import the very fat e2fsck/fsck applets
diff --git a/e2fsprogs/e2fsck/dict.c b/e2fsprogs/e2fsck/dict.c
new file mode 100644
index 0000000..6aabc1b
--- /dev/null
+++ b/e2fsprogs/e2fsck/dict.c
@@ -0,0 +1,1519 @@
+/*
+ * Dictionary Abstract Data Type
+ * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
+ *
+ * Free Software License:
+ *
+ * All rights are reserved by the author, with the following exceptions:
+ * Permission is granted to freely reproduce and distribute this software,
+ * possibly in exchange for a fee, provided that this copyright notice appears
+ * intact. Permission is also granted to adapt this software to produce
+ * derivative works, as long as the modified versions carry this copyright
+ * notice and additional notices stating that the work has been modified.
+ * This source code may be translated into executable form and incorporated
+ * into proprietary software; there is no requirement for such software to
+ * contain a copyright notice related to this source.
+ *
+ * $Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $
+ * $Name: kazlib_1_20 $
+ */
+
+#ifdef __GNUC__
+#define EXT2FS_ATTR(x) __attribute__(x)
+#else
+#define EXT2FS_ATTR(x)
+#endif
+
+#include <stdlib.h>
+#include <stddef.h>
+#include <assert.h>
+#define DICT_IMPLEMENTATION
+#include "dict.h"
+
+#ifdef KAZLIB_RCSID
+static const char rcsid[] = "$Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $";
+#endif
+
+/*
+ * These macros provide short convenient names for structure members,
+ * which are embellished with dict_ prefixes so that they are
+ * properly confined to the documented namespace. It's legal for a 
+ * program which uses dict to define, for instance, a macro called ``parent''.
+ * Such a macro would interfere with the dnode_t struct definition.
+ * In general, highly portable and reusable C modules which expose their
+ * structures need to confine structure member names to well-defined spaces.
+ * The resulting identifiers aren't necessarily convenient to use, nor
+ * readable, in the implementation, however!
+ */
+
+#define left dict_left
+#define right dict_right
+#define parent dict_parent
+#define color dict_color
+#define key dict_key
+#define data dict_data
+
+#define nilnode dict_nilnode
+#define nodecount dict_nodecount
+#define maxcount dict_maxcount
+#define compare dict_compare
+#define allocnode dict_allocnode
+#define freenode dict_freenode
+#define context dict_context
+#define dupes dict_dupes
+
+#define dictptr dict_dictptr
+
+#define dict_root(D) ((D)->nilnode.left)
+#define dict_nil(D) (&(D)->nilnode)
+#define DICT_DEPTH_MAX 64
+
+static dnode_t *dnode_alloc(void *context);
+static void dnode_free(dnode_t *node, void *context);
+
+/*
+ * Perform a ``left rotation'' adjustment on the tree.  The given node P and
+ * its right child C are rearranged so that the P instead becomes the left
+ * child of C.   The left subtree of C is inherited as the new right subtree
+ * for P.  The ordering of the keys within the tree is thus preserved.
+ */
+
+static void rotate_left(dnode_t *upper)
+{
+    dnode_t *lower, *lowleft, *upparent;
+
+    lower = upper->right;
+    upper->right = lowleft = lower->left;
+    lowleft->parent = upper;
+
+    lower->parent = upparent = upper->parent;
+
+    /* don't need to check for root node here because root->parent is
+       the sentinel nil node, and root->parent->left points back to root */
+
+    if (upper == upparent->left) {
+	upparent->left = lower;
+    } else {
+	assert (upper == upparent->right);
+	upparent->right = lower;
+    }
+
+    lower->left = upper;
+    upper->parent = lower;
+}
+
+/*
+ * This operation is the ``mirror'' image of rotate_left. It is
+ * the same procedure, but with left and right interchanged.
+ */
+
+static void rotate_right(dnode_t *upper)
+{
+    dnode_t *lower, *lowright, *upparent;
+
+    lower = upper->left;
+    upper->left = lowright = lower->right;
+    lowright->parent = upper;
+
+    lower->parent = upparent = upper->parent;
+
+    if (upper == upparent->right) {
+	upparent->right = lower;
+    } else {
+	assert (upper == upparent->left);
+	upparent->left = lower;
+    }
+
+    lower->right = upper;
+    upper->parent = lower;
+}
+
+/*
+ * Do a postorder traversal of the tree rooted at the specified
+ * node and free everything under it.  Used by dict_free().
+ */
+
+static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
+{
+    if (node == nil)
+	return;
+    free_nodes(dict, node->left, nil);
+    free_nodes(dict, node->right, nil);
+    dict->freenode(node, dict->context);
+}
+
+/*
+ * This procedure performs a verification that the given subtree is a binary
+ * search tree. It performs an inorder traversal of the tree using the
+ * dict_next() successor function, verifying that the key of each node is
+ * strictly lower than that of its successor, if duplicates are not allowed,
+ * or lower or equal if duplicates are allowed.  This function is used for
+ * debugging purposes. 
