File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/drivers/net/wireless/rt2x00/Kconfig b/drivers/net/wireless/rt2x00/Kconfig
new file mode 100644
index 0000000..de62f5d
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/Kconfig
@@ -0,0 +1,269 @@
+menuconfig RT2X00
+	tristate "Ralink driver support"
+	depends on MAC80211 && HAS_DMA
+	---help---
+	  This will enable the support for the Ralink drivers,
+	  developed in the rt2x00 project <http://rt2x00.serialmonkey.com>.
+
+	  These drivers make use of the mac80211 stack.
+
+	  When building one of the individual drivers, the rt2x00 library
+	  will also be created. That library (when the driver is built as
+	  a module) will be called rt2x00lib.
+
+	  Additionally PCI and USB libraries will also be build depending
+	  on the types of drivers being selected, these libraries will be
+	  called rt2x00pci and rt2x00usb.
+
+if RT2X00
+
+config RT2400PCI
+	tristate "Ralink rt2400 (PCI/PCMCIA) support"
+	depends on PCI
+	select RT2X00_LIB_MMIO
+	select RT2X00_LIB_PCI
+	select EEPROM_93CX6
+	---help---
+	  This adds support for rt2400 wireless chipset family.
+	  Supported chips: RT2460.
+
+	  When compiled as a module, this driver will be called rt2400pci.
+
+config RT2500PCI
+	tristate "Ralink rt2500 (PCI/PCMCIA) support"
+	depends on PCI
+	select RT2X00_LIB_MMIO
+	select RT2X00_LIB_PCI
+	select EEPROM_93CX6
+	---help---
+	  This adds support for rt2500 wireless chipset family.
+	  Supported chips: RT2560.
+
+	  When compiled as a module, this driver will be called rt2500pci.
+
+config RT61PCI
+	tristate "Ralink rt2501/rt61 (PCI/PCMCIA) support"
+	depends on PCI
+	select RT2X00_LIB_PCI
+	select RT2X00_LIB_MMIO
+	select RT2X00_LIB_FIRMWARE
+	select RT2X00_LIB_CRYPTO
+	select CRC_ITU_T
+	select EEPROM_93CX6
+	---help---
+	  This adds support for rt2501 wireless chipset family.
+	  Supported chips: RT2561, RT2561S & RT2661.
+
+	  When compiled as a module, this driver will be called rt61pci.
+
+config RT2800PCI
+	tristate "Ralink rt27xx/rt28xx/rt30xx (PCI/PCIe/PCMCIA) support"
+	depends on PCI
+	select RT2800_LIB
+	select RT2800_LIB_MMIO
+	select RT2X00_LIB_MMIO
+	select RT2X00_LIB_PCI
+	select RT2X00_LIB_FIRMWARE
+	select RT2X00_LIB_CRYPTO
+	select CRC_CCITT
+	select EEPROM_93CX6
+	---help---
+	  This adds support for rt27xx/rt28xx/rt30xx wireless chipset family.
+	  Supported chips: RT2760, RT2790, RT2860, RT2880, RT2890, RT3052,
+			   RT3090, RT3091 & RT3092
+
+	  When compiled as a module, this driver will be called "rt2800pci.ko".
+
+if RT2800PCI
+
+config RT2800PCI_RT33XX
+	bool "rt2800pci - Include support for rt33xx devices"
+	default y
+	---help---
+	  This adds support for rt33xx wireless chipset family to the
+	  rt2800pci driver.
+	  Supported chips: RT3390
+
+config RT2800PCI_RT35XX
+	bool "rt2800pci - Include support for rt35xx devices (EXPERIMENTAL)"
+	default y
+	---help---
+	  This adds support for rt35xx wireless chipset family to the
+	  rt2800pci driver.
+	  Supported chips: RT3060, RT3062, RT3562, RT3592
+
+
+config RT2800PCI_RT53XX
+       bool "rt2800pci - Include support for rt53xx devices (EXPERIMENTAL)"
+       default y
+       ---help---
+         This adds support for rt53xx wireless chipset family to the
+         rt2800pci driver.
+         Supported chips: RT5390
+
+config RT2800PCI_RT3290
+       bool "rt2800pci - Include support for rt3290 devices (EXPERIMENTAL)"
+       default y
+       ---help---
+         This adds support for rt3290 wireless chipset family to the
+         rt2800pci driver.
+         Supported chips: RT3290
+endif
+
+config RT2500USB
+	tristate "Ralink rt2500 (USB) support"
+	depends on USB
+	select RT2X00_LIB_USB
+	select RT2X00_LIB_CRYPTO
+	---help---
+	  This adds support for rt2500 wireless chipset family.
+	  Supported chips: RT2571 & RT2572.
+
+	  When compiled as a module, this driver will be called rt2500usb.
+
+config RT73USB
+	tristate "Ralink rt2501/rt73 (USB) support"
+	depends on USB
+	select RT2X00_LIB_USB
+	select RT2X00_LIB_FIRMWARE
+	select RT2X00_LIB_CRYPTO
+	select CRC_ITU_T
+	---help---
+	  This adds support for rt2501 wireless chipset family.
+	  Supported chips: RT2571W, RT2573 & RT2671.
+
+	  When compiled as a module, this driver will be called rt73usb.
+
+config RT2800USB
+	tristate "Ralink rt27xx/rt28xx/rt30xx (USB) support"
+	depends on USB
+	select RT2800_LIB
+	select RT2X00_LIB_USB
+	select RT2X00_LIB_FIRMWARE
+	select RT2X00_LIB_CRYPTO
+	select CRC_CCITT
+	---help---
+	  This adds support for rt27xx/rt28xx/rt30xx wireless chipset family.
+	  Supported chips: RT2770, RT2870 & RT3070, RT3071 & RT3072
+
+	  When compiled as a module, this driver will be called "rt2800usb.ko".
+
+if RT2800USB
+
+config RT2800USB_RT33XX
+	bool "rt2800usb - Include support for rt33xx devices"
+	default y
+	---help---
+	  This adds support for rt33xx wireless chipset family to the
+	  rt2800usb driver.
+	  Supported chips: RT3370
+
+config RT2800USB_RT35XX
+	bool "rt2800usb - Include support for rt35xx devices (EXPERIMENTAL)"
+	default y
+	---help---
+	  This adds support for rt35xx wireless chipset family to the
+	  rt2800usb driver.
+	  Supported chips: RT3572
+
+config RT2800USB_RT3573
+	bool "rt2800usb - Include support for rt3573 devices (EXPERIMENTAL)"
+	---help---
+	  This enables support for RT3573 chipset based wireless USB devices
+	  in the rt2800usb driver.
+
+config RT2800USB_RT53XX
+       bool "rt2800usb - Include support for rt53xx devices (EXPERIMENTAL)"
+       ---help---
+         This adds support for rt53xx wireless chipset family to the
+         rt2800usb driver.
+         Supported chips: RT5370
+
+config RT2800USB_RT55XX
+       bool "rt2800usb - Include support for rt55xx devices (EXPERIMENTAL)"
+       ---help---
+         This adds support for rt55xx wireless chipset family to the
+         rt2800usb driver.
+         Supported chips: RT5572
+
+config RT2800USB_UNKNOWN
+	bool "rt2800usb - Include support for unknown (USB) devices"
+	default n
+	---help---
+	  This adds support for rt2800usb devices that are known to
+	  have a rt28xx family compatible chipset, but for which the exact
+	  chipset is unknown.
+
+	  Support status for these devices is unknown, and enabling these
+	  devices may or may not work.
+
+endif
+
+config RT2800SOC
+	tristate "Ralink WiSoC support"
+	depends on SOC_RT288X || SOC_RT305X
+	select RT2X00_LIB_SOC
+	select RT2X00_LIB_MMIO
+	select RT2X00_LIB_CRYPTO
+	select RT2X00_LIB_FIRMWARE
+	select RT2800_LIB
+	select RT2800_LIB_MMIO
+	---help---
+	  This adds support for Ralink WiSoC devices.
+	  Supported chips: RT2880, RT3050, RT3052, RT3350, RT3352.
+
+	  When compiled as a module, this driver will be called rt2800soc.
+
+
+config RT2800_LIB
+	tristate
+
+config RT2800_LIB_MMIO
+	tristate
+	select RT2X00_LIB_MMIO
+	select RT2800_LIB
+
+config RT2X00_LIB_MMIO
+	tristate
+
+config RT2X00_LIB_PCI
+	tristate
+	select RT2X00_LIB
+
+config RT2X00_LIB_SOC
+	tristate
+	select RT2X00_LIB
+
+config RT2X00_LIB_USB
+	tristate
+	select RT2X00_LIB
+
+config RT2X00_LIB
+	tristate
+
+config RT2X00_LIB_FIRMWARE
+	bool
+	select FW_LOADER
+
+config RT2X00_LIB_CRYPTO
+	bool
+
+config RT2X00_LIB_LEDS
+	bool
+	default y if (RT2X00_LIB=y && LEDS_CLASS=y) || (RT2X00_LIB=m && LEDS_CLASS!=n)
+
+config RT2X00_LIB_DEBUGFS
+	bool "Ralink debugfs support"
+	depends on RT2X00_LIB && MAC80211_DEBUGFS
+	---help---
+	  Enable creation of debugfs files for the rt2x00 drivers.
+	  These debugfs files support both reading and writing of the
+	  most important register types of the rt2x00 hardware.
+
+config RT2X00_DEBUG
+	bool "Ralink debug output"
+	depends on RT2X00_LIB
+	---help---
+	  Enable debugging output for all rt2x00 modules
+
+endif
diff --git a/drivers/net/wireless/rt2x00/Makefile b/drivers/net/wireless/rt2x00/Makefile
new file mode 100644
index 0000000..24a6601
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/Makefile
@@ -0,0 +1,25 @@
+rt2x00lib-y				+= rt2x00dev.o
+rt2x00lib-y				+= rt2x00mac.o
+rt2x00lib-y				+= rt2x00config.o
+rt2x00lib-y				+= rt2x00queue.o
+rt2x00lib-y				+= rt2x00link.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_DEBUGFS)	+= rt2x00debug.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_CRYPTO)	+= rt2x00crypto.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_FIRMWARE)	+= rt2x00firmware.o
+rt2x00lib-$(CONFIG_RT2X00_LIB_LEDS)	+= rt2x00leds.o
+
+obj-$(CONFIG_RT2X00_LIB)		+= rt2x00lib.o
+obj-$(CONFIG_RT2X00_LIB_MMIO)		+= rt2x00mmio.o
+obj-$(CONFIG_RT2X00_LIB_PCI)		+= rt2x00pci.o
+obj-$(CONFIG_RT2X00_LIB_SOC)		+= rt2x00soc.o
+obj-$(CONFIG_RT2X00_LIB_USB)		+= rt2x00usb.o
+obj-$(CONFIG_RT2800_LIB)		+= rt2800lib.o
+obj-$(CONFIG_RT2800_LIB_MMIO)		+= rt2800mmio.o
+obj-$(CONFIG_RT2400PCI)			+= rt2400pci.o
+obj-$(CONFIG_RT2500PCI)			+= rt2500pci.o
+obj-$(CONFIG_RT61PCI)			+= rt61pci.o
+obj-$(CONFIG_RT2800PCI)			+= rt2800pci.o
+obj-$(CONFIG_RT2500USB)			+= rt2500usb.o
+obj-$(CONFIG_RT73USB)			+= rt73usb.o
+obj-$(CONFIG_RT2800USB)			+= rt2800usb.o
+obj-$(CONFIG_RT2800SOC)			+= rt2800soc.o
diff --git a/drivers/net/wireless/rt2x00/rt2400pci.c b/drivers/net/wireless/rt2x00/rt2400pci.c
new file mode 100644
index 0000000..9a3966c
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2400pci.c
@@ -0,0 +1,1850 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2400pci
+	Abstract: rt2400pci device specific routines.
+	Supported chipsets: RT2460.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2400pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00mmio_register_read and rt2x00mmio_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attempt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
+
+static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+				const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
+	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
+	eeprom->reg_data_clock =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
+	eeprom->reg_chip_select =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg = 0;
+
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+			   !!eeprom->reg_data_clock);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+			   !!eeprom->reg_chip_select);
+
+	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2400pci_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2x00mmio_register_read,
+		.write		= rt2x00mmio_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt2400pci_bbp_read,
+		.write		= rt2400pci_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt2400pci_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
+				     enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+
+	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
+	else if (led->type == LED_TYPE_ACTIVITY)
+		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
+
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+}
+
+static int rt2400pci_blink_set(struct led_classdev *led_cdev,
+			       unsigned long *delay_on,
+			       unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
+	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+
+	return 0;
+}
+
+static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00_led *led,
+			       enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt2400pci_brightness_set;
+	led->led_dev.blink_set = rt2400pci_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * since there is no filter for it at this time.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
+				  struct rt2x00_intf *intf,
+				  struct rt2x00intf_conf *conf,
+				  const unsigned int flags)
+{
+	unsigned int bcn_preload;
+	u32 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable beacon config
+		 */
+		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
+		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
+		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
+
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
+					       conf->mac, sizeof(conf->mac));
+
+	if (flags & CONFIG_UPDATE_BSSID)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
+					       conf->bssid,
+					       sizeof(conf->bssid));
+}
+
+static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
+				 struct rt2x00lib_erp *erp,
+				 u32 changed)
+{
+	int preamble_mask;
+	u32 reg;
+
+	/*
+	 * When short preamble is enabled, we should set bit 0x08
+	 */
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		preamble_mask = erp->short_preamble << 3;
+
+		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
+		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
+		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
+		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 10));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
+		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 20));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
+		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 55));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
+		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 110));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
+		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
+		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
+		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
+		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
+		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
+	}
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
+		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
+				   erp->beacon_int * 16);
+		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
+	}
+}
+
+static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
+				 struct antenna_setup *ant)
+{
+	u8 r1;
+	u8 r4;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
+	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
+
+	/*
+	 * Configure the TX antenna.
+	 */
+	switch (ant->tx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
+		break;
+	}
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
+		break;
+	}
+
+	rt2400pci_bbp_write(rt2x00dev, 4, r4);
+	rt2400pci_bbp_write(rt2x00dev, 1, r1);
+}
+
+static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
+				     struct rf_channel *rf)
+{
+	/*
+	 * Switch on tuning bits.
+	 */
+	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
+
+	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	/*
+	 * RF2420 chipset don't need any additional actions.
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2420))
+		return;
+
+	/*
+	 * For the RT2421 chipsets we need to write an invalid
+	 * reference clock rate to activate auto_tune.
+	 * After that we set the value back to the correct channel.
+	 */
+	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
+	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	msleep(1);
+
+	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	msleep(1);
+
+	/*
+	 * Switch off tuning bits.
+	 */
+	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
+
+	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	/*
+	 * Clear false CRC during channel switch.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
+}
+
+static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
+{
+	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
+}
+
+static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+					 struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
+				   (rt2x00dev->beacon_int - 20) * 16);
+		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	} else {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	}
+
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_conf *libconf,
+			     const unsigned int flags)
+{
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
+	if (flags & IEEE80211_CONF_CHANGE_POWER)
+		rt2400pci_config_txpower(rt2x00dev,
+					 libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt2400pci_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt2400pci_config_ps(rt2x00dev, libconf);
+}
+
+static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
+				const int cw_min, const int cw_max)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
+	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual)
+{
+	u32 reg;
+	u8 bbp;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
+	qual->false_cca = bbp;
+}
+
+static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+				     struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level_reg != vgc_level) {
+		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				  struct link_qual *qual)
+{
+	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
+}
+
+static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual, const u32 count)
+{
+	/*
+	 * The link tuner should not run longer then 60 seconds,
+	 * and should run once every 2 seconds.
