File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/arch/mips/kernel/kprobes.c b/arch/mips/kernel/kprobes.c
new file mode 100644
index 0000000..212f46f
--- /dev/null
+++ b/arch/mips/kernel/kprobes.c
@@ -0,0 +1,679 @@
+/*
+ *  Kernel Probes (KProbes)
+ *  arch/mips/kernel/kprobes.c
+ *
+ *  Copyright 2006 Sony Corp.
+ *  Copyright 2010 Cavium Networks
+ *
+ *  Some portions copied from the powerpc version.
+ *
+ *   Copyright (C) IBM Corporation, 2002, 2004
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; version 2 of the License.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/kprobes.h>
+#include <linux/preempt.h>
+#include <linux/uaccess.h>
+#include <linux/kdebug.h>
+#include <linux/slab.h>
+
+#include <asm/ptrace.h>
+#include <asm/branch.h>
+#include <asm/break.h>
+#include <asm/inst.h>
+
+static const union mips_instruction breakpoint_insn = {
+	.b_format = {
+		.opcode = spec_op,
+		.code = BRK_KPROBE_BP,
+		.func = break_op
+	}
+};
+
+static const union mips_instruction breakpoint2_insn = {
+	.b_format = {
+		.opcode = spec_op,
+		.code = BRK_KPROBE_SSTEPBP,
+		.func = break_op
+	}
+};
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe);
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+static int __kprobes insn_has_delayslot(union mips_instruction insn)
+{
+	switch (insn.i_format.opcode) {
+
+		/*
+		 * This group contains:
+		 * jr and jalr are in r_format format.
+		 */
+	case spec_op:
+		switch (insn.r_format.func) {
+		case jr_op:
+		case jalr_op:
+			break;
+		default:
+			goto insn_ok;
+		}
+
+		/*
+		 * This group contains:
+		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
+		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
+		 */
+	case bcond_op:
+
+		/*
+		 * These are unconditional and in j_format.
+		 */
+	case jal_op:
+	case j_op:
+
+		/*
+		 * These are conditional and in i_format.
+		 */
+	case beq_op:
+	case beql_op:
+	case bne_op:
+	case bnel_op:
+	case blez_op:
+	case blezl_op:
+	case bgtz_op:
+	case bgtzl_op:
+
+		/*
+		 * These are the FPA/cp1 branch instructions.
+		 */
+	case cop1_op:
+
+#ifdef CONFIG_CPU_CAVIUM_OCTEON
+	case lwc2_op: /* This is bbit0 on Octeon */
+	case ldc2_op: /* This is bbit032 on Octeon */
+	case swc2_op: /* This is bbit1 on Octeon */
+	case sdc2_op: /* This is bbit132 on Octeon */
+#endif
+		return 1;
+	default:
+		break;
+	}
+insn_ok:
+	return 0;
+}
+
+/*
+ * insn_has_ll_or_sc function checks whether instruction is ll or sc
+ * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
+ * so we need to prevent it and refuse kprobes insertion for such
+ * instructions; cannot do much about breakpoint in the middle of
+ * ll/sc pair; it is upto user to avoid those places
+ */
+static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
+{
+	int ret = 0;
+
+	switch (insn.i_format.opcode) {
+	case ll_op:
+	case lld_op:
+	case sc_op:
+	case scd_op:
+		ret = 1;
+		break;
+	default:
+		break;
+	}
+	return ret;
+}
+
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
+{
+	union mips_instruction insn;
+	union mips_instruction prev_insn;
+	int ret = 0;
+
+	insn = p->addr[0];
+
+	if (insn_has_ll_or_sc(insn)) {
+		pr_notice("Kprobes for ll and sc instructions are not"
+			  "supported\n");
+		ret = -EINVAL;
+		goto out;
+	}
+
+	if ((probe_kernel_read(&prev_insn, p->addr - 1,
+				sizeof(mips_instruction)) == 0) &&
+				insn_has_delayslot(prev_insn)) {
+		pr_notice("Kprobes for branch delayslot are not supported\n");
+		ret = -EINVAL;
+		goto out;
+	}
+
+	/* insn: must be on special executable page on mips. */
+	p->ainsn.insn = get_insn_slot();
+	if (!p->ainsn.insn) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	/*
+	 * In the kprobe->ainsn.insn[] array we store the original
+	 * instruction at index zero and a break trap instruction at
+	 * index one.
+	 *
+	 * On MIPS arch if the instruction at probed address is a
+	 * branch instruction, we need to execute the instruction at
+	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
+	 * doesn't have single stepping support, the BD instruction can
+	 * not be executed in-line and it would be executed on SSOL slot
+	 * using a normal breakpoint instruction in the next slot.