+ */
+#ifndef NDEBUG
+static int verify_bintree(dict_t *dict)
+{
+    dnode_t *first, *next;
+
+    first = dict_first(dict);
+
+    if (dict->dupes) {
+	while (first && (next = dict_next(dict, first))) {
+	    if (dict->compare(first->key, next->key) > 0)
+		return 0;
+	    first = next;
+	}
+    } else {
+	while (first && (next = dict_next(dict, first))) {
+	    if (dict->compare(first->key, next->key) >= 0)
+		return 0;
+	    first = next;
+	}
+    }
+    return 1;
+}
+
+/*
+ * This function recursively verifies that the given binary subtree satisfies
+ * three of the red black properties. It checks that every red node has only
+ * black children. It makes sure that each node is either red or black. And it
+ * checks that every path has the same count of black nodes from root to leaf.
+ * It returns the blackheight of the given subtree; this allows blackheights to
+ * be computed recursively and compared for left and right siblings for
+ * mismatches. It does not check for every nil node being black, because there
+ * is only one sentinel nil node. The return value of this function is the
+ * black height of the subtree rooted at the node ``root'', or zero if the
+ * subtree is not red-black.
+ */
+
+static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
+{
+    unsigned height_left, height_right;
+
+    if (root != nil) {
+	height_left = verify_redblack(nil, root->left);
+	height_right = verify_redblack(nil, root->right);
+	if (height_left == 0 || height_right == 0)
+	    return 0;
+	if (height_left != height_right)
+	    return 0;
+	if (root->color == dnode_red) {
+	    if (root->left->color != dnode_black)
+		return 0;
+	    if (root->right->color != dnode_black)
+		return 0;
+	    return height_left;
+	}
+	if (root->color != dnode_black)
+	    return 0;
+	return height_left + 1;
+    } 
+    return 1;
+}
+
+/*
+ * Compute the actual count of nodes by traversing the tree and
+ * return it. This could be compared against the stored count to
+ * detect a mismatch.
+ */
+
+static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
+{
+    if (root == nil)
+	return 0;
+    else
+	return 1 + verify_node_count(nil, root->left)
+	    + verify_node_count(nil, root->right);
+}
+#endif
+
+/*
+ * Verify that the tree contains the given node. This is done by
+ * traversing all of the nodes and comparing their pointers to the
+ * given pointer. Returns 1 if the node is found, otherwise
+ * returns zero. It is intended for debugging purposes.
+ */
+
+static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
+{
+    if (root != nil) {
+	return root == node
+		|| verify_dict_has_node(nil, root->left, node)
+		|| verify_dict_has_node(nil, root->right, node);
+    }
+    return 0;
+}
+
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Dynamically allocate and initialize a dictionary object.
+ */
+
+dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp)
+{
+    dict_t *new = malloc(sizeof *new);
+
+    if (new) {
+	new->compare = comp;
+	new->allocnode = dnode_alloc;
+	new->freenode = dnode_free;
+	new->context = NULL;
+	new->nodecount = 0;
+	new->maxcount = maxcount;
+	new->nilnode.left = &new->nilnode;
+	new->nilnode.right = &new->nilnode;
+	new->nilnode.parent = &new->nilnode;
+	new->nilnode.color = dnode_black;
+	new->dupes = 0;
+    }
+    return new;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Select a different set of node allocator routines.
+ */
+
+void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
+	dnode_free_t fr, void *context)
+{
+    assert (dict_count(dict) == 0);
+    assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
+
+    dict->allocnode = al ? al : dnode_alloc;
+    dict->freenode = fr ? fr : dnode_free;
+    dict->context = context;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Free a dynamically allocated dictionary object. Removing the nodes
+ * from the tree before deleting it is required.
+ */
+
+void dict_destroy(dict_t *dict)
+{
+    assert (dict_isempty(dict));
+    free(dict);
+}
+#endif
+
+/*
+ * Free all the nodes in the dictionary by using the dictionary's
+ * installed free routine. The dictionary is emptied.
+ */
+
+void dict_free_nodes(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+    free_nodes(dict, root, nil);
+    dict->nodecount = 0;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Obsolescent function, equivalent to dict_free_nodes
+ */
+void dict_free(dict_t *dict)
+{
+#ifdef KAZLIB_OBSOLESCENT_DEBUG
+    assert ("call to obsolescent function dict_free()" && 0);
+#endif
+    dict_free_nodes(dict);
+}
+#endif
+
+/*
+ * Initialize a user-supplied dictionary object.