+	 */
+	if (count > 60 || !(count & 1))
+		return;
+
+	/*
+	 * Base r13 link tuning on the false cca count.
+	 */
+	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
+		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
+	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
+		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2400pci_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2400pci_kick_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_AC_VI:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2400pci_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+		/*
+		 * Wait for possibly running tbtt tasklets.
+		 */
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt2400pci_get_entry_state(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		        rt2x00_get_field32(word, TXD_W0_VALID));
+	}
+}
+
+static void rt2400pci_clear_entry(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 2, &word);
+		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
+		rt2x00_desc_write(entry_priv->desc, 2, word);
+
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+		rt2x00_desc_write(entry_priv->desc, 1, word);
+
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	}
+}
+
+static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+	u32 reg;
+
+	/*
+	 * Initialize registers.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
+	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
+
+	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
+	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
+
+	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
+	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
+
+	entry_priv = rt2x00dev->atim->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
+	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
+
+	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
+	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
+	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
+	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
+
+	entry_priv = rt2x00dev->rx->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
+	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
+
+	return 0;
+}
+
+static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
+	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
+	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+			   (rt2x00dev->rx->data_size / 128));
+	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
+	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
+
+	rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
+	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
+	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
+	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
+	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
+	rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
+	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
+	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	/*
+	 * We must clear the FCS and FIFO error count.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
+
+	return 0;
+}
+
+static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2400pci_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
+	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
+	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
+	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
+	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
+	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
+	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
+	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
+	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
+	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
+	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
+	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
+	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
+	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+				 enum dev_state state)
+{
+	int mask = (state == STATE_RADIO_IRQ_OFF);
+	u32 reg;
+	unsigned long flags;
+
+	/*
+	 * When interrupts are being enabled, the interrupt registers
+	 * should clear the register to assure a clean state.
+	 */
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+	}
+
+	/*
+	 * Only toggle the interrupts bits we are going to use.
+	 * Non-checked interrupt bits are disabled by default.
+	 */
+	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
+	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+	if (state == STATE_RADIO_IRQ_OFF) {
+		/*
+		 * Ensure that all tasklets are finished before
+		 * disabling the interrupts.
+		 */
+		tasklet_kill(&rt2x00dev->txstatus_tasklet);
+		tasklet_kill(&rt2x00dev->rxdone_tasklet);
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+	}
+}
+
+static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
+		     rt2400pci_init_registers(rt2x00dev) ||
+		     rt2400pci_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	return 0;
+}
+
+static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Disable power
+	 */
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
+}
+
+static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	u32 reg, reg2;
+	unsigned int i;
+	char put_to_sleep;
+	char bbp_state;
+	char rf_state;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
+	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
+		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
+		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
+		if (bbp_state == state && rf_state == state)
+			return 0;
+		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+		msleep(10);
+	}
+
+	return -EBUSY;
+}
+
+static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2400pci_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt2400pci_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt2400pci_toggle_irq(rt2x00dev, state);
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2400pci_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2400pci_write_tx_desc(struct queue_entry *entry,
+				    struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *txd = entry_priv->desc;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
+	rt2x00_desc_write(txd, 2, word);
+
+	rt2x00_desc_read(txd, 3, &word);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
+	rt2x00_desc_write(txd, 3, word);
+
+	rt2x00_desc_read(txd, 4, &word);
+	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
+	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
+	rt2x00_desc_write(txd, 4, word);
+
+	/*
+	 * Writing TXD word 0 must the last to prevent a race condition with
+	 * the device, whereby the device may take hold of the TXD before we
+	 * finished updating it.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_RTS,
+			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+	rt2x00_desc_write(txd, 0, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2400pci_write_beacon(struct queue_entry *entry,
+				   struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	if (rt2x00queue_map_txskb(entry)) {
+		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
+		goto out;
+	}
+	/*
+	 * Enable beaconing again.
+	 */
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt2400pci_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+out:
+	/*
+	 * Enable beaconing again.
+	 */
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2400pci_fill_rxdone(struct queue_entry *entry,
+				  struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word0;
+	u32 word2;
+	u32 word3;
+	u32 word4;
+	u64 tsf;
+	u32 rx_low;
+	u32 rx_high;
+
+	rt2x00_desc_read(entry_priv->desc, 0, &word0);
+	rt2x00_desc_read(entry_priv->desc, 2, &word2);
+	rt2x00_desc_read(entry_priv->desc, 3, &word3);
+	rt2x00_desc_read(entry_priv->desc, 4, &word4);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+	/*
+	 * We only get the lower 32bits from the timestamp,
+	 * to get the full 64bits we must complement it with
+	 * the timestamp from get_tsf().
+	 * Note that when a wraparound of the lower 32bits
+	 * has occurred between the frame arrival and the get_tsf()
+	 * call, we must decrease the higher 32bits with 1 to get
+	 * to correct value.
+	 */
+	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
+	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
+	rx_high = upper_32_bits(tsf);
+
+	if ((u32)tsf <= rx_low)
+		rx_high--;
+
+	/*
+	 * Obtain the status about this packet.
+	 * The signal is the PLCP value, and needs to be stripped
+	 * of the preamble bit (0x08).
+	 */
+	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
+	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
+	rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
+	    entry->queue->rt2x00dev->rssi_offset;
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
+			     const enum data_queue_qid queue_idx)
+{
+	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+	struct queue_entry_priv_mmio *entry_priv;
+	struct queue_entry *entry;
+	struct txdone_entry_desc txdesc;
+	u32 word;
+
+	while (!rt2x00queue_empty(queue)) {
+		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		entry_priv = entry->priv_data;
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		    !rt2x00_get_field32(word, TXD_W0_VALID))
+			break;
+
+		/*
+		 * Obtain the status about this packet.
+		 */
+		txdesc.flags = 0;
+		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
+		case 0: /* Success */
+		case 1: /* Success with retry */
+			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
+			break;
+		case 2: /* Failure, excessive retries */
+			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+			/* Don't break, this is a failed frame! */
+		default: /* Failure */
+			__set_bit(TXDONE_FAILURE, &txdesc.flags);
+		}
+		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+		rt2x00lib_txdone(entry, &txdesc);
+	}
+}
+
+static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+					      struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, irq_field, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt2400pci_txstatus_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	u32 reg;
+
+	/*
+	 * Handle all tx queues.
+	 */
+	rt2400pci_txdone(rt2x00dev, QID_ATIM);
+	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
+	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
+
+	/*
+	 * Enable all TXDONE interrupts again.
+	 */
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
+		spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+		spin_unlock_irq(&rt2x00dev->irqmask_lock);
+	}
+}
+
+static void rt2400pci_tbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2x00lib_beacondone(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
+}
+
+static void rt2400pci_rxdone_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2x00mmio_rxdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
+}
+
+static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
+{
+	struct rt2x00_dev *rt2x00dev = dev_instance;
+	u32 reg, mask;
+
+	/*
+	 * Get the interrupt sources & saved to local variable.
+	 * Write register value back to clear pending interrupts.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+
+	if (!reg)
+		return IRQ_NONE;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return IRQ_HANDLED;
+
+	mask = reg;
+
+	/*
+	 * Schedule tasklets for interrupt handling.
+	 */
+	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_RXDONE))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
+		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+		/*
+		 * Mask out all txdone interrupts.
+		 */
+		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
+	}
+
+	/*
+	 * Disable all interrupts for which a tasklet was scheduled right now,
+	 * the tasklet will reenable the appropriate interrupts.
+	 */
+	spin_lock(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	reg |= mask;
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock(&rt2x00dev->irqmask_lock);
+
+
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	struct eeprom_93cx6 eeprom;
+	u32 reg;
+	u16 word;
+	u8 *mac;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom.data = rt2x00dev;
+	eeprom.register_read = rt2400pci_eepromregister_read;
+	eeprom.register_write = rt2400pci_eepromregister_write;
+	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+	eeprom.reg_data_in = 0;
+	eeprom.reg_data_out = 0;
+	eeprom.reg_data_clock = 0;
+	eeprom.reg_chip_select = 0;
+
+	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+			       EEPROM_SIZE / sizeof(u16));
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, RT2460, value,
+			rt2x00_get_field32(reg, CSR0_REVISION));
+
+	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
+	 * I am not 100% sure about this, but the legacy drivers do not
+	 * indicate antenna swapping in software is required when
+	 * diversity is enabled.
+	 */
+	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
+		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
+	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
+		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
+
+	/*
+	 * Store led mode, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	if (value == LED_MODE_TXRX_ACTIVITY ||
+	    value == LED_MODE_DEFAULT ||
+	    value == LED_MODE_ASUS)
+		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				   LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+	/*
+	 * Check if the BBP tuning should be enabled.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
+		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+	return 0;
+}
+
+/*
+ * RF value list for RF2420 & RF2421
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_b[] = {
+	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
+	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
+	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
+	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
+	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
+	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
+	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
+	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
+	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
+	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
+	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
+	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
+	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
+	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
+};
+
+static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Initialize all hw fields.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK;
+
+	spec->num_channels = ARRAY_SIZE(rf_vals_b);
+	spec->channels = rf_vals_b;
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	return 0;
+}
+
+static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt2400pci_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt2400pci_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
+	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt2400pci_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device requires the atim queue and DMA-mapped skbs.
+	 */
+	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif, u16 queue,
+			     const struct ieee80211_tx_queue_params *params)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * We don't support variating cw_min and cw_max variables
+	 * per queue. So by default we only configure the TX queue,
+	 * and ignore all other configurations.
+	 */
+	if (queue != 0)
+		return -EINVAL;
+
+	if (rt2x00mac_conf_tx(hw, vif, queue, params))
+		return -EINVAL;
+
+	/*
+	 * Write configuration to register.
+	 */
+	rt2400pci_config_cw(rt2x00dev,
+			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
+
+	return 0;
+}
+
+static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
+	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+	return tsf;
+}
+
+static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
+	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2400pci_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2400pci_conf_tx,
+	.get_tsf		= rt2400pci_get_tsf,
+	.tx_last_beacon		= rt2400pci_tx_last_beacon,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
+	.irq_handler		= rt2400pci_interrupt,
+	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
+	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
+	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
+	.probe_hw		= rt2400pci_probe_hw,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt2400pci_get_entry_state,
+	.clear_entry		= rt2400pci_clear_entry,
+	.set_device_state	= rt2400pci_set_device_state,
+	.rfkill_poll		= rt2400pci_rfkill_poll,
+	.link_stats		= rt2400pci_link_stats,
+	.reset_tuner		= rt2400pci_reset_tuner,
+	.link_tuner		= rt2400pci_link_tuner,
+	.start_queue		= rt2400pci_start_queue,
+	.kick_queue		= rt2400pci_kick_queue,
+	.stop_queue		= rt2400pci_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt2400pci_write_tx_desc,
+	.write_beacon		= rt2400pci_write_beacon,
+	.fill_rxdone		= rt2400pci_fill_rxdone,
+	.config_filter		= rt2400pci_config_filter,
+	.config_intf		= rt2400pci_config_intf,
+	.config_erp		= rt2400pci_config_erp,
+	.config_ant		= rt2400pci_config_ant,
+	.config			= rt2400pci_config,
+};
+
+static void rt2400pci_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 24;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 24;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 1;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_ATIM:
+		queue->limit = 8;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt2400pci_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 1,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2400pci_queue_init,
+	.lib			= &rt2400pci_rt2x00_ops,
+	.hw			= &rt2400pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2400pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2400pci module information.
+ */
+static const struct pci_device_id rt2400pci_device_table[] = {
+	{ PCI_DEVICE(0x1814, 0x0101) },
+	{ 0, }
+};
+
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
+MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2400pci_probe(struct pci_dev *pci_dev,
+			   const struct pci_device_id *id)
+{
+	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
+}
+
+static struct pci_driver rt2400pci_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2400pci_device_table,
+	.probe		= rt2400pci_probe,
+	.remove		= rt2x00pci_remove,
+	.suspend	= rt2x00pci_suspend,
+	.resume		= rt2x00pci_resume,
+};
+
+module_pci_driver(rt2400pci_driver);
diff --git a/drivers/net/wireless/rt2x00/rt2400pci.h b/drivers/net/wireless/rt2x00/rt2400pci.h
new file mode 100644
index 0000000..0fd3a9d
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2400pci.h
@@ -0,0 +1,961 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2400pci
+	Abstract: Data structures and registers for the rt2400pci module.
+	Supported chipsets: RT2460.
+ */
+
+#ifndef RT2400PCI_H
+#define RT2400PCI_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2420				0x0000
+#define RF2421				0x0001
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET		100
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x0000
+#define CSR_REG_SIZE			0x014c
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x0100
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x0020
+#define RF_BASE				0x0004
+#define RF_SIZE				0x000c
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * CSR0: ASIC revision number.
+ */
+#define CSR0				0x0000
+#define CSR0_REVISION			FIELD32(0x0000ffff)
+
+/*
+ * CSR1: System control register.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define CSR1				0x0004
+#define CSR1_SOFT_RESET			FIELD32(0x00000001)
+#define CSR1_BBP_RESET			FIELD32(0x00000002)
+#define CSR1_HOST_READY			FIELD32(0x00000004)
+
+/*
+ * CSR2: System admin status register (invalid).
+ */
+#define CSR2				0x0008
+
+/*
+ * CSR3: STA MAC address register 0.
+ */
+#define CSR3				0x000c
+#define CSR3_BYTE0			FIELD32(0x000000ff)
+#define CSR3_BYTE1			FIELD32(0x0000ff00)
+#define CSR3_BYTE2			FIELD32(0x00ff0000)
+#define CSR3_BYTE3			FIELD32(0xff000000)
+
+/*
+ * CSR4: STA MAC address register 1.
+ */
+#define CSR4				0x0010
+#define CSR4_BYTE4			FIELD32(0x000000ff)
+#define CSR4_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * CSR5: BSSID register 0.
+ */
+#define CSR5				0x0014
+#define CSR5_BYTE0			FIELD32(0x000000ff)
+#define CSR5_BYTE1			FIELD32(0x0000ff00)
+#define CSR5_BYTE2			FIELD32(0x00ff0000)
+#define CSR5_BYTE3			FIELD32(0xff000000)
+
+/*
+ * CSR6: BSSID register 1.
+ */
+#define CSR6				0x0018
+#define CSR6_BYTE4			FIELD32(0x000000ff)
+#define CSR6_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * CSR7: Interrupt source register.
+ * Write 1 to clear interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ */
+#define CSR7				0x001c
+#define CSR7_TBCN_EXPIRE		FIELD32(0x00000001)
+#define CSR7_TWAKE_EXPIRE		FIELD32(0x00000002)
+#define CSR7_TATIMW_EXPIRE		FIELD32(0x00000004)
+#define CSR7_TXDONE_TXRING		FIELD32(0x00000008)
+#define CSR7_TXDONE_ATIMRING		FIELD32(0x00000010)
+#define CSR7_TXDONE_PRIORING		FIELD32(0x00000020)
+#define CSR7_RXDONE			FIELD32(0x00000040)
+
+/*
+ * CSR8: Interrupt mask register.
+ * Write 1 to mask interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ */
+#define CSR8				0x0020
+#define CSR8_TBCN_EXPIRE		FIELD32(0x00000001)
+#define CSR8_TWAKE_EXPIRE		FIELD32(0x00000002)
+#define CSR8_TATIMW_EXPIRE		FIELD32(0x00000004)
+#define CSR8_TXDONE_TXRING		FIELD32(0x00000008)
+#define CSR8_TXDONE_ATIMRING		FIELD32(0x00000010)
+#define CSR8_TXDONE_PRIORING		FIELD32(0x00000020)
+#define CSR8_RXDONE			FIELD32(0x00000040)
+
+/*
+ * CSR9: Maximum frame length register.
