tls: P256: add 64-bit montgomery reduce (disabled), small optimization in 32-bit code
function old new delta
sp_512to256_mont_reduce_8 191 185 -6
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c
index eb6cc24..b1c4100 100644
--- a/networking/tls_sp_c32.c
+++ b/networking/tls_sp_c32.c
@@ -705,36 +705,174 @@
}
}
-/* Shift the result in the high 256 bits down to the bottom.
- */
+/* Shift the result in the high 256 bits down to the bottom. */
static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a)
{
memcpy(r, a + 8, sizeof(*r) * 8);
}
+// Disabled for now. Seems to work, but ugly and 40 bytes larger on x86-64.
+#if 0 //UNALIGNED_LE_64BIT
+/* 64-bit little-endian optimized version.
+ * See generic 32-bit version below for explanation.
+ * The benefit of this version is: even though r[3] calculation is atrocious,
+ * we call sp_256_mul_add_4() four times, not 8.
+ */
+static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/)
+{
+ uint64_t b = r[0];
+
+# if 0
+ const uint64_t* a = (const void*)p256_mod;
+//a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
+ uint128_t t;
+ int i;
+ t = 0;
+ for (i = 0; i < 4; i++) {
+ uint32_t t_hi;
+ uint128_t m = ((uint128_t)b * a[i]) + r[i];
+ t += m;
+ t_hi = (t < m);
+ r[i] = (uint64_t)t;
+ t = (t >> 64) | ((uint128_t)t_hi << 64);
+ }
+ r[4] += (uint64_t)t;
+ return (r[4] < (uint64_t)t); /* 1 if addition overflowed */
+# else
+ // Unroll, then optimize the above loop:
+ //uint32_t t_hi;
+ //uint128_t m;
+ uint64_t t64, t64u;
+
+ //m = ((uint128_t)b * a[0]) + r[0];
+ // Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to:
+ // m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64;
+ //t += m;
+ // t = r[0] << 64 = b << 64;
+ //t_hi = (t < m);
+ // t_hi = 0;
+ //r[0] = (uint64_t)t;
+// r[0] = 0;
+//the store can be eliminated since caller won't look at lower 256 bits of the result
+ //t = (t >> 64) | ((uint128_t)t_hi << 64);
+ // t = b;
+
+ //m = ((uint128_t)b * a[1]) + r[1];
+ // Since a[1] is 00000000ffffffff, the above optimizes to:
+ // m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
+ //t += m;
+ // t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
+ //t_hi = (t < m);
+ // t_hi = 0;
+ //r[1] = (uint64_t)t;
+ r[1] += (b << 32);
+ //t = (t >> 64) | ((uint128_t)t_hi << 64);
+ t64 = (r[1] < (b << 32));
+ t64 += (b >> 32);
+
+ //m = ((uint128_t)b * a[2]) + r[2];
+ // Since a[2] is 0000000000000000, the above optimizes to:
+ // m = b * 0 + r[2] = r[2];
+ //t += m;
+ // t = t64 + r[2];
+ //t_hi = (t < m);
+ // t_hi = 0;
+ //r[2] = (uint64_t)t;
+ r[2] += t64;
+ //t = (t >> 64) | ((uint128_t)t_hi << 64);
+ t64 = (r[2] < t64);
+
+ //m = ((uint128_t)b * a[3]) + r[3];
+ // Since a[3] is ffffffff00000001, the above optimizes to:
+ // m = b * ffffffff00000001 + r[3];
+ // m = b + b*ffffffff00000000 + r[3]
+ // m = b + (b*ffffffff << 32) + r[3]
+ // m = b + (((b<<32) - b) << 32) + r[3]
+ //t += m;
+ // t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3];
+ t64 += b;
+ t64u = (t64 < b);
+ t64 += r[3];
+ t64u += (t64 < r[3]);
+ {
+ uint64_t lo,hi;
+ //lo = (((b << 32) - b) << 32
+ //hi = (((uint128_t)b << 32) - b) >> 32
