blob: 9acbabb3bda8612dedde478fc6ee005f2bb77164 [file] [log] [blame]
Denis Vlasenko2211d522008-11-10 18:52:35 +00001/* SHA256 and SHA512-based Unix crypt implementation.
2 * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
3 */
4
5/* Prefix for optional rounds specification. */
6static const char str_rounds[] = "rounds=%u$";
7
8/* Maximum salt string length. */
9#define SALT_LEN_MAX 16
10/* Default number of rounds if not explicitly specified. */
11#define ROUNDS_DEFAULT 5000
12/* Minimum number of rounds. */
13#define ROUNDS_MIN 1000
14/* Maximum number of rounds. */
15#define ROUNDS_MAX 999999999
16
17static char *
18NOINLINE
19sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
20{
21 void (*sha_begin)(void *ctx) FAST_FUNC;
22 void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
23 void* (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
24 int _32or64;
25
26 char *result, *resptr;
27
28 /* btw, sha256 needs [32] and uint32_t only */
29 unsigned char alt_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
30 unsigned char temp_result[64] __attribute__((__aligned__(__alignof__(uint64_t))));
31 union {
32 sha256_ctx_t x;
33 sha512_ctx_t y;
34 } ctx;
35 union {
36 sha256_ctx_t x;
37 sha512_ctx_t y;
38 } alt_ctx;
39 unsigned salt_len;
40 unsigned key_len;
41 unsigned cnt;
42 unsigned rounds;
43 char *cp;
44 char is_sha512;
45
46 /* Analyze salt, construct already known part of result */
47 cnt = strlen(salt_data) + 1 + 43 + 1;
48 is_sha512 = salt_data[1];
49 if (is_sha512 == '6')
50 cnt += 43;
51 result = resptr = xzalloc(cnt); /* will provide NUL terminator */
52 *resptr++ = '$';
53 *resptr++ = is_sha512;
54 *resptr++ = '$';
55 rounds = ROUNDS_DEFAULT;
56 salt_data += 3;
57 if (strncmp(salt_data, str_rounds, 7) == 0) {
58 /* 7 == strlen("rounds=") */
59 char *endp;
60 unsigned srounds = bb_strtou(salt_data + 7, &endp, 10);
61 if (*endp == '$') {
62 salt_data = endp + 1;
63 rounds = srounds;
64 if (rounds < ROUNDS_MIN)
65 rounds = ROUNDS_MIN;
66 if (rounds > ROUNDS_MAX)
67 rounds = ROUNDS_MAX;
68 }
69 }
70 salt_len = strchrnul(salt_data, '$') - salt_data;
71 if (salt_len > SALT_LEN_MAX)
72 salt_len = SALT_LEN_MAX;
73 /* xstrdup assures suitable alignment; also we will use it
74 as a scratch space later. */
75 salt_data = xstrndup(salt_data, salt_len);
76 if (rounds != ROUNDS_DEFAULT) /* add "rounds=NNNNN$" */
77 resptr += sprintf(resptr, str_rounds, rounds);
78 strcpy(resptr, salt_data);
79 resptr += salt_len;
80 *resptr++ = '$';
81 /* key data doesn't need much processing */
82 key_len = strlen(key_data);
83 key_data = xstrdup(key_data);
84
85 /* Which flavor of SHAnnn ops to use? */
86 sha_begin = (void*)sha256_begin;
87 sha_hash = (void*)sha256_hash;
88 sha_end = (void*)sha256_end;
89 _32or64 = 32;
90 if (is_sha512 == '6') {
91 sha_begin = (void*)sha512_begin;
92 sha_hash = (void*)sha512_hash;
93 sha_end = (void*)sha512_end;
94 _32or64 = 64;
95 }
96
97 /* Add KEY, SALT. */
98 sha_begin(&ctx);
99 sha_hash(key_data, key_len, &ctx);
100 sha_hash(salt_data, salt_len, &ctx);
101
102 /* Compute alternate SHA sum with input KEY, SALT, and KEY.
