| /* |
| * NTP client/server, based on OpenNTPD 3.9p1 |
| * |
| * Author: Adam Tkac <vonsch@gmail.com> |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| * |
| * Parts of OpenNTPD clock syncronization code is replaced by |
| * code which is based on ntp-4.2.6, whuch carries the following |
| * copyright notice: |
| * |
| *********************************************************************** |
| * * |
| * Copyright (c) University of Delaware 1992-2009 * |
| * * |
| * Permission to use, copy, modify, and distribute this software and * |
| * its documentation for any purpose with or without fee is hereby * |
| * granted, provided that the above copyright notice appears in all * |
| * copies and that both the copyright notice and this permission * |
| * notice appear in supporting documentation, and that the name * |
| * University of Delaware not be used in advertising or publicity * |
| * pertaining to distribution of the software without specific, * |
| * written prior permission. The University of Delaware makes no * |
| * representations about the suitability this software for any * |
| * purpose. It is provided "as is" without express or implied * |
| * warranty. * |
| * * |
| *********************************************************************** |
| */ |
| #include "libbb.h" |
| #include <math.h> |
| #include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */ |
| #include <sys/timex.h> |
| #ifndef IPTOS_LOWDELAY |
| # define IPTOS_LOWDELAY 0x10 |
| #endif |
| #ifndef IP_PKTINFO |
| # error "Sorry, your kernel has to support IP_PKTINFO" |
| #endif |
| |
| |
| /* Verbosity control (max level of -dddd options accepted). |
| * max 5 is very talkative (and bloated). 2 is non-bloated, |
| * production level setting. |
| */ |
| #define MAX_VERBOSE 2 |
| |
| |
| /* High-level description of the algorithm: |
| * |
| * We start running with very small poll_exp, BURSTPOLL, |
| * in order to quickly accumulate INITIAL_SAMPLES datapoints |
| * for each peer. Then, time is stepped if the offset is larger |
| * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge |
| * poll_exp to MINPOLL and enter frequency measurement step: |
| * we collect new datapoints but ignore them for WATCH_THRESHOLD |
| * seconds. After WATCH_THRESHOLD seconds we look at accumulated |
| * offset and estimate frequency drift. |
| * |
| * (frequency measurement step seems to not be strictly needed, |
| * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION |
| * define set to 0) |
| * |
| * After this, we enter "steady state": we collect a datapoint, |
| * we select the best peer, if this datapoint is not a new one |
| * (IOW: if this datapoint isn't for selected peer), sleep |
| * and collect another one; otherwise, use its offset to update |
| * frequency drift, if offset is somewhat large, reduce poll_exp, |
| * otherwise increase poll_exp. |
| * |
| * If offset is larger than STEP_THRESHOLD, which shouldn't normally |
| * happen, we assume that something "bad" happened (computer |
| * was hibernated, someone set totally wrong date, etc), |
| * then the time is stepped, all datapoints are discarded, |
| * and we go back to steady state. |
| */ |
| |
| #define RETRY_INTERVAL 5 /* on error, retry in N secs */ |
| #define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */ |
| #define INITIAL_SAMPLES 4 /* how many samples do we want for init */ |
| |
| /* Clock discipline parameters and constants */ |
| |
| /* Step threshold (sec). std ntpd uses 0.128. |
| * Using exact power of 2 (1/8) results in smaller code */ |
| #define STEP_THRESHOLD 0.125 |
| #define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */ |
| /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */ |
| //UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */ |
| |
| #define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */ |
| #define BURSTPOLL 0 /* initial poll */ |
| #define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */ |
| #define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */ |
| #define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */ |
| /* Actively lower poll when we see such big offsets. |
| * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively |
| * if offset increases over 0.03 sec */ |
| #define POLLDOWN_OFFSET (STEP_THRESHOLD / 4) |
| #define MINDISP 0.01 /* minimum dispersion (sec) */ |
| #define MAXDISP 16 /* maximum dispersion (sec) */ |
| #define MAXSTRAT 16 /* maximum stratum (infinity metric) */ |
| #define MAXDIST 1 /* distance threshold (sec) */ |
| #define MIN_SELECTED 1 /* minimum intersection survivors */ |
| #define MIN_CLUSTERED 3 /* minimum cluster survivors */ |
| |
| #define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */ |
| |
| /* Poll-adjust threshold. |
| * When we see that offset is small enough compared to discipline jitter, |
| * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT, |
| * we poll_exp++. If offset isn't small, counter -= poll_exp*2, |
| * and when it goes below -POLLADJ_LIMIT, we poll_exp-- |
| * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down) |
| */ |
| #define POLLADJ_LIMIT 36 |
| /* If offset < POLLADJ_GATE * discipline_jitter, then we can increase |
| * poll interval (we think we can't improve timekeeping |
| * by staying at smaller poll). |
| */ |
| #define POLLADJ_GATE 4 |
| /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */ |
| #define ALLAN 512 |
| /* PLL loop gain */ |
| #define PLL 65536 |
| /* FLL loop gain [why it depends on MAXPOLL??] */ |
| #define FLL (MAXPOLL + 1) |
| /* Parameter averaging constant */ |
| #define AVG 4 |
| |
| |
| enum { |
| NTP_VERSION = 4, |
| NTP_MAXSTRATUM = 15, |
| |
| NTP_DIGESTSIZE = 16, |
| NTP_MSGSIZE_NOAUTH = 48, |
| NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE), |
| |
| /* Status Masks */ |
| MODE_MASK = (7 << 0), |
| VERSION_MASK = (7 << 3), |
| VERSION_SHIFT = 3, |
| LI_MASK = (3 << 6), |
| |
| /* Leap Second Codes (high order two bits of m_status) */ |
| LI_NOWARNING = (0 << 6), /* no warning */ |
| LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */ |
| LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */ |
| LI_ALARM = (3 << 6), /* alarm condition */ |
| |
| /* Mode values */ |
| MODE_RES0 = 0, /* reserved */ |
| MODE_SYM_ACT = 1, /* symmetric active */ |
| MODE_SYM_PAS = 2, /* symmetric passive */ |
| MODE_CLIENT = 3, /* client */ |
| MODE_SERVER = 4, /* server */ |
| MODE_BROADCAST = 5, /* broadcast */ |
| MODE_RES1 = 6, /* reserved for NTP control message */ |
| MODE_RES2 = 7, /* reserved for private use */ |
| }; |
| |
| //TODO: better base selection |
| #define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */ |
| |
| #define NUM_DATAPOINTS 8 |
| |
| typedef struct { |
| uint32_t int_partl; |
| uint32_t fractionl; |
| } l_fixedpt_t; |
| |
| typedef struct { |
| uint16_t int_parts; |
| uint16_t fractions; |
| } s_fixedpt_t; |
| |
| typedef struct { |
| uint8_t m_status; /* status of local clock and leap info */ |
| uint8_t m_stratum; |
| uint8_t m_ppoll; /* poll value */ |
| int8_t m_precision_exp; |
| s_fixedpt_t m_rootdelay; |
| s_fixedpt_t m_rootdisp; |
| uint32_t m_refid; |
| l_fixedpt_t m_reftime; |
| l_fixedpt_t m_orgtime; |
| l_fixedpt_t m_rectime; |
| l_fixedpt_t m_xmttime; |
| uint32_t m_keyid; |
| uint8_t m_digest[NTP_DIGESTSIZE]; |
| } msg_t; |
| |
| typedef struct { |
| double d_recv_time; |
| double d_offset; |
| double d_dispersion; |
| } datapoint_t; |
| |
| typedef struct { |
| len_and_sockaddr *p_lsa; |
| char *p_dotted; |
| /* when to send new query (if p_fd == -1) |
| * or when receive times out (if p_fd >= 0): */ |
| int p_fd; |
| int datapoint_idx; |
| uint32_t lastpkt_refid; |
| uint8_t lastpkt_status; |
| uint8_t lastpkt_stratum; |
| uint8_t reachable_bits; |
| double next_action_time; |
| double p_xmttime; |
| double lastpkt_recv_time; |
| double lastpkt_delay; |
| double lastpkt_rootdelay; |
| double lastpkt_rootdisp; |
| /* produced by filter algorithm: */ |
| double filter_offset; |
| double filter_dispersion; |
| double filter_jitter; |
| datapoint_t filter_datapoint[NUM_DATAPOINTS]; |
| /* last sent packet: */ |
| msg_t p_xmt_msg; |
| } peer_t; |
| |
| |
| #define USING_KERNEL_PLL_LOOP 1 |
| #define USING_INITIAL_FREQ_ESTIMATION 0 |
| |
| enum { |
| OPT_n = (1 << 0), |
| OPT_q = (1 << 1), |
| OPT_N = (1 << 2), |
| OPT_x = (1 << 3), |
| /* Insert new options above this line. */ |
| /* Non-compat options: */ |
| OPT_w = (1 << 4), |
| OPT_p = (1 << 5), |
| OPT_S = (1 << 6), |
| OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER, |
| }; |
| |
| struct globals { |
| double cur_time; |
| /* total round trip delay to currently selected reference clock */ |
| double rootdelay; |
| /* reference timestamp: time when the system clock was last set or corrected */ |
| double reftime; |
| /* total dispersion to currently selected reference clock */ |
| double rootdisp; |
| |
| double last_script_run; |
| char *script_name; |
| llist_t *ntp_peers; |
| #if ENABLE_FEATURE_NTPD_SERVER |
| int listen_fd; |
| #endif |
| unsigned verbose; |
| unsigned peer_cnt; |
| /* refid: 32-bit code identifying the particular server or reference clock |
