File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
new file mode 100644
index 0000000..e114513
--- /dev/null
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -0,0 +1,649 @@
+			  Deadline Task Scheduling
+			  ------------------------
+
+CONTENTS
+========
+
+ 0. WARNING
+ 1. Overview
+ 2. Scheduling algorithm
+ 3. Scheduling Real-Time Tasks
+   3.1 Definitions
+   3.2 Schedulability Analysis for Uniprocessor Systems
+   3.3 Schedulability Analysis for Multiprocessor Systems
+   3.4 Relationship with SCHED_DEADLINE Parameters
+ 4. Bandwidth management
+   4.1 System-wide settings
+   4.2 Task interface
+   4.3 Default behavior
+ 5. Tasks CPU affinity
+   5.1 SCHED_DEADLINE and cpusets HOWTO
+ 6. Future plans
+ A. Test suite
+ B. Minimal main()
+
+
+0. WARNING
+==========
+
+ Fiddling with these settings can result in an unpredictable or even unstable
+ system behavior. As for -rt (group) scheduling, it is assumed that root users
+ know what they're doing.
+
+
+1. Overview
+===========
+
+ The SCHED_DEADLINE policy contained inside the sched_dl scheduling class is
+ basically an implementation of the Earliest Deadline First (EDF) scheduling
+ algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS)
+ that makes it possible to isolate the behavior of tasks between each other.
+
+
+2. Scheduling algorithm
+==================
+
+ SCHED_DEADLINE uses three parameters, named "runtime", "period", and
+ "deadline", to schedule tasks. A SCHED_DEADLINE task should receive
+ "runtime" microseconds of execution time every "period" microseconds, and
+ these "runtime" microseconds are available within "deadline" microseconds
+ from the beginning of the period.  In order to implement this behavior,
+ every time the task wakes up, the scheduler computes a "scheduling deadline"
+ consistent with the guarantee (using the CBS[2,3] algorithm). Tasks are then
+ scheduled using EDF[1] on these scheduling deadlines (the task with the
+ earliest scheduling deadline is selected for execution). Notice that the
+ task actually receives "runtime" time units within "deadline" if a proper
+ "admission control" strategy (see Section "4. Bandwidth management") is used
+ (clearly, if the system is overloaded this guarantee cannot be respected).
+
+ Summing up, the CBS[2,3] algorithm assigns scheduling deadlines to tasks so
+ that each task runs for at most its runtime every period, avoiding any
+ interference between different tasks (bandwidth isolation), while the EDF[1]
+ algorithm selects the task with the earliest scheduling deadline as the one
+ to be executed next. Thanks to this feature, tasks that do not strictly comply
+ with the "traditional" real-time task model (see Section 3) can effectively
+ use the new policy.
+
+ In more details, the CBS algorithm assigns scheduling deadlines to
+ tasks in the following way:
+
+  - Each SCHED_DEADLINE task is characterized by the "runtime",
+    "deadline", and "period" parameters;
+
+  - The state of the task is described by a "scheduling deadline", and
+    a "remaining runtime". These two parameters are initially set to 0;
+
+  - When a SCHED_DEADLINE task wakes up (becomes ready for execution),
+    the scheduler checks if
+
+                 remaining runtime                  runtime
+        ----------------------------------    >    ---------
+        scheduling deadline - current time           period
+
+    then, if the scheduling deadline is smaller than the current time, or
+    this condition is verified, the scheduling deadline and the
+    remaining runtime are re-initialized as
+
+         scheduling deadline = current time + deadline
+         remaining runtime = runtime
+
+    otherwise, the scheduling deadline and the remaining runtime are
+    left unchanged;
+
+  - When a SCHED_DEADLINE task executes for an amount of time t, its
+    remaining runtime is decreased as
+
+         remaining runtime = remaining runtime - t
+
+    (technically, the runtime is decreased at every tick, or when the
+    task is descheduled / preempted);
+
+  - When the remaining runtime becomes less or equal than 0, the task is
+    said to be "throttled" (also known as "depleted" in real-time literature)
+    and cannot be scheduled until its scheduling deadline. The "replenishment
+    time" for this task (see next item) is set to be equal to the current
+    value of the scheduling deadline;
+
+  - When the current time is equal to the replenishment time of a
+    throttled task, the scheduling deadline and the remaining runtime are
+    updated as
+
+         scheduling deadline = scheduling deadline + period
+         remaining runtime = remaining runtime + runtime
+
+
+3. Scheduling Real-Time Tasks
+=============================
+
+ * BIG FAT WARNING ******************************************************
+ *
+ * This section contains a (not-thorough) summary on classical deadline
+ * scheduling theory, and how it applies to SCHED_DEADLINE.