+ * MAX_FRAME_UNIT: Maximum frame length in 128b unit, default: 12.
+ */
+#define CSR9				0x0024
+#define CSR9_MAX_FRAME_UNIT		FIELD32(0x00000f80)
+
+/*
+ * CSR11: Back-off control register.
+ * CWMIN: CWmin. Default cwmin is 31 (2^5 - 1).
+ * CWMAX: CWmax. Default cwmax is 1023 (2^10 - 1).
+ * SLOT_TIME: Slot time, default is 20us for 802.11b.
+ * LONG_RETRY: Long retry count.
+ * SHORT_RETRY: Short retry count.
+ */
+#define CSR11				0x002c
+#define CSR11_CWMIN			FIELD32(0x0000000f)
+#define CSR11_CWMAX			FIELD32(0x000000f0)
+#define CSR11_SLOT_TIME			FIELD32(0x00001f00)
+#define CSR11_LONG_RETRY		FIELD32(0x00ff0000)
+#define CSR11_SHORT_RETRY		FIELD32(0xff000000)
+
+/*
+ * CSR12: Synchronization configuration register 0.
+ * All units in 1/16 TU.
+ * BEACON_INTERVAL: Beacon interval, default is 100 TU.
+ * CFPMAX_DURATION: Cfp maximum duration, default is 100 TU.
+ */
+#define CSR12				0x0030
+#define CSR12_BEACON_INTERVAL		FIELD32(0x0000ffff)
+#define CSR12_CFP_MAX_DURATION		FIELD32(0xffff0000)
+
+/*
+ * CSR13: Synchronization configuration register 1.
+ * All units in 1/16 TU.
+ * ATIMW_DURATION: Atim window duration.
+ * CFP_PERIOD: Cfp period, default is 0 TU.
+ */
+#define CSR13				0x0034
+#define CSR13_ATIMW_DURATION		FIELD32(0x0000ffff)
+#define CSR13_CFP_PERIOD		FIELD32(0x00ff0000)
+
+/*
+ * CSR14: Synchronization control register.
+ * TSF_COUNT: Enable tsf auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable tbcn with reload value.
+ * TCFP: Enable tcfp & cfp / cp switching.
+ * TATIMW: Enable tatimw & atim window switching.
+ * BEACON_GEN: Enable beacon generator.
+ * CFP_COUNT_PRELOAD: Cfp count preload value.
+ * TBCM_PRELOAD: Tbcn preload value in units of 64us.
+ */
+#define CSR14				0x0038
+#define CSR14_TSF_COUNT			FIELD32(0x00000001)
+#define CSR14_TSF_SYNC			FIELD32(0x00000006)
+#define CSR14_TBCN			FIELD32(0x00000008)
+#define CSR14_TCFP			FIELD32(0x00000010)
+#define CSR14_TATIMW			FIELD32(0x00000020)
+#define CSR14_BEACON_GEN		FIELD32(0x00000040)
+#define CSR14_CFP_COUNT_PRELOAD		FIELD32(0x0000ff00)
+#define CSR14_TBCM_PRELOAD		FIELD32(0xffff0000)
+
+/*
+ * CSR15: Synchronization status register.
+ * CFP: ASIC is in contention-free period.
+ * ATIMW: ASIC is in ATIM window.
+ * BEACON_SENT: Beacon is send.
+ */
+#define CSR15				0x003c
+#define CSR15_CFP			FIELD32(0x00000001)
+#define CSR15_ATIMW			FIELD32(0x00000002)
+#define CSR15_BEACON_SENT		FIELD32(0x00000004)
+
+/*
+ * CSR16: TSF timer register 0.
+ */
+#define CSR16				0x0040
+#define CSR16_LOW_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * CSR17: TSF timer register 1.
+ */
+#define CSR17				0x0044
+#define CSR17_HIGH_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * CSR18: IFS timer register 0.
+ * SIFS: Sifs, default is 10 us.
+ * PIFS: Pifs, default is 30 us.
+ */
+#define CSR18				0x0048
+#define CSR18_SIFS			FIELD32(0x0000ffff)
+#define CSR18_PIFS			FIELD32(0xffff0000)
+
+/*
+ * CSR19: IFS timer register 1.
+ * DIFS: Difs, default is 50 us.
+ * EIFS: Eifs, default is 364 us.
+ */
+#define CSR19				0x004c
+#define CSR19_DIFS			FIELD32(0x0000ffff)
+#define CSR19_EIFS			FIELD32(0xffff0000)
+
+/*
+ * CSR20: Wakeup timer register.
+ * DELAY_AFTER_TBCN: Delay after tbcn expired in units of 1/16 TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTOWAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define CSR20				0x0050
+#define CSR20_DELAY_AFTER_TBCN		FIELD32(0x0000ffff)
+#define CSR20_TBCN_BEFORE_WAKEUP	FIELD32(0x00ff0000)
+#define CSR20_AUTOWAKE			FIELD32(0x01000000)
+
+/*
+ * CSR21: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ */
+#define CSR21				0x0054
+#define CSR21_RELOAD			FIELD32(0x00000001)
+#define CSR21_EEPROM_DATA_CLOCK		FIELD32(0x00000002)
+#define CSR21_EEPROM_CHIP_SELECT	FIELD32(0x00000004)
+#define CSR21_EEPROM_DATA_IN		FIELD32(0x00000008)
+#define CSR21_EEPROM_DATA_OUT		FIELD32(0x00000010)
+#define CSR21_TYPE_93C46		FIELD32(0x00000020)
+
+/*
+ * CSR22: CFP control register.
+ * CFP_DURATION_REMAIN: Cfp duration remain, in units of TU.
+ * RELOAD_CFP_DURATION: Write 1 to reload cfp duration remain.
+ */
+#define CSR22				0x0058
+#define CSR22_CFP_DURATION_REMAIN	FIELD32(0x0000ffff)
+#define CSR22_RELOAD_CFP_DURATION	FIELD32(0x00010000)
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXCSR0: TX Control Register.
+ * KICK_TX: Kick tx ring.
+ * KICK_ATIM: Kick atim ring.
+ * KICK_PRIO: Kick priority ring.
+ * ABORT: Abort all transmit related ring operation.
+ */
+#define TXCSR0				0x0060
+#define TXCSR0_KICK_TX			FIELD32(0x00000001)
+#define TXCSR0_KICK_ATIM		FIELD32(0x00000002)
+#define TXCSR0_KICK_PRIO		FIELD32(0x00000004)
+#define TXCSR0_ABORT			FIELD32(0x00000008)
+
+/*
+ * TXCSR1: TX Configuration Register.
+ * ACK_TIMEOUT: Ack timeout, default = sifs + 2*slottime + acktime @ 1mbps.
+ * ACK_CONSUME_TIME: Ack consume time, default = sifs + acktime @ 1mbps.
+ * TSF_OFFSET: Insert tsf offset.
+ * AUTORESPONDER: Enable auto responder which include ack & cts.
+ */
+#define TXCSR1				0x0064
+#define TXCSR1_ACK_TIMEOUT		FIELD32(0x000001ff)
+#define TXCSR1_ACK_CONSUME_TIME		FIELD32(0x0003fe00)
+#define TXCSR1_TSF_OFFSET		FIELD32(0x00fc0000)
+#define TXCSR1_AUTORESPONDER		FIELD32(0x01000000)
+
+/*
+ * TXCSR2: Tx descriptor configuration register.
+ * TXD_SIZE: Tx descriptor size, default is 48.
+ * NUM_TXD: Number of tx entries in ring.
+ * NUM_ATIM: Number of atim entries in ring.
+ * NUM_PRIO: Number of priority entries in ring.
+ */
+#define TXCSR2				0x0068
+#define TXCSR2_TXD_SIZE			FIELD32(0x000000ff)
+#define TXCSR2_NUM_TXD			FIELD32(0x0000ff00)
+#define TXCSR2_NUM_ATIM			FIELD32(0x00ff0000)
+#define TXCSR2_NUM_PRIO			FIELD32(0xff000000)
+
+/*
+ * TXCSR3: TX Ring Base address register.
+ */
+#define TXCSR3				0x006c
+#define TXCSR3_TX_RING_REGISTER		FIELD32(0xffffffff)
+
+/*
+ * TXCSR4: TX Atim Ring Base address register.
+ */
+#define TXCSR4				0x0070
+#define TXCSR4_ATIM_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR5: TX Prio Ring Base address register.
+ */
+#define TXCSR5				0x0074
+#define TXCSR5_PRIO_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR6: Beacon Base address register.
+ */
+#define TXCSR6				0x0078
+#define TXCSR6_BEACON_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR7: Auto responder control register.
+ * AR_POWERMANAGEMENT: Auto responder power management bit.
+ */
+#define TXCSR7				0x007c
+#define TXCSR7_AR_POWERMANAGEMENT	FIELD32(0x00000001)
+
+/*
+ * Receive related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * RXCSR0: RX Control Register.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * PASS_CRC: Pass all packets with crc attached.
+ */
+#define RXCSR0				0x0080
+#define RXCSR0_DISABLE_RX		FIELD32(0x00000001)
+#define RXCSR0_DROP_CRC			FIELD32(0x00000002)
+#define RXCSR0_DROP_PHYSICAL		FIELD32(0x00000004)
+#define RXCSR0_DROP_CONTROL		FIELD32(0x00000008)
+#define RXCSR0_DROP_NOT_TO_ME		FIELD32(0x00000010)
+#define RXCSR0_DROP_TODS		FIELD32(0x00000020)
+#define RXCSR0_DROP_VERSION_ERROR	FIELD32(0x00000040)
+#define RXCSR0_PASS_CRC			FIELD32(0x00000080)
+
+/*
+ * RXCSR1: RX descriptor configuration register.
+ * RXD_SIZE: Rx descriptor size, default is 32b.
+ * NUM_RXD: Number of rx entries in ring.
+ */
+#define RXCSR1				0x0084
+#define RXCSR1_RXD_SIZE			FIELD32(0x000000ff)
+#define RXCSR1_NUM_RXD			FIELD32(0x0000ff00)
+
+/*
+ * RXCSR2: RX Ring base address register.
+ */
+#define RXCSR2				0x0088
+#define RXCSR2_RX_RING_REGISTER		FIELD32(0xffffffff)
+
+/*
+ * RXCSR3: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR3				0x0090
+#define RXCSR3_BBP_ID0			FIELD32(0x0000007f)
+#define RXCSR3_BBP_ID0_VALID		FIELD32(0x00000080)
+#define RXCSR3_BBP_ID1			FIELD32(0x00007f00)
+#define RXCSR3_BBP_ID1_VALID		FIELD32(0x00008000)
+#define RXCSR3_BBP_ID2			FIELD32(0x007f0000)
+#define RXCSR3_BBP_ID2_VALID		FIELD32(0x00800000)
+#define RXCSR3_BBP_ID3			FIELD32(0x7f000000)
+#define RXCSR3_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * RXCSR4: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR4				0x0094
+#define RXCSR4_BBP_ID4			FIELD32(0x0000007f)
+#define RXCSR4_BBP_ID4_VALID		FIELD32(0x00000080)
+#define RXCSR4_BBP_ID5			FIELD32(0x00007f00)
+#define RXCSR4_BBP_ID5_VALID		FIELD32(0x00008000)
+
+/*
+ * ARCSR0: Auto Responder PLCP config register 0.
+ * ARCSR0_AR_BBP_DATA#: Auto responder BBP register # data.
+ * ARCSR0_AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR0				0x0098
+#define ARCSR0_AR_BBP_DATA0		FIELD32(0x000000ff)
+#define ARCSR0_AR_BBP_ID0		FIELD32(0x0000ff00)
+#define ARCSR0_AR_BBP_DATA1		FIELD32(0x00ff0000)
+#define ARCSR0_AR_BBP_ID1		FIELD32(0xff000000)
+
+/*
+ * ARCSR1: Auto Responder PLCP config register 1.
+ * ARCSR0_AR_BBP_DATA#: Auto responder BBP register # data.
+ * ARCSR0_AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR1				0x009c
+#define ARCSR1_AR_BBP_DATA2		FIELD32(0x000000ff)
+#define ARCSR1_AR_BBP_ID2		FIELD32(0x0000ff00)
+#define ARCSR1_AR_BBP_DATA3		FIELD32(0x00ff0000)
+#define ARCSR1_AR_BBP_ID3		FIELD32(0xff000000)
+
+/*
+ * Miscellaneous Registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PCICSR: PCI control register.
+ * BIG_ENDIAN: 1: big endian, 0: little endian.
+ * RX_TRESHOLD: Rx threshold in dw to start pci access
+ * 0: 16dw (default), 1: 8dw, 2: 4dw, 3: 32dw.
+ * TX_TRESHOLD: Tx threshold in dw to start pci access
+ * 0: 0dw (default), 1: 1dw, 2: 4dw, 3: forward.
+ * BURST_LENTH: Pci burst length 0: 4dw (default, 1: 8dw, 2: 16dw, 3:32dw.
+ * ENABLE_CLK: Enable clk_run, pci clock can't going down to non-operational.
+ */
+#define PCICSR				0x008c
+#define PCICSR_BIG_ENDIAN		FIELD32(0x00000001)
+#define PCICSR_RX_TRESHOLD		FIELD32(0x00000006)
+#define PCICSR_TX_TRESHOLD		FIELD32(0x00000018)
+#define PCICSR_BURST_LENTH		FIELD32(0x00000060)
+#define PCICSR_ENABLE_CLK		FIELD32(0x00000080)
+
+/*
+ * CNT0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define CNT0				0x00a0
+#define CNT0_FCS_ERROR			FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT1: PLCP error count.
+ * CNT2: Long error count.
+ * CNT3: CCA false alarm count.
+ * CNT4: Rx FIFO overflow count.
+ * CNT5: Tx FIFO underrun count.
+ */
+#define TIMECSR2			0x00a8
+#define CNT1				0x00ac
+#define CNT2				0x00b0
+#define TIMECSR3			0x00b4
+#define CNT3				0x00b8
+#define CNT4				0x00bc
+#define CNT5				0x00c0
+
+/*
+ * Baseband Control Register.
+ */
+
+/*
+ * PWRCSR0: Power mode configuration register.
+ */
+#define PWRCSR0				0x00c4
+
+/*
+ * Power state transition time registers.
+ */
+#define PSCSR0				0x00c8
+#define PSCSR1				0x00cc
+#define PSCSR2				0x00d0
+#define PSCSR3				0x00d4
+
+/*
+ * PWRCSR1: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURR_STATE: BBP current state.
+ * RF_CURR_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define PWRCSR1				0x00d8
+#define PWRCSR1_SET_STATE		FIELD32(0x00000001)
+#define PWRCSR1_BBP_DESIRE_STATE	FIELD32(0x00000006)
+#define PWRCSR1_RF_DESIRE_STATE		FIELD32(0x00000018)
+#define PWRCSR1_BBP_CURR_STATE		FIELD32(0x00000060)
+#define PWRCSR1_RF_CURR_STATE		FIELD32(0x00000180)
+#define PWRCSR1_PUT_TO_SLEEP		FIELD32(0x00000200)
+
+/*
+ * TIMECSR: Timer control register.
+ * US_COUNT: 1 us timer count in units of clock cycles.
+ * US_64_COUNT: 64 us timer count in units of 1 us timer.
+ * BEACON_EXPECT: Beacon expect window.
+ */
+#define TIMECSR				0x00dc
+#define TIMECSR_US_COUNT		FIELD32(0x000000ff)
+#define TIMECSR_US_64_COUNT		FIELD32(0x0000ff00)
+#define TIMECSR_BEACON_EXPECT		FIELD32(0x00070000)
+
+/*
+ * MACCSR0: MAC configuration register 0.