+ */
+
+dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
+{
+    dict->compare = comp;
+    dict->allocnode = dnode_alloc;
+    dict->freenode = dnode_free;
+    dict->context = NULL;
+    dict->nodecount = 0;
+    dict->maxcount = maxcount;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    dict->nilnode.color = dnode_black;
+    dict->dupes = 0;
+    return dict;
+}
+
+#ifdef E2FSCK_NOTUSED
+/* 
+ * Initialize a dictionary in the likeness of another dictionary
+ */
+
+void dict_init_like(dict_t *dict, const dict_t *template)
+{
+    dict->compare = template->compare;
+    dict->allocnode = template->allocnode;
+    dict->freenode = template->freenode;
+    dict->context = template->context;
+    dict->nodecount = 0;
+    dict->maxcount = template->maxcount;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    dict->nilnode.color = dnode_black;
+    dict->dupes = template->dupes;
+
+    assert (dict_similar(dict, template));
+}
+
+/*
+ * Remove all nodes from the dictionary (without freeing them in any way).
+ */
+
+static void dict_clear(dict_t *dict)
+{
+    dict->nodecount = 0;
+    dict->nilnode.left = &dict->nilnode;
+    dict->nilnode.right = &dict->nilnode;
+    dict->nilnode.parent = &dict->nilnode;
+    assert (dict->nilnode.color == dnode_black);
+}
+
+
+/*
+ * Verify the integrity of the dictionary structure.  This is provided for
+ * debugging purposes, and should be placed in assert statements.   Just because
+ * this function succeeds doesn't mean that the tree is not corrupt. Certain
+ * corruptions in the tree may simply cause undefined behavior.
+ */ 
+
+int dict_verify(dict_t *dict)
+{
+#ifndef NDEBUG
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+
+    /* check that the sentinel node and root node are black */
+    if (root->color != dnode_black)
+	return 0;
+    if (nil->color != dnode_black)
+	return 0;
+    if (nil->right != nil)
+	return 0;
+    /* nil->left is the root node; check that its parent pointer is nil */
+    if (nil->left->parent != nil)
+	return 0;
+    /* perform a weak test that the tree is a binary search tree */
+    if (!verify_bintree(dict))
+	return 0;
+    /* verify that the tree is a red-black tree */
+    if (!verify_redblack(nil, root))
+	return 0;
+    if (verify_node_count(nil, root) != dict_count(dict))
+	return 0;
+#endif
+    return 1;
+}
+
+/*
+ * Determine whether two dictionaries are similar: have the same comparison and
+ * allocator functions, and same status as to whether duplicates are allowed.
+ */
+
+int dict_similar(const dict_t *left, const dict_t *right)
+{
+    if (left->compare != right->compare)
+	return 0;
+
+    if (left->allocnode != right->allocnode)
+	return 0;
+
+    if (left->freenode != right->freenode)
+	return 0;
+
+    if (left->context != right->context)
+	return 0;
+
+    if (left->dupes != right->dupes)
+	return 0;
+
+    return 1;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Locate a node in the dictionary having the given key.
+ * If the node is not found, a null a pointer is returned (rather than 
+ * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
+ * located node is returned.
+ */
+
+dnode_t *dict_lookup(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *saved;
+    int result;
+
+    /* simple binary search adapted for trees that contain duplicate keys */
+
+    while (root != nil) {
+	result = dict->compare(key, root->key);
+	if (result < 0)
+	    root = root->left;
+	else if (result > 0)
+	    root = root->right;
+	else {
+	    if (!dict->dupes) {	/* no duplicates, return match		*/
+		return root;
+	    } else {		/* could be dupes, find leftmost one	*/
+		do {
+		    saved = root;
+		    root = root->left;
+		    while (root != nil && dict->compare(key, root->key))
+			root = root->right;
+		} while (root != nil);
+		return saved;
+	    }
+	}
+    }
+
+    return NULL;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Look for the node corresponding to the lowest key that is equal to or
+ * greater than the given key.  If there is no such node, return null.
+ */
+
+dnode_t *dict_lower_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+	int result = dict->compare(key, root->key);
+
+	if (result > 0) {
+	    root = root->right;
+	} else if (result < 0) {
+	    tentative = root;
+	    root = root->left;
+	} else {
+	    if (!dict->dupes) {
+	    	return root;
+	    } else {
+		tentative = root;
+		root = root->left;
+	    }
+	} 
+    }
+    
+    return tentative;
+}
+
+/*
+ * Look for the node corresponding to the greatest key that is equal to or
+ * lower than the given key.  If there is no such node, return null.
+ */
+
+dnode_t *dict_upper_bound(dict_t *dict, const void *key)
+{
+    dnode_t *root = dict_root(dict);
+    dnode_t *nil = dict_nil(dict);
+    dnode_t *tentative = 0;
+
+    while (root != nil) {
+	int result = dict->compare(key, root->key);
+
+	if (result < 0) {
+	    root = root->left;
+	} else if (result > 0) {
+	    tentative = root;
+	    root = root->right;
+	} else {
+	    if (!dict->dupes) {
+	    	return root;
+	    } else {
+		tentative = root;
+		root = root->right;
+	    }
+	} 
+    }
+    
+    return tentative;
+}
+#endif
+
+/*
+ * Insert a node into the dictionary. The node should have been
+ * initialized with a data field. All other fields are ignored.