+ * The reader can "safely" skip to Section 4 if only interested in seeing
+ * how the scheduling policy can be used. Anyway, we strongly recommend
+ * to come back here and continue reading (once the urge for testing is
+ * satisfied :P) to be sure of fully understanding all technical details.
+ ************************************************************************
+
+ There are no limitations on what kind of task can exploit this new
+ scheduling discipline, even if it must be said that it is particularly
+ suited for periodic or sporadic real-time tasks that need guarantees on their
+ timing behavior, e.g., multimedia, streaming, control applications, etc.
+
+3.1 Definitions
+------------------------
+
+ A typical real-time task is composed of a repetition of computation phases
+ (task instances, or jobs) which are activated on a periodic or sporadic
+ fashion.
+ Each job J_j (where J_j is the j^th job of the task) is characterized by an
+ arrival time r_j (the time when the job starts), an amount of computation
+ time c_j needed to finish the job, and a job absolute deadline d_j, which
+ is the time within which the job should be finished. The maximum execution
+ time max{c_j} is called "Worst Case Execution Time" (WCET) for the task.
+ A real-time task can be periodic with period P if r_{j+1} = r_j + P, or
+ sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
+ d_j = r_j + D, where D is the task's relative deadline.
+ Summing up, a real-time task can be described as
+	Task = (WCET, D, P)
+
+ The utilization of a real-time task is defined as the ratio between its
+ WCET and its period (or minimum inter-arrival time), and represents
+ the fraction of CPU time needed to execute the task.
+
+ If the total utilization U=sum(WCET_i/P_i) is larger than M (with M equal
+ to the number of CPUs), then the scheduler is unable to respect all the
+ deadlines.
+ Note that total utilization is defined as the sum of the utilizations
+ WCET_i/P_i over all the real-time tasks in the system. When considering
+ multiple real-time tasks, the parameters of the i-th task are indicated
+ with the "_i" suffix.
+ Moreover, if the total utilization is larger than M, then we risk starving
+ non- real-time tasks by real-time tasks.
+ If, instead, the total utilization is smaller than M, then non real-time
+ tasks will not be starved and the system might be able to respect all the
+ deadlines.
+ As a matter of fact, in this case it is possible to provide an upper bound
+ for tardiness (defined as the maximum between 0 and the difference
+ between the finishing time of a job and its absolute deadline).
+ More precisely, it can be proven that using a global EDF scheduler the
+ maximum tardiness of each task is smaller or equal than
+	((M − 1) · WCET_max − WCET_min)/(M − (M − 2) · U_max) + WCET_max
+ where WCET_max = max{WCET_i} is the maximum WCET, WCET_min=min{WCET_i}
+ is the minimum WCET, and U_max = max{WCET_i/P_i} is the maximum
+ utilization[12].
+
+3.2 Schedulability Analysis for Uniprocessor Systems
+------------------------
+
+ If M=1 (uniprocessor system), or in case of partitioned scheduling (each
+ real-time task is statically assigned to one and only one CPU), it is
+ possible to formally check if all the deadlines are respected.
+ If D_i = P_i for all tasks, then EDF is able to respect all the deadlines
+ of all the tasks executing on a CPU if and only if the total utilization
+ of the tasks running on such a CPU is smaller or equal than 1.