| * in stratum 0 packets this is a four-character ASCII string, |
| * called the kiss code, used for debugging and monitoring |
| * in stratum 1 packets this is a four-character ASCII string |
| * assigned to the reference clock by IANA. Example: "GPS " |
| * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6 |
| */ |
| uint32_t refid; |
| uint8_t ntp_status; |
| /* precision is defined as the larger of the resolution and time to |
| * read the clock, in log2 units. For instance, the precision of a |
| * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the |
| * system clock hardware representation is to the nanosecond. |
| * |
| * Delays, jitters of various kinds are clamper down to precision. |
| * |
| * If precision_sec is too large, discipline_jitter gets clamped to it |
| * and if offset is much smaller than discipline_jitter, poll interval |
| * grows even though we really can benefit from staying at smaller one, |
| * collecting non-lagged datapoits and correcting the offset. |
| * (Lagged datapoits exist when poll_exp is large but we still have |
| * systematic offset error - the time distance between datapoints |
| * is significat and older datapoints have smaller offsets. |
| * This makes our offset estimation a bit smaller than reality) |
| * Due to this effect, setting G_precision_sec close to |
| * STEP_THRESHOLD isn't such a good idea - offsets may grow |
| * too big and we will step. I observed it with -6. |
| * |
| * OTOH, setting precision too small would result in futile attempts |
| * to syncronize to the unachievable precision. |
| * |
| * -6 is 1/64 sec, -7 is 1/128 sec and so on. |
| */ |
| #define G_precision_exp -8 |
| #define G_precision_sec (1.0 / (1 << (- G_precision_exp))) |
| uint8_t stratum; |
| /* Bool. After set to 1, never goes back to 0: */ |
| smallint initial_poll_complete; |
| |
| #define STATE_NSET 0 /* initial state, "nothing is set" */ |
| //#define STATE_FSET 1 /* frequency set from file */ |
| #define STATE_SPIK 2 /* spike detected */ |
| //#define STATE_FREQ 3 /* initial frequency */ |
| #define STATE_SYNC 4 /* clock synchronized (normal operation) */ |
| uint8_t discipline_state; // doc calls it c.state |
| uint8_t poll_exp; // s.poll |
| int polladj_count; // c.count |
| long kernel_freq_drift; |
| peer_t *last_update_peer; |
| double last_update_offset; // c.last |
| double last_update_recv_time; // s.t |
| double discipline_jitter; // c.jitter |
| //double cluster_offset; // s.offset |
| //double cluster_jitter; // s.jitter |
| #if !USING_KERNEL_PLL_LOOP |
| double discipline_freq_drift; // c.freq |
| /* Maybe conditionally calculate wander? it's used only for logging */ |
| double discipline_wander; // c.wander |
| #endif |
| }; |
| #define G (*ptr_to_globals) |
| |
| static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY; |
| |
| |
| #define VERB1 if (MAX_VERBOSE && G.verbose) |
| #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2) |
| #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3) |
| #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4) |
| #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5) |
| |
| |
| static double LOG2D(int a) |
| { |
| if (a < 0) |
| return 1.0 / (1UL << -a); |
| return 1UL << a; |
| } |
| static ALWAYS_INLINE double SQUARE(double x) |
| { |
| return x * x; |
| } |
| static ALWAYS_INLINE double MAXD(double a, double b) |
| { |
| if (a > b) |
| return a; |
| return b; |
| } |
| static ALWAYS_INLINE double MIND(double a, double b) |
| { |
| if (a < b) |
| return a; |
| return b; |
| } |
| static NOINLINE double my_SQRT(double X) |
| { |
| union { |
| float f; |
| int32_t i; |
| } v; |
| double invsqrt; |
| double Xhalf = X * 0.5; |
| |
| /* Fast and good approximation to 1/sqrt(X), black magic */ |
| v.f = X; |
| /*v.i = 0x5f3759df - (v.i >> 1);*/ |
| v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */ |
| invsqrt = v.f; /* better than 0.2% accuracy */ |
| |
| /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0) |
| * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X)) |
| * f'(x) = -2/(x*x*x) |
| * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2 |
| * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0) |
| */ |
| invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */ |
| /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */ |
| /* With 4 iterations, more than half results will be exact, |
| * at 6th iterations result stabilizes with about 72% results exact. |
| * We are well satisfied with 0.05% accuracy. |
| */ |
| |
| return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */ |
| } |
| static ALWAYS_INLINE double SQRT(double X) |
| { |
| /* If this arch doesn't use IEEE 754 floats, fall back to using libm */ |
| if (sizeof(float) != 4) |
| return sqrt(X); |
| |
| /* This avoids needing libm, saves about 0.5k on x86-32 */ |
| return my_SQRT(X); |
| } |
| |
| static double |
| gettime1900d(void) |
| { |
| struct timeval tv; |
| gettimeofday(&tv, NULL); /* never fails */ |
| G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970; |
| return G.cur_time; |
| } |
| |
| static void |
| d_to_tv(double d, struct timeval *tv) |
| { |
| tv->tv_sec = (long)d; |
| tv->tv_usec = (d - tv->tv_sec) * 1000000; |
| } |
| |
| static double |
| lfp_to_d(l_fixedpt_t lfp) |
| { |
| double ret; |
| lfp.int_partl = ntohl(lfp.int_partl); |
| lfp.fractionl = ntohl(lfp.fractionl); |
| ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX); |
| return ret; |
| } |
| static double |
| sfp_to_d(s_fixedpt_t sfp) |
| { |
| double ret; |
| sfp.int_parts = ntohs(sfp.int_parts); |
| sfp.fractions = ntohs(sfp.fractions); |
| ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX); |
| return ret; |
| } |
| #if ENABLE_FEATURE_NTPD_SERVER |
| static l_fixedpt_t |
| d_to_lfp(double d) |
| { |
| l_fixedpt_t lfp; |
| lfp.int_partl = (uint32_t)d; |
| lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX); |
| lfp.int_partl = htonl(lfp.int_partl); |
| lfp.fractionl = htonl(lfp.fractionl); |
| return lfp; |
| } |
| static s_fixedpt_t |
| d_to_sfp(double d) |
| { |
| s_fixedpt_t sfp; |
| sfp.int_parts = (uint16_t)d; |
| sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX); |
| sfp.int_parts = htons(sfp.int_parts); |
| sfp.fractions = htons(sfp.fractions); |
| return sfp; |
| } |
| #endif |
| |
| static double |
| dispersion(const datapoint_t *dp) |
| { |
| return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time); |
| } |
| |
| static double |
| root_distance(peer_t *p) |
| { |
| /* The root synchronization distance is the maximum error due to |
| * all causes of the local clock relative to the primary server. |
| * It is defined as half the total delay plus total dispersion |
| * plus peer jitter. |
| */ |
| return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2 |
| + p->lastpkt_rootdisp |
| + p->filter_dispersion |
| + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) |
| + p->filter_jitter; |
| } |
| |
| static void |
| set_next(peer_t *p, unsigned t) |
| { |
| p->next_action_time = G.cur_time + t; |
| } |
| |
| /* |
| * Peer clock filter and its helpers |
| */ |
| static void |
| filter_datapoints(peer_t *p) |
| { |
| int i, idx; |
| int got_newest; |
| double minoff, maxoff, wavg, sum, w; |
| double x = x; /* for compiler */ |
| double oldest_off = oldest_off; |
| double oldest_age = oldest_age; |
| double newest_off = newest_off; |
| double newest_age = newest_age; |
| |
| minoff = maxoff = p->filter_datapoint[0].d_offset; |
| for (i = 1; i < NUM_DATAPOINTS; i++) { |
| if (minoff > p->filter_datapoint[i].d_offset) |
| minoff = p->filter_datapoint[i].d_offset; |
| if (maxoff < p->filter_datapoint[i].d_offset) |
| maxoff = p->filter_datapoint[i].d_offset; |
| } |
| |
| idx = p->datapoint_idx; /* most recent datapoint */ |
| /* Average offset: |
| * Drop two outliers and take weighted average of the rest: |
| * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32 |
| * we use older6/32, not older6/64 since sum of weights should be 1: |
| * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1 |
| */ |
| wavg = 0; |
| w = 0.5; |
| /* n-1 |
| * --- dispersion(i) |
| * filter_dispersion = \ ------------- |
| * / (i+1) |
| * --- 2 |
| * i=0 |
| */ |
| got_newest = 0; |
| sum = 0; |
| for (i = 0; i < NUM_DATAPOINTS; i++) { |
| VERB4 { |
| bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s", |
| i, |
| p->filter_datapoint[idx].d_offset, |
| p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]), |
| G.cur_time - p->filter_datapoint[idx].d_recv_time, |
| (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset) |
| ? " (outlier by offset)" : "" |
| ); |
| } |
| |
| sum += dispersion(&p->filter_datapoint[idx]) / (2 << i); |
| |
| if (minoff == p->filter_datapoint[idx].d_offset) { |
| minoff -= 1; /* so that we don't match it ever again */ |
| } else |
| if (maxoff == p->filter_datapoint[idx].d_offset) { |
| maxoff += 1; |
| } else { |
| oldest_off = p->filter_datapoint[idx].d_offset; |
| oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time; |
| if (!got_newest) { |
| got_newest = 1; |
| newest_off = oldest_off; |
| newest_age = oldest_age; |
| } |
| x = oldest_off * w; |
| wavg += x; |
| w /= 2; |
| } |
| |