+ * The behavior is undefined if the user attempts to insert into
+ * a dictionary that is already full (for which the dict_isfull()
+ * function returns true).
+ */
+
+void dict_insert(dict_t *dict, dnode_t *node, const void *key)
+{
+    dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
+    dnode_t *parent = nil, *uncle, *grandpa;
+    int result = -1;
+
+    node->key = key;
+
+    assert (!dict_isfull(dict));
+    assert (!dict_contains(dict, node));
+    assert (!dnode_is_in_a_dict(node));
+
+    /* basic binary tree insert */
+
+    while (where != nil) {
+	parent = where;
+	result = dict->compare(key, where->key);
+	/* trap attempts at duplicate key insertion unless it's explicitly allowed */
+	assert (dict->dupes || result != 0);
+	if (result < 0)
+	    where = where->left;
+	else
+	    where = where->right;
+    }
+
+    assert (where == nil);
+
+    if (result < 0)
+	parent->left = node;
+    else
+	parent->right = node;
+
+    node->parent = parent;
+    node->left = nil;
+    node->right = nil;
+
+    dict->nodecount++;
+
+    /* red black adjustments */
+
+    node->color = dnode_red;
+
+    while (parent->color == dnode_red) {
+	grandpa = parent->parent;
+	if (parent == grandpa->left) {
+	    uncle = grandpa->right;
+	    if (uncle->color == dnode_red) {	/* red parent, red uncle */
+		parent->color = dnode_black;
+		uncle->color = dnode_black;
+		grandpa->color = dnode_red;
+		node = grandpa;
+		parent = grandpa->parent;
+	    } else {				/* red parent, black uncle */
+	    	if (node == parent->right) {
+		    rotate_left(parent);
+		    parent = node;
+		    assert (grandpa == parent->parent);
+		    /* rotation between parent and child preserves grandpa */
+		}
+		parent->color = dnode_black;
+		grandpa->color = dnode_red;
+		rotate_right(grandpa);
+		break;
+	    }
+	} else { 	/* symmetric cases: parent == parent->parent->right */
+	    uncle = grandpa->left;
+	    if (uncle->color == dnode_red) {
+		parent->color = dnode_black;
+		uncle->color = dnode_black;
+		grandpa->color = dnode_red;
+		node = grandpa;
+		parent = grandpa->parent;
+	    } else {
+	    	if (node == parent->left) {
+		    rotate_right(parent);
+		    parent = node;
+		    assert (grandpa == parent->parent);
+		}
+		parent->color = dnode_black;
+		grandpa->color = dnode_red;
+		rotate_left(grandpa);
+		break;
+	    }
+	}
+    }
+
+    dict_root(dict)->color = dnode_black;
+
+    assert (dict_verify(dict));
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Delete the given node from the dictionary. If the given node does not belong
+ * to the given dictionary, undefined behavior results.  A pointer to the
+ * deleted node is returned.
+ */
+
+dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
+{
+    dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
+
+    /* basic deletion */
+
+    assert (!dict_isempty(dict));
+    assert (dict_contains(dict, delete));
+
+    /*
+     * If the node being deleted has two children, then we replace it with its
+     * successor (i.e. the leftmost node in the right subtree.) By doing this,
+     * we avoid the traditional algorithm under which the successor's key and
+     * value *only* move to the deleted node and the successor is spliced out
+     * from the tree. We cannot use this approach because the user may hold
+     * pointers to the successor, or nodes may be inextricably tied to some
+     * other structures by way of embedding, etc. So we must splice out the
+     * node we are given, not some other node, and must not move contents from
+     * one node to another behind the user's back.
+     */
+
+    if (delete->left != nil && delete->right != nil) {
+	dnode_t *next = dict_next(dict, delete);
+	dnode_t *nextparent = next->parent;
+	dnode_color_t nextcolor = next->color;
+
+	assert (next != nil);
+	assert (next->parent != nil);
+	assert (next->left == nil);
+
+	/*
+	 * First, splice out the successor from the tree completely, by
+	 * moving up its right child into its place.
+	 */
+
+	child = next->right;
+	child->parent = nextparent;
+
+	if (nextparent->left == next) {
+	    nextparent->left = child;
+	} else {
+	    assert (nextparent->right == next);
+	    nextparent->right = child;
+	}
+
+	/*
+	 * Now that the successor has been extricated from the tree, install it
+	 * in place of the node that we want deleted.