+ If D_i != P_i for some task, then it is possible to define the density of
+ a task as WCET_i/min{D_i,P_i}, and EDF is able to respect all the deadlines
+ of all the tasks running on a CPU if the sum of the densities of the tasks
+ running on such a CPU is smaller or equal than 1:
+	sum(WCET_i / min{D_i, P_i}) <= 1
+ It is important to notice that this condition is only sufficient, and not
+ necessary: there are task sets that are schedulable, but do not respect the
+ condition. For example, consider the task set {Task_1,Task_2} composed by
+ Task_1=(50ms,50ms,100ms) and Task_2=(10ms,100ms,100ms).
+ EDF is clearly able to schedule the two tasks without missing any deadline
+ (Task_1 is scheduled as soon as it is released, and finishes just in time
+ to respect its deadline; Task_2 is scheduled immediately after Task_1, hence
+ its response time cannot be larger than 50ms + 10ms = 60ms) even if
+	50 / min{50,100} + 10 / min{100, 100} = 50 / 50 + 10 / 100 = 1.1
+ Of course it is possible to test the exact schedulability of tasks with
+ D_i != P_i (checking a condition that is both sufficient and necessary),
+ but this cannot be done by comparing the total utilization or density with
+ a constant. Instead, the so called "processor demand" approach can be used,
+ computing the total amount of CPU time h(t) needed by all the tasks to
+ respect all of their deadlines in a time interval of size t, and comparing
+ such a time with the interval size t. If h(t) is smaller than t (that is,
+ the amount of time needed by the tasks in a time interval of size t is
+ smaller than the size of the interval) for all the possible values of t, then
+ EDF is able to schedule the tasks respecting all of their deadlines. Since
+ performing this check for all possible values of t is impossible, it has been
+ proven[4,5,6] that it is sufficient to perform the test for values of t
+ between 0 and a maximum value L. The cited papers contain all of the
+ mathematical details and explain how to compute h(t) and L.
+ In any case, this kind of analysis is too complex as well as too
+ time-consuming to be performed on-line. Hence, as explained in Section
+ 4 Linux uses an admission test based on the tasks' utilizations.
+
+3.3 Schedulability Analysis for Multiprocessor Systems
+------------------------
+
+ On multiprocessor systems with global EDF scheduling (non partitioned
+ systems), a sufficient test for schedulability can not be based on the
+ utilizations or densities: it can be shown that even if D_i = P_i task
+ sets with utilizations slightly larger than 1 can miss deadlines regardless
+ of the number of CPUs.
+
+ Consider a set {Task_1,...Task_{M+1}} of M+1 tasks on a system with M
+ CPUs, with the first task Task_1=(P,P,P) having period, relative deadline
+ and WCET equal to P. The remaining M tasks Task_i=(e,P-1,P-1) have an
+ arbitrarily small worst case execution time (indicated as "e" here) and a
+ period smaller than the one of the first task. Hence, if all the tasks
+ activate at the same time t, global EDF schedules these M tasks first
+ (because their absolute deadlines are equal to t + P - 1, hence they are
+ smaller than the absolute deadline of Task_1, which is t + P). As a
+ result, Task_1 can be scheduled only at time t + e, and will finish at
+ time t + e + P, after its absolute deadline. The total utilization of the
+ task set is U = M · e / (P - 1) + P / P = M · e / (P - 1) + 1, and for small
+ values of e this can become very close to 1. This is known as "Dhall's
+ effect"[7]. Note: the example in the original paper by Dhall has been
+ slightly simplified here (for example, Dhall more correctly computed
+ lim_{e->0}U).
+
+ More complex schedulability tests for global EDF have been developed in
+ real-time literature[8,9], but they are not based on a simple comparison
+ between total utilization (or density) and a fixed constant. If all tasks
+ have D_i = P_i, a sufficient schedulability condition can be expressed in
+ a simple way:
+	sum(WCET_i / P_i) <= M - (M - 1) · U_max
+ where U_max = max{WCET_i / P_i}[10]. Notice that for U_max = 1,
+ M - (M - 1) · U_max becomes M - M + 1 = 1 and this schedulability condition
+ just confirms the Dhall's effect. A more complete survey of the literature
+ about schedulability tests for multi-processor real-time scheduling can be
+ found in [11].