| idx = (idx - 1) & (NUM_DATAPOINTS - 1); |
| } |
| p->filter_dispersion = sum; |
| wavg += x; /* add another older6/64 to form older6/32 */ |
| /* Fix systematic underestimation with large poll intervals. |
| * Imagine that we still have a bit of uncorrected drift, |
| * and poll interval is big (say, 100 sec). Offsets form a progression: |
| * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent. |
| * The algorithm above drops 0.0 and 0.7 as outliers, |
| * and then we have this estimation, ~25% off from 0.7: |
| * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125 |
| */ |
| x = oldest_age - newest_age; |
| if (x != 0) { |
| x = newest_age / x; /* in above example, 100 / (600 - 100) */ |
| if (x < 1) { /* paranoia check */ |
| x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */ |
| wavg += x; |
| } |
| } |
| p->filter_offset = wavg; |
| |
| /* +----- -----+ ^ 1/2 |
| * | n-1 | |
| * | --- | |
| * | 1 \ 2 | |
| * filter_jitter = | --- * / (avg-offset_j) | |
| * | n --- | |
| * | j=0 | |
| * +----- -----+ |
| * where n is the number of valid datapoints in the filter (n > 1); |
| * if filter_jitter < precision then filter_jitter = precision |
| */ |
| sum = 0; |
| for (i = 0; i < NUM_DATAPOINTS; i++) { |
| sum += SQUARE(wavg - p->filter_datapoint[i].d_offset); |
| } |
| sum = SQRT(sum / NUM_DATAPOINTS); |
| p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec; |
| |
| VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f", |
| p->filter_offset, x, |
| p->filter_dispersion, |
| p->filter_jitter); |
| } |
| |
| static void |
| reset_peer_stats(peer_t *p, double offset) |
| { |
| int i; |
| bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD; |
| |
| for (i = 0; i < NUM_DATAPOINTS; i++) { |
| if (small_ofs) { |
| p->filter_datapoint[i].d_recv_time += offset; |
| if (p->filter_datapoint[i].d_offset != 0) { |
| p->filter_datapoint[i].d_offset += offset; |
| } |
| } else { |
| p->filter_datapoint[i].d_recv_time = G.cur_time; |
| p->filter_datapoint[i].d_offset = 0; |
| p->filter_datapoint[i].d_dispersion = MAXDISP; |
| } |
| } |
| if (small_ofs) { |
| p->lastpkt_recv_time += offset; |
| } else { |
| p->reachable_bits = 0; |
| p->lastpkt_recv_time = G.cur_time; |
| } |
| filter_datapoints(p); /* recalc p->filter_xxx */ |
| VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time); |
| } |
| |
| static void |
| add_peers(char *s) |
| { |
| peer_t *p; |
| |
| p = xzalloc(sizeof(*p)); |
| p->p_lsa = xhost2sockaddr(s, 123); |
| p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa); |
| p->p_fd = -1; |
| p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3); |
| p->next_action_time = G.cur_time; /* = set_next(p, 0); */ |
| reset_peer_stats(p, 16 * STEP_THRESHOLD); |
| |
| llist_add_to(&G.ntp_peers, p); |
| G.peer_cnt++; |
| } |
| |
| static int |
| do_sendto(int fd, |
| const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen, |
| msg_t *msg, ssize_t len) |
| { |
| ssize_t ret; |
| |
| errno = 0; |
| if (!from) { |
| ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen); |
| } else { |
| ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen); |
| } |
| if (ret != len) { |
| bb_perror_msg("send failed"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void |
| send_query_to_peer(peer_t *p) |
| { |
| /* Why do we need to bind()? |
| * See what happens when we don't bind: |
| * |
| * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3 |
| * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0 |
| * gettimeofday({1259071266, 327885}, NULL) = 0 |
| * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48 |
| * ^^^ we sent it from some source port picked by kernel. |
| * time(NULL) = 1259071266 |
| * write(2, "ntpd: entering poll 15 secs\n", 28) = 28 |
| * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}]) |
| * recv(3, "yyy", 68, MSG_DONTWAIT) = 48 |
| * ^^^ this recv will receive packets to any local port! |
| * |
| * Uncomment this and use strace to see it in action: |
| */ |
| #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */ |
| |
| if (p->p_fd == -1) { |
| int fd, family; |
| len_and_sockaddr *local_lsa; |
| |
| family = p->p_lsa->u.sa.sa_family; |
| p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM); |
| /* local_lsa has "null" address and port 0 now. |
| * bind() ensures we have a *particular port* selected by kernel |
| * and remembered in p->p_fd, thus later recv(p->p_fd) |
| * receives only packets sent to this port. |
| */ |
| PROBE_LOCAL_ADDR |
| xbind(fd, &local_lsa->u.sa, local_lsa->len); |
| PROBE_LOCAL_ADDR |
| #if ENABLE_FEATURE_IPV6 |
| if (family == AF_INET) |
| #endif |
| setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY)); |
| free(local_lsa); |
| } |
| |
| /* |
| * Send out a random 64-bit number as our transmit time. The NTP |
| * server will copy said number into the originate field on the |
| * response that it sends us. This is totally legal per the SNTP spec. |
| * |
| * The impact of this is two fold: we no longer send out the current |
| * system time for the world to see (which may aid an attacker), and |
| * it gives us a (not very secure) way of knowing that we're not |
| * getting spoofed by an attacker that can't capture our traffic |
| * but can spoof packets from the NTP server we're communicating with. |
| * |
| * Save the real transmit timestamp locally. |
| */ |
| p->p_xmt_msg.m_xmttime.int_partl = random(); |
| p->p_xmt_msg.m_xmttime.fractionl = random(); |
| p->p_xmttime = gettime1900d(); |
| |
| if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len, |
| &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1 |
| ) { |
| close(p->p_fd); |
| p->p_fd = -1; |
| set_next(p, RETRY_INTERVAL); |
| return; |
| } |
| |
| p->reachable_bits <<= 1; |
| VERB1 bb_error_msg("sent query to %s", p->p_dotted); |
| set_next(p, RESPONSE_INTERVAL); |
| } |
| |
| |
| /* Note that there is no provision to prevent several run_scripts |
| * to be done in quick succession. In fact, it happens rather often |
| * if initial syncronization results in a step. |
| * You will see "step" and then "stratum" script runs, sometimes |
| * as close as only 0.002 seconds apart. |
| * Script should be ready to deal with this. |
| */ |
| static void run_script(const char *action, double offset) |
| { |
| char *argv[3]; |
| char *env1, *env2, *env3, *env4; |
| |
| if (!G.script_name) |
| return; |
| |
| argv[0] = (char*) G.script_name; |
| argv[1] = (char*) action; |
| argv[2] = NULL; |
| |
| VERB1 bb_error_msg("executing '%s %s'", G.script_name, action); |
| |
| env1 = xasprintf("%s=%u", "stratum", G.stratum); |
| putenv(env1); |
| env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift); |
| putenv(env2); |
| env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp); |
| putenv(env3); |
| env4 = xasprintf("%s=%f", "offset", offset); |
| putenv(env4); |
| /* Other items of potential interest: selected peer, |
| * rootdelay, reftime, rootdisp, refid, ntp_status, |
| * last_update_offset, last_update_recv_time, discipline_jitter, |
| * how many peers have reachable_bits = 0? |
| */ |
| |
| /* Don't want to wait: it may run hwclock --systohc, and that |
| * may take some time (seconds): */ |
| /*spawn_and_wait(argv);*/ |
| spawn(argv); |
| |
| unsetenv("stratum"); |
| unsetenv("freq_drift_ppm"); |
| unsetenv("poll_interval"); |
| unsetenv("offset"); |
| free(env1); |
| free(env2); |
| free(env3); |
| free(env4); |
| |
| G.last_script_run = G.cur_time; |
| } |
| |
| static NOINLINE void |
| step_time(double offset) |
| { |
| llist_t *item; |
| double dtime; |
| struct timeval tv; |
| char buf[80]; |
| time_t tval; |
| |
| gettimeofday(&tv, NULL); /* never fails */ |
| dtime = offset + tv.tv_sec; |
| dtime += 1.0e-6 * tv.tv_usec; |
| d_to_tv(dtime, &tv); |
| |
| if (settimeofday(&tv, NULL) == -1) |
| bb_perror_msg_and_die("settimeofday"); |
| |
| tval = tv.tv_sec; |
| strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval)); |
| |
| bb_error_msg("setting clock to %s (offset %fs)", buf, offset); |
| |
| /* Correct various fields which contain time-relative values: */ |
| |
| /* p->lastpkt_recv_time, p->next_action_time and such: */ |
| for (item = G.ntp_peers; item != NULL; item = item->link) { |
| peer_t *pp = (peer_t *) item->data; |
| reset_peer_stats(pp, offset); |
| //bb_error_msg("offset:%f pp->next_action_time:%f -> %f", |
| // offset, pp->next_action_time, pp->next_action_time + offset); |
| pp->next_action_time += offset; |
| } |
| /* Globals: */ |
| G.cur_time += offset; |
| G.last_update_recv_time += offset; |
| G.last_script_run += offset; |
| } |
| |
| |
| /* |
| * Selection and clustering, and their helpers |
| */ |
| typedef struct { |
| peer_t *p; |
| int type; |
| double edge; |
| double opt_rd; /* optimization */ |
| } point_t; |
| static int |
| compare_point_edge(const void *aa, const void *bb) |
| { |
| const point_t *a = aa; |
| const point_t *b = bb; |
| if (a->edge < b->edge) { |
| return -1; |
| } |
| return (a->edge > b->edge); |
| } |
| typedef struct { |
| peer_t *p; |
| double metric; |
| } survivor_t; |
| static int |
| compare_survivor_metric(const void *aa, const void *bb) |
| { |
| const survivor_t *a = aa; |
| const survivor_t *b = bb; |