+	 */
+
+	next->parent = delparent;
+	next->left = delete->left;
+	next->right = delete->right;
+	next->left->parent = next;
+	next->right->parent = next;
+	next->color = delete->color;
+	delete->color = nextcolor;
+
+	if (delparent->left == delete) {
+	    delparent->left = next;
+	} else {
+	    assert (delparent->right == delete);
+	    delparent->right = next;
+	}
+
+    } else {
+	assert (delete != nil);
+	assert (delete->left == nil || delete->right == nil);
+
+	child = (delete->left != nil) ? delete->left : delete->right;
+
+	child->parent = delparent = delete->parent;	    
+
+	if (delete == delparent->left) {
+	    delparent->left = child;    
+	} else {
+	    assert (delete == delparent->right);
+	    delparent->right = child;
+	}
+    }
+
+    delete->parent = NULL;
+    delete->right = NULL;
+    delete->left = NULL;
+
+    dict->nodecount--;
+
+    assert (verify_bintree(dict));
+
+    /* red-black adjustments */
+
+    if (delete->color == dnode_black) {
+	dnode_t *parent, *sister;
+
+	dict_root(dict)->color = dnode_red;
+
+	while (child->color == dnode_black) {
+	    parent = child->parent;
+	    if (child == parent->left) {
+		sister = parent->right;
+		assert (sister != nil);
+		if (sister->color == dnode_red) {
+		    sister->color = dnode_black;
+		    parent->color = dnode_red;
+		    rotate_left(parent);
+		    sister = parent->right;
+		    assert (sister != nil);
+		}
+		if (sister->left->color == dnode_black
+			&& sister->right->color == dnode_black) {
+		    sister->color = dnode_red;
+		    child = parent;
+		} else {
+		    if (sister->right->color == dnode_black) {
+			assert (sister->left->color == dnode_red);
+			sister->left->color = dnode_black;
+			sister->color = dnode_red;
+			rotate_right(sister);
+			sister = parent->right;
+			assert (sister != nil);
+		    }
+		    sister->color = parent->color;
+		    sister->right->color = dnode_black;
+		    parent->color = dnode_black;
+		    rotate_left(parent);
+		    break;
+		}
+	    } else {	/* symmetric case: child == child->parent->right */
+		assert (child == parent->right);
+		sister = parent->left;
+		assert (sister != nil);
+		if (sister->color == dnode_red) {
+		    sister->color = dnode_black;
+		    parent->color = dnode_red;
+		    rotate_right(parent);
+		    sister = parent->left;
+		    assert (sister != nil);
+		}
+		if (sister->right->color == dnode_black
+			&& sister->left->color == dnode_black) {
+		    sister->color = dnode_red;
+		    child = parent;
+		} else {
+		    if (sister->left->color == dnode_black) {
+			assert (sister->right->color == dnode_red);
+			sister->right->color = dnode_black;
+			sister->color = dnode_red;
+			rotate_left(sister);
+			sister = parent->left;
+			assert (sister != nil);
+		    }
+		    sister->color = parent->color;
+		    sister->left->color = dnode_black;
+		    parent->color = dnode_black;
+		    rotate_right(parent);
+		    break;
+		}
+	    }
+	}
+
+	child->color = dnode_black;
+	dict_root(dict)->color = dnode_black;
+    }
+
+    assert (dict_verify(dict));
+
+    return delete;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Allocate a node using the dictionary's allocator routine, give it
+ * the data item.
+ */
+
+int dict_alloc_insert(dict_t *dict, const void *key, void *data)
+{
+    dnode_t *node = dict->allocnode(dict->context);
+
+    if (node) {
+	dnode_init(node, data);
+	dict_insert(dict, node, key);
+	return 1;
+    }
+    return 0;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dict_delete_free(dict_t *dict, dnode_t *node)
+{
+    dict_delete(dict, node);
+    dict->freenode(node, dict->context);
+}
+#endif
+
+/*
+ * Return the node with the lowest (leftmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_first(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
+
+    if (root != nil)
+	while ((left = root->left) != nil)
+	    root = left;
+
+    return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the node with the highest (rightmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_last(dict_t *dict)
+{
+    dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
+
+    if (root != nil)
+	while ((right = root->right) != nil)
+	    root = right;
+
+    return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the given node's successor node---the node which has the
+ * next key in the the left to right ordering. If the node has
+ * no successor, a null pointer is returned rather than a pointer to
+ * the nil node.
+ */
+
+dnode_t *dict_next(dict_t *dict, dnode_t *curr)
+{
+    dnode_t *nil = dict_nil(dict), *parent, *left;
+
+    if (curr->right != nil) {
+	curr = curr->right;
+	while ((left = curr->left) != nil)
+	    curr = left;
+	return curr;
+    }
+
+    parent = curr->parent;
+
+    while (parent != nil && curr == parent->right) {
+	curr = parent;
+	parent = curr->parent;
+    }
+
+    return (parent == nil) ? NULL : parent;
+}
+
+/*
+ * Return the given node's predecessor, in the key order.
+ * The nil sentinel node is returned if there is no predecessor.