+
+ As seen, enforcing that the total utilization is smaller than M does not
+ guarantee that global EDF schedules the tasks without missing any deadline
+ (in other words, global EDF is not an optimal scheduling algorithm). However,
+ a total utilization smaller than M is enough to guarantee that non real-time
+ tasks are not starved and that the tardiness of real-time tasks has an upper
+ bound[12] (as previously noted). Different bounds on the maximum tardiness
+ experienced by real-time tasks have been developed in various papers[13,14],
+ but the theoretical result that is important for SCHED_DEADLINE is that if
+ the total utilization is smaller or equal than M then the response times of
+ the tasks are limited.
+
+3.4 Relationship with SCHED_DEADLINE Parameters
+------------------------
+
+ Finally, it is important to understand the relationship between the
+ SCHED_DEADLINE scheduling parameters described in Section 2 (runtime,
+ deadline and period) and the real-time task parameters (WCET, D, P)
+ described in this section. Note that the tasks' temporal constraints are
+ represented by its absolute deadlines d_j = r_j + D described above, while
+ SCHED_DEADLINE schedules the tasks according to scheduling deadlines (see
+ Section 2).
+ If an admission test is used to guarantee that the scheduling deadlines
+ are respected, then SCHED_DEADLINE can be used to schedule real-time tasks
+ guaranteeing that all the jobs' deadlines of a task are respected.
+ In order to do this, a task must be scheduled by setting:
+
+  - runtime >= WCET
+  - deadline = D
+  - period <= P
+
+ IOW, if runtime >= WCET and if period is <= P, then the scheduling deadlines
+ and the absolute deadlines (d_j) coincide, so a proper admission control
+ allows to respect the jobs' absolute deadlines for this task (this is what is
+ called "hard schedulability property" and is an extension of Lemma 1 of [2]).
+ Notice that if runtime > deadline the admission control will surely reject
+ this task, as it is not possible to respect its temporal constraints.
+
+ References:
+  1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
+      ming in a hard-real-time environment. Journal of the Association for
+      Computing Machinery, 20(1), 1973.
+  2 - L. Abeni , G. Buttazzo. Integrating Multimedia Applications in Hard
+      Real-Time Systems. Proceedings of the 19th IEEE Real-time Systems
+      Symposium, 1998. http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
+  3 - L. Abeni. Server Mechanisms for Multimedia Applications. ReTiS Lab
+      Technical Report. http://disi.unitn.it/~abeni/tr-98-01.pdf
+  4 - J. Y. Leung and M.L. Merril. A Note on Preemptive Scheduling of
+      Periodic, Real-Time Tasks. Information Processing Letters, vol. 11,
+      no. 3, pp. 115-118, 1980.
+  5 - S. K. Baruah, A. K. Mok and L. E. Rosier. Preemptively Scheduling
+      Hard-Real-Time Sporadic Tasks on One Processor. Proceedings of the
+      11th IEEE Real-time Systems Symposium, 1990.
+  6 - S. K. Baruah, L. E. Rosier and R. R. Howell. Algorithms and Complexity
+      Concerning the Preemptive Scheduling of Periodic Real-Time tasks on
+      One Processor. Real-Time Systems Journal, vol. 4, no. 2, pp 301-324,
+      1990.
+  7 - S. J. Dhall and C. L. Liu. On a real-time scheduling problem. Operations
+      research, vol. 26, no. 1, pp 127-140, 1978.
+  8 - T. Baker. Multiprocessor EDF and Deadline Monotonic Schedulability
+      Analysis. Proceedings of the 24th IEEE Real-Time Systems Symposium, 2003.
+  9 - T. Baker. An Analysis of EDF Schedulability on a Multiprocessor.
+      IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 8,
+      pp 760-768, 2005.
+  10 - J. Goossens, S. Funk and S. Baruah, Priority-Driven Scheduling of
+       Periodic Task Systems on Multiprocessors. Real-Time Systems Journal,
+       vol. 25, no. 2–3, pp. 187–205, 2003.
+  11 - R. Davis and A. Burns. A Survey of Hard Real-Time Scheduling for
+       Multiprocessor Systems. ACM Computing Surveys, vol. 43, no. 4, 2011.