+ */
+#define MACCSR0				0x00e0
+
+/*
+ * MACCSR1: MAC configuration register 1.
+ * KICK_RX: Kick one-shot rx in one-shot rx mode.
+ * ONESHOT_RXMODE: Enable one-shot rx mode for debugging.
+ * BBPRX_RESET_MODE: Ralink bbp rx reset mode.
+ * AUTO_TXBBP: Auto tx logic access bbp control register.
+ * AUTO_RXBBP: Auto rx logic access bbp control register.
+ * LOOPBACK: Loopback mode. 0: normal, 1: internal, 2: external, 3:rsvd.
+ * INTERSIL_IF: Intersil if calibration pin.
+ */
+#define MACCSR1				0x00e4
+#define MACCSR1_KICK_RX			FIELD32(0x00000001)
+#define MACCSR1_ONESHOT_RXMODE		FIELD32(0x00000002)
+#define MACCSR1_BBPRX_RESET_MODE	FIELD32(0x00000004)
+#define MACCSR1_AUTO_TXBBP		FIELD32(0x00000008)
+#define MACCSR1_AUTO_RXBBP		FIELD32(0x00000010)
+#define MACCSR1_LOOPBACK		FIELD32(0x00000060)
+#define MACCSR1_INTERSIL_IF		FIELD32(0x00000080)
+
+/*
+ * RALINKCSR: Ralink Rx auto-reset BBCR.
+ * AR_BBP_DATA#: Auto reset BBP register # data.
+ * AR_BBP_ID#: Auto reset BBP register # id.
+ */
+#define RALINKCSR			0x00e8
+#define RALINKCSR_AR_BBP_DATA0		FIELD32(0x000000ff)
+#define RALINKCSR_AR_BBP_ID0		FIELD32(0x0000ff00)
+#define RALINKCSR_AR_BBP_DATA1		FIELD32(0x00ff0000)
+#define RALINKCSR_AR_BBP_ID1		FIELD32(0xff000000)
+
+/*
+ * BCNCSR: Beacon interval control register.
+ * CHANGE: Write one to change beacon interval.
+ * DELTATIME: The delta time value.
+ * NUM_BEACON: Number of beacon according to mode.
+ * MODE: Please refer to asic specs.
+ * PLUS: Plus or minus delta time value.
+ */
+#define BCNCSR				0x00ec
+#define BCNCSR_CHANGE			FIELD32(0x00000001)
+#define BCNCSR_DELTATIME		FIELD32(0x0000001e)
+#define BCNCSR_NUM_BEACON		FIELD32(0x00001fe0)
+#define BCNCSR_MODE			FIELD32(0x00006000)
+#define BCNCSR_PLUS			FIELD32(0x00008000)
+
+/*
+ * BBP / RF / IF Control Register.
+ */
+
+/*
+ * BBPCSR: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REGNUM: Selected BBP register.
+ * BUSY: 1: asic is busy execute BBP programming.
+ * WRITE_CONTROL: 1: write BBP, 0: read BBP.
+ */
+#define BBPCSR				0x00f0
+#define BBPCSR_VALUE			FIELD32(0x000000ff)
+#define BBPCSR_REGNUM			FIELD32(0x00007f00)
+#define BBPCSR_BUSY			FIELD32(0x00008000)
+#define BBPCSR_WRITE_CONTROL		FIELD32(0x00010000)
+
+/*
+ * RFCSR: RF serial control register.
+ * VALUE: Register value + id to program into rf/if.
+ * NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * IF_SELECT: Chip to program: 0: rf, 1: if.
+ * PLL_LD: Rf pll_ld status.
+ * BUSY: 1: asic is busy execute rf programming.
+ */
+#define RFCSR				0x00f4
+#define RFCSR_VALUE			FIELD32(0x00ffffff)
+#define RFCSR_NUMBER_OF_BITS		FIELD32(0x1f000000)
+#define RFCSR_IF_SELECT			FIELD32(0x20000000)
+#define RFCSR_PLL_LD			FIELD32(0x40000000)
+#define RFCSR_BUSY			FIELD32(0x80000000)
+
+/*
+ * LEDCSR: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY: 0: idle, 1: active.
+ */
+#define LEDCSR				0x00f8
+#define LEDCSR_ON_PERIOD		FIELD32(0x000000ff)
+#define LEDCSR_OFF_PERIOD		FIELD32(0x0000ff00)
+#define LEDCSR_LINK			FIELD32(0x00010000)
+#define LEDCSR_ACTIVITY			FIELD32(0x00020000)
+
+/*
+ * ASIC pointer information.
+ * RXPTR: Current RX ring address.
+ * TXPTR: Current Tx ring address.
+ * PRIPTR: Current Priority ring address.
+ * ATIMPTR: Current ATIM ring address.
+ */
+#define RXPTR				0x0100
+#define TXPTR				0x0104
+#define PRIPTR				0x0108
+#define ATIMPTR				0x010c
+
+/*
+ * GPIO and others.
+ */
+
+/*
+ * GPIOCSR: GPIO control register.
+ *	GPIOCSR_VALx: Actual GPIO pin x value
+ *	GPIOCSR_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIOCSR				0x0120
+#define GPIOCSR_VAL0			FIELD32(0x00000001)
+#define GPIOCSR_VAL1			FIELD32(0x00000002)
+#define GPIOCSR_VAL2			FIELD32(0x00000004)
+#define GPIOCSR_VAL3			FIELD32(0x00000008)
+#define GPIOCSR_VAL4			FIELD32(0x00000010)
+#define GPIOCSR_VAL5			FIELD32(0x00000020)
+#define GPIOCSR_VAL6			FIELD32(0x00000040)
+#define GPIOCSR_VAL7			FIELD32(0x00000080)
+#define GPIOCSR_DIR0			FIELD32(0x00000100)
+#define GPIOCSR_DIR1			FIELD32(0x00000200)
+#define GPIOCSR_DIR2			FIELD32(0x00000400)
+#define GPIOCSR_DIR3			FIELD32(0x00000800)
+#define GPIOCSR_DIR4			FIELD32(0x00001000)
+#define GPIOCSR_DIR5			FIELD32(0x00002000)
+#define GPIOCSR_DIR6			FIELD32(0x00004000)
+#define GPIOCSR_DIR7			FIELD32(0x00008000)
+
+/*
+ * BBPPCSR: BBP Pin control register.
+ */
+#define BBPPCSR				0x0124
+
+/*
+ * BCNCSR1: Tx BEACON offset time control register.
+ * PRELOAD: Beacon timer offset in units of usec.
+ */
+#define BCNCSR1				0x0130
+#define BCNCSR1_PRELOAD			FIELD32(0x0000ffff)
+
+/*
+ * MACCSR2: TX_PE to RX_PE turn-around time control register
+ * DELAY: RX_PE low width, in units of pci clock cycle.
+ */
+#define MACCSR2				0x0134
+#define MACCSR2_DELAY			FIELD32(0x000000ff)
+
+/*
+ * ARCSR2: 1 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR2				0x013c
+#define ARCSR2_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR2_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR2_LENGTH_LOW		FIELD32(0x00ff0000)
+#define ARCSR2_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR3: 2 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR3				0x0140
+#define ARCSR3_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR3_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR3_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR4: 5.5 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR4				0x0144
+#define ARCSR4_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR4_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR4_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR5: 11 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR5				0x0148
+#define ARCSR5_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR5_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR5_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R1: TX antenna control
+ */
+#define BBP_R1_TX_ANTENNA		FIELD8(0x03)
+
+/*
+ * R4: RX antenna control
+ */
+#define BBP_R4_RX_ANTENNA		FIELD8(0x06)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER			FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER			FIELD32(0x00000100)
+#define RF3_TXPOWER			FIELD32(0x00003e00)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0		0x0002
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1		0x0003
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2		0x0004
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RF_TYPE: Rf_type of this adapter.
+ * LED_MODE: 0: default, 1: TX/RX activity,2: Single (ignore link), 3: rsvd.
+ * RX_AGCVGC: 0: disable, 1:enable BBP R13 tuning.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ */
+#define EEPROM_ANTENNA			0x0b
+#define EEPROM_ANTENNA_NUM		FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT	FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT	FIELD16(0x0030)
+#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0x0040)
+#define EEPROM_ANTENNA_LED_MODE		FIELD16(0x0180)
+#define EEPROM_ANTENNA_RX_AGCVGC_TUNING	FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO	FIELD16(0x0400)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START		0x0c
+#define EEPROM_BBP_SIZE			7
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START		0x13
+#define EEPROM_TXPOWER_SIZE		7
+#define EEPROM_TXPOWER_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2		FIELD16(0xff00)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			(8 * sizeof(__le32))
+#define RXD_DESC_SIZE			(8 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define TXD_W0_VALID			FIELD32(0x00000002)
+#define TXD_W0_RESULT			FIELD32(0x0000001c)
+#define TXD_W0_RETRY_COUNT		FIELD32(0x000000e0)
+#define TXD_W0_MORE_FRAG		FIELD32(0x00000100)
+#define TXD_W0_ACK			FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP		FIELD32(0x00000400)
+#define TXD_W0_RTS			FIELD32(0x00000800)
+#define TXD_W0_IFS			FIELD32(0x00006000)
+#define TXD_W0_RETRY_MODE		FIELD32(0x00008000)
+#define TXD_W0_AGC			FIELD32(0x00ff0000)
+#define TXD_W0_R2			FIELD32(0xff000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_BUFFER_ADDRESS		FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define TXD_W2_BUFFER_LENGTH		FIELD32(0x0000ffff)
+#define TXD_W2_DATABYTE_COUNT		FIELD32(0xffff0000)
+
+/*
+ * Word3 & 4: PLCP information
+ * The PLCP values should be treated as if they were BBP values.
+ */
+#define TXD_W3_PLCP_SIGNAL		FIELD32(0x000000ff)
+#define TXD_W3_PLCP_SIGNAL_REGNUM	FIELD32(0x00007f00)
+#define TXD_W3_PLCP_SIGNAL_BUSY		FIELD32(0x00008000)
+#define TXD_W3_PLCP_SERVICE		FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_SERVICE_REGNUM	FIELD32(0x7f000000)
+#define TXD_W3_PLCP_SERVICE_BUSY	FIELD32(0x80000000)
+
+#define TXD_W4_PLCP_LENGTH_LOW		FIELD32(0x000000ff)
+#define TXD_W3_PLCP_LENGTH_LOW_REGNUM	FIELD32(0x00007f00)
+#define TXD_W3_PLCP_LENGTH_LOW_BUSY	FIELD32(0x00008000)
+#define TXD_W4_PLCP_LENGTH_HIGH		FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_LENGTH_HIGH_REGNUM	FIELD32(0x7f000000)
+#define TXD_W3_PLCP_LENGTH_HIGH_BUSY	FIELD32(0x80000000)
+
+/*
+ * Word5
+ */
+#define TXD_W5_BBCR4			FIELD32(0x0000ffff)
+#define TXD_W5_AGC_REG			FIELD32(0x007f0000)
+#define TXD_W5_AGC_REG_VALID		FIELD32(0x00800000)
+#define TXD_W5_XXX_REG			FIELD32(0x7f000000)
+#define TXD_W5_XXX_REG_VALID		FIELD32(0x80000000)
+
+/*
+ * Word6
+ */
+#define TXD_W6_SK_BUFF			FIELD32(0xffffffff)
+
+/*
+ * Word7
+ */
+#define TXD_W7_RESERVED			FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000002)
+#define RXD_W0_MULTICAST		FIELD32(0x00000004)
+#define RXD_W0_BROADCAST		FIELD32(0x00000008)
+#define RXD_W0_MY_BSS			FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000020)
+#define RXD_W0_PHYSICAL_ERROR		FIELD32(0x00000080)
+#define RXD_W0_DATABYTE_COUNT		FIELD32(0xffff0000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_BUFFER_ADDRESS		FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define RXD_W2_BUFFER_LENGTH		FIELD32(0x0000ffff)
+#define RXD_W2_BBR0			FIELD32(0x00ff0000)
+#define RXD_W2_SIGNAL			FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define RXD_W3_RSSI			FIELD32(0x000000ff)
+#define RXD_W3_BBR3			FIELD32(0x0000ff00)
+#define RXD_W3_BBR4			FIELD32(0x00ff0000)
+#define RXD_W3_BBR5			FIELD32(0xff000000)
+
+/*
+ * Word4
+ */
+#define RXD_W4_RX_END_TIME		FIELD32(0xffffffff)
+
+/*
+ * Word5 & 6 & 7: Reserved
+ */
+#define RXD_W5_RESERVED			FIELD32(0xffffffff)
+#define RXD_W6_RESERVED			FIELD32(0xffffffff)
+#define RXD_W7_RESERVED			FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ * NOTE: Logics in rt2400pci for txpower are reversed
+ * compared to the other rt2x00 drivers. A higher txpower
+ * value means that the txpower must be lowered. This is
+ * important when converting the value coming from the
+ * mac80211 stack to the rt2400 acceptable value.
+ */
+#define MIN_TXPOWER	31
+#define MAX_TXPOWER	62
+#define DEFAULT_TXPOWER	39
+
+#define __CLAMP_TX(__txpower) \
+	clamp_t(char, (__txpower), MIN_TXPOWER, MAX_TXPOWER)
+
+#define TXPOWER_FROM_DEV(__txpower) \
+	((__CLAMP_TX(__txpower) - MAX_TXPOWER) + MIN_TXPOWER)
+
+#define TXPOWER_TO_DEV(__txpower) \
+	(MAX_TXPOWER - (__CLAMP_TX(__txpower) - MIN_TXPOWER))
+
+#endif /* RT2400PCI_H */
diff --git a/drivers/net/wireless/rt2x00/rt2500pci.c b/drivers/net/wireless/rt2x00/rt2500pci.c
new file mode 100644
index 0000000..1a6740b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500pci.c
@@ -0,0 +1,2148 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2500pci
+	Abstract: rt2500pci device specific routines.
+	Supported chipsets: RT2560.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2500pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00mmio_register_read and rt2x00mmio_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
+
+static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+				const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
+	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
+	eeprom->reg_data_clock =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
+	eeprom->reg_chip_select =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg = 0;
+
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+			   !!eeprom->reg_data_clock);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+			   !!eeprom->reg_chip_select);
+
+	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2500pci_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2x00mmio_register_read,
+		.write		= rt2x00mmio_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt2500pci_bbp_read,
+		.write		= rt2500pci_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt2500pci_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
+				     enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+
+	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
+	else if (led->type == LED_TYPE_ACTIVITY)
+		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
+
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+}
+
+static int rt2500pci_blink_set(struct led_classdev *led_cdev,
+			       unsigned long *delay_on,
+			       unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
+	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+
+	return 0;
+}
+
+static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00_led *led,
+			       enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt2500pci_brightness_set;
+	led->led_dev.blink_set = rt2500pci_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
+				  struct rt2x00_intf *intf,
+				  struct rt2x00intf_conf *conf,
+				  const unsigned int flags)
+{
+	struct data_queue *queue = rt2x00dev->bcn;
+	unsigned int bcn_preload;
+	u32 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable beacon config
+		 */
+		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
+		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
+		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
+		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
+
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
+					      conf->mac, sizeof(conf->mac));
+
+	if (flags & CONFIG_UPDATE_BSSID)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
+					      conf->bssid, sizeof(conf->bssid));
+}
+
+static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
+				 struct rt2x00lib_erp *erp,
+				 u32 changed)
+{
+	int preamble_mask;
+	u32 reg;
+
+	/*
+	 * When short preamble is enabled, we should set bit 0x08
+	 */
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		preamble_mask = erp->short_preamble << 3;
+
+		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
+		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
+		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
+		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 10));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
+		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 20));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
+		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 55));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
+		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 110));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
+		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
+		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
+		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
+		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
+		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
+	}
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
+		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
+				   erp->beacon_int * 16);
+		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
+	}
+
+}
+
+static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
+				 struct antenna_setup *ant)
+{
+	u32 reg;
+	u8 r14;
+	u8 r2;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
+	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
+	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
+
+	/*
+	 * Configure the TX antenna.