+	 * So, read the instruction and save it for later execution.
+	 */
+	if (insn_has_delayslot(insn))
+		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
+	else
+		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
+
+	p->ainsn.insn[1] = breakpoint2_insn;
+	p->opcode = *p->addr;
+
+out:
+	return ret;
+}
+
+void __kprobes arch_arm_kprobe(struct kprobe *p)
+{
+	*p->addr = breakpoint_insn;
+	flush_insn_slot(p);
+}
+
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
+{
+	*p->addr = p->opcode;
+	flush_insn_slot(p);
+}
+
+void __kprobes arch_remove_kprobe(struct kprobe *p)
+{
+	if (p->ainsn.insn) {
+		free_insn_slot(p->ainsn.insn, 0);
+		p->ainsn.insn = NULL;
+	}
+}
+
+static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	kcb->prev_kprobe.kp = kprobe_running();
+	kcb->prev_kprobe.status = kcb->kprobe_status;
+	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
+	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
+	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
+}
+
+static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+	kcb->kprobe_status = kcb->prev_kprobe.status;
+	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
+	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
+	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
+}
+
+static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+			       struct kprobe_ctlblk *kcb)
+{
+	__this_cpu_write(current_kprobe, p);
+	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
+	kcb->kprobe_saved_epc = regs->cp0_epc;
+}
+
+/**
+ * evaluate_branch_instrucion -
+ *
+ * Evaluate the branch instruction at probed address during probe hit. The
+ * result of evaluation would be the updated epc. The insturction in delayslot
+ * would actually be single stepped using a normal breakpoint) on SSOL slot.
+ *
+ * The result is also saved in the kprobe control block for later use,
+ * in case we need to execute the delayslot instruction. The latter will be
+ * false for NOP instruction in dealyslot and the branch-likely instructions
+ * when the branch is taken. And for those cases we set a flag as
+ * SKIP_DELAYSLOT in the kprobe control block
+ */
+static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
+					struct kprobe_ctlblk *kcb)
+{
+	union mips_instruction insn = p->opcode;
+	long epc;
+	int ret = 0;
+
+	epc = regs->cp0_epc;
+	if (epc & 3)
+		goto unaligned;
+
+	if (p->ainsn.insn->word == 0)
+		kcb->flags |= SKIP_DELAYSLOT;
+	else
+		kcb->flags &= ~SKIP_DELAYSLOT;
+
+	ret = __compute_return_epc_for_insn(regs, insn);
+	if (ret < 0)
+		return ret;
+
+	if (ret == BRANCH_LIKELY_TAKEN)
+		kcb->flags |= SKIP_DELAYSLOT;
+
+	kcb->target_epc = regs->cp0_epc;
+
+	return 0;
+
+unaligned:
+	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
+	force_sig(SIGBUS, current);
+	return -EFAULT;
+
+}
+
+static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
+						struct kprobe_ctlblk *kcb)
+{
+	int ret = 0;
+
+	regs->cp0_status &= ~ST0_IE;
+
+	/* single step inline if the instruction is a break */
+	if (p->opcode.word == breakpoint_insn.word ||
+	    p->opcode.word == breakpoint2_insn.word)
+		regs->cp0_epc = (unsigned long)p->addr;
+	else if (insn_has_delayslot(p->opcode)) {
+		ret = evaluate_branch_instruction(p, regs, kcb);
+		if (ret < 0) {
+			pr_notice("Kprobes: Error in evaluating branch\n");
+			return;
+		}
+	}
+	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
+}
+
+/*
+ * Called after single-stepping.  p->addr is the address of the
+ * instruction whose first byte has been replaced by the "break 0"
+ * instruction.	 To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction.  The address of this
+ * copy is p->ainsn.insn.
+ *
+ * This function prepares to return from the post-single-step
+ * breakpoint trap. In case of branch instructions, the target
+ * epc to be restored.
+ */
+static void __kprobes resume_execution(struct kprobe *p,
+				       struct pt_regs *regs,
+				       struct kprobe_ctlblk *kcb)
+{
+	if (insn_has_delayslot(p->opcode))
+		regs->cp0_epc = kcb->target_epc;
+	else {
+		unsigned long orig_epc = kcb->kprobe_saved_epc;
+		regs->cp0_epc = orig_epc + 4;
+	}
+}
+
+static int __kprobes kprobe_handler(struct pt_regs *regs)
+{
+	struct kprobe *p;
+	int ret = 0;
+	kprobe_opcode_t *addr;
+	struct kprobe_ctlblk *kcb;
+
+	addr = (kprobe_opcode_t *) regs->cp0_epc;
+
+	/*
+	 * We don't want to be preempted for the entire
+	 * duration of kprobe processing
+	 */
+	preempt_disable();
+	kcb = get_kprobe_ctlblk();
+
+	/* Check we're not actually recursing */
+	if (kprobe_running()) {
+		p = get_kprobe(addr);
+		if (p) {
+			if (kcb->kprobe_status == KPROBE_HIT_SS &&
+			    p->ainsn.insn->word == breakpoint_insn.word) {
+				regs->cp0_status &= ~ST0_IE;
+				regs->cp0_status |= kcb->kprobe_saved_SR;
+				goto no_kprobe;
+			}
+			/*
+			 * We have reentered the kprobe_handler(), since
+			 * another probe was hit while within the handler.