+       http://www-users.cs.york.ac.uk/~robdavis/papers/MPSurveyv5.0.pdf
+  12 - U. C. Devi and J. H. Anderson. Tardiness Bounds under Global EDF
+       Scheduling on a Multiprocessor. Real-Time Systems Journal, vol. 32,
+       no. 2, pp 133-189, 2008.
+  13 - P. Valente and G. Lipari. An Upper Bound to the Lateness of Soft
+       Real-Time Tasks Scheduled by EDF on Multiprocessors. Proceedings of
+       the 26th IEEE Real-Time Systems Symposium, 2005.
+  14 - J. Erickson, U. Devi and S. Baruah. Improved tardiness bounds for
+       Global EDF. Proceedings of the 22nd Euromicro Conference on
+       Real-Time Systems, 2010.
+
+
+4. Bandwidth management
+=======================
+
+ As previously mentioned, in order for -deadline scheduling to be
+ effective and useful (that is, to be able to provide "runtime" time units
+ within "deadline"), it is important to have some method to keep the allocation
+ of the available fractions of CPU time to the various tasks under control.
+ This is usually called "admission control" and if it is not performed, then
+ no guarantee can be given on the actual scheduling of the -deadline tasks.
+
+ As already stated in Section 3, a necessary condition to be respected to
+ correctly schedule a set of real-time tasks is that the total utilization
+ is smaller than M. When talking about -deadline tasks, this requires that
+ the sum of the ratio between runtime and period for all tasks is smaller
+ than M. Notice that the ratio runtime/period is equivalent to the utilization
+ of a "traditional" real-time task, and is also often referred to as
+ "bandwidth".
+ The interface used to control the CPU bandwidth that can be allocated
+ to -deadline tasks is similar to the one already used for -rt
+ tasks with real-time group scheduling (a.k.a. RT-throttling - see
+ Documentation/scheduler/sched-rt-group.txt), and is based on readable/
+ writable control files located in procfs (for system wide settings).
+ Notice that per-group settings (controlled through cgroupfs) are still not
+ defined for -deadline tasks, because more discussion is needed in order to
+ figure out how we want to manage SCHED_DEADLINE bandwidth at the task group
+ level.
+
+ A main difference between deadline bandwidth management and RT-throttling
+ is that -deadline tasks have bandwidth on their own (while -rt ones don't!),
+ and thus we don't need a higher level throttling mechanism to enforce the
+ desired bandwidth. In other words, this means that interface parameters are
+ only used at admission control time (i.e., when the user calls
+ sched_setattr()). Scheduling is then performed considering actual tasks'
+ parameters, so that CPU bandwidth is allocated to SCHED_DEADLINE tasks
+ respecting their needs in terms of granularity. Therefore, using this simple
+ interface we can put a cap on total utilization of -deadline tasks (i.e.,
+ \Sum (runtime_i / period_i) < global_dl_utilization_cap).
+
+4.1 System wide settings
+------------------------
+
+ The system wide settings are configured under the /proc virtual file system.
+
+ For now the -rt knobs are used for -deadline admission control and the
+ -deadline runtime is accounted against the -rt runtime. We realize that this
+ isn't entirely desirable; however, it is better to have a small interface for
+ now, and be able to change it easily later. The ideal situation (see 5.) is to
+ run -rt tasks from a -deadline server; in which case the -rt bandwidth is a
+ direct subset of dl_bw.
+
+ This means that, for a root_domain comprising M CPUs, -deadline tasks
+ can be created while the sum of their bandwidths stays below:
+
+   M * (sched_rt_runtime_us / sched_rt_period_us)
+
+ It is also possible to disable this bandwidth management logic, and
+ be thus free of oversubscribing the system up to any arbitrary level.
+ This is done by writing -1 in /proc/sys/kernel/sched_rt_runtime_us.
+
+
+4.2 Task interface
+------------------
+
+ Specifying a periodic/sporadic task that executes for a given amount of
+ runtime at each instance, and that is scheduled according to the urgency of
+ its own timing constraints needs, in general, a way of declaring:
+  - a (maximum/typical) instance execution time,
+  - a minimum interval between consecutive instances,
+  - a time constraint by which each instance must be completed.