+	 */
+	switch (ant->tx) {
+	case ANTENNA_A:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
+		break;
+	}
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_A:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+		break;
+	}
+
+	/*
+	 * RT2525E and RT5222 need to flip TX I/Q
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
+
+		/*
+		 * RT2525E does not need RX I/Q Flip.
+		 */
+		if (rt2x00_rf(rt2x00dev, RF2525E))
+			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+	} else {
+		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
+	}
+
+	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
+	rt2500pci_bbp_write(rt2x00dev, 14, r14);
+	rt2500pci_bbp_write(rt2x00dev, 2, r2);
+}
+
+static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
+				     struct rf_channel *rf, const int txpower)
+{
+	u8 r70;
+
+	/*
+	 * Set TXpower.
+	 */
+	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+	/*
+	 * Switch on tuning bits.
+	 * For RT2523 devices we do not need to update the R1 register.
+	 */
+	if (!rt2x00_rf(rt2x00dev, RF2523))
+		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
+
+	/*
+	 * For RT2525 we should first set the channel to half band higher.
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525)) {
+		static const u32 vals[] = {
+			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
+			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
+			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
+			0x00080d2e, 0x00080d3a
+		};
+
+		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
+		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+		if (rf->rf4)
+			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+	}
+
+	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+	if (rf->rf4)
+		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+	/*
+	 * Channel 14 requires the Japan filter bit to be set.
+	 */
+	r70 = 0x46;
+	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
+	rt2500pci_bbp_write(rt2x00dev, 70, r70);
+
+	msleep(1);
+
+	/*
+	 * Switch off tuning bits.
+	 * For RT2523 devices we do not need to update the R1 register.
+	 */
+	if (!rt2x00_rf(rt2x00dev, RF2523)) {
+		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
+		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+	}
+
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
+	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	/*
+	 * Clear false CRC during channel switch.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
+}
+
+static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+				     const int txpower)
+{
+	u32 rf3;
+
+	rt2x00_rf_read(rt2x00dev, 3, &rf3);
+	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+	rt2500pci_rf_write(rt2x00dev, 3, rf3);
+}
+
+static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+					 struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
+				   (rt2x00dev->beacon_int - 20) * 16);
+		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	} else {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	}
+
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_conf *libconf,
+			     const unsigned int flags)
+{
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
+					 libconf->conf->power_level);
+	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+		rt2500pci_config_txpower(rt2x00dev,
+					 libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt2500pci_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt2500pci_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual)
+{
+	u32 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
+	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
+}
+
+static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+				     struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level_reg != vgc_level) {
+		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				  struct link_qual *qual)
+{
+	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
+}
+
+static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual, const u32 count)
+{
+	/*
+	 * To prevent collisions with MAC ASIC on chipsets
+	 * up to version C the link tuning should halt after 20
+	 * seconds while being associated.
+	 */
+	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
+	    rt2x00dev->intf_associated && count > 20)
+		return;
+
+	/*
+	 * Chipset versions C and lower should directly continue
+	 * to the dynamic CCA tuning. Chipset version D and higher
+	 * should go straight to dynamic CCA tuning when they
+	 * are not associated.
+	 */
+	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
+	    !rt2x00dev->intf_associated)
+		goto dynamic_cca_tune;
+
+	/*
+	 * A too low RSSI will cause too much false CCA which will
+	 * then corrupt the R17 tuning. To remidy this the tuning should
+	 * be stopped (While making sure the R17 value will not exceed limits)
+	 */
+	if (qual->rssi < -80 && count > 20) {
+		if (qual->vgc_level_reg >= 0x41)
+			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for short distance
+	 */
+	if (qual->rssi >= -58) {
+		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
+		return;
+	}
+
+	/*
+	 * Special mid-R17 for middle distance
+	 */
+	if (qual->rssi >= -74) {
+		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
+		return;
+	}
+
+	/*
+	 * Leave short or middle distance condition, restore r17
+	 * to the dynamic tuning range.
+	 */
+	if (qual->vgc_level_reg >= 0x41) {
+		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+		return;
+	}
+
+dynamic_cca_tune:
+
+	/*
+	 * R17 is inside the dynamic tuning range,
+	 * start tuning the link based on the false cca counter.
+	 */
+	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
+		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
+	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
+		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2500pci_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2500pci_kick_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_AC_VI:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2500pci_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+		/*
+		 * Wait for possibly running tbtt tasklets.
+		 */
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt2500pci_get_entry_state(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		        rt2x00_get_field32(word, TXD_W0_VALID));
+	}
+}
+
+static void rt2500pci_clear_entry(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+		rt2x00_desc_write(entry_priv->desc, 1, word);
+
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	}
+}
+
+static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+	u32 reg;
+
+	/*
+	 * Initialize registers.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
+	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
+
+	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
+	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
+
+	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
+	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
+
+	entry_priv = rt2x00dev->atim->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
+	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
+
+	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
+	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
+	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
+	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
+
+	entry_priv = rt2x00dev->rx->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
+	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
+
+	return 0;
+}
+
+static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
+	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
+	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+			   rt2x00dev->rx->data_size / 128);
+	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
+
+	/*
+	 * Always use CWmin and CWmax set in descriptor.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
+	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
+
+	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
+	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
+	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
+	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
+	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
+	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
+	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
+	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+
+	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
+	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
+	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
+	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
+
+	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	/*
+	 * We must clear the FCS and FIFO error count.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
+
+	return 0;
+}
+
+static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2500pci_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
+	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
+	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
+	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
+	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
+	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
+	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
+	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
+	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
+	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
+	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
+	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
+	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
+	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
+	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
+	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
+	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
+	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
+	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
+	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
+	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+				 enum dev_state state)
+{
+	int mask = (state == STATE_RADIO_IRQ_OFF);
+	u32 reg;
+	unsigned long flags;
+
+	/*
+	 * When interrupts are being enabled, the interrupt registers
+	 * should clear the register to assure a clean state.
+	 */
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+	}
+
+	/*
+	 * Only toggle the interrupts bits we are going to use.
+	 * Non-checked interrupt bits are disabled by default.
+	 */
+	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
+	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+	if (state == STATE_RADIO_IRQ_OFF) {
+		/*
+		 * Ensure that all tasklets are finished.
+		 */
+		tasklet_kill(&rt2x00dev->txstatus_tasklet);
+		tasklet_kill(&rt2x00dev->rxdone_tasklet);
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+	}
+}
+
+static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
+		     rt2500pci_init_registers(rt2x00dev) ||
+		     rt2500pci_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	return 0;
+}
+
+static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Disable power
+	 */
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
+}
+
+static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	u32 reg, reg2;
+	unsigned int i;
+	char put_to_sleep;
+	char bbp_state;
+	char rf_state;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
+	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
+		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
+		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
+		if (bbp_state == state && rf_state == state)
+			return 0;
+		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+		msleep(10);
+	}
+
+	return -EBUSY;
+}
+
+static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2500pci_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt2500pci_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt2500pci_toggle_irq(rt2x00dev, state);
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2500pci_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500pci_write_tx_desc(struct queue_entry *entry,
+				    struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *txd = entry_priv->desc;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
+	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
+	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
+	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
+	rt2x00_desc_write(txd, 2, word);
+
+	rt2x00_desc_read(txd, 3, &word);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_desc_write(txd, 3, word);
+
+	rt2x00_desc_read(txd, 10, &word);
+	rt2x00_set_field32(&word, TXD_W10_RTS,
+			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
+	rt2x00_desc_write(txd, 10, word);
+
+	/*
+	 * Writing TXD word 0 must the last to prevent a race condition with
+	 * the device, whereby the device may take hold of the TXD before we
+	 * finished updating it.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_OFDM,
+			   (txdesc->rate_mode == RATE_MODE_OFDM));
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
+	rt2x00_desc_write(txd, 0, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500pci_write_beacon(struct queue_entry *entry,
+				   struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	if (rt2x00queue_map_txskb(entry)) {
+		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
+		goto out;
+	}
+
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt2500pci_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+out:
+	/*
+	 * Enable beaconing again.
+	 */
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2500pci_fill_rxdone(struct queue_entry *entry,
+				  struct rxdone_entry_desc *rxdesc)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word0;
+	u32 word2;
+
+	rt2x00_desc_read(entry_priv->desc, 0, &word0);
+	rt2x00_desc_read(entry_priv->desc, 2, &word2);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+	/*
+	 * Obtain the status about this packet.
+	 * When frame was received with an OFDM bitrate,
+	 * the signal is the PLCP value. If it was received with
+	 * a CCK bitrate the signal is the rate in 100kbit/s.
+	 */
+	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
+	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
+	    entry->queue->rt2x00dev->rssi_offset;
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	else
+		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
+			     const enum data_queue_qid queue_idx)
+{
+	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+	struct queue_entry_priv_mmio *entry_priv;
+	struct queue_entry *entry;
+	struct txdone_entry_desc txdesc;
+	u32 word;
+
+	while (!rt2x00queue_empty(queue)) {
+		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		entry_priv = entry->priv_data;
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		    !rt2x00_get_field32(word, TXD_W0_VALID))
+			break;
+
+		/*
+		 * Obtain the status about this packet.
+		 */
+		txdesc.flags = 0;
+		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
+		case 0: /* Success */
+		case 1: /* Success with retry */
+			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
+			break;
+		case 2: /* Failure, excessive retries */
+			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+			/* Don't break, this is a failed frame! */
+		default: /* Failure */
+			__set_bit(TXDONE_FAILURE, &txdesc.flags);
+		}
+		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+		rt2x00lib_txdone(entry, &txdesc);
+	}
+}
+
+static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+					      struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, irq_field, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt2500pci_txstatus_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	u32 reg;
+
+	/*
+	 * Handle all tx queues.
+	 */
+	rt2500pci_txdone(rt2x00dev, QID_ATIM);
+	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
+	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
+
+	/*
+	 * Enable all TXDONE interrupts again.
+	 */
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
+		spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+		spin_unlock_irq(&rt2x00dev->irqmask_lock);
+	}
+}
+
+static void rt2500pci_tbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2x00lib_beacondone(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
+}
+
+static void rt2500pci_rxdone_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2x00mmio_rxdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
+}
+
+static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
+{
+	struct rt2x00_dev *rt2x00dev = dev_instance;
+	u32 reg, mask;
+
+	/*
+	 * Get the interrupt sources & saved to local variable.
+	 * Write register value back to clear pending interrupts.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+
+	if (!reg)
+		return IRQ_NONE;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return IRQ_HANDLED;
+
+	mask = reg;
+
+	/*
+	 * Schedule tasklets for interrupt handling.
+	 */
+	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_RXDONE))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
+		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+		/*
+		 * Mask out all txdone interrupts.
+		 */
+		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
+	}
+
+	/*
+	 * Disable all interrupts for which a tasklet was scheduled right now,
+	 * the tasklet will reenable the appropriate interrupts.
+	 */
+	spin_lock(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	reg |= mask;
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock(&rt2x00dev->irqmask_lock);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	struct eeprom_93cx6 eeprom;
+	u32 reg;
+	u16 word;
+	u8 *mac;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom.data = rt2x00dev;
+	eeprom.register_read = rt2500pci_eepromregister_read;
+	eeprom.register_write = rt2500pci_eepromregister_write;
+	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+	eeprom.reg_data_in = 0;
+	eeprom.reg_data_out = 0;
+	eeprom.reg_data_clock = 0;
+	eeprom.reg_chip_select = 0;
+
+	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+			       EEPROM_SIZE / sizeof(u16));
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
+				   LED_MODE_DEFAULT);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+				   DEFAULT_RSSI_OFFSET);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
+				  word);
+	}
+
+	return 0;
+}
+
+static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, RT2560, value,
+			rt2x00_get_field32(reg, CSR0_REVISION));
+
+	if (!rt2x00_rf(rt2x00dev, RF2522) &&
+	    !rt2x00_rf(rt2x00dev, RF2523) &&
+	    !rt2x00_rf(rt2x00dev, RF2524) &&
+	    !rt2x00_rf(rt2x00dev, RF2525) &&
+	    !rt2x00_rf(rt2x00dev, RF2525E) &&
+	    !rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * Store led mode, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	if (value == LED_MODE_TXRX_ACTIVITY ||
+	    value == LED_MODE_DEFAULT ||
+	    value == LED_MODE_ASUS)
+		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				   LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+		/*
+		 * On this device RFKILL initialized during probe does not work.
+		 */
+		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
+	}
+
+	/*
+	 * Check if the BBP tuning should be enabled.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
+	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
+		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read the RSSI <-> dBm offset information.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
+	rt2x00dev->rssi_offset =
+	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+	return 0;
+}
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2522[] = {
+	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
+	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
+	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
+	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
+	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
+	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
+	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
+	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
+	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
+	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
+	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
+	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
+	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
+	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
+};
+
+/*
+ * RF value list for RF2523
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2523[] = {
+	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
+	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
+	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
+	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
+	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
+	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
+	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
+	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
+	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
+	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
+	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
+	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
+	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
+	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2524
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2524[] = {
+	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
+	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
+	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
+	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
+	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
+	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
+	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
+	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
+	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
+	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
+	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
+	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
+	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
+	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525[] = {
+	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
+	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
+	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
+	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
+	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
+	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
+	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
+	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
+	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
+	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
+	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
+	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
+	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
+	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525e
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525e[] = {
+	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
+	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
+	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
+	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
+	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
+	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
+	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
+	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
+	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
+	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
+	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
+	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
+	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
+	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
+};
+
+/*
+ * RF value list for RF5222
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5222[] = {
+	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
+	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
+	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
+	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
+	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
+	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
+	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
+	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
+	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
+	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
+	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
+	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
+	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
+	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
+	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
+	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
+	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
+	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
+	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
+	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
+	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
+	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
+	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
+	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
+	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
+	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
+	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
+	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
+	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
+	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
+
+	/* 802.11 UNII */
+	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
+	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
+	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
+	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
+	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
+};
+
+static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Initialize all hw fields.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * Disable powersaving as default.
+	 */
+	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	if (rt2x00_rf(rt2x00dev, RF2522)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
+		spec->channels = rf_vals_bg_2522;
+	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
+		spec->channels = rf_vals_bg_2523;
+	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
+		spec->channels = rf_vals_bg_2524;
+	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
+		spec->channels = rf_vals_bg_2525;
+	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
+		spec->channels = rf_vals_bg_2525e;
+	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
+		spec->channels = rf_vals_5222;
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = MAX_TXPOWER;
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	if (spec->num_channels > 14) {
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].max_power = MAX_TXPOWER;
+			info[i].default_power1 = DEFAULT_TXPOWER;
+		}
+	}
+
+	return 0;
+}
+
+static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt2500pci_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt2500pci_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
+	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt2500pci_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device requires the atim queue and DMA-mapped skbs.