| if (a->metric < b->metric) { |
| return -1; |
| } |
| return (a->metric > b->metric); |
| } |
| static int |
| fit(peer_t *p, double rd) |
| { |
| if ((p->reachable_bits & (p->reachable_bits-1)) == 0) { |
| /* One or zero bits in reachable_bits */ |
| VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted); |
| return 0; |
| } |
| #if 0 /* we filter out such packets earlier */ |
| if ((p->lastpkt_status & LI_ALARM) == LI_ALARM |
| || p->lastpkt_stratum >= MAXSTRAT |
| ) { |
| VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted); |
| return 0; |
| } |
| #endif |
| /* rd is root_distance(p) */ |
| if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) { |
| VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted); |
| return 0; |
| } |
| //TODO |
| // /* Do we have a loop? */ |
| // if (p->refid == p->dstaddr || p->refid == s.refid) |
| // return 0; |
| return 1; |
| } |
| static peer_t* |
| select_and_cluster(void) |
| { |
| peer_t *p; |
| llist_t *item; |
| int i, j; |
| int size = 3 * G.peer_cnt; |
| /* for selection algorithm */ |
| point_t point[size]; |
| unsigned num_points, num_candidates; |
| double low, high; |
| unsigned num_falsetickers; |
| /* for cluster algorithm */ |
| survivor_t survivor[size]; |
| unsigned num_survivors; |
| |
| /* Selection */ |
| |
| num_points = 0; |
| item = G.ntp_peers; |
| if (G.initial_poll_complete) while (item != NULL) { |
| double rd, offset; |
| |
| p = (peer_t *) item->data; |
| rd = root_distance(p); |
| offset = p->filter_offset; |
| if (!fit(p, rd)) { |
| item = item->link; |
| continue; |
| } |
| |
| VERB4 bb_error_msg("interval: [%f %f %f] %s", |
| offset - rd, |
| offset, |
| offset + rd, |
| p->p_dotted |
| ); |
| point[num_points].p = p; |
| point[num_points].type = -1; |
| point[num_points].edge = offset - rd; |
| point[num_points].opt_rd = rd; |
| num_points++; |
| point[num_points].p = p; |
| point[num_points].type = 0; |
| point[num_points].edge = offset; |
| point[num_points].opt_rd = rd; |
| num_points++; |
| point[num_points].p = p; |
| point[num_points].type = 1; |
| point[num_points].edge = offset + rd; |
| point[num_points].opt_rd = rd; |
| num_points++; |
| item = item->link; |
| } |
| num_candidates = num_points / 3; |
| if (num_candidates == 0) { |
| VERB3 bb_error_msg("no valid datapoints, no peer selected"); |
| return NULL; |
| } |
| //TODO: sorting does not seem to be done in reference code |
| qsort(point, num_points, sizeof(point[0]), compare_point_edge); |
| |
| /* Start with the assumption that there are no falsetickers. |
| * Attempt to find a nonempty intersection interval containing |
| * the midpoints of all truechimers. |
| * If a nonempty interval cannot be found, increase the number |
| * of assumed falsetickers by one and try again. |
| * If a nonempty interval is found and the number of falsetickers |
| * is less than the number of truechimers, a majority has been found |
| * and the midpoint of each truechimer represents |
| * the candidates available to the cluster algorithm. |
| */ |
| num_falsetickers = 0; |
| while (1) { |
| int c; |
| unsigned num_midpoints = 0; |
| |
| low = 1 << 9; |
| high = - (1 << 9); |
| c = 0; |
| for (i = 0; i < num_points; i++) { |
| /* We want to do: |
| * if (point[i].type == -1) c++; |
| * if (point[i].type == 1) c--; |
| * and it's simpler to do it this way: |
| */ |
| c -= point[i].type; |
| if (c >= num_candidates - num_falsetickers) { |
| /* If it was c++ and it got big enough... */ |
| low = point[i].edge; |
| break; |
| } |
| if (point[i].type == 0) |
| num_midpoints++; |
| } |
| c = 0; |
| for (i = num_points-1; i >= 0; i--) { |
| c += point[i].type; |
| if (c >= num_candidates - num_falsetickers) { |
| high = point[i].edge; |
| break; |
| } |
| if (point[i].type == 0) |
| num_midpoints++; |
| } |
| /* If the number of midpoints is greater than the number |
| * of allowed falsetickers, the intersection contains at |
| * least one truechimer with no midpoint - bad. |
| * Also, interval should be nonempty. |
| */ |
| if (num_midpoints <= num_falsetickers && low < high) |
| break; |
| num_falsetickers++; |
| if (num_falsetickers * 2 >= num_candidates) { |
| VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected", |
| num_falsetickers, num_candidates); |
| return NULL; |
| } |
| } |
| VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d", |
| low, high, num_candidates, num_falsetickers); |
| |
| /* Clustering */ |
| |
| /* Construct a list of survivors (p, metric) |
| * from the chime list, where metric is dominated |
| * first by stratum and then by root distance. |
| * All other things being equal, this is the order of preference. |
| */ |
| num_survivors = 0; |
| for (i = 0; i < num_points; i++) { |
| if (point[i].edge < low || point[i].edge > high) |
| continue; |
| p = point[i].p; |
| survivor[num_survivors].p = p; |
| /* x.opt_rd == root_distance(p); */ |
| survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd; |
| VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s", |
| num_survivors, survivor[num_survivors].metric, p->p_dotted); |
| num_survivors++; |
| } |
| /* There must be at least MIN_SELECTED survivors to satisfy the |
| * correctness assertions. Ordinarily, the Byzantine criteria |
| * require four survivors, but for the demonstration here, one |
| * is acceptable. |
| */ |
| if (num_survivors < MIN_SELECTED) { |
| VERB3 bb_error_msg("num_survivors %d < %d, no peer selected", |
| num_survivors, MIN_SELECTED); |
| return NULL; |
| } |
| |
| //looks like this is ONLY used by the fact that later we pick survivor[0]. |
| //we can avoid sorting then, just find the minimum once! |
| qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric); |
| |
| /* For each association p in turn, calculate the selection |
| * jitter p->sjitter as the square root of the sum of squares |
| * (p->offset - q->offset) over all q associations. The idea is |
| * to repeatedly discard the survivor with maximum selection |
| * jitter until a termination condition is met. |
| */ |
| while (1) { |
| unsigned max_idx = max_idx; |
| double max_selection_jitter = max_selection_jitter; |
| double min_jitter = min_jitter; |
| |
| if (num_survivors <= MIN_CLUSTERED) { |
| VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more", |
| num_survivors, MIN_CLUSTERED); |
| break; |
| } |
| |
| /* To make sure a few survivors are left |
| * for the clustering algorithm to chew on, |
| * we stop if the number of survivors |
| * is less than or equal to MIN_CLUSTERED (3). |
| */ |
| for (i = 0; i < num_survivors; i++) { |
| double selection_jitter_sq; |
| |
| p = survivor[i].p; |
| if (i == 0 || p->filter_jitter < min_jitter) |
| min_jitter = p->filter_jitter; |
| |
| selection_jitter_sq = 0; |
| for (j = 0; j < num_survivors; j++) { |
| peer_t *q = survivor[j].p; |
| selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset); |
| } |
| if (i == 0 || selection_jitter_sq > max_selection_jitter) { |
| max_selection_jitter = selection_jitter_sq; |
| max_idx = i; |
| } |
| VERB5 bb_error_msg("survivor %d selection_jitter^2:%f", |
| i, selection_jitter_sq); |
| } |
| max_selection_jitter = SQRT(max_selection_jitter / num_survivors); |
| VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f", |
| max_idx, max_selection_jitter, min_jitter); |
| |
| /* If the maximum selection jitter is less than the |
| * minimum peer jitter, then tossing out more survivors |
| * will not lower the minimum peer jitter, so we might |
| * as well stop. |
| */ |
| if (max_selection_jitter < min_jitter) { |
| VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more", |
| max_selection_jitter, min_jitter, num_survivors); |
| break; |
| } |
| |
| /* Delete survivor[max_idx] from the list |
| * and go around again. |
| */ |
| VERB5 bb_error_msg("dropping survivor %d", max_idx); |
| num_survivors--; |
| while (max_idx < num_survivors) { |
| survivor[max_idx] = survivor[max_idx + 1]; |
| max_idx++; |
| } |
| } |
| |
| if (0) { |
| /* Combine the offsets of the clustering algorithm survivors |
| * using a weighted average with weight determined by the root |
| * distance. Compute the selection jitter as the weighted RMS |
| * difference between the first survivor and the remaining |
| * survivors. In some cases the inherent clock jitter can be |
| * reduced by not using this algorithm, especially when frequent |
| * clockhopping is involved. bbox: thus we don't do it. |
| */ |
| double x, y, z, w; |
| y = z = w = 0; |
| for (i = 0; i < num_survivors; i++) { |
| p = survivor[i].p; |
| x = root_distance(p); |
| y += 1 / x; |
| z += p->filter_offset / x; |
| w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x; |
| } |
| //G.cluster_offset = z / y; |
| //G.cluster_jitter = SQRT(w / y); |
| } |
| |
| /* Pick the best clock. If the old system peer is on the list |
| * and at the same stratum as the first survivor on the list, |
| * then don't do a clock hop. Otherwise, select the first |
| * survivor on the list as the new system peer. |
| */ |
| p = survivor[0].p; |
| if (G.last_update_peer |
| && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum |
| ) { |
| /* Starting from 1 is ok here */ |
| for (i = 1; i < num_survivors; i++) { |
