 for the P256 curve. */
 static const uint32_t p256_mod_2[8] = {
-    0xfffffffd,0xffffffff,0xffffffff,0x00000000,
-    0x00000000,0x00000000,0x00000001,0xffffffff,
+	0xfffffffd,0xffffffff,0xffffffff,0x00000000,
+	0x00000000,0x00000000,0x00000001,0xffffffff,
 };
 //Bit pattern:
 //2    2         2         2         2         2         2         1...1
@@ -568,17 +568,17 @@
 #endif
 static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
 {
-    sp_digit t[2*10]; //can be just [10]?
-    int i;
+	sp_digit t[2*10]; //can be just [10]?
+	int i;
 
-    memcpy(t, a, sizeof(sp_digit) * 10);
-    for (i = 254; i >= 0; i--) {
-        sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
-        /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
-        if (i >= 224 || i == 192 || (i <= 95 && i != 1))
-            sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
-    }
-    memcpy(r, t, sizeof(sp_digit) * 10);
+	memcpy(t, a, sizeof(sp_digit) * 10);
+	for (i = 254; i >= 0; i--) {
+		sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
+		/*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
+		if (i >= 224 || i == 192 || (i <= 95 && i != 1))
+			sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
+	}
+	memcpy(r, t, sizeof(sp_digit) * 10);
 }
 
 /* Map the Montgomery form projective co-ordinate point to an affine point.
@@ -588,35 +588,35 @@
  */
 static void sp_256_map_10(sp_point* r, sp_point* p)
 {
-    sp_digit t1[2*10];
-    sp_digit t2[2*10];
-    int32_t n;
+	sp_digit t1[2*10];
+	sp_digit t2[2*10];
+	int32_t n;
 
-    sp_256_mont_inv_10(t1, p->z);
+	sp_256_mont_inv_10(t1, p->z);
 
-    sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod);
-    sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod);
+	sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod);
+	sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod);
 
-    /* x /= z^2 */
-    sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod);
-    memset(r->x + 10, 0, sizeof(r->x) / 2);
-    sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod);
-    /* Reduce x to less than modulus */
-    n = sp_256_cmp_10(r->x, p256_mod);
-    sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0));
-    sp_256_norm_10(r->x);
+	/* x /= z^2 */
+	sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod);
+	memset(r->x + 10, 0, sizeof(r->x) / 2);
+	sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod);
+	/* Reduce x to less than modulus */
+	n = sp_256_cmp_10(r->x, p256_mod);
+	sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0));
+	sp_256_norm_10(r->x);
 
-    /* y /= z^3 */
-    sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod);
-    memset(r->y + 10, 0, sizeof(r->y) / 2);
-    sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod);
-    /* Reduce y to less than modulus */
-    n = sp_256_cmp_10(r->y, p256_mod);
-    sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0));
-    sp_256_norm_10(r->y);
+	/* y /= z^3 */
+	sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod);
+	memset(r->y + 10, 0, sizeof(r->y) / 2);
+	sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod);
+	/* Reduce y to less than modulus */
+	n = sp_256_cmp_10(r->y, p256_mod);
+	sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0));
+	sp_256_norm_10(r->y);
 
-    memset(r->z, 0, sizeof(r->z));
-    r->z[0] = 1;
+	memset(r->z, 0, sizeof(r->z));
+	r->z[0] = 1;
 }
 
 /* Double the Montgomery form projective point p.
@@ -626,54 +626,54 @@
  */
 static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p)
 {
-    sp_point tp;
-    sp_digit t1[2*10];
-    sp_digit t2[2*10];
+	sp_point tp;
+	sp_digit t1[2*10];
+	sp_digit t2[2*10];
 
-    /* Put point to double into result */
-    if (r != p)
-        *r = *p; /* struct copy */
+	/* Put point to double into result */
+	if (r != p)
+		*r = *p; /* struct copy */
 