+	 */
+	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
+	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+	return tsf;
+}
+
+static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
+	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2500pci_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2x00mac_conf_tx,
+	.get_tsf		= rt2500pci_get_tsf,
+	.tx_last_beacon		= rt2500pci_tx_last_beacon,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
+	.irq_handler		= rt2500pci_interrupt,
+	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
+	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
+	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
+	.probe_hw		= rt2500pci_probe_hw,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt2500pci_get_entry_state,
+	.clear_entry		= rt2500pci_clear_entry,
+	.set_device_state	= rt2500pci_set_device_state,
+	.rfkill_poll		= rt2500pci_rfkill_poll,
+	.link_stats		= rt2500pci_link_stats,
+	.reset_tuner		= rt2500pci_reset_tuner,
+	.link_tuner		= rt2500pci_link_tuner,
+	.start_queue		= rt2500pci_start_queue,
+	.kick_queue		= rt2500pci_kick_queue,
+	.stop_queue		= rt2500pci_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt2500pci_write_tx_desc,
+	.write_beacon		= rt2500pci_write_beacon,
+	.fill_rxdone		= rt2500pci_fill_rxdone,
+	.config_filter		= rt2500pci_config_filter,
+	.config_intf		= rt2500pci_config_intf,
+	.config_erp		= rt2500pci_config_erp,
+	.config_ant		= rt2500pci_config_ant,
+	.config			= rt2500pci_config,
+};
+
+static void rt2500pci_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 1;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_ATIM:
+		queue->limit = 8;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt2500pci_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 1,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2500pci_queue_init,
+	.lib			= &rt2500pci_rt2x00_ops,
+	.hw			= &rt2500pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2500pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2500pci module information.
+ */
+static const struct pci_device_id rt2500pci_device_table[] = {
+	{ PCI_DEVICE(0x1814, 0x0201) },
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
+MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2500pci_probe(struct pci_dev *pci_dev,
+			   const struct pci_device_id *id)
+{
+	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
+}
+
+static struct pci_driver rt2500pci_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2500pci_device_table,
+	.probe		= rt2500pci_probe,
+	.remove		= rt2x00pci_remove,
+	.suspend	= rt2x00pci_suspend,
+	.resume		= rt2x00pci_resume,
+};
+
+module_pci_driver(rt2500pci_driver);
diff --git a/drivers/net/wireless/rt2x00/rt2500pci.h b/drivers/net/wireless/rt2x00/rt2500pci.h
new file mode 100644
index 0000000..573e87b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500pci.h
@@ -0,0 +1,1235 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2500pci
+	Abstract: Data structures and registers for the rt2500pci module.
+	Supported chipsets: RT2560.
+ */
+
+#ifndef RT2500PCI_H
+#define RT2500PCI_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2522				0x0000
+#define RF2523				0x0001
+#define RF2524				0x0002
+#define RF2525				0x0003
+#define RF2525E				0x0004
+#define RF5222				0x0010
+
+/*
+ * RT2560 version
+ */
+#define RT2560_VERSION_B		2
+#define RT2560_VERSION_C		3
+#define RT2560_VERSION_D		4
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET		121
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x0000
+#define CSR_REG_SIZE			0x0174
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x0200
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x0040
+#define RF_BASE				0x0004
+#define RF_SIZE				0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * CSR0: ASIC revision number.
+ */
+#define CSR0				0x0000
+#define CSR0_REVISION			FIELD32(0x0000ffff)
+
+/*
+ * CSR1: System control register.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define CSR1				0x0004
+#define CSR1_SOFT_RESET			FIELD32(0x00000001)
+#define CSR1_BBP_RESET			FIELD32(0x00000002)
+#define CSR1_HOST_READY			FIELD32(0x00000004)
+
+/*
+ * CSR2: System admin status register (invalid).
+ */
+#define CSR2				0x0008
+
+/*
+ * CSR3: STA MAC address register 0.
+ */
+#define CSR3				0x000c
+#define CSR3_BYTE0			FIELD32(0x000000ff)
+#define CSR3_BYTE1			FIELD32(0x0000ff00)
+#define CSR3_BYTE2			FIELD32(0x00ff0000)
+#define CSR3_BYTE3			FIELD32(0xff000000)
+
+/*
+ * CSR4: STA MAC address register 1.
+ */
+#define CSR4				0x0010
+#define CSR4_BYTE4			FIELD32(0x000000ff)
+#define CSR4_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * CSR5: BSSID register 0.
+ */
+#define CSR5				0x0014
+#define CSR5_BYTE0			FIELD32(0x000000ff)
+#define CSR5_BYTE1			FIELD32(0x0000ff00)
+#define CSR5_BYTE2			FIELD32(0x00ff0000)
+#define CSR5_BYTE3			FIELD32(0xff000000)
+
+/*
+ * CSR6: BSSID register 1.
+ */
+#define CSR6				0x0018
+#define CSR6_BYTE4			FIELD32(0x000000ff)
+#define CSR6_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * CSR7: Interrupt source register.
+ * Write 1 to clear.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ * DECRYPTION_DONE: Decryption done interrupt.
+ * ENCRYPTION_DONE: Encryption done interrupt.
+ * UART1_TX_TRESHOLD: UART1 TX reaches threshold.
+ * UART1_RX_TRESHOLD: UART1 RX reaches threshold.
+ * UART1_IDLE_TRESHOLD: UART1 IDLE over threshold.
+ * UART1_TX_BUFF_ERROR: UART1 TX buffer error.
+ * UART1_RX_BUFF_ERROR: UART1 RX buffer error.
+ * UART2_TX_TRESHOLD: UART2 TX reaches threshold.
+ * UART2_RX_TRESHOLD: UART2 RX reaches threshold.
+ * UART2_IDLE_TRESHOLD: UART2 IDLE over threshold.
+ * UART2_TX_BUFF_ERROR: UART2 TX buffer error.
+ * UART2_RX_BUFF_ERROR: UART2 RX buffer error.
+ * TIMER_CSR3_EXPIRE: TIMECSR3 timer expired (802.1H quiet period).
+
+ */
+#define CSR7				0x001c
+#define CSR7_TBCN_EXPIRE		FIELD32(0x00000001)
+#define CSR7_TWAKE_EXPIRE		FIELD32(0x00000002)
+#define CSR7_TATIMW_EXPIRE		FIELD32(0x00000004)
+#define CSR7_TXDONE_TXRING		FIELD32(0x00000008)
+#define CSR7_TXDONE_ATIMRING		FIELD32(0x00000010)
+#define CSR7_TXDONE_PRIORING		FIELD32(0x00000020)
+#define CSR7_RXDONE			FIELD32(0x00000040)
+#define CSR7_DECRYPTION_DONE		FIELD32(0x00000080)
+#define CSR7_ENCRYPTION_DONE		FIELD32(0x00000100)
+#define CSR7_UART1_TX_TRESHOLD		FIELD32(0x00000200)
+#define CSR7_UART1_RX_TRESHOLD		FIELD32(0x00000400)
+#define CSR7_UART1_IDLE_TRESHOLD	FIELD32(0x00000800)
+#define CSR7_UART1_TX_BUFF_ERROR	FIELD32(0x00001000)
+#define CSR7_UART1_RX_BUFF_ERROR	FIELD32(0x00002000)
+#define CSR7_UART2_TX_TRESHOLD		FIELD32(0x00004000)
+#define CSR7_UART2_RX_TRESHOLD		FIELD32(0x00008000)
+#define CSR7_UART2_IDLE_TRESHOLD	FIELD32(0x00010000)
+#define CSR7_UART2_TX_BUFF_ERROR	FIELD32(0x00020000)
+#define CSR7_UART2_RX_BUFF_ERROR	FIELD32(0x00040000)
+#define CSR7_TIMER_CSR3_EXPIRE		FIELD32(0x00080000)
+
+/*
+ * CSR8: Interrupt mask register.
+ * Write 1 to mask interrupt.
+ * TBCN_EXPIRE: Beacon timer expired interrupt.
+ * TWAKE_EXPIRE: Wakeup timer expired interrupt.
+ * TATIMW_EXPIRE: Timer of atim window expired interrupt.
+ * TXDONE_TXRING: Tx ring transmit done interrupt.
+ * TXDONE_ATIMRING: Atim ring transmit done interrupt.
+ * TXDONE_PRIORING: Priority ring transmit done interrupt.
+ * RXDONE: Receive done interrupt.
+ * DECRYPTION_DONE: Decryption done interrupt.
+ * ENCRYPTION_DONE: Encryption done interrupt.
+ * UART1_TX_TRESHOLD: UART1 TX reaches threshold.
+ * UART1_RX_TRESHOLD: UART1 RX reaches threshold.
+ * UART1_IDLE_TRESHOLD: UART1 IDLE over threshold.
+ * UART1_TX_BUFF_ERROR: UART1 TX buffer error.
+ * UART1_RX_BUFF_ERROR: UART1 RX buffer error.
+ * UART2_TX_TRESHOLD: UART2 TX reaches threshold.
+ * UART2_RX_TRESHOLD: UART2 RX reaches threshold.
+ * UART2_IDLE_TRESHOLD: UART2 IDLE over threshold.
+ * UART2_TX_BUFF_ERROR: UART2 TX buffer error.
+ * UART2_RX_BUFF_ERROR: UART2 RX buffer error.
+ * TIMER_CSR3_EXPIRE: TIMECSR3 timer expired (802.1H quiet period).
+ */
+#define CSR8				0x0020
+#define CSR8_TBCN_EXPIRE		FIELD32(0x00000001)
+#define CSR8_TWAKE_EXPIRE		FIELD32(0x00000002)
+#define CSR8_TATIMW_EXPIRE		FIELD32(0x00000004)
+#define CSR8_TXDONE_TXRING		FIELD32(0x00000008)
+#define CSR8_TXDONE_ATIMRING		FIELD32(0x00000010)
+#define CSR8_TXDONE_PRIORING		FIELD32(0x00000020)
+#define CSR8_RXDONE			FIELD32(0x00000040)
+#define CSR8_DECRYPTION_DONE		FIELD32(0x00000080)
+#define CSR8_ENCRYPTION_DONE		FIELD32(0x00000100)
+#define CSR8_UART1_TX_TRESHOLD		FIELD32(0x00000200)
+#define CSR8_UART1_RX_TRESHOLD		FIELD32(0x00000400)
+#define CSR8_UART1_IDLE_TRESHOLD	FIELD32(0x00000800)
+#define CSR8_UART1_TX_BUFF_ERROR	FIELD32(0x00001000)
+#define CSR8_UART1_RX_BUFF_ERROR	FIELD32(0x00002000)
+#define CSR8_UART2_TX_TRESHOLD		FIELD32(0x00004000)
+#define CSR8_UART2_RX_TRESHOLD		FIELD32(0x00008000)
+#define CSR8_UART2_IDLE_TRESHOLD	FIELD32(0x00010000)
+#define CSR8_UART2_TX_BUFF_ERROR	FIELD32(0x00020000)
+#define CSR8_UART2_RX_BUFF_ERROR	FIELD32(0x00040000)
+#define CSR8_TIMER_CSR3_EXPIRE		FIELD32(0x00080000)
+
+/*
+ * CSR9: Maximum frame length register.
+ * MAX_FRAME_UNIT: Maximum frame length in 128b unit, default: 12.
+ */
+#define CSR9				0x0024
+#define CSR9_MAX_FRAME_UNIT		FIELD32(0x00000f80)
+
+/*
+ * SECCSR0: WEP control register.
+ * KICK_DECRYPT: Kick decryption engine, self-clear.
+ * ONE_SHOT: 0: ring mode, 1: One shot only mode.
+ * DESC_ADDRESS: Descriptor physical address of frame.
+ */
+#define SECCSR0				0x0028
+#define SECCSR0_KICK_DECRYPT		FIELD32(0x00000001)
+#define SECCSR0_ONE_SHOT		FIELD32(0x00000002)
+#define SECCSR0_DESC_ADDRESS		FIELD32(0xfffffffc)
+
+/*
+ * CSR11: Back-off control register.
+ * CWMIN: CWmin. Default cwmin is 31 (2^5 - 1).
+ * CWMAX: CWmax. Default cwmax is 1023 (2^10 - 1).
+ * SLOT_TIME: Slot time, default is 20us for 802.11b
+ * CW_SELECT: CWmin/CWmax selection, 1: Register, 0: TXD.
+ * LONG_RETRY: Long retry count.
+ * SHORT_RETRY: Short retry count.
+ */
+#define CSR11				0x002c
+#define CSR11_CWMIN			FIELD32(0x0000000f)
+#define CSR11_CWMAX			FIELD32(0x000000f0)
+#define CSR11_SLOT_TIME			FIELD32(0x00001f00)
+#define CSR11_CW_SELECT			FIELD32(0x00002000)
+#define CSR11_LONG_RETRY		FIELD32(0x00ff0000)
+#define CSR11_SHORT_RETRY		FIELD32(0xff000000)
+
+/*
+ * CSR12: Synchronization configuration register 0.
+ * All units in 1/16 TU.
+ * BEACON_INTERVAL: Beacon interval, default is 100 TU.
+ * CFP_MAX_DURATION: Cfp maximum duration, default is 100 TU.
+ */
+#define CSR12				0x0030
+#define CSR12_BEACON_INTERVAL		FIELD32(0x0000ffff)
+#define CSR12_CFP_MAX_DURATION		FIELD32(0xffff0000)
+
+/*
+ * CSR13: Synchronization configuration register 1.
+ * All units in 1/16 TU.
+ * ATIMW_DURATION: Atim window duration.
+ * CFP_PERIOD: Cfp period, default is 0 TU.
+ */
+#define CSR13				0x0034
+#define CSR13_ATIMW_DURATION		FIELD32(0x0000ffff)
+#define CSR13_CFP_PERIOD		FIELD32(0x00ff0000)
+
+/*
+ * CSR14: Synchronization control register.
+ * TSF_COUNT: Enable tsf auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable tbcn with reload value.
+ * TCFP: Enable tcfp & cfp / cp switching.
+ * TATIMW: Enable tatimw & atim window switching.
+ * BEACON_GEN: Enable beacon generator.
+ * CFP_COUNT_PRELOAD: Cfp count preload value.
+ * TBCM_PRELOAD: Tbcn preload value in units of 64us.
+ */
+#define CSR14				0x0038
+#define CSR14_TSF_COUNT			FIELD32(0x00000001)
+#define CSR14_TSF_SYNC			FIELD32(0x00000006)
+#define CSR14_TBCN			FIELD32(0x00000008)
+#define CSR14_TCFP			FIELD32(0x00000010)
+#define CSR14_TATIMW			FIELD32(0x00000020)
+#define CSR14_BEACON_GEN		FIELD32(0x00000040)
+#define CSR14_CFP_COUNT_PRELOAD		FIELD32(0x0000ff00)
+#define CSR14_TBCM_PRELOAD		FIELD32(0xffff0000)
+
+/*
+ * CSR15: Synchronization status register.
+ * CFP: ASIC is in contention-free period.
+ * ATIMW: ASIC is in ATIM window.
+ * BEACON_SENT: Beacon is send.
+ */
+#define CSR15				0x003c
+#define CSR15_CFP			FIELD32(0x00000001)
+#define CSR15_ATIMW			FIELD32(0x00000002)
+#define CSR15_BEACON_SENT		FIELD32(0x00000004)
+
+/*
+ * CSR16: TSF timer register 0.
+ */
+#define CSR16				0x0040
+#define CSR16_LOW_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * CSR17: TSF timer register 1.
+ */
+#define CSR17				0x0044
+#define CSR17_HIGH_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * CSR18: IFS timer register 0.
+ * SIFS: Sifs, default is 10 us.
+ * PIFS: Pifs, default is 30 us.
+ */
+#define CSR18				0x0048
+#define CSR18_SIFS			FIELD32(0x000001ff)
+#define CSR18_PIFS			FIELD32(0x001f0000)
+
+/*
+ * CSR19: IFS timer register 1.
+ * DIFS: Difs, default is 50 us.
+ * EIFS: Eifs, default is 364 us.