103 The final result will be added to the first context. */
104 sha_begin(&alt_ctx);
105 sha_hash(key_data, key_len, &alt_ctx);
106 sha_hash(salt_data, salt_len, &alt_ctx);
107 sha_hash(key_data, key_len, &alt_ctx);
108 sha_end(alt_result, &alt_ctx);
109
110 /* Add result of this to the other context. */
111 /* Add for any character in the key one byte of the alternate sum. */
112 for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
113 sha_hash(alt_result, _32or64, &ctx);
114 sha_hash(alt_result, cnt, &ctx);
115
116 /* Take the binary representation of the length of the key and for every
117 1 add the alternate sum, for every 0 the key. */
118 for (cnt = key_len; cnt != 0; cnt >>= 1)
119 if ((cnt & 1) != 0)
120 sha_hash(alt_result, _32or64, &ctx);
121 else
122 sha_hash(key_data, key_len, &ctx);
123
124 /* Create intermediate result. */
125 sha_end(alt_result, &ctx);
126
127 /* Start computation of P byte sequence. */
128 /* For every character in the password add the entire password. */
129 sha_begin(&alt_ctx);
130 for (cnt = 0; cnt < key_len; ++cnt)
131 sha_hash(key_data, key_len, &alt_ctx);
132 sha_end(temp_result, &alt_ctx);
133
134 /* NB: past this point, raw key_data is not used anymore */
135
136 /* Create byte sequence P. */
137#define p_bytes key_data /* reuse the buffer as it is of the key_len size */
138 cp = p_bytes; /* was: ... = alloca(key_len); */
139 for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
140 cp = memcpy(cp, temp_result, _32or64);
141 cp += _32or64;
142 }
143 memcpy(cp, temp_result, cnt);
144
145 /* Start computation of S byte sequence. */
146 /* For every character in the password add the entire password. */
147 sha_begin(&alt_ctx);
148 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
149 sha_hash(salt_data, salt_len, &alt_ctx);
150 sha_end(temp_result, &alt_ctx);
151
152 /* NB: past this point, raw salt_data is not used anymore */
153
154 /* Create byte sequence S. */
155#define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
156 cp = s_bytes; /* was: ... = alloca(salt_len); */
157 for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
158 cp = memcpy(cp, temp_result, _32or64);
159 cp += _32or64;
160 }
161 memcpy(cp, temp_result, cnt);
162
163 /* Repeatedly run the collected hash value through SHA to burn
164 CPU cycles. */
165 for (cnt = 0; cnt < rounds; ++cnt) {
166 sha_begin(&ctx);
167
168 /* Add key or last result. */
169 if ((cnt & 1) != 0)
170 sha_hash(p_bytes, key_len, &ctx);
171 else
172 sha_hash(alt_result, _32or64, &ctx);
173 /* Add salt for numbers not divisible by 3. */
174 if (cnt % 3 != 0)
175 sha_hash(s_bytes, salt_len, &ctx);
176 /* Add key for numbers not divisible by 7. */
177 if (cnt % 7 != 0)
178 sha_hash(p_bytes, key_len, &ctx);
179 /* Add key or last result. */
180 if ((cnt & 1) != 0)
181 sha_hash(alt_result, _32or64, &ctx);
182 else
183 sha_hash(p_bytes, key_len, &ctx);
184
185 sha_end(alt_result, &ctx);
186 }
187
188
189 /* Append encrypted password to result buffer */
190//TODO: replace with something like
191// bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
192#define b64_from_24bit(B2, B1, B0, N) \
193do { \
194 unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
195 resptr = to64(resptr, w, N); \
196} while (0)
197 if (is_sha512 == '5') {
198 b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
199 b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
200 b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
201 b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
202 b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
203 b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
204 b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
205 b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
206 b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
207 b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
208 b64_from_24bit(0, alt_result[31], alt_result[30], 3);
209 } else {
210 b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
211 b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
212 b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
213 b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
214 b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
215 b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
216 b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
217 b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
218 b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
219 b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
220 b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
221 b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
222 b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
223 b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
224 b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
225 b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
226 b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
227 b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
228 b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
229 b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
230 b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
231 b64_from_24bit(0, 0, alt_result[63], 2);
232 }
233 /* *resptr = '\0'; - xzalloc did it */
234#undef b64_from_24bit
235
236 /* Clear the buffer for the intermediate result so that people
237 attaching to processes or reading core dumps cannot get any
238 information. */
239 memset(temp_result, 0, sizeof(temp_result));
240 memset(alt_result, 0, sizeof(alt_result));
241 memset(&ctx, 0, sizeof(ctx));
242 memset(&alt_ctx, 0, sizeof(alt_ctx));
243 memset(key_data, 0, key_len); /* also p_bytes */
244 memset(salt_data, 0, salt_len); /* also s_bytes */
245 free(key_data);
246 free(salt_data);
247#undef p_bytes
248#undef s_bytes
249
250 return result;
251}