-    if (r->infinity) {
-        /* If infinity, don't double (work on dummy value) */
-        r = &tp;
-    }
-    /* T1 = Z * Z */
-    sp_256_mont_sqr_10(t1, r->z, p256_mod, p256_mp_mod);
-    /* Z = Y * Z */
-    sp_256_mont_mul_10(r->z, r->y, r->z, p256_mod, p256_mp_mod);
-    /* Z = 2Z */
-    sp_256_mont_dbl_10(r->z, r->z, p256_mod);
-    /* T2 = X - T1 */
-    sp_256_mont_sub_10(t2, r->x, t1, p256_mod);
-    /* T1 = X + T1 */
-    sp_256_mont_add_10(t1, r->x, t1, p256_mod);
-    /* T2 = T1 * T2 */
-    sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod);
-    /* T1 = 3T2 */
-    sp_256_mont_tpl_10(t1, t2, p256_mod);
-    /* Y = 2Y */
-    sp_256_mont_dbl_10(r->y, r->y, p256_mod);
-    /* Y = Y * Y */
-    sp_256_mont_sqr_10(r->y, r->y, p256_mod, p256_mp_mod);
-    /* T2 = Y * Y */
-    sp_256_mont_sqr_10(t2, r->y, p256_mod, p256_mp_mod);
-    /* T2 = T2/2 */
-    sp_256_div2_10(t2, t2, p256_mod);
-    /* Y = Y * X */
-    sp_256_mont_mul_10(r->y, r->y, r->x, p256_mod, p256_mp_mod);
-    /* X = T1 * T1 */
-    sp_256_mont_mul_10(r->x, t1, t1, p256_mod, p256_mp_mod);
-    /* X = X - Y */
-    sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
-    /* X = X - Y */
-    sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
-    /* Y = Y - X */
-    sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod);
-    /* Y = Y * T1 */
-    sp_256_mont_mul_10(r->y, r->y, t1, p256_mod, p256_mp_mod);
-    /* Y = Y - T2 */
-    sp_256_mont_sub_10(r->y, r->y, t2, p256_mod);
+	if (r->infinity) {
+		/* If infinity, don't double (work on dummy value) */
+		r = &tp;
+	}
+	/* T1 = Z * Z */
+	sp_256_mont_sqr_10(t1, r->z, p256_mod, p256_mp_mod);
+	/* Z = Y * Z */
+	sp_256_mont_mul_10(r->z, r->y, r->z, p256_mod, p256_mp_mod);
+	/* Z = 2Z */
+	sp_256_mont_dbl_10(r->z, r->z, p256_mod);
+	/* T2 = X - T1 */
+	sp_256_mont_sub_10(t2, r->x, t1, p256_mod);
+	/* T1 = X + T1 */
+	sp_256_mont_add_10(t1, r->x, t1, p256_mod);
+	/* T2 = T1 * T2 */
+	sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod);
+	/* T1 = 3T2 */
+	sp_256_mont_tpl_10(t1, t2, p256_mod);
+	/* Y = 2Y */
+	sp_256_mont_dbl_10(r->y, r->y, p256_mod);
+	/* Y = Y * Y */
+	sp_256_mont_sqr_10(r->y, r->y, p256_mod, p256_mp_mod);
+	/* T2 = Y * Y */
+	sp_256_mont_sqr_10(t2, r->y, p256_mod, p256_mp_mod);
+	/* T2 = T2/2 */
+	sp_256_div2_10(t2, t2, p256_mod);
+	/* Y = Y * X */
+	sp_256_mont_mul_10(r->y, r->y, r->x, p256_mod, p256_mp_mod);
+	/* X = T1 * T1 */
+	sp_256_mont_mul_10(r->x, t1, t1, p256_mod, p256_mp_mod);
+	/* X = X - Y */
+	sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
+	/* X = X - Y */
+	sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod);
+	/* Y = Y - X */
+	sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod);
+	/* Y = Y * T1 */
+	sp_256_mont_mul_10(r->y, r->y, t1, p256_mod, p256_mp_mod);
+	/* Y = Y - T2 */
+	sp_256_mont_sub_10(r->y, r->y, t2, p256_mod);
 }
 
 /* Add two Montgomery form projective points.
@@ -684,73 +684,73 @@
  */
 static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
 {
-    sp_digit t1[2*10];
-    sp_digit t2[2*10];
-    sp_digit t3[2*10];
-    sp_digit t4[2*10];
-    sp_digit t5[2*10];
+	sp_digit t1[2*10];
+	sp_digit t2[2*10];
+	sp_digit t3[2*10];
+	sp_digit t4[2*10];
+	sp_digit t5[2*10];
 
-    /* Ensure only the first point is the same as the result. */
-    if (q == r) {
-        sp_point* a = p;
-        p = q;
-        q = a;
-    }
+	/* Ensure only the first point is the same as the result. */
+	if (q == r) {
+		sp_point* a = p;
+		p = q;
+		q = a;
+	}
 