+ */
+#define CSR19				0x004c
+#define CSR19_DIFS			FIELD32(0x0000ffff)
+#define CSR19_EIFS			FIELD32(0xffff0000)
+
+/*
+ * CSR20: Wakeup timer register.
+ * DELAY_AFTER_TBCN: Delay after tbcn expired in units of 1/16 TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTOWAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define CSR20				0x0050
+#define CSR20_DELAY_AFTER_TBCN		FIELD32(0x0000ffff)
+#define CSR20_TBCN_BEFORE_WAKEUP	FIELD32(0x00ff0000)
+#define CSR20_AUTOWAKE			FIELD32(0x01000000)
+
+/*
+ * CSR21: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ */
+#define CSR21				0x0054
+#define CSR21_RELOAD			FIELD32(0x00000001)
+#define CSR21_EEPROM_DATA_CLOCK		FIELD32(0x00000002)
+#define CSR21_EEPROM_CHIP_SELECT	FIELD32(0x00000004)
+#define CSR21_EEPROM_DATA_IN		FIELD32(0x00000008)
+#define CSR21_EEPROM_DATA_OUT		FIELD32(0x00000010)
+#define CSR21_TYPE_93C46		FIELD32(0x00000020)
+
+/*
+ * CSR22: CFP control register.
+ * CFP_DURATION_REMAIN: Cfp duration remain, in units of TU.
+ * RELOAD_CFP_DURATION: Write 1 to reload cfp duration remain.
+ */
+#define CSR22				0x0058
+#define CSR22_CFP_DURATION_REMAIN	FIELD32(0x0000ffff)
+#define CSR22_RELOAD_CFP_DURATION	FIELD32(0x00010000)
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXCSR0: TX Control Register.
+ * KICK_TX: Kick tx ring.
+ * KICK_ATIM: Kick atim ring.
+ * KICK_PRIO: Kick priority ring.
+ * ABORT: Abort all transmit related ring operation.
+ */
+#define TXCSR0				0x0060
+#define TXCSR0_KICK_TX			FIELD32(0x00000001)
+#define TXCSR0_KICK_ATIM		FIELD32(0x00000002)
+#define TXCSR0_KICK_PRIO		FIELD32(0x00000004)
+#define TXCSR0_ABORT			FIELD32(0x00000008)
+
+/*
+ * TXCSR1: TX Configuration Register.
+ * ACK_TIMEOUT: Ack timeout, default = sifs + 2*slottime + acktime @ 1mbps.
+ * ACK_CONSUME_TIME: Ack consume time, default = sifs + acktime @ 1mbps.
+ * TSF_OFFSET: Insert tsf offset.
+ * AUTORESPONDER: Enable auto responder which include ack & cts.
+ */
+#define TXCSR1				0x0064
+#define TXCSR1_ACK_TIMEOUT		FIELD32(0x000001ff)
+#define TXCSR1_ACK_CONSUME_TIME		FIELD32(0x0003fe00)
+#define TXCSR1_TSF_OFFSET		FIELD32(0x00fc0000)
+#define TXCSR1_AUTORESPONDER		FIELD32(0x01000000)
+
+/*
+ * TXCSR2: Tx descriptor configuration register.
+ * TXD_SIZE: Tx descriptor size, default is 48.
+ * NUM_TXD: Number of tx entries in ring.
+ * NUM_ATIM: Number of atim entries in ring.
+ * NUM_PRIO: Number of priority entries in ring.
+ */
+#define TXCSR2				0x0068
+#define TXCSR2_TXD_SIZE			FIELD32(0x000000ff)
+#define TXCSR2_NUM_TXD			FIELD32(0x0000ff00)
+#define TXCSR2_NUM_ATIM			FIELD32(0x00ff0000)
+#define TXCSR2_NUM_PRIO			FIELD32(0xff000000)
+
+/*
+ * TXCSR3: TX Ring Base address register.
+ */
+#define TXCSR3				0x006c
+#define TXCSR3_TX_RING_REGISTER		FIELD32(0xffffffff)
+
+/*
+ * TXCSR4: TX Atim Ring Base address register.
+ */
+#define TXCSR4				0x0070
+#define TXCSR4_ATIM_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR5: TX Prio Ring Base address register.
+ */
+#define TXCSR5				0x0074
+#define TXCSR5_PRIO_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR6: Beacon Base address register.
+ */
+#define TXCSR6				0x0078
+#define TXCSR6_BEACON_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TXCSR7: Auto responder control register.
+ * AR_POWERMANAGEMENT: Auto responder power management bit.
+ */
+#define TXCSR7				0x007c
+#define TXCSR7_AR_POWERMANAGEMENT	FIELD32(0x00000001)
+
+/*
+ * TXCSR8: CCK Tx BBP register.
+ */
+#define TXCSR8				0x0098
+#define TXCSR8_BBP_ID0			FIELD32(0x0000007f)
+#define TXCSR8_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXCSR8_BBP_ID1			FIELD32(0x00007f00)
+#define TXCSR8_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXCSR8_BBP_ID2			FIELD32(0x007f0000)
+#define TXCSR8_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXCSR8_BBP_ID3			FIELD32(0x7f000000)
+#define TXCSR8_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXCSR9: OFDM TX BBP registers
+ * OFDM_SIGNAL: BBP rate field address for OFDM.
+ * OFDM_SERVICE: BBP service field address for OFDM.
+ * OFDM_LENGTH_LOW: BBP length low byte address for OFDM.
+ * OFDM_LENGTH_HIGH: BBP length high byte address for OFDM.
+ */
+#define TXCSR9				0x0094
+#define TXCSR9_OFDM_RATE		FIELD32(0x000000ff)
+#define TXCSR9_OFDM_SERVICE		FIELD32(0x0000ff00)
+#define TXCSR9_OFDM_LENGTH_LOW		FIELD32(0x00ff0000)
+#define TXCSR9_OFDM_LENGTH_HIGH		FIELD32(0xff000000)
+
+/*
+ * Receive related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * RXCSR0: RX Control Register.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * PASS_CRC: Pass all packets with crc attached.
+ * PASS_CRC: Pass all packets with crc attached.
+ * PASS_PLCP: Pass all packets with 4 bytes PLCP attached.
+ * DROP_MCAST: Drop multicast frames.
+ * DROP_BCAST: Drop broadcast frames.
+ * ENABLE_QOS: Accept QOS data frame and parse QOS field.
+ */
+#define RXCSR0				0x0080
+#define RXCSR0_DISABLE_RX		FIELD32(0x00000001)
+#define RXCSR0_DROP_CRC			FIELD32(0x00000002)
+#define RXCSR0_DROP_PHYSICAL		FIELD32(0x00000004)
+#define RXCSR0_DROP_CONTROL		FIELD32(0x00000008)
+#define RXCSR0_DROP_NOT_TO_ME		FIELD32(0x00000010)
+#define RXCSR0_DROP_TODS		FIELD32(0x00000020)
+#define RXCSR0_DROP_VERSION_ERROR	FIELD32(0x00000040)
+#define RXCSR0_PASS_CRC			FIELD32(0x00000080)
+#define RXCSR0_PASS_PLCP		FIELD32(0x00000100)
+#define RXCSR0_DROP_MCAST		FIELD32(0x00000200)
+#define RXCSR0_DROP_BCAST		FIELD32(0x00000400)
+#define RXCSR0_ENABLE_QOS		FIELD32(0x00000800)
+
+/*
+ * RXCSR1: RX descriptor configuration register.
+ * RXD_SIZE: Rx descriptor size, default is 32b.
+ * NUM_RXD: Number of rx entries in ring.
+ */
+#define RXCSR1				0x0084
+#define RXCSR1_RXD_SIZE			FIELD32(0x000000ff)
+#define RXCSR1_NUM_RXD			FIELD32(0x0000ff00)
+
+/*
+ * RXCSR2: RX Ring base address register.
+ */
+#define RXCSR2				0x0088
+#define RXCSR2_RX_RING_REGISTER		FIELD32(0xffffffff)
+
+/*
+ * RXCSR3: BBP ID register for Rx operation.
+ * BBP_ID#: BBP register # id.
+ * BBP_ID#_VALID: BBP register # id is valid or not.
+ */
+#define RXCSR3				0x0090
+#define RXCSR3_BBP_ID0			FIELD32(0x0000007f)
+#define RXCSR3_BBP_ID0_VALID		FIELD32(0x00000080)
+#define RXCSR3_BBP_ID1			FIELD32(0x00007f00)
+#define RXCSR3_BBP_ID1_VALID		FIELD32(0x00008000)
+#define RXCSR3_BBP_ID2			FIELD32(0x007f0000)
+#define RXCSR3_BBP_ID2_VALID		FIELD32(0x00800000)
+#define RXCSR3_BBP_ID3			FIELD32(0x7f000000)
+#define RXCSR3_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * ARCSR1: Auto Responder PLCP config register 1.
+ * AR_BBP_DATA#: Auto responder BBP register # data.
+ * AR_BBP_ID#: Auto responder BBP register # Id.
+ */
+#define ARCSR1				0x009c
+#define ARCSR1_AR_BBP_DATA2		FIELD32(0x000000ff)
+#define ARCSR1_AR_BBP_ID2		FIELD32(0x0000ff00)
+#define ARCSR1_AR_BBP_DATA3		FIELD32(0x00ff0000)
+#define ARCSR1_AR_BBP_ID3		FIELD32(0xff000000)
+
+/*
+ * Miscellaneous Registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+
+ */
+
+/*
+ * PCICSR: PCI control register.
+ * BIG_ENDIAN: 1: big endian, 0: little endian.
+ * RX_TRESHOLD: Rx threshold in dw to start pci access
+ * 0: 16dw (default), 1: 8dw, 2: 4dw, 3: 32dw.
+ * TX_TRESHOLD: Tx threshold in dw to start pci access
+ * 0: 0dw (default), 1: 1dw, 2: 4dw, 3: forward.
+ * BURST_LENTH: Pci burst length 0: 4dw (default, 1: 8dw, 2: 16dw, 3:32dw.
+ * ENABLE_CLK: Enable clk_run, pci clock can't going down to non-operational.
+ * READ_MULTIPLE: Enable memory read multiple.
+ * WRITE_INVALID: Enable memory write & invalid.
+ */
+#define PCICSR				0x008c
+#define PCICSR_BIG_ENDIAN		FIELD32(0x00000001)
+#define PCICSR_RX_TRESHOLD		FIELD32(0x00000006)
+#define PCICSR_TX_TRESHOLD		FIELD32(0x00000018)
+#define PCICSR_BURST_LENTH		FIELD32(0x00000060)
+#define PCICSR_ENABLE_CLK		FIELD32(0x00000080)
+#define PCICSR_READ_MULTIPLE		FIELD32(0x00000100)
+#define PCICSR_WRITE_INVALID		FIELD32(0x00000200)
+
+/*
+ * CNT0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define CNT0				0x00a0
+#define CNT0_FCS_ERROR			FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT1: PLCP error count.
+ * CNT2: Long error count.
+ */
+#define TIMECSR2			0x00a8
+#define CNT1				0x00ac
+#define CNT2				0x00b0
+#define TIMECSR3			0x00b4
+
+/*
+ * CNT3: CCA false alarm count.
+ */
+#define CNT3				0x00b8
+#define CNT3_FALSE_CCA			FIELD32(0x0000ffff)
+
+/*
+ * Statistic Register.
+ * CNT4: Rx FIFO overflow count.
+ * CNT5: Tx FIFO underrun count.
+ */
+#define CNT4				0x00bc
+#define CNT5				0x00c0
+
+/*
+ * Baseband Control Register.
+ */
+
+/*
+ * PWRCSR0: Power mode configuration register.
+ */
+#define PWRCSR0				0x00c4
+
+/*
+ * Power state transition time registers.
+ */
+#define PSCSR0				0x00c8
+#define PSCSR1				0x00cc
+#define PSCSR2				0x00d0
+#define PSCSR3				0x00d4
+
+/*
+ * PWRCSR1: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURR_STATE: BBP current state.
+ * RF_CURR_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define PWRCSR1				0x00d8
+#define PWRCSR1_SET_STATE		FIELD32(0x00000001)
+#define PWRCSR1_BBP_DESIRE_STATE	FIELD32(0x00000006)
+#define PWRCSR1_RF_DESIRE_STATE		FIELD32(0x00000018)
+#define PWRCSR1_BBP_CURR_STATE		FIELD32(0x00000060)
+#define PWRCSR1_RF_CURR_STATE		FIELD32(0x00000180)
+#define PWRCSR1_PUT_TO_SLEEP		FIELD32(0x00000200)
+
+/*
+ * TIMECSR: Timer control register.
+ * US_COUNT: 1 us timer count in units of clock cycles.
+ * US_64_COUNT: 64 us timer count in units of 1 us timer.
+ * BEACON_EXPECT: Beacon expect window.
+ */
+#define TIMECSR				0x00dc
+#define TIMECSR_US_COUNT		FIELD32(0x000000ff)
+#define TIMECSR_US_64_COUNT		FIELD32(0x0000ff00)
+#define TIMECSR_BEACON_EXPECT		FIELD32(0x00070000)
+
+/*
+ * MACCSR0: MAC configuration register 0.
+ */
+#define MACCSR0				0x00e0
+
+/*
+ * MACCSR1: MAC configuration register 1.
+ * KICK_RX: Kick one-shot rx in one-shot rx mode.
+ * ONESHOT_RXMODE: Enable one-shot rx mode for debugging.
+ * BBPRX_RESET_MODE: Ralink bbp rx reset mode.
+ * AUTO_TXBBP: Auto tx logic access bbp control register.
+ * AUTO_RXBBP: Auto rx logic access bbp control register.
+ * LOOPBACK: Loopback mode. 0: normal, 1: internal, 2: external, 3:rsvd.
+ * INTERSIL_IF: Intersil if calibration pin.
+ */
+#define MACCSR1				0x00e4
+#define MACCSR1_KICK_RX			FIELD32(0x00000001)
+#define MACCSR1_ONESHOT_RXMODE		FIELD32(0x00000002)
+#define MACCSR1_BBPRX_RESET_MODE	FIELD32(0x00000004)
+#define MACCSR1_AUTO_TXBBP		FIELD32(0x00000008)
+#define MACCSR1_AUTO_RXBBP		FIELD32(0x00000010)
+#define MACCSR1_LOOPBACK		FIELD32(0x00000060)
+#define MACCSR1_INTERSIL_IF		FIELD32(0x00000080)
+
+/*
+ * RALINKCSR: Ralink Rx auto-reset BBCR.
+ * AR_BBP_DATA#: Auto reset BBP register # data.
+ * AR_BBP_ID#: Auto reset BBP register # id.
+ */
+#define RALINKCSR			0x00e8
+#define RALINKCSR_AR_BBP_DATA0		FIELD32(0x000000ff)
+#define RALINKCSR_AR_BBP_ID0		FIELD32(0x00007f00)
+#define RALINKCSR_AR_BBP_VALID0		FIELD32(0x00008000)
+#define RALINKCSR_AR_BBP_DATA1		FIELD32(0x00ff0000)
+#define RALINKCSR_AR_BBP_ID1		FIELD32(0x7f000000)
+#define RALINKCSR_AR_BBP_VALID1		FIELD32(0x80000000)
+
+/*
+ * BCNCSR: Beacon interval control register.
+ * CHANGE: Write one to change beacon interval.
+ * DELTATIME: The delta time value.
+ * NUM_BEACON: Number of beacon according to mode.
+ * MODE: Please refer to asic specs.
+ * PLUS: Plus or minus delta time value.