+
+ Therefore:
+  * a new struct sched_attr, containing all the necessary fields is
+    provided;
+  * the new scheduling related syscalls that manipulate it, i.e.,
+    sched_setattr() and sched_getattr() are implemented.
+
+
+4.3 Default behavior
+---------------------
+
+ The default value for SCHED_DEADLINE bandwidth is to have rt_runtime equal to
+ 950000. With rt_period equal to 1000000, by default, it means that -deadline
+ tasks can use at most 95%, multiplied by the number of CPUs that compose the
+ root_domain, for each root_domain.
+ This means that non -deadline tasks will receive at least 5% of the CPU time,
+ and that -deadline tasks will receive their runtime with a guaranteed
+ worst-case delay respect to the "deadline" parameter. If "deadline" = "period"
+ and the cpuset mechanism is used to implement partitioned scheduling (see
+ Section 5), then this simple setting of the bandwidth management is able to
+ deterministically guarantee that -deadline tasks will receive their runtime
+ in a period.
+
+ Finally, notice that in order not to jeopardize the admission control a
+ -deadline task cannot fork.
+
+5. Tasks CPU affinity
+=====================
+
+ -deadline tasks cannot have an affinity mask smaller that the entire
+ root_domain they are created on. However, affinities can be specified
+ through the cpuset facility (Documentation/cgroups/cpusets.txt).
+
+5.1 SCHED_DEADLINE and cpusets HOWTO
+------------------------------------
+
+ An example of a simple configuration (pin a -deadline task to CPU0)
+ follows (rt-app is used to create a -deadline task).
+
+ mkdir /dev/cpuset
+ mount -t cgroup -o cpuset cpuset /dev/cpuset
+ cd /dev/cpuset
+ mkdir cpu0
+ echo 0 > cpu0/cpuset.cpus
+ echo 0 > cpu0/cpuset.mems
+ echo 1 > cpuset.cpu_exclusive
+ echo 0 > cpuset.sched_load_balance
+ echo 1 > cpu0/cpuset.cpu_exclusive
+ echo 1 > cpu0/cpuset.mem_exclusive
+ echo $$ > cpu0/tasks
+ rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
+ task affinity)
+
+6. Future plans
+===============
+
+ Still missing:
+
+  - refinements to deadline inheritance, especially regarding the possibility
+    of retaining bandwidth isolation among non-interacting tasks. This is
+    being studied from both theoretical and practical points of view, and
+    hopefully we should be able to produce some demonstrative code soon;
+  - (c)group based bandwidth management, and maybe scheduling;
+  - access control for non-root users (and related security concerns to
+    address), which is the best way to allow unprivileged use of the mechanisms
+    and how to prevent non-root users "cheat" the system?
+
+ As already discussed, we are planning also to merge this work with the EDF
+ throttling patches [https://lkml.org/lkml/2010/2/23/239] but we still are in
+ the preliminary phases of the merge and we really seek feedback that would
+ help us decide on the direction it should take.
+
+Appendix A. Test suite
+======================
+
+ The SCHED_DEADLINE policy can be easily tested using two applications that
+ are part of a wider Linux Scheduler validation suite. The suite is
+ available as a GitHub repository: https://github.com/scheduler-tools.
+
+ The first testing application is called rt-app and can be used to
+ start multiple threads with specific parameters. rt-app supports
+ SCHED_{OTHER,FIFO,RR,DEADLINE} scheduling policies and their related
+ parameters (e.g., niceness, priority, runtime/deadline/period). rt-app
+ is a valuable tool, as it can be used to synthetically recreate certain
+ workloads (maybe mimicking real use-cases) and evaluate how the scheduler
+ behaves under such workloads. In this way, results are easily reproducible.
+ rt-app is available at: https://github.com/scheduler-tools/rt-app.
+
+ Thread parameters can be specified from the command line, with something like
+ this:
+
+  # rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5
+
+ The above creates 2 threads. The first one, scheduled by SCHED_DEADLINE,
+ executes for 10ms every 100ms. The second one, scheduled at SCHED_FIFO
+ priority 10, executes for 20ms every 150ms. The test will run for a total
+ of 5 seconds.