-    /* Check double */
-    sp_256_sub_10(t1, p256_mod, q->y);
-    sp_256_norm_10(t1);
-    if (sp_256_cmp_equal_10(p->x, q->x)
-     && sp_256_cmp_equal_10(p->z, q->z)
-     && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1))
-    ) {
-        sp_256_proj_point_dbl_10(r, p);
-    }
-    else {
-        sp_point tp;
-        sp_point *v;
+	/* Check double */
+	sp_256_sub_10(t1, p256_mod, q->y);
+	sp_256_norm_10(t1);
+	if (sp_256_cmp_equal_10(p->x, q->x)
+	 && sp_256_cmp_equal_10(p->z, q->z)
+	 && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1))
+	) {
+		sp_256_proj_point_dbl_10(r, p);
+	}
+	else {
+		sp_point tp;
+		sp_point *v;
 
-        v = r;
-        if (p->infinity | q->infinity) {
-            memset(&tp, 0, sizeof(tp));
-            v = &tp;
-        }
+		v = r;
+		if (p->infinity | q->infinity) {
+			memset(&tp, 0, sizeof(tp));
+			v = &tp;
+		}
 
-        *r = p->infinity ? *q : *p; /* struct copy */
+		*r = p->infinity ? *q : *p; /* struct copy */
 
-        /* U1 = X1*Z2^2 */
-        sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t1, t1, v->x, p256_mod, p256_mp_mod);
-        /* U2 = X2*Z1^2 */
-        sp_256_mont_sqr_10(t2, v->z, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t4, t2, v->z, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod);
-        /* S1 = Y1*Z2^3 */
-        sp_256_mont_mul_10(t3, t3, v->y, p256_mod, p256_mp_mod);
-        /* S2 = Y2*Z1^3 */
-        sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod);
-        /* H = U2 - U1 */
-        sp_256_mont_sub_10(t2, t2, t1, p256_mod);
-        /* R = S2 - S1 */
-        sp_256_mont_sub_10(t4, t4, t3, p256_mod);
-        /* Z3 = H*Z1*Z2 */
-        sp_256_mont_mul_10(v->z, v->z, q->z, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(v->z, v->z, t2, p256_mod, p256_mp_mod);
-        /* X3 = R^2 - H^3 - 2*U1*H^2 */
-        sp_256_mont_sqr_10(v->x, t4, p256_mod, p256_mp_mod);
-        sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(v->y, t1, t5, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod);
-        sp_256_mont_sub_10(v->x, v->x, t5, p256_mod);
-        sp_256_mont_dbl_10(t1, v->y, p256_mod);
-        sp_256_mont_sub_10(v->x, v->x, t1, p256_mod);
-        /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
-        sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod);
-        sp_256_mont_mul_10(v->y, v->y, t4, p256_mod, p256_mp_mod);
-        sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod);
-        sp_256_mont_sub_10(v->y, v->y, t5, p256_mod);
-    }
+		/* U1 = X1*Z2^2 */
+		sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t1, t1, v->x, p256_mod, p256_mp_mod);
+		/* U2 = X2*Z1^2 */
+		sp_256_mont_sqr_10(t2, v->z, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t4, t2, v->z, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod);
+		/* S1 = Y1*Z2^3 */
+		sp_256_mont_mul_10(t3, t3, v->y, p256_mod, p256_mp_mod);
+		/* S2 = Y2*Z1^3 */
+		sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod);
+		/* H = U2 - U1 */
+		sp_256_mont_sub_10(t2, t2, t1, p256_mod);
+		/* R = S2 - S1 */
+		sp_256_mont_sub_10(t4, t4, t3, p256_mod);
+		/* Z3 = H*Z1*Z2 */
+		sp_256_mont_mul_10(v->z, v->z, q->z, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(v->z, v->z, t2, p256_mod, p256_mp_mod);
+		/* X3 = R^2 - H^3 - 2*U1*H^2 */
+		sp_256_mont_sqr_10(v->x, t4, p256_mod, p256_mp_mod);
+		sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(v->y, t1, t5, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod);
+		sp_256_mont_sub_10(v->x, v->x, t5, p256_mod);
+		sp_256_mont_dbl_10(t1, v->y, p256_mod);
+		sp_256_mont_sub_10(v->x, v->x, t1, p256_mod);
+		/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
+		sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod);
+		sp_256_mont_mul_10(v->y, v->y, t4, p256_mod, p256_mp_mod);
+		sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod);
+		sp_256_mont_sub_10(v->y, v->y, t5, p256_mod);
+	}
 }
 