+ */
+
+dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
+{
+    dnode_t *nil = dict_nil(dict), *parent, *right;
+
+    if (curr->left != nil) {
+	curr = curr->left;
+	while ((right = curr->right) != nil)
+	    curr = right;
+	return curr;
+    }
+
+    parent = curr->parent;
+
+    while (parent != nil && curr == parent->left) {
+	curr = parent;
+	parent = curr->parent;
+    }
+
+    return (parent == nil) ? NULL : parent;
+}
+
+void dict_allow_dupes(dict_t *dict)
+{
+    dict->dupes = 1;
+}
+
+#undef dict_count
+#undef dict_isempty
+#undef dict_isfull
+#undef dnode_get
+#undef dnode_put
+#undef dnode_getkey
+
+dictcount_t dict_count(dict_t *dict)
+{
+    return dict->nodecount;
+}
+
+int dict_isempty(dict_t *dict)
+{
+    return dict->nodecount == 0;
+}
+
+int dict_isfull(dict_t *dict)
+{
+    return dict->nodecount == dict->maxcount;
+}
+
+int dict_contains(dict_t *dict, dnode_t *node)
+{
+    return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
+}
+
+static dnode_t *dnode_alloc(void *context EXT2FS_ATTR((unused)))
+{
+    return malloc(sizeof *dnode_alloc(NULL));
+}
+
+static void dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused)))
+{
+    free(node);
+}
+
+dnode_t *dnode_create(void *data)
+{
+    dnode_t *new = malloc(sizeof *new);
+    if (new) {
+	new->data = data;
+	new->parent = NULL;
+	new->left = NULL;
+	new->right = NULL;
+    }
+    return new;
+}
+
+dnode_t *dnode_init(dnode_t *dnode, void *data)
+{
+    dnode->data = data;
+    dnode->parent = NULL;
+    dnode->left = NULL;
+    dnode->right = NULL;
+    return dnode;
+}
+
+void dnode_destroy(dnode_t *dnode)
+{
+    assert (!dnode_is_in_a_dict(dnode));
+    free(dnode);
+}
+
+void *dnode_get(dnode_t *dnode)
+{
+    return dnode->data;
+}
+
+const void *dnode_getkey(dnode_t *dnode)
+{
+    return dnode->key;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dnode_put(dnode_t *dnode, void *data)
+{
+    dnode->data = data;
+}
+
+int dnode_is_in_a_dict(dnode_t *dnode)
+{
+    return (dnode->parent && dnode->left && dnode->right);
+}
+
+void dict_process(dict_t *dict, void *context, dnode_process_t function)
+{
+    dnode_t *node = dict_first(dict), *next;
+
+    while (node != NULL) {
+	/* check for callback function deleting	*/
+	/* the next node from under us		*/
+	assert (dict_contains(dict, node));
+	next = dict_next(dict, node);
+	function(dict, node, context);
+	node = next;
+    }
+}
+
+static void load_begin_internal(dict_load_t *load, dict_t *dict)
+{
+    load->dictptr = dict;
+    load->nilnode.left = &load->nilnode;
+    load->nilnode.right = &load->nilnode;
+}
+
+void dict_load_begin(dict_load_t *load, dict_t *dict)
+{
+    assert (dict_isempty(dict));
+    load_begin_internal(load, dict);
+}
+
+void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
+{
+    dict_t *dict = load->dictptr;
+    dnode_t *nil = &load->nilnode;
+   
+    assert (!dnode_is_in_a_dict(newnode));
+    assert (dict->nodecount < dict->maxcount);
+
+#ifndef NDEBUG
+    if (dict->nodecount > 0) {
+	if (dict->dupes)
+	    assert (dict->compare(nil->left->key, key) <= 0);
+	else
+	    assert (dict->compare(nil->left->key, key) < 0);
+    }
+#endif
+
+    newnode->key = key;
+    nil->right->left = newnode;
+    nil->right = newnode;
+    newnode->left = nil;
+    dict->nodecount++;
+}
+
+void dict_load_end(dict_load_t *load)
+{
+    dict_t *dict = load->dictptr;
+    dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
+    dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
+    dnode_t *complete = 0;
+    dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
+    dictcount_t botrowcount;
+    unsigned baselevel = 0, level = 0, i;
+
+    assert (dnode_red == 0 && dnode_black == 1);
+
+    while (fullcount >= nodecount && fullcount)
+	fullcount >>= 1;
+
+    botrowcount = nodecount - fullcount;
+
+    for (curr = loadnil->left; curr != loadnil; curr = next) {
+	next = curr->left;
+
+	if (complete == NULL && botrowcount-- == 0) {
+	    assert (baselevel == 0);
+	    assert (level == 0);
+	    baselevel = level = 1;
+	    complete = tree[0];
+
+	    if (complete != 0) {
+		tree[0] = 0;
+		complete->right = dictnil;
+		while (tree[level] != 0) {
+		    tree[level]->right = complete;
+		    complete->parent = tree[level];