+			 * We here save the original kprobes variables and
+			 * just single step on the instruction of the new probe
+			 * without calling any user handlers.
+			 */
+			save_previous_kprobe(kcb);
+			set_current_kprobe(p, regs, kcb);
+			kprobes_inc_nmissed_count(p);
+			prepare_singlestep(p, regs, kcb);
+			kcb->kprobe_status = KPROBE_REENTER;
+			if (kcb->flags & SKIP_DELAYSLOT) {
+				resume_execution(p, regs, kcb);
+				restore_previous_kprobe(kcb);
+				preempt_enable_no_resched();
+			}
+			return 1;
+		} else {
+			if (addr->word != breakpoint_insn.word) {
+				/*
+				 * The breakpoint instruction was removed by
+				 * another cpu right after we hit, no further
+				 * handling of this interrupt is appropriate
+				 */
+				ret = 1;
+				goto no_kprobe;
+			}
+			p = __this_cpu_read(current_kprobe);
+			if (p->break_handler && p->break_handler(p, regs))
+				goto ss_probe;
+		}
+		goto no_kprobe;
+	}
+
+	p = get_kprobe(addr);
+	if (!p) {
+		if (addr->word != breakpoint_insn.word) {
+			/*
+			 * The breakpoint instruction was removed right
+			 * after we hit it.  Another cpu has removed
+			 * either a probepoint or a debugger breakpoint
+			 * at this address.  In either case, no further
+			 * handling of this interrupt is appropriate.
+			 */
+			ret = 1;
+		}
+		/* Not one of ours: let kernel handle it */
+		goto no_kprobe;
+	}
+
+	set_current_kprobe(p, regs, kcb);
+	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+
+	if (p->pre_handler && p->pre_handler(p, regs)) {
+		/* handler has already set things up, so skip ss setup */
+		return 1;
+	}
+
+ss_probe:
+	prepare_singlestep(p, regs, kcb);
+	if (kcb->flags & SKIP_DELAYSLOT) {
+		kcb->kprobe_status = KPROBE_HIT_SSDONE;
+		if (p->post_handler)
+			p->post_handler(p, regs, 0);
+		resume_execution(p, regs, kcb);
+		preempt_enable_no_resched();
+	} else
+		kcb->kprobe_status = KPROBE_HIT_SS;
+
+	return 1;
+
+no_kprobe:
+	preempt_enable_no_resched();
+	return ret;
+
+}
+
+static inline int post_kprobe_handler(struct pt_regs *regs)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (!cur)
+		return 0;
+
+	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+		kcb->kprobe_status = KPROBE_HIT_SSDONE;
+		cur->post_handler(cur, regs, 0);
+	}
+
+	resume_execution(cur, regs, kcb);
+
+	regs->cp0_status |= kcb->kprobe_saved_SR;
+
+	/* Restore back the original saved kprobes variables and continue. */
+	if (kcb->kprobe_status == KPROBE_REENTER) {
+		restore_previous_kprobe(kcb);
+		goto out;
+	}
+	reset_current_kprobe();
+out:
+	preempt_enable_no_resched();
+
+	return 1;
+}
+
+static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+	struct kprobe *cur = kprobe_running();
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+		return 1;
+
+	if (kcb->kprobe_status & KPROBE_HIT_SS) {
+		resume_execution(cur, regs, kcb);
+		regs->cp0_status |= kcb->kprobe_old_SR;
+
+		reset_current_kprobe();
+		preempt_enable_no_resched();
+	}
+	return 0;
+}
+
+/*
+ * Wrapper routine for handling exceptions.