| if (G.last_update_peer == survivor[i].p) { |
| VERB4 bb_error_msg("keeping old synced peer"); |
| p = G.last_update_peer; |
| goto keep_old; |
| } |
| } |
| } |
| G.last_update_peer = p; |
| keep_old: |
| VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f", |
| p->p_dotted, |
| p->filter_offset, |
| G.cur_time - p->lastpkt_recv_time |
| ); |
| return p; |
| } |
| |
| |
| /* |
| * Local clock discipline and its helpers |
| */ |
| static void |
| set_new_values(int disc_state, double offset, double recv_time) |
| { |
| /* Enter new state and set state variables. Note we use the time |
| * of the last clock filter sample, which must be earlier than |
| * the current time. |
| */ |
| VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f", |
| disc_state, offset, recv_time); |
| G.discipline_state = disc_state; |
| G.last_update_offset = offset; |
| G.last_update_recv_time = recv_time; |
| } |
| /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */ |
| static NOINLINE int |
| update_local_clock(peer_t *p) |
| { |
| int rc; |
| struct timex tmx; |
| /* Note: can use G.cluster_offset instead: */ |
| double offset = p->filter_offset; |
| double recv_time = p->lastpkt_recv_time; |
| double abs_offset; |
| #if !USING_KERNEL_PLL_LOOP |
| double freq_drift; |
| #endif |
| double since_last_update; |
| double etemp, dtemp; |
| |
| abs_offset = fabs(offset); |
| |
| #if 0 |
| /* If needed, -S script can do it by looking at $offset |
| * env var and killing parent */ |
| /* If the offset is too large, give up and go home */ |
| if (abs_offset > PANIC_THRESHOLD) { |
| bb_error_msg_and_die("offset %f far too big, exiting", offset); |
| } |
| #endif |
| |
| /* If this is an old update, for instance as the result |
| * of a system peer change, avoid it. We never use |
| * an old sample or the same sample twice. |
| */ |
| if (recv_time <= G.last_update_recv_time) { |
| VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it", |
| G.last_update_recv_time, recv_time); |
| return 0; /* "leave poll interval as is" */ |
| } |
| |
| /* Clock state machine transition function. This is where the |
| * action is and defines how the system reacts to large time |
| * and frequency errors. |
| */ |
| since_last_update = recv_time - G.reftime; |
| #if !USING_KERNEL_PLL_LOOP |
| freq_drift = 0; |
| #endif |
| #if USING_INITIAL_FREQ_ESTIMATION |
| if (G.discipline_state == STATE_FREQ) { |
| /* Ignore updates until the stepout threshold */ |
| if (since_last_update < WATCH_THRESHOLD) { |
| VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains", |
| WATCH_THRESHOLD - since_last_update); |
| return 0; /* "leave poll interval as is" */ |
| } |
| # if !USING_KERNEL_PLL_LOOP |
| freq_drift = (offset - G.last_update_offset) / since_last_update; |
| # endif |
| } |
| #endif |
| |
| /* There are two main regimes: when the |
| * offset exceeds the step threshold and when it does not. |
| */ |
| if (abs_offset > STEP_THRESHOLD) { |
| switch (G.discipline_state) { |
| case STATE_SYNC: |
| /* The first outlyer: ignore it, switch to SPIK state */ |
| VERB3 bb_error_msg("offset:%f - spike detected", offset); |
| G.discipline_state = STATE_SPIK; |
| return -1; /* "decrease poll interval" */ |
| |
| case STATE_SPIK: |
| /* Ignore succeeding outlyers until either an inlyer |
| * is found or the stepout threshold is exceeded. |
| */ |
| if (since_last_update < WATCH_THRESHOLD) { |
| VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains", |
| WATCH_THRESHOLD - since_last_update); |
| return -1; /* "decrease poll interval" */ |
| } |
| /* fall through: we need to step */ |
| } /* switch */ |
| |
| /* Step the time and clamp down the poll interval. |
| * |
| * In NSET state an initial frequency correction is |
| * not available, usually because the frequency file has |
| * not yet been written. Since the time is outside the |
| * capture range, the clock is stepped. The frequency |
| * will be set directly following the stepout interval. |
| * |
| * In FSET state the initial frequency has been set |
| * from the frequency file. Since the time is outside |
| * the capture range, the clock is stepped immediately, |
| * rather than after the stepout interval. Guys get |
| * nervous if it takes 17 minutes to set the clock for |
| * the first time. |
| * |
| * In SPIK state the stepout threshold has expired and |
| * the phase is still above the step threshold. Note |
| * that a single spike greater than the step threshold |
| * is always suppressed, even at the longer poll |
| * intervals. |
| */ |
| VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset); |
| step_time(offset); |
| if (option_mask32 & OPT_q) { |
| /* We were only asked to set time once. Done. */ |
| exit(0); |
| } |
| |
| G.polladj_count = 0; |
| G.poll_exp = MINPOLL; |
| G.stratum = MAXSTRAT; |
| |
| run_script("step", offset); |
| |
| #if USING_INITIAL_FREQ_ESTIMATION |
| if (G.discipline_state == STATE_NSET) { |
| set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time); |
| return 1; /* "ok to increase poll interval" */ |
| } |
| #endif |
| set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time); |
| |
| } else { /* abs_offset <= STEP_THRESHOLD */ |
| |
| if (G.poll_exp < MINPOLL && G.initial_poll_complete) { |
| VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset); |
| G.polladj_count = 0; |
| G.poll_exp = MINPOLL; |
| } |
| |
| /* Compute the clock jitter as the RMS of exponentially |
| * weighted offset differences. Used by the poll adjust code. |
| */ |
| etemp = SQUARE(G.discipline_jitter); |
| dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec)); |
| G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG); |
| VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter); |
| |
| switch (G.discipline_state) { |
| case STATE_NSET: |
| if (option_mask32 & OPT_q) { |
| /* We were only asked to set time once. |
| * The clock is precise enough, no need to step. |
| */ |
| exit(0); |
| } |
| #if USING_INITIAL_FREQ_ESTIMATION |
| /* This is the first update received and the frequency |
| * has not been initialized. The first thing to do |
| * is directly measure the oscillator frequency. |
| */ |
| set_new_values(STATE_FREQ, offset, recv_time); |
| #else |
| set_new_values(STATE_SYNC, offset, recv_time); |
| #endif |
| VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored"); |
| return 0; /* "leave poll interval as is" */ |
| |
| #if 0 /* this is dead code for now */ |
| case STATE_FSET: |
| /* This is the first update and the frequency |
| * has been initialized. Adjust the phase, but |
| * don't adjust the frequency until the next update. |
| */ |
| set_new_values(STATE_SYNC, offset, recv_time); |
| /* freq_drift remains 0 */ |
| break; |
| #endif |
| |
| #if USING_INITIAL_FREQ_ESTIMATION |
| case STATE_FREQ: |
| /* since_last_update >= WATCH_THRESHOLD, we waited enough. |
| * Correct the phase and frequency and switch to SYNC state. |
| * freq_drift was already estimated (see code above) |
| */ |
| set_new_values(STATE_SYNC, offset, recv_time); |
| break; |
| #endif |
| |
| default: |
| #if !USING_KERNEL_PLL_LOOP |
| /* Compute freq_drift due to PLL and FLL contributions. |
| * |
| * The FLL and PLL frequency gain constants |
| * depend on the poll interval and Allan |
| * intercept. The FLL is not used below one-half |
| * the Allan intercept. Above that the loop gain |
| * increases in steps to 1 / AVG. |
| */ |
| if ((1 << G.poll_exp) > ALLAN / 2) { |
| etemp = FLL - G.poll_exp; |
| if (etemp < AVG) |
| etemp = AVG; |
| freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp); |
| } |
| /* For the PLL the integration interval |
| * (numerator) is the minimum of the update |
| * interval and poll interval. This allows |
| * oversampling, but not undersampling. |
| */ |
| etemp = MIND(since_last_update, (1 << G.poll_exp)); |
| dtemp = (4 * PLL) << G.poll_exp; |
| freq_drift += offset * etemp / SQUARE(dtemp); |
| #endif |
| set_new_values(STATE_SYNC, offset, recv_time); |
| break; |
| } |
| if (G.stratum != p->lastpkt_stratum + 1) { |
| G.stratum = p->lastpkt_stratum + 1; |
| run_script("stratum", offset); |
| } |
| } |
| |
| G.reftime = G.cur_time; |
| G.ntp_status = p->lastpkt_status; |
| G.refid = p->lastpkt_refid; |
| G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay; |
| dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter)); |
| dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP); |
| G.rootdisp = p->lastpkt_rootdisp + dtemp; |
| VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted); |
| |
| /* We are in STATE_SYNC now, but did not do adjtimex yet. |
| * (Any other state does not reach this, they all return earlier) |
| * By this time, freq_drift and G.last_update_offset are set |
| * to values suitable for adjtimex. |
| */ |
| #if !USING_KERNEL_PLL_LOOP |
| /* Calculate the new frequency drift and frequency stability (wander). |
| * Compute the clock wander as the RMS of exponentially weighted |
| * frequency differences. This is not used directly, but can, |
| * along with the jitter, be a highly useful monitoring and |
| * debugging tool. |
| */ |
| dtemp = G.discipline_freq_drift + freq_drift; |