+		    complete = tree[level];
+		    tree[level++] = 0;
+		}
+	    }
+	}
+
+	if (complete == NULL) {
+	    curr->left = dictnil;
+	    curr->right = dictnil;
+	    curr->color = level % 2;
+	    complete = curr;
+
+	    assert (level == baselevel);
+	    while (tree[level] != 0) {
+		tree[level]->right = complete;
+		complete->parent = tree[level];
+		complete = tree[level];
+		tree[level++] = 0;
+	    }
+	} else {
+	    curr->left = complete;
+	    curr->color = (level + 1) % 2;
+	    complete->parent = curr;
+	    tree[level] = curr;
+	    complete = 0;
+	    level = baselevel;
+	}
+    }
+
+    if (complete == NULL)
+	complete = dictnil;
+
+    for (i = 0; i < DICT_DEPTH_MAX; i++) {
+	if (tree[i] != 0) {
+	    tree[i]->right = complete;
+	    complete->parent = tree[i];
+	    complete = tree[i];
+	}
+    }
+
+    dictnil->color = dnode_black;
+    dictnil->right = dictnil;
+    complete->parent = dictnil;
+    complete->color = dnode_black;
+    dict_root(dict) = complete;
+
+    assert (dict_verify(dict));
+}
+
+void dict_merge(dict_t *dest, dict_t *source)
+{
+    dict_load_t load;
+    dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
+
+    assert (dict_similar(dest, source));	
+
+    if (source == dest)
+	return;
+
+    dest->nodecount = 0;
+    load_begin_internal(&load, dest);
+
+    for (;;) {
+	if (leftnode != NULL && rightnode != NULL) {
+	    if (dest->compare(leftnode->key, rightnode->key) < 0)
+		goto copyleft;
+	    else
+		goto copyright;
+	} else if (leftnode != NULL) {
+	    goto copyleft;
+	} else if (rightnode != NULL) {
+	    goto copyright;
+	} else {
+	    assert (leftnode == NULL && rightnode == NULL);
+	    break;
+	}
+
+    copyleft:
+	{
+	    dnode_t *next = dict_next(dest, leftnode);
+#ifndef NDEBUG
+	    leftnode->left = NULL;	/* suppress assertion in dict_load_next */
+#endif
+	    dict_load_next(&load, leftnode, leftnode->key);
+	    leftnode = next;
+	    continue;
+	}
+	
+    copyright:
+	{
+	    dnode_t *next = dict_next(source, rightnode);
+#ifndef NDEBUG
+	    rightnode->left = NULL;
+#endif
+	    dict_load_next(&load, rightnode, rightnode->key);
+	    rightnode = next;
+	    continue;
+	}
+    }
+
+    dict_clear(source);
+    dict_load_end(&load);
+}
+#endif /* E2FSCK_NOTUSED */
+
+#ifdef KAZLIB_TEST_MAIN
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <stdarg.h>
+
+typedef char input_t[256];
+
+static int tokenize(char *string, ...)
+{
+    char **tokptr; 
+    va_list arglist;
+    int tokcount = 0;
+
+    va_start(arglist, string);
+    tokptr = va_arg(arglist, char **);
+    while (tokptr) {
+	while (*string && isspace((unsigned char) *string))
+	    string++;
+	if (!*string)
+	    break;
+	*tokptr = string;
+	while (*string && !isspace((unsigned char) *string))
+	    string++;
+	tokptr = va_arg(arglist, char **);
+	tokcount++;
+	if (!*string)
+	    break;
+	*string++ = 0;
+    }
+    va_end(arglist);
+
+    return tokcount;
+}
+
+static int comparef(const void *key1, const void *key2)
+{
+    return strcmp(key1, key2);
+}
+
+static char *dupstring(char *str)
+{
+    int sz = strlen(str) + 1;
+    char *new = malloc(sz);
+    if (new)
+	memcpy(new, str, sz);
+    return new;
+}
+
+static dnode_t *new_node(void *c)
+{
+    static dnode_t few[5];
+    static int count;
+
+    if (count < 5)
+	return few + count++;
+
+    return NULL;
+}
+
+static void del_node(dnode_t *n, void *c)
+{
+}
+
+static int prompt = 0;
+
+static void construct(dict_t *d)
+{
+    input_t in;
+    int done = 0;
+    dict_load_t dl;
+    dnode_t *dn;
+    char *tok1, *tok2, *val;
+    const char *key;
+    char *help = 
+	"p                      turn prompt on\n"
+	"q                      finish construction\n"
+	"a <key> <val>          add new entry\n";
+
+    if (!dict_isempty(d))
+	puts("warning: dictionary not empty!");
+
+    dict_load_begin(&dl, d);
+
+    while (!done) {
+	if (prompt)
+	    putchar('>');
+	fflush(stdout);
+
+	if (!fgets(in, sizeof(input_t), stdin))
+	    break;
+
+	switch (in[0]) {
+	    case '?':
+		puts(help);
+		break;
+	    case 'p':
+		prompt = 1;
+		break;
+	    case 'q':
+		done = 1;
+		break;
+	    case 'a':
+		if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+		    puts("what?");
+		    break;
+		}