+ */
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
+				       unsigned long val, void *data)
+{
+
+	struct die_args *args = (struct die_args *)data;
+	int ret = NOTIFY_DONE;
+
+	switch (val) {
+	case DIE_BREAK:
+		if (kprobe_handler(args->regs))
+			ret = NOTIFY_STOP;
+		break;
+	case DIE_SSTEPBP:
+		if (post_kprobe_handler(args->regs))
+			ret = NOTIFY_STOP;
+		break;
+
+	case DIE_PAGE_FAULT:
+		/* kprobe_running() needs smp_processor_id() */
+		preempt_disable();
+
+		if (kprobe_running()
+		    && kprobe_fault_handler(args->regs, args->trapnr))
+			ret = NOTIFY_STOP;
+		preempt_enable();
+		break;
+	default:
+		break;
+	}
+	return ret;
+}
+
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct jprobe *jp = container_of(p, struct jprobe, kp);
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	kcb->jprobe_saved_regs = *regs;
+	kcb->jprobe_saved_sp = regs->regs[29];
+
+	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
+	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
+
+	regs->cp0_epc = (unsigned long)(jp->entry);
+
+	return 1;
+}
+
+/* Defined in the inline asm below. */
+void jprobe_return_end(void);
+
+void __kprobes jprobe_return(void)
+{
+	/* Assembler quirk necessitates this '0,code' business.	 */
+	asm volatile(
+		"break 0,%0\n\t"
+		".globl jprobe_return_end\n"
+		"jprobe_return_end:\n"
+		: : "n" (BRK_KPROBE_BP) : "memory");
+}
+
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+{
+	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
+	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
+		*regs = kcb->jprobe_saved_regs;
+		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
+		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
+		preempt_enable_no_resched();
+
+		return 1;
+	}
+	return 0;
+}
+
+/*
+ * Function return probe trampoline:
+ *	- init_kprobes() establishes a probepoint here
+ *	- When the probed function returns, this probe causes the
+ *	  handlers to fire
+ */
+static void __used kretprobe_trampoline_holder(void)
+{
+	asm volatile(
+		".set push\n\t"
+		/* Keep the assembler from reordering and placing JR here. */
+		".set noreorder\n\t"
+		"nop\n\t"
+		".global kretprobe_trampoline\n"
+		"kretprobe_trampoline:\n\t"
+		"nop\n\t"
+		".set pop"
+		: : : "memory");
+}
+
+void kretprobe_trampoline(void);
+
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
+				      struct pt_regs *regs)
+{
+	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
+
+	/* Replace the return addr with trampoline addr */
+	regs->regs[31] = (unsigned long)kretprobe_trampoline;
+}
+
+/*
+ * Called when the probe at kretprobe trampoline is hit
+ */
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
+						struct pt_regs *regs)
+{
+	struct kretprobe_instance *ri = NULL;
+	struct hlist_head *head, empty_rp;
+	struct hlist_node *tmp;
+	unsigned long flags, orig_ret_address = 0;
+	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
+
+	INIT_HLIST_HEAD(&empty_rp);
+	kretprobe_hash_lock(current, &head, &flags);
+
+	/*
+	 * It is possible to have multiple instances associated with a given
+	 * task either because an multiple functions in the call path
+	 * have a return probe installed on them, and/or more than one return
+	 * return probe was registered for a target function.
+	 *
+	 * We can handle this because:
+	 *     - instances are always inserted at the head of the list
+	 *     - when multiple return probes are registered for the same
+	 *	 function, the first instance's ret_addr will point to the
+	 *	 real return address, and all the rest will point to
+	 *	 kretprobe_trampoline
+	 */
+	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+		if (ri->task != current)
+			/* another task is sharing our hash bucket */
+			continue;
+
+		if (ri->rp && ri->rp->handler)
+			ri->rp->handler(ri, regs);
+
+		orig_ret_address = (unsigned long)ri->ret_addr;
+		recycle_rp_inst(ri, &empty_rp);
+
+		if (orig_ret_address != trampoline_address)
+			/*
+			 * This is the real return address. Any other
+			 * instances associated with this task are for
+			 * other calls deeper on the call stack
+			 */
+			break;
+	}
+
+	kretprobe_assert(ri, orig_ret_address, trampoline_address);
+	instruction_pointer(regs) = orig_ret_address;
+
+	reset_current_kprobe();
+	kretprobe_hash_unlock(current, &flags);
+	preempt_enable_no_resched();
+
+	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+		hlist_del(&ri->hlist);
+		kfree(ri);
+	}
+	/*
+	 * By returning a non-zero value, we are telling
+	 * kprobe_handler() that we don't want the post_handler
+	 * to run (and have re-enabled preemption)
+	 */
+	return 1;
+}
+
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+{
+	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
+		return 1;
+
+	return 0;
+}
+
+static struct kprobe trampoline_p = {
+	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
+	.pre_handler = trampoline_probe_handler
+};
+
+int __init arch_init_kprobes(void)
+{
+	return register_kprobe(&trampoline_p);
+}