| G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT); |
| etemp = SQUARE(G.discipline_wander); |
| dtemp = SQUARE(dtemp); |
| G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG); |
| |
| VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f", |
| G.discipline_freq_drift, |
| (long)(G.discipline_freq_drift * 65536e6), |
| freq_drift, |
| G.discipline_wander); |
| #endif |
| VERB3 { |
| memset(&tmx, 0, sizeof(tmx)); |
| if (adjtimex(&tmx) < 0) |
| bb_perror_msg_and_die("adjtimex"); |
| VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x", |
| tmx.freq, tmx.offset, tmx.constant, tmx.status); |
| } |
| |
| memset(&tmx, 0, sizeof(tmx)); |
| #if 0 |
| //doesn't work, offset remains 0 (!) in kernel: |
| //ntpd: set adjtimex freq:1786097 tmx.offset:77487 |
| //ntpd: prev adjtimex freq:1786097 tmx.offset:0 |
| //ntpd: cur adjtimex freq:1786097 tmx.offset:0 |
| tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET; |
| /* 65536 is one ppm */ |
| tmx.freq = G.discipline_freq_drift * 65536e6; |
| tmx.offset = G.last_update_offset * 1000000; /* usec */ |
| #endif |
| tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR; |
| tmx.offset = (G.last_update_offset * 1000000); /* usec */ |
| /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */ |
| tmx.status = STA_PLL; |
| if (G.ntp_status & LI_PLUSSEC) |
| tmx.status |= STA_INS; |
| if (G.ntp_status & LI_MINUSSEC) |
| tmx.status |= STA_DEL; |
| tmx.constant = G.poll_exp - 4; |
| //tmx.esterror = (u_int32)(clock_jitter * 1e6); |
| //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6); |
| rc = adjtimex(&tmx); |
| if (rc < 0) |
| bb_perror_msg_and_die("adjtimex"); |
| /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4. |
| * Not sure why. Perhaps it is normal. |
| */ |
| VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x", |
| rc, tmx.freq, tmx.offset, tmx.constant, tmx.status); |
| #if 0 |
| VERB3 { |
| /* always gives the same output as above msg */ |
| memset(&tmx, 0, sizeof(tmx)); |
| if (adjtimex(&tmx) < 0) |
| bb_perror_msg_and_die("adjtimex"); |
| VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x", |
| tmx.freq, tmx.offset, tmx.constant, tmx.status); |
| } |
| #endif |
| G.kernel_freq_drift = tmx.freq / 65536; |
| VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm", |
| p->p_dotted, G.last_update_offset, G.kernel_freq_drift); |
| |
| return 1; /* "ok to increase poll interval" */ |
| } |
| |
| |
| /* |
| * We've got a new reply packet from a peer, process it |
| * (helpers first) |
| */ |
| static unsigned |
| retry_interval(void) |
| { |
| /* Local problem, want to retry soon */ |
| unsigned interval, r; |
| interval = RETRY_INTERVAL; |
| r = random(); |
| interval += r % (unsigned)(RETRY_INTERVAL / 4); |
| VERB3 bb_error_msg("chose retry interval:%u", interval); |
| return interval; |
| } |
| static unsigned |
| poll_interval(int exponent) |
| { |
| unsigned interval, r; |
| exponent = G.poll_exp + exponent; |
| if (exponent < 0) |
| exponent = 0; |
| interval = 1 << exponent; |
| r = random(); |
| interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */ |
| VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent); |
| return interval; |
| } |
| static NOINLINE void |
| recv_and_process_peer_pkt(peer_t *p) |
| { |
| int rc; |
| ssize_t size; |
| msg_t msg; |
| double T1, T2, T3, T4; |
| unsigned interval; |
| datapoint_t *datapoint; |
| peer_t *q; |
| |
| /* We can recvfrom here and check from.IP, but some multihomed |
| * ntp servers reply from their *other IP*. |
| * TODO: maybe we should check at least what we can: from.port == 123? |
| */ |
| size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT); |
| if (size == -1) { |
| bb_perror_msg("recv(%s) error", p->p_dotted); |
| if (errno == EHOSTUNREACH || errno == EHOSTDOWN |
| || errno == ENETUNREACH || errno == ENETDOWN |
| || errno == ECONNREFUSED || errno == EADDRNOTAVAIL |
| || errno == EAGAIN |
| ) { |
| //TODO: always do this? |
| interval = retry_interval(); |
| goto set_next_and_close_sock; |
| } |
| xfunc_die(); |
| } |
| |
| if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) { |
| bb_error_msg("malformed packet received from %s", p->p_dotted); |
| goto bail; |
| } |
| |
| if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl |
| || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl |
| ) { |
| goto bail; |
| } |
| |
| if ((msg.m_status & LI_ALARM) == LI_ALARM |
| || msg.m_stratum == 0 |
| || msg.m_stratum > NTP_MAXSTRATUM |
| ) { |
| // TODO: stratum 0 responses may have commands in 32-bit m_refid field: |
| // "DENY", "RSTR" - peer does not like us at all |
| // "RATE" - peer is overloaded, reduce polling freq |
| interval = poll_interval(0); |
| bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval); |
| goto set_next_and_close_sock; |
| } |
| |
| // /* Verify valid root distance */ |
| // if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt) |
| // return; /* invalid header values */ |
| |
| p->lastpkt_status = msg.m_status; |
| p->lastpkt_stratum = msg.m_stratum; |
| p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay); |
| p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp); |
| p->lastpkt_refid = msg.m_refid; |
| |
| /* |
| * From RFC 2030 (with a correction to the delay math): |
| * |
| * Timestamp Name ID When Generated |
| * ------------------------------------------------------------ |
| * Originate Timestamp T1 time request sent by client |
| * Receive Timestamp T2 time request received by server |
| * Transmit Timestamp T3 time reply sent by server |
| * Destination Timestamp T4 time reply received by client |
| * |
| * The roundtrip delay and local clock offset are defined as |
| * |
| * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2 |
| */ |
| T1 = p->p_xmttime; |
| T2 = lfp_to_d(msg.m_rectime); |
| T3 = lfp_to_d(msg.m_xmttime); |
| T4 = G.cur_time; |
| |
| p->lastpkt_recv_time = T4; |
| |
| VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time); |
| p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0; |
| datapoint = &p->filter_datapoint[p->datapoint_idx]; |
| datapoint->d_recv_time = T4; |
| datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2; |
| /* The delay calculation is a special case. In cases where the |
| * server and client clocks are running at different rates and |
| * with very fast networks, the delay can appear negative. In |
| * order to avoid violating the Principle of Least Astonishment, |
| * the delay is clamped not less than the system precision. |
| */ |
| p->lastpkt_delay = (T4 - T1) - (T3 - T2); |
| if (p->lastpkt_delay < G_precision_sec) |
| p->lastpkt_delay = G_precision_sec; |
| datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec; |
| if (!p->reachable_bits) { |
| /* 1st datapoint ever - replicate offset in every element */ |
| int i; |
| for (i = 1; i < NUM_DATAPOINTS; i++) { |
| p->filter_datapoint[i].d_offset = datapoint->d_offset; |
| } |
| } |
| |
| p->reachable_bits |= 1; |
| if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) { |
| bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f", |
| p->p_dotted, |
| p->reachable_bits, |
| datapoint->d_offset, |
| p->lastpkt_delay, |
| p->lastpkt_status, |
| p->lastpkt_stratum, |
| p->lastpkt_refid, |
| p->lastpkt_rootdelay |
| /* not shown: m_ppoll, m_precision_exp, m_rootdisp, |
| * m_reftime, m_orgtime, m_rectime, m_xmttime |
| */ |
| ); |
| } |
| |
| /* Muck with statictics and update the clock */ |
| filter_datapoints(p); |
| q = select_and_cluster(); |
| rc = -1; |
| if (q) { |
| rc = 0; |
| if (!(option_mask32 & OPT_w)) { |
| rc = update_local_clock(q); |
| /* If drift is dangerously large, immediately |
| * drop poll interval one step down. |
| */ |
| if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) { |
| VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset); |
| goto poll_down; |
| } |
| } |
| } |
| /* else: no peer selected, rc = -1: we want to poll more often */ |
| |
| if (rc != 0) { |
| /* Adjust the poll interval by comparing the current offset |
| * with the clock jitter. If the offset is less than |
| * the clock jitter times a constant, then the averaging interval |
| * is increased, otherwise it is decreased. A bit of hysteresis |
| * helps calm the dance. Works best using burst mode. |
| */ |
| VERB4 if (rc > 0) { |
| bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s", |
| q->filter_offset, POLLADJ_GATE * G.discipline_jitter, |
| fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter |
| ? "grows" : "falls" |
| ); |
| } |
| if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) { |
| /* was += G.poll_exp but it is a bit |
| * too optimistic for my taste at high poll_exp's */ |
| G.polladj_count += MINPOLL; |
| if (G.polladj_count > POLLADJ_LIMIT) { |
| G.polladj_count = 0; |
| if (G.poll_exp < MAXPOLL) { |
| G.poll_exp++; |
| VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d", |
| G.discipline_jitter, G.poll_exp); |
| } |
| } else { |
| VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count); |
| } |
| } else { |
| G.polladj_count -= G.poll_exp * 2; |
| if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) { |
| poll_down: |
| G.polladj_count = 0; |
| if (G.poll_exp > MINPOLL) { |