+		key = dupstring(tok1);
+		val = dupstring(tok2);
+		dn = dnode_create(val);
+
+		if (!key || !val || !dn) {
+		    puts("out of memory");
+		    free((void *) key);
+		    free(val);
+		    if (dn)
+			dnode_destroy(dn);
+		}
+
+		dict_load_next(&dl, dn, key);
+		break;
+	    default:
+		putchar('?');
+		putchar('\n');
+		break;
+	}
+    }
+
+    dict_load_end(&dl);
+}
+
+int main(void)
+{
+    input_t in;
+    dict_t darray[10];
+    dict_t *d = &darray[0];
+    dnode_t *dn;
+    int i;
+    char *tok1, *tok2, *val;
+    const char *key;
+
+    char *help =
+	"a <key> <val>          add value to dictionary\n"
+	"d <key>                delete value from dictionary\n"
+	"l <key>                lookup value in dictionary\n"
+	"( <key>                lookup lower bound\n"
+	") <key>                lookup upper bound\n"
+	"# <num>                switch to alternate dictionary (0-9)\n"
+	"j <num> <num>          merge two dictionaries\n"
+	"f                      free the whole dictionary\n"
+	"k                      allow duplicate keys\n"
+	"c                      show number of entries\n"
+	"t                      dump whole dictionary in sort order\n"
+	"m                      make dictionary out of sorted items\n"
+	"p                      turn prompt on\n"
+	"s                      switch to non-functioning allocator\n"
+	"q                      quit";
+
+    for (i = 0; i < sizeof darray / sizeof *darray; i++)
+	dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
+
+    for (;;) {
+	if (prompt)
+	    putchar('>');
+	fflush(stdout);
+
+	if (!fgets(in, sizeof(input_t), stdin))
+	    break;
+
+	switch(in[0]) {
+	    case '?':
+		puts(help);
+		break;
+	    case 'a':
+		if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+		    puts("what?");
+		    break;
+		}
+		key = dupstring(tok1);
+		val = dupstring(tok2);
+
+		if (!key || !val) {
+		    puts("out of memory");
+		    free((void *) key);
+		    free(val);
+		}
+
+		if (!dict_alloc_insert(d, key, val)) {
+		    puts("dict_alloc_insert failed");
+		    free((void *) key);
+		    free(val);
+		    break;
+		}
+		break;
+	    case 'd':
+		if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+		    puts("what?");
+		    break;
+		}
+		dn = dict_lookup(d, tok1);
+		if (!dn) {
+		    puts("dict_lookup failed");
+		    break;
+		}
+		val = dnode_get(dn);
+		key = dnode_getkey(dn);
+		dict_delete_free(d, dn);
+
+		free(val);
+		free((void *) key);
+		break;
+	    case 'f':
+		dict_free(d);
+		break;
+	    case 'l':
+	    case '(':
+	    case ')':
+		if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+		    puts("what?");
+		    break;
+		}
+		dn = 0;
+		switch (in[0]) {
+		case 'l':
+		    dn = dict_lookup(d, tok1);
+		    break;
+		case '(':
+		    dn = dict_lower_bound(d, tok1);
+		    break;
+		case ')':
+		    dn = dict_upper_bound(d, tok1);
+		    break;
+		}
+		if (!dn) {
+		    puts("lookup failed");
+		    break;
+		}
+		val = dnode_get(dn);
+		puts(val);
+		break;
+	    case 'm':
+		construct(d);
+		break;
+	    case 'k':
+		dict_allow_dupes(d);
+		break;
+	    case 'c':
+		printf("%lu\n", (unsigned long) dict_count(d));
+		break;
+	    case 't':
+		for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
+		    printf("%s\t%s\n", (char *) dnode_getkey(dn),
+			    (char *) dnode_get(dn));
+		}
+		break;
+	    case 'q':
+		exit(0);
+		break;
+	    case '\0':
+		break;
+	    case 'p':
+		prompt = 1;
+		break;
+	    case 's':
+		dict_set_allocator(d, new_node, del_node, NULL);
+		break;
+	    case '#':
+		if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+		    puts("what?");
+		    break;
+		} else {
+		    int dictnum = atoi(tok1);
+		    if (dictnum < 0 || dictnum > 9) {
+			puts("invalid number");
+			break;
+		    }
+		    d = &darray[dictnum];
+		}
+		break;
+	    case 'j':
+		if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+		    puts("what?");
+		    break;
+		} else {
+		    int dict1 = atoi(tok1), dict2 = atoi(tok2);
+		    if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
+			puts("invalid number");
+			break;
+		    }
+		    dict_merge(&darray[dict1], &darray[dict2]);
+		}
+		break;
+	    default:
+		putchar('?');
+		putchar('\n');
+		break;
+	}
+    }
+
+    return 0;
+}
+
+#endif