 /* Multiply the point by the scalar and return the result.
@@ -763,48 +763,48 @@
  */
 static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
 {
-    enum { map = 1 }; /* we always convert result to affine coordinates */
-    sp_point t[3];
-    sp_digit n;
-    int i;
-    int c, y;
+	enum { map = 1 }; /* we always convert result to affine coordinates */
+	sp_point t[3];
+	sp_digit n;
+	int i;
+	int c, y;
 
-    memset(t, 0, sizeof(t));
+	memset(t, 0, sizeof(t));
 
-    /* t[0] = {0, 0, 1} * norm */
-    t[0].infinity = 1;
-    /* t[1] = {g->x, g->y, g->z} * norm */
-    sp_256_mod_mul_norm_10(t[1].x, g->x);
-    sp_256_mod_mul_norm_10(t[1].y, g->y);
-    sp_256_mod_mul_norm_10(t[1].z, g->z);
+	/* t[0] = {0, 0, 1} * norm */
+	t[0].infinity = 1;
+	/* t[1] = {g->x, g->y, g->z} * norm */
+	sp_256_mod_mul_norm_10(t[1].x, g->x);
+	sp_256_mod_mul_norm_10(t[1].y, g->y);
+	sp_256_mod_mul_norm_10(t[1].z, g->z);
 
-    i = 9;
-    c = 22;
-    n = k[i--] << (26 - c);
-    for (; ; c--) {
-        if (c == 0) {
-            if (i == -1)
-                break;
+	i = 9;
+	c = 22;
+	n = k[i--] << (26 - c);
+	for (; ; c--) {
+		if (c == 0) {
+			if (i == -1)
+				break;
 
-            n = k[i--];
-            c = 26;
-        }
+			n = k[i--];
+			c = 26;
+		}
 
-        y = (n >> 25) & 1;
-        n <<= 1;
+		y = (n >> 25) & 1;
+		n <<= 1;
 
-        sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]);
-        memcpy(&t[2], &t[y], sizeof(sp_point));
-        sp_256_proj_point_dbl_10(&t[2], &t[2]);
-        memcpy(&t[y], &t[2], sizeof(sp_point));
-    }
+		sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]);
+		memcpy(&t[2], &t[y], sizeof(sp_point));
+		sp_256_proj_point_dbl_10(&t[2], &t[2]);
+		memcpy(&t[y], &t[2], sizeof(sp_point));
+	}
 
-    if (map)
-        sp_256_map_10(r, &t[0]);
-    else
-        memcpy(r, &t[0], sizeof(sp_point));
+	if (map)
+		sp_256_map_10(r, &t[0]);
+	else
+		memcpy(r, &t[0], sizeof(sp_point));
 
-    memset(t, 0, sizeof(t)); //paranoia
+	memset(t, 0, sizeof(t)); //paranoia
 }
 
 /* Multiply the base point of P256 by the scalar and return the result.
@@ -816,7 +816,7 @@
  */
 static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
 {
-    sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/);
+	sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/);
 }
 
 /* Multiply the point by the scalar and serialize the X ordinate.
@@ -828,22 +828,22 @@
  */
 static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32)
 {
-    sp_point point[1];
+	sp_point point[1];
 
 #if FIXED_PEER_PUBKEY
-    memset((void*)pub2x32, 0x55, 64);
+	memset((void*)pub2x32, 0x55, 64);
 #endif
-    dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
-    dump_hex("        %s\n", pub2x32 + 32, 32);
+	dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
+	dump_hex("        %s\n", pub2x32 + 32, 32);
 
-    sp_256_point_from_bin2x32(point, pub2x32);
-    dump_hex("point->x %s\n", point->x, sizeof(point->x));
-    dump_hex("point->y %s\n", point->y, sizeof(point->y));
+	sp_256_point_from_bin2x32(point, pub2x32);
+	dump_hex("point->x %s\n", point->x, sizeof(point->x));
+	dump_hex("point->y %s\n", point->y, sizeof(point->y));
 
-    sp_256_ecc_mulmod_10(point, point, priv);
+	sp_256_ecc_mulmod_10(point, point, priv);
 
-    sp_256_to_bin(point->x, out32);
-    dump_hex("out32: %s\n", out32, 32);
+	sp_256_to_bin(point->x, out32);
+	dump_hex("out32: %s\n", out32, 32);
 }
 
 /* Generates a scalar that is in the range 1..order-1. */
@@ -852,8 +852,8 @@
 #if !SIMPLIFY
 static void sp_256_add_one_10(sp_digit* a)
 {
-    a[0]++;
-    sp_256_norm_10(a);
+	a[0]++;
+	sp_256_norm_10(a);
 }
 #endif
 static void sp_256_ecc_gen_k_10(sp_digit k[10])