+
+ More interestingly, configurations can be described with a json file that
+ can be passed as input to rt-app with something like this:
+
+  # rt-app my_config.json
+
+ The parameters that can be specified with the second method are a superset
+ of the command line options. Please refer to rt-app documentation for more
+ details (<rt-app-sources>/doc/*.json).
+
+ The second testing application is a modification of schedtool, called
+ schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
+ certain pid/application. schedtool-dl is available at:
+ https://github.com/scheduler-tools/schedtool-dl.git.
+
+ The usage is straightforward:
+
+  # schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
+
+ With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
+ of 10ms every 100ms (note that parameters are expressed in microseconds).
+ You can also use schedtool to create a reservation for an already running
+ application, given that you know its pid:
+
+  # schedtool -E -t 10000000:100000000 my_app_pid
+
+Appendix B. Minimal main()
+==========================
+
+ We provide in what follows a simple (ugly) self-contained code snippet
+ showing how SCHED_DEADLINE reservations can be created by a real-time
+ application developer.
+
+ #define _GNU_SOURCE
+ #include <unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <time.h>
+ #include <linux/unistd.h>
+ #include <linux/kernel.h>
+ #include <linux/types.h>
+ #include <sys/syscall.h>
+ #include <pthread.h>
+
+ #define gettid() syscall(__NR_gettid)
+
+ #define SCHED_DEADLINE	6
+
+ /* XXX use the proper syscall numbers */
+ #ifdef __x86_64__
+ #define __NR_sched_setattr		314
+ #define __NR_sched_getattr		315
+ #endif
+
+ #ifdef __i386__
+ #define __NR_sched_setattr		351
+ #define __NR_sched_getattr		352
+ #endif
+
+ #ifdef __arm__
+ #define __NR_sched_setattr		380
+ #define __NR_sched_getattr		381
+ #endif
+
+ static volatile int done;
+
+ struct sched_attr {
+	__u32 size;
+
+	__u32 sched_policy;
+	__u64 sched_flags;
+
+	/* SCHED_NORMAL, SCHED_BATCH */
+	__s32 sched_nice;
+
+	/* SCHED_FIFO, SCHED_RR */
+	__u32 sched_priority;
+
+	/* SCHED_DEADLINE (nsec) */
+	__u64 sched_runtime;
+	__u64 sched_deadline;
+	__u64 sched_period;
+ };
+
+ int sched_setattr(pid_t pid,
+		  const struct sched_attr *attr,
+		  unsigned int flags)
+ {
+	return syscall(__NR_sched_setattr, pid, attr, flags);
+ }
+
+ int sched_getattr(pid_t pid,
+		  struct sched_attr *attr,
+		  unsigned int size,
+		  unsigned int flags)
+ {
+	return syscall(__NR_sched_getattr, pid, attr, size, flags);
+ }
+
+ void *run_deadline(void *data)
+ {
+	struct sched_attr attr;
+	int x = 0;
+	int ret;
+	unsigned int flags = 0;
+
+	printf("deadline thread started [%ld]\n", gettid());
+
+	attr.size = sizeof(attr);
+	attr.sched_flags = 0;
+	attr.sched_nice = 0;
+	attr.sched_priority = 0;
+
+	/* This creates a 10ms/30ms reservation */
+	attr.sched_policy = SCHED_DEADLINE;
+	attr.sched_runtime = 10 * 1000 * 1000;
+	attr.sched_period = attr.sched_deadline = 30 * 1000 * 1000;
+
+	ret = sched_setattr(0, &attr, flags);
+	if (ret < 0) {
+		done = 0;
+		perror("sched_setattr");
+		exit(-1);
+	}
+
+	while (!done) {
+		x++;
+	}
+
+	printf("deadline thread dies [%ld]\n", gettid());
+	return NULL;
+ }
+
+ int main (int argc, char **argv)
+ {
+	pthread_t thread;
+
+	printf("main thread [%ld]\n", gettid());
+
+	pthread_create(&thread, NULL, run_deadline, NULL);
+
+	sleep(10);
+
+	done = 1;
+	pthread_join(thread, NULL);
+
+	printf("main dies [%ld]\n", gettid());
+	return 0;
+ }