| llist_t *item; |
| |
| G.poll_exp--; |
| /* Correct p->next_action_time in each peer |
| * which waits for sending, so that they send earlier. |
| * Old pp->next_action_time are on the order |
| * of t + (1 << old_poll_exp) + small_random, |
| * we simply need to subtract ~half of that. |
| */ |
| for (item = G.ntp_peers; item != NULL; item = item->link) { |
| peer_t *pp = (peer_t *) item->data; |
| if (pp->p_fd < 0) |
| pp->next_action_time -= (1 << G.poll_exp); |
| } |
| VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d", |
| G.discipline_jitter, G.poll_exp); |
| } |
| } else { |
| VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count); |
| } |
| } |
| } |
| |
| /* Decide when to send new query for this peer */ |
| interval = poll_interval(0); |
| |
| set_next_and_close_sock: |
| set_next(p, interval); |
| /* We do not expect any more packets from this peer for now. |
| * Closing the socket informs kernel about it. |
| * We open a new socket when we send a new query. |
| */ |
| close(p->p_fd); |
| p->p_fd = -1; |
| bail: |
| return; |
| } |
| |
| #if ENABLE_FEATURE_NTPD_SERVER |
| static NOINLINE void |
| recv_and_process_client_pkt(void /*int fd*/) |
| { |
| ssize_t size; |
| uint8_t version; |
| len_and_sockaddr *to; |
| struct sockaddr *from; |
| msg_t msg; |
| uint8_t query_status; |
| l_fixedpt_t query_xmttime; |
| |
| to = get_sock_lsa(G.listen_fd); |
| from = xzalloc(to->len); |
| |
| size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len); |
| if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) { |
| char *addr; |
| if (size < 0) { |
| if (errno == EAGAIN) |
| goto bail; |
| bb_perror_msg_and_die("recv"); |
| } |
| addr = xmalloc_sockaddr2dotted_noport(from); |
| bb_error_msg("malformed packet received from %s: size %u", addr, (int)size); |
| free(addr); |
| goto bail; |
| } |
| |
| query_status = msg.m_status; |
| query_xmttime = msg.m_xmttime; |
| |
| /* Build a reply packet */ |
| memset(&msg, 0, sizeof(msg)); |
| msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM; |
| msg.m_status |= (query_status & VERSION_MASK); |
| msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ? |
| MODE_SERVER : MODE_SYM_PAS; |
| msg.m_stratum = G.stratum; |
| msg.m_ppoll = G.poll_exp; |
| msg.m_precision_exp = G_precision_exp; |
| /* this time was obtained between poll() and recv() */ |
| msg.m_rectime = d_to_lfp(G.cur_time); |
| msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */ |
| if (G.peer_cnt == 0) { |
| /* we have no peers: "stratum 1 server" mode. reftime = our own time */ |
| G.reftime = G.cur_time; |
| } |
| msg.m_reftime = d_to_lfp(G.reftime); |
| msg.m_orgtime = query_xmttime; |
| msg.m_rootdelay = d_to_sfp(G.rootdelay); |
| //simple code does not do this, fix simple code! |
| msg.m_rootdisp = d_to_sfp(G.rootdisp); |
| version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */ |
| msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3; |
| |
| /* We reply from the local address packet was sent to, |
| * this makes to/from look swapped here: */ |
| do_sendto(G.listen_fd, |
| /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len, |
| &msg, size); |
| |
| bail: |
| free(to); |
| free(from); |
| } |
| #endif |
| |
| /* Upstream ntpd's options: |
| * |
| * -4 Force DNS resolution of host names to the IPv4 namespace. |
| * -6 Force DNS resolution of host names to the IPv6 namespace. |
| * -a Require cryptographic authentication for broadcast client, |
| * multicast client and symmetric passive associations. |
| * This is the default. |
| * -A Do not require cryptographic authentication for broadcast client, |
| * multicast client and symmetric passive associations. |
| * This is almost never a good idea. |
| * -b Enable the client to synchronize to broadcast servers. |
| * -c conffile |
| * Specify the name and path of the configuration file, |
| * default /etc/ntp.conf |
| * -d Specify debugging mode. This option may occur more than once, |
| * with each occurrence indicating greater detail of display. |
| * -D level |
| * Specify debugging level directly. |
| * -f driftfile |
| * Specify the name and path of the frequency file. |
| * This is the same operation as the "driftfile FILE" |
| * configuration command. |
| * -g Normally, ntpd exits with a message to the system log |
| * if the offset exceeds the panic threshold, which is 1000 s |
| * by default. This option allows the time to be set to any value |
| * without restriction; however, this can happen only once. |
| * If the threshold is exceeded after that, ntpd will exit |
| * with a message to the system log. This option can be used |
| * with the -q and -x options. See the tinker command for other options. |
| * -i jaildir |
| * Chroot the server to the directory jaildir. This option also implies |
| * that the server attempts to drop root privileges at startup |
| * (otherwise, chroot gives very little additional security). |
| * You may need to also specify a -u option. |
| * -k keyfile |
| * Specify the name and path of the symmetric key file, |
| * default /etc/ntp/keys. This is the same operation |
| * as the "keys FILE" configuration command. |
| * -l logfile |
| * Specify the name and path of the log file. The default |
| * is the system log file. This is the same operation as |
| * the "logfile FILE" configuration command. |
| * -L Do not listen to virtual IPs. The default is to listen. |
| * -n Don't fork. |
| * -N To the extent permitted by the operating system, |
| * run the ntpd at the highest priority. |
| * -p pidfile |
| * Specify the name and path of the file used to record the ntpd |
| * process ID. This is the same operation as the "pidfile FILE" |
| * configuration command. |
| * -P priority |
| * To the extent permitted by the operating system, |
| * run the ntpd at the specified priority. |
| * -q Exit the ntpd just after the first time the clock is set. |
| * This behavior mimics that of the ntpdate program, which is |
| * to be retired. The -g and -x options can be used with this option. |
| * Note: The kernel time discipline is disabled with this option. |
| * -r broadcastdelay |
| * Specify the default propagation delay from the broadcast/multicast |
| * server to this client. This is necessary only if the delay |
| * cannot be computed automatically by the protocol. |
| * -s statsdir |
| * Specify the directory path for files created by the statistics |
| * facility. This is the same operation as the "statsdir DIR" |
| * configuration command. |
| * -t key |
| * Add a key number to the trusted key list. This option can occur |
| * more than once. |
| * -u user[:group] |
| * Specify a user, and optionally a group, to switch to. |
| * -v variable |
| * -V variable |
| * Add a system variable listed by default. |
| * -x Normally, the time is slewed if the offset is less than the step |
| * threshold, which is 128 ms by default, and stepped if above |
| * the threshold. This option sets the threshold to 600 s, which is |
| * well within the accuracy window to set the clock manually. |
| * Note: since the slew rate of typical Unix kernels is limited |
| * to 0.5 ms/s, each second of adjustment requires an amortization |
| * interval of 2000 s. Thus, an adjustment as much as 600 s |
| * will take almost 14 days to complete. This option can be used |
| * with the -g and -q options. See the tinker command for other options. |
| * Note: The kernel time discipline is disabled with this option. |
| */ |
| |
| /* By doing init in a separate function we decrease stack usage |
| * in main loop. |
| */ |
| static NOINLINE void ntp_init(char **argv) |
| { |
| unsigned opts; |
| llist_t *peers; |
| |
| srandom(getpid()); |
| |
| if (getuid()) |
| bb_error_msg_and_die(bb_msg_you_must_be_root); |
| |
| /* Set some globals */ |
| G.stratum = MAXSTRAT; |
| if (BURSTPOLL != 0) |
| G.poll_exp = BURSTPOLL; /* speeds up initial sync */ |
| G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */ |
| |
| /* Parse options */ |
| peers = NULL; |
| opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */ |
| opts = getopt32(argv, |
| "nqNx" /* compat */ |
| "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */ |
| "d" /* compat */ |
| "46aAbgL", /* compat, ignored */ |
| &peers, &G.script_name, &G.verbose); |
| if (!(opts & (OPT_p|OPT_l))) |
| bb_show_usage(); |
| // if (opts & OPT_x) /* disable stepping, only slew is allowed */ |
| // G.time_was_stepped = 1; |
| if (peers) { |
| while (peers) |
| add_peers(llist_pop(&peers)); |
| } else { |
| /* -l but no peers: "stratum 1 server" mode */ |
| G.stratum = 1; |
| } |
| if (!(opts & OPT_n)) { |
| bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv); |
| logmode = LOGMODE_NONE; |
| } |
| #if ENABLE_FEATURE_NTPD_SERVER |
| G.listen_fd = -1; |
| if (opts & OPT_l) { |
| G.listen_fd = create_and_bind_dgram_or_die(NULL, 123); |
| socket_want_pktinfo(G.listen_fd); |
| setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY)); |
| } |
| #endif |
| /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */ |
| if (opts & OPT_N) |
| setpriority(PRIO_PROCESS, 0, -15); |
| |
| /* If network is up, syncronization occurs in ~10 seconds. |