+ //but without uint128_t:
+ hi = (b << 32) - b; /* form lower 32 bits of "hi" part 1 */
+ b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */
+ lo = hi << 32; /* (use "hi" value to calculate "lo",... */
+ t64 += lo; /* ...consume... */
+ t64u += (t64 < lo); /* ..."lo") */
+ hi >>= 32; /* form lower 32 bits of "hi" part 2 */
+ hi |= (b << 32); /* combine lower and upper */
+ t64u += hi; /* consume "hi" */
+ }
+ //t_hi = (t < m);
+ // t_hi = 0;
+ //r[3] = (uint64_t)t;
+ r[3] = t64;
+ //t = (t >> 64) | ((uint128_t)t_hi << 64);
+ // t = t64u;
+
+ r[4] += t64u;
+ return (r[4] < t64u); /* 1 if addition overflowed */
+# endif
+}
+
+static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/)
+{
+// const sp_digit* m = p256_mod;
+ int i;
+ uint64_t *a = (void*)aa;
+
+ sp_digit carry = 0;
+ for (i = 0; i < 4; i++) {
+// mu = a[i];
+ if (sp_256_mul_add_4(a+i /*, m, mu*/)) {
+ int j = i + 4;
+ inc_next_word:
+ if (++j > 7) { /* a[8] array has no more words? */
+ carry++;
+ continue;
+ }
+ if (++a[j] == 0) /* did this overflow too? */
+ goto inc_next_word;
+ }
+ }
+ sp_512to256_mont_shift_8(r, aa);
+ if (carry != 0)
+ sp_256_sub_8_p256_mod(r);
+ sp_256_norm_8(r);
+}
+
+#else /* Generic 32-bit version */
+
/* Mul a by scalar b and add into r. (r += a * b)
* a = p256_mod
* b = r[0]
*/
static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
{
-// const sp_digit* a = p256_mod;
-//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
sp_digit b = r[0];
-
uint64_t t;
-// t = 0;
-// for (i = 0; i < 8; i++) {
-// uint32_t t_hi;
-// uint64_t m = ((uint64_t)b * a[i]) + r[i];
-// t += m;
-// t_hi = (t < m);
-// r[i] = (sp_digit)t;
-// t = (t >> 32) | ((uint64_t)t_hi << 32);
-// }
-// r[8] += (sp_digit)t;
-
+# if 0
+ const sp_digit* a = p256_mod;
+//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
+ int i;
+ t = 0;
+ for (i = 0; i < 8; i++) {
+ uint32_t t_hi;
+ uint64_t m = ((uint64_t)b * a[i]) + r[i];
+ t += m;
+ t_hi = (t < m);
+ r[i] = (sp_digit)t;
+ t = (t >> 32) | ((uint64_t)t_hi << 32);
+ }
+ r[8] += (sp_digit)t;
+ return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
+# else
// Unroll, then optimize the above loop:
//uint32_t t_hi;
uint64_t m;
@@ -748,7 +886,8 @@
//t_hi = (t < m);
// t_hi = 0;
//r[0] = (sp_digit)t;
- r[0] = 0;
+// r[0] = 0;
+//the store can be eliminated since caller won't look at lower 256 bits of the result
//t = (t >> 32) | ((uint64_t)t_hi << 32);
// t = b;
@@ -840,6 +979,7 @@
r[8] += (sp_digit)t;
return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
+# endif
}
/* Reduce the number back to 256 bits using Montgomery reduction.
@@ -861,7 +1001,7 @@
* Then a multiple of modulus is added to make T divisible by B^2.
* [In our case, it is (p256_mp_mod * a[1]) << 32.]
* And so on. Eventually T is divisible by R, and after division by R
- * the algorithm is in the same place as the usual Montgomery reduction was.
+ * the algorithm is in the same place as the usual Montgomery reduction.
*
* TODO: Can conditionally use 64-bit (if bit-little-endian arch) logic?
*/
@@ -914,6 +1054,7 @@
sp_256_norm_8(r);
}
}
+#endif
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)