| * We give "ntpd -q" a full minute to finish, then we exit. |
| * |
| * I tested ntpd 4.2.6p1 and apparently it never exits |
| * (will try forever), but it does not feel right. |
| * The goal of -q is to act like ntpdate: set time |
| * after a reasonably small period of polling, or fail. |
| */ |
| if (opts & OPT_q) |
| alarm(60); |
| |
| bb_signals(0 |
| | (1 << SIGTERM) |
| | (1 << SIGINT) |
| | (1 << SIGALRM) |
| , record_signo |
| ); |
| bb_signals(0 |
| | (1 << SIGPIPE) |
| | (1 << SIGCHLD) |
| , SIG_IGN |
| ); |
| } |
| |
| int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE; |
| int ntpd_main(int argc UNUSED_PARAM, char **argv) |
| { |
| #undef G |
| struct globals G; |
| struct pollfd *pfd; |
| peer_t **idx2peer; |
| unsigned cnt; |
| |
| memset(&G, 0, sizeof(G)); |
| SET_PTR_TO_GLOBALS(&G); |
| |
| ntp_init(argv); |
| |
| /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */ |
| cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER; |
| idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt); |
| pfd = xzalloc(sizeof(pfd[0]) * cnt); |
| |
| /* Countdown: we never sync before we sent INITIAL_SAMPLES+1 |
| * packets to each peer. |
| * NB: if some peer is not responding, we may end up sending |
| * fewer packets to it and more to other peers. |
| * NB2: sync usually happens using INITIAL_SAMPLES packets, |
| * since last reply does not come back instantaneously. |
| */ |
| cnt = G.peer_cnt * (INITIAL_SAMPLES + 1); |
| |
| while (!bb_got_signal) { |
| llist_t *item; |
| unsigned i, j; |
| int nfds, timeout; |
| double nextaction; |
| |
| /* Nothing between here and poll() blocks for any significant time */ |
| |
| nextaction = G.cur_time + 3600; |
| |
| i = 0; |
| #if ENABLE_FEATURE_NTPD_SERVER |
| if (G.listen_fd != -1) { |
| pfd[0].fd = G.listen_fd; |
| pfd[0].events = POLLIN; |
| i++; |
| } |
| #endif |
| /* Pass over peer list, send requests, time out on receives */ |
| for (item = G.ntp_peers; item != NULL; item = item->link) { |
| peer_t *p = (peer_t *) item->data; |
| |
| if (p->next_action_time <= G.cur_time) { |
| if (p->p_fd == -1) { |
| /* Time to send new req */ |
| if (--cnt == 0) { |
| G.initial_poll_complete = 1; |
| } |
| send_query_to_peer(p); |
| } else { |
| /* Timed out waiting for reply */ |
| close(p->p_fd); |
| p->p_fd = -1; |
| timeout = poll_interval(-2); /* -2: try a bit sooner */ |
| bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us", |
| p->p_dotted, p->reachable_bits, timeout); |
| set_next(p, timeout); |
| } |
| } |
| |
| if (p->next_action_time < nextaction) |
| nextaction = p->next_action_time; |
| |
| if (p->p_fd >= 0) { |
| /* Wait for reply from this peer */ |
| pfd[i].fd = p->p_fd; |
| pfd[i].events = POLLIN; |
| idx2peer[i] = p; |
| i++; |
| } |
| } |
| |
| timeout = nextaction - G.cur_time; |
| if (timeout < 0) |
| timeout = 0; |
| timeout++; /* (nextaction - G.cur_time) rounds down, compensating */ |
| |
| /* Here we may block */ |
| VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp); |
| nfds = poll(pfd, i, timeout * 1000); |
| gettime1900d(); /* sets G.cur_time */ |
| if (nfds <= 0) { |
| if (G.script_name && G.cur_time - G.last_script_run > 11*60) { |
| /* Useful for updating battery-backed RTC and such */ |
| run_script("periodic", G.last_update_offset); |
| gettime1900d(); /* sets G.cur_time */ |
| } |
| continue; |
| } |
| |
| /* Process any received packets */ |
| j = 0; |
| #if ENABLE_FEATURE_NTPD_SERVER |
| if (G.listen_fd != -1) { |
| if (pfd[0].revents /* & (POLLIN|POLLERR)*/) { |
| nfds--; |
| recv_and_process_client_pkt(/*G.listen_fd*/); |
| gettime1900d(); /* sets G.cur_time */ |
| } |
| j = 1; |
| } |
| #endif |
| for (; nfds != 0 && j < i; j++) { |
| if (pfd[j].revents /* & (POLLIN|POLLERR)*/) { |
| nfds--; |
| recv_and_process_peer_pkt(idx2peer[j]); |
| gettime1900d(); /* sets G.cur_time */ |
| } |
| } |
| } /* while (!bb_got_signal) */ |
| |
| kill_myself_with_sig(bb_got_signal); |
| } |
| |
| |
| |
| |
| |
| |
| /*** openntpd-4.6 uses only adjtime, not adjtimex ***/ |
| |
| /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/ |
| |
| #if 0 |
| static double |
| direct_freq(double fp_offset) |
| { |
| #ifdef KERNEL_PLL |
| /* |
| * If the kernel is enabled, we need the residual offset to |
| * calculate the frequency correction. |
| */ |
| if (pll_control && kern_enable) { |
| memset(&ntv, 0, sizeof(ntv)); |
| ntp_adjtime(&ntv); |
| #ifdef STA_NANO |
| clock_offset = ntv.offset / 1e9; |
| #else /* STA_NANO */ |
| clock_offset = ntv.offset / 1e6; |
| #endif /* STA_NANO */ |
| drift_comp = FREQTOD(ntv.freq); |
| } |
| #endif /* KERNEL_PLL */ |
| set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp); |
| wander_resid = 0; |
| return drift_comp; |
| } |
| |
| static void |
| set_freq(double freq) /* frequency update */ |
| { |
| char tbuf[80]; |
| |
| drift_comp = freq; |
| |
| #ifdef KERNEL_PLL |
| /* |
| * If the kernel is enabled, update the kernel frequency. |
| */ |
| if (pll_control && kern_enable) { |
| memset(&ntv, 0, sizeof(ntv)); |
| ntv.modes = MOD_FREQUENCY; |
| ntv.freq = DTOFREQ(drift_comp); |
| ntp_adjtime(&ntv); |
| snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6); |
| report_event(EVNT_FSET, NULL, tbuf); |
| } else { |
| snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6); |
| report_event(EVNT_FSET, NULL, tbuf); |
| } |
| #else /* KERNEL_PLL */ |
| snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6); |
| report_event(EVNT_FSET, NULL, tbuf); |
| #endif /* KERNEL_PLL */ |
| } |
| |
| ... |
| ... |
| ... |
| |
| #ifdef KERNEL_PLL |
| /* |
| * This code segment works when clock adjustments are made using |
| * precision time kernel support and the ntp_adjtime() system |
| * call. This support is available in Solaris 2.6 and later, |
| * Digital Unix 4.0 and later, FreeBSD, Linux and specially |
| * modified kernels for HP-UX 9 and Ultrix 4. In the case of the |
| * DECstation 5000/240 and Alpha AXP, additional kernel |
| * modifications provide a true microsecond clock and nanosecond |
| * clock, respectively. |
| * |
| * Important note: The kernel discipline is used only if the |
| * step threshold is less than 0.5 s, as anything higher can |
| * lead to overflow problems. This might occur if some misguided |
| * lad set the step threshold to something ridiculous. |
| */ |
| if (pll_control && kern_enable) { |
| |
| #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST) |
| |
| /* |
| * We initialize the structure for the ntp_adjtime() |
| * system call. We have to convert everything to |
| * microseconds or nanoseconds first. Do not update the |
| * system variables if the ext_enable flag is set. In |
| * this case, the external clock driver will update the |
| * variables, which will be read later by the local |
| * clock driver. Afterwards, remember the time and |
| * frequency offsets for jitter and stability values and |
| * to update the frequency file. |
| */ |
| memset(&ntv, 0, sizeof(ntv)); |
| if (ext_enable) { |
| ntv.modes = MOD_STATUS; |
| } else { |
| #ifdef STA_NANO |
| ntv.modes = MOD_BITS | MOD_NANO; |
| #else /* STA_NANO */ |
| ntv.modes = MOD_BITS; |
| #endif /* STA_NANO */ |
| if (clock_offset < 0) |
| dtemp = -.5; |
| else |
| dtemp = .5; |
| #ifdef STA_NANO |
| ntv.offset = (int32)(clock_offset * 1e9 + dtemp); |
| ntv.constant = sys_poll; |
| #else /* STA_NANO */ |
| ntv.offset = (int32)(clock_offset * 1e6 + dtemp); |
| ntv.constant = sys_poll - 4; |
| #endif /* STA_NANO */ |
| ntv.esterror = (u_int32)(clock_jitter * 1e6); |
| ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6); |
| ntv.status = STA_PLL; |
| |
| /* |
| * Enable/disable the PPS if requested. |
| */ |
| if (pps_enable) { |
| if (!(pll_status & STA_PPSTIME)) |
| report_event(EVNT_KERN, |
| NULL, "PPS enabled"); |
| ntv.status |= STA_PPSTIME | STA_PPSFREQ; |
| } else { |
| if (pll_status & STA_PPSTIME) |
| report_event(EVNT_KERN, |
| NULL, "PPS disabled"); |
| ntv.status &= ~(STA_PPSTIME | |
| STA_PPSFREQ); |
| } |
| if (sys_leap == LEAP_ADDSECOND) |
| ntv.status |= STA_INS; |
| else if (sys_leap == LEAP_DELSECOND) |
| ntv.status |= STA_DEL; |
| } |
| |
| /* |
| * Pass the stuff to the kernel. If it squeals, turn off |
| * the pps. In any case, fetch the kernel offset, |
| * frequency and jitter. |
| */ |
| if (ntp_adjtime(&ntv) == TIME_ERROR) { |
| if (!(ntv.status & STA_PPSSIGNAL)) |
| report_event(EVNT_KERN, NULL, |
| "PPS no signal"); |
| } |
| pll_status = ntv.status; |
| #ifdef STA_NANO |
| clock_offset = ntv.offset / 1e9; |
| #else /* STA_NANO */ |
| clock_offset = ntv.offset / 1e6; |
| #endif /* STA_NANO */ |
| clock_frequency = FREQTOD(ntv.freq); |
| |
| /* |
| * If the kernel PPS is lit, monitor its performance. |
| */ |
| if (ntv.status & STA_PPSTIME) { |
| #ifdef STA_NANO |
| clock_jitter = ntv.jitter / 1e9; |
| #else /* STA_NANO */ |
| clock_jitter = ntv.jitter / 1e6; |
| #endif /* STA_NANO */ |
| } |
| |
| #if defined(STA_NANO) && NTP_API == 4 |
| /* |
| * If the TAI changes, update the kernel TAI. |
| */ |
| if (loop_tai != sys_tai) { |
| loop_tai = sys_tai; |
| ntv.modes = MOD_TAI; |
| ntv.constant = sys_tai; |
| ntp_adjtime(&ntv); |
| } |
| #endif /* STA_NANO */ |
| } |
| #endif /* KERNEL_PLL */ |
| #endif |