+ */
+#define BCNCSR				0x00ec
+#define BCNCSR_CHANGE			FIELD32(0x00000001)
+#define BCNCSR_DELTATIME		FIELD32(0x0000001e)
+#define BCNCSR_NUM_BEACON		FIELD32(0x00001fe0)
+#define BCNCSR_MODE			FIELD32(0x00006000)
+#define BCNCSR_PLUS			FIELD32(0x00008000)
+
+/*
+ * BBP / RF / IF Control Register.
+ */
+
+/*
+ * BBPCSR: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REGNUM: Selected BBP register.
+ * BUSY: 1: asic is busy execute BBP programming.
+ * WRITE_CONTROL: 1: write BBP, 0: read BBP.
+ */
+#define BBPCSR				0x00f0
+#define BBPCSR_VALUE			FIELD32(0x000000ff)
+#define BBPCSR_REGNUM			FIELD32(0x00007f00)
+#define BBPCSR_BUSY			FIELD32(0x00008000)
+#define BBPCSR_WRITE_CONTROL		FIELD32(0x00010000)
+
+/*
+ * RFCSR: RF serial control register.
+ * VALUE: Register value + id to program into rf/if.
+ * NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * IF_SELECT: Chip to program: 0: rf, 1: if.
+ * PLL_LD: Rf pll_ld status.
+ * BUSY: 1: asic is busy execute rf programming.
+ */
+#define RFCSR				0x00f4
+#define RFCSR_VALUE			FIELD32(0x00ffffff)
+#define RFCSR_NUMBER_OF_BITS		FIELD32(0x1f000000)
+#define RFCSR_IF_SELECT			FIELD32(0x20000000)
+#define RFCSR_PLL_LD			FIELD32(0x40000000)
+#define RFCSR_BUSY			FIELD32(0x80000000)
+
+/*
+ * LEDCSR: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY: 0: idle, 1: active.
+ * LINK_POLARITY: 0: active low, 1: active high.
+ * ACTIVITY_POLARITY: 0: active low, 1: active high.
+ * LED_DEFAULT: LED state for "enable" 0: ON, 1: OFF.
+ */
+#define LEDCSR				0x00f8
+#define LEDCSR_ON_PERIOD		FIELD32(0x000000ff)
+#define LEDCSR_OFF_PERIOD		FIELD32(0x0000ff00)
+#define LEDCSR_LINK			FIELD32(0x00010000)
+#define LEDCSR_ACTIVITY			FIELD32(0x00020000)
+#define LEDCSR_LINK_POLARITY		FIELD32(0x00040000)
+#define LEDCSR_ACTIVITY_POLARITY	FIELD32(0x00080000)
+#define LEDCSR_LED_DEFAULT		FIELD32(0x00100000)
+
+/*
+ * SECCSR3: AES control register.
+ */
+#define SECCSR3				0x00fc
+
+/*
+ * ASIC pointer information.
+ * RXPTR: Current RX ring address.
+ * TXPTR: Current Tx ring address.
+ * PRIPTR: Current Priority ring address.
+ * ATIMPTR: Current ATIM ring address.
+ */
+#define RXPTR				0x0100
+#define TXPTR				0x0104
+#define PRIPTR				0x0108
+#define ATIMPTR				0x010c
+
+/*
+ * TXACKCSR0: TX ACK timeout.
+ */
+#define TXACKCSR0			0x0110
+
+/*
+ * ACK timeout count registers.
+ * ACKCNT0: TX ACK timeout count.
+ * ACKCNT1: RX ACK timeout count.
+ */
+#define ACKCNT0				0x0114
+#define ACKCNT1				0x0118
+
+/*
+ * GPIO and others.
+ */
+
+/*
+ * GPIOCSR: GPIO control register.
+ *	GPIOCSR_VALx: GPIO value
+ *	GPIOCSR_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIOCSR				0x0120
+#define GPIOCSR_VAL0			FIELD32(0x00000001)
+#define GPIOCSR_VAL1			FIELD32(0x00000002)
+#define GPIOCSR_VAL2			FIELD32(0x00000004)
+#define GPIOCSR_VAL3			FIELD32(0x00000008)
+#define GPIOCSR_VAL4			FIELD32(0x00000010)
+#define GPIOCSR_VAL5			FIELD32(0x00000020)
+#define GPIOCSR_VAL6			FIELD32(0x00000040)
+#define GPIOCSR_VAL7			FIELD32(0x00000080)
+#define GPIOCSR_DIR0			FIELD32(0x00000100)
+#define GPIOCSR_DIR1			FIELD32(0x00000200)
+#define GPIOCSR_DIR2			FIELD32(0x00000400)
+#define GPIOCSR_DIR3			FIELD32(0x00000800)
+#define GPIOCSR_DIR4			FIELD32(0x00001000)
+#define GPIOCSR_DIR5			FIELD32(0x00002000)
+#define GPIOCSR_DIR6			FIELD32(0x00004000)
+#define GPIOCSR_DIR7			FIELD32(0x00008000)
+
+/*
+ * FIFO pointer registers.
+ * FIFOCSR0: TX FIFO pointer.
+ * FIFOCSR1: RX FIFO pointer.
+ */
+#define FIFOCSR0			0x0128
+#define FIFOCSR1			0x012c
+
+/*
+ * BCNCSR1: Tx BEACON offset time control register.
+ * PRELOAD: Beacon timer offset in units of usec.
+ * BEACON_CWMIN: 2^CwMin.
+ */
+#define BCNCSR1				0x0130
+#define BCNCSR1_PRELOAD			FIELD32(0x0000ffff)
+#define BCNCSR1_BEACON_CWMIN		FIELD32(0x000f0000)
+
+/*
+ * MACCSR2: TX_PE to RX_PE turn-around time control register
+ * DELAY: RX_PE low width, in units of pci clock cycle.
+ */
+#define MACCSR2				0x0134
+#define MACCSR2_DELAY			FIELD32(0x000000ff)
+
+/*
+ * TESTCSR: TEST mode selection register.
+ */
+#define TESTCSR				0x0138
+
+/*
+ * ARCSR2: 1 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR2				0x013c
+#define ARCSR2_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR2_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR2_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR3: 2 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR3				0x0140
+#define ARCSR3_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR3_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR3_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR4: 5.5 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR4				0x0144
+#define ARCSR4_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR4_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR4_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARCSR5: 11 Mbps ACK/CTS PLCP.
+ */
+#define ARCSR5				0x0148
+#define ARCSR5_SIGNAL			FIELD32(0x000000ff)
+#define ARCSR5_SERVICE			FIELD32(0x0000ff00)
+#define ARCSR5_LENGTH			FIELD32(0xffff0000)
+
+/*
+ * ARTCSR0: CCK ACK/CTS payload consumed time for 1/2/5.5/11 mbps.
+ */
+#define ARTCSR0				0x014c
+#define ARTCSR0_ACK_CTS_11MBS		FIELD32(0x000000ff)
+#define ARTCSR0_ACK_CTS_5_5MBS		FIELD32(0x0000ff00)
+#define ARTCSR0_ACK_CTS_2MBS		FIELD32(0x00ff0000)
+#define ARTCSR0_ACK_CTS_1MBS		FIELD32(0xff000000)
+
+
+/*
+ * ARTCSR1: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define ARTCSR1				0x0150
+#define ARTCSR1_ACK_CTS_6MBS		FIELD32(0x000000ff)
+#define ARTCSR1_ACK_CTS_9MBS		FIELD32(0x0000ff00)
+#define ARTCSR1_ACK_CTS_12MBS		FIELD32(0x00ff0000)
+#define ARTCSR1_ACK_CTS_18MBS		FIELD32(0xff000000)
+
+/*
+ * ARTCSR2: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define ARTCSR2				0x0154
+#define ARTCSR2_ACK_CTS_24MBS		FIELD32(0x000000ff)
+#define ARTCSR2_ACK_CTS_36MBS		FIELD32(0x0000ff00)
+#define ARTCSR2_ACK_CTS_48MBS		FIELD32(0x00ff0000)
+#define ARTCSR2_ACK_CTS_54MBS		FIELD32(0xff000000)
+
+/*
+ * SECCSR1: WEP control register.
+ * KICK_ENCRYPT: Kick encryption engine, self-clear.
+ * ONE_SHOT: 0: ring mode, 1: One shot only mode.
+ * DESC_ADDRESS: Descriptor physical address of frame.
+ */
+#define SECCSR1				0x0158
+#define SECCSR1_KICK_ENCRYPT		FIELD32(0x00000001)
+#define SECCSR1_ONE_SHOT		FIELD32(0x00000002)
+#define SECCSR1_DESC_ADDRESS		FIELD32(0xfffffffc)
+
+/*
+ * BBPCSR1: BBP TX configuration.
+ */
+#define BBPCSR1				0x015c
+#define BBPCSR1_CCK			FIELD32(0x00000003)
+#define BBPCSR1_CCK_FLIP		FIELD32(0x00000004)
+#define BBPCSR1_OFDM			FIELD32(0x00030000)
+#define BBPCSR1_OFDM_FLIP		FIELD32(0x00040000)
+
+/*
+ * Dual band configuration registers.
+ * DBANDCSR0: Dual band configuration register 0.
+ * DBANDCSR1: Dual band configuration register 1.
+ */
+#define DBANDCSR0			0x0160
+#define DBANDCSR1			0x0164
+
+/*
+ * BBPPCSR: BBP Pin control register.
+ */
+#define BBPPCSR				0x0168
+
+/*
+ * MAC special debug mode selection registers.
+ * DBGSEL0: MAC special debug mode selection register 0.
+ * DBGSEL1: MAC special debug mode selection register 1.
+ */
+#define DBGSEL0				0x016c
+#define DBGSEL1				0x0170
+
+/*
+ * BISTCSR: BBP BIST register.
+ */
+#define BISTCSR				0x0174
+
+/*
+ * Multicast filter registers.
+ * MCAST0: Multicast filter register 0.
+ * MCAST1: Multicast filter register 1.
+ */
+#define MCAST0				0x0178
+#define MCAST1				0x017c
+
+/*
+ * UART registers.
+ * UARTCSR0: UART1 TX register.
+ * UARTCSR1: UART1 RX register.
+ * UARTCSR3: UART1 frame control register.
+ * UARTCSR4: UART1 buffer control register.
+ * UART2CSR0: UART2 TX register.
+ * UART2CSR1: UART2 RX register.
+ * UART2CSR3: UART2 frame control register.
+ * UART2CSR4: UART2 buffer control register.
+ */
+#define UARTCSR0			0x0180
+#define UARTCSR1			0x0184
+#define UARTCSR3			0x0188
+#define UARTCSR4			0x018c
+#define UART2CSR0			0x0190
+#define UART2CSR1			0x0194
+#define UART2CSR3			0x0198
+#define UART2CSR4			0x019c
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2: TX antenna control
+ */
+#define BBP_R2_TX_ANTENNA		FIELD8(0x03)
+#define BBP_R2_TX_IQ_FLIP		FIELD8(0x04)
+
+/*
+ * R14: RX antenna control
+ */
+#define BBP_R14_RX_ANTENNA		FIELD8(0x03)
+#define BBP_R14_RX_IQ_FLIP		FIELD8(0x04)
+
+/*
+ * BBP_R70
+ */
+#define BBP_R70_JAPAN_FILTER		FIELD8(0x08)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER			FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER			FIELD32(0x00000100)
+#define RF3_TXPOWER			FIELD32(0x00003e00)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0		0x0002
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1		0x0003
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2		0x0004
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * LED_MODE: 0: default, 1: TX/RX activity,2: Single (ignore link), 3: rsvd.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA			0x10
+#define EEPROM_ANTENNA_NUM		FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT	FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT	FIELD16(0x0030)
+#define EEPROM_ANTENNA_LED_MODE		FIELD16(0x01c0)
+#define EEPROM_ANTENNA_DYN_TXAGC	FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO	FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * CARDBUS_ACCEL: 0: enable, 1: disable.
+ * DYN_BBP_TUNE: 0: enable, 1: disable.
+ * CCK_TX_POWER: CCK TX power compensation.
+ */
+#define EEPROM_NIC			0x11
+#define EEPROM_NIC_CARDBUS_ACCEL	FIELD16(0x0001)
+#define EEPROM_NIC_DYN_BBP_TUNE		FIELD16(0x0002)
+#define EEPROM_NIC_CCK_TX_POWER		FIELD16(0x000c)
+
+/*
+ * EEPROM geography.
+ * GEO: Default geography setting for device.
+ */
+#define EEPROM_GEOGRAPHY		0x12
+#define EEPROM_GEOGRAPHY_GEO		FIELD16(0x0f00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START		0x13
+#define EEPROM_BBP_SIZE			16
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START		0x23
+#define EEPROM_TXPOWER_SIZE		7
+#define EEPROM_TXPOWER_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2		FIELD16(0xff00)
+
+/*
+ * RSSI <-> dBm offset calibration
+ */
+#define EEPROM_CALIBRATE_OFFSET		0x3e
+#define EEPROM_CALIBRATE_OFFSET_RSSI	FIELD16(0x00ff)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			(11 * sizeof(__le32))
+#define RXD_DESC_SIZE			(11 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define TXD_W0_VALID			FIELD32(0x00000002)
+#define TXD_W0_RESULT			FIELD32(0x0000001c)
+#define TXD_W0_RETRY_COUNT		FIELD32(0x000000e0)
+#define TXD_W0_MORE_FRAG		FIELD32(0x00000100)
+#define TXD_W0_ACK			FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP		FIELD32(0x00000400)
+#define TXD_W0_OFDM			FIELD32(0x00000800)
+#define TXD_W0_CIPHER_OWNER		FIELD32(0x00001000)
+#define TXD_W0_IFS			FIELD32(0x00006000)
+#define TXD_W0_RETRY_MODE		FIELD32(0x00008000)
+#define TXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define TXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_BUFFER_ADDRESS		FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define TXD_W2_IV_OFFSET		FIELD32(0x0000003f)
+#define TXD_W2_AIFS			FIELD32(0x000000c0)
+#define TXD_W2_CWMIN			FIELD32(0x00000f00)
+#define TXD_W2_CWMAX			FIELD32(0x0000f000)
+
+/*
+ * Word3: PLCP information
+ */
+#define TXD_W3_PLCP_SIGNAL		FIELD32(0x000000ff)
+#define TXD_W3_PLCP_SERVICE		FIELD32(0x0000ff00)
+#define TXD_W3_PLCP_LENGTH_LOW		FIELD32(0x00ff0000)
+#define TXD_W3_PLCP_LENGTH_HIGH		FIELD32(0xff000000)
+
+/*
+ * Word4
+ */
+#define TXD_W4_IV			FIELD32(0xffffffff)
+
+/*
+ * Word5
+ */
+#define TXD_W5_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word6-9: Key
+ */
+#define TXD_W6_KEY			FIELD32(0xffffffff)
+#define TXD_W7_KEY			FIELD32(0xffffffff)
+#define TXD_W8_KEY			FIELD32(0xffffffff)
+#define TXD_W9_KEY			FIELD32(0xffffffff)
+
+/*
+ * Word10
+ */
+#define TXD_W10_RTS			FIELD32(0x00000001)
+#define TXD_W10_TX_RATE			FIELD32(0x000000fe)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000002)
+#define RXD_W0_MULTICAST		FIELD32(0x00000004)
+#define RXD_W0_BROADCAST		FIELD32(0x00000008)
+#define RXD_W0_MY_BSS			FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000020)
+#define RXD_W0_OFDM			FIELD32(0x00000040)
+#define RXD_W0_PHYSICAL_ERROR		FIELD32(0x00000080)
+#define RXD_W0_CIPHER_OWNER		FIELD32(0x00000100)
+#define RXD_W0_ICV_ERROR		FIELD32(0x00000200)
+#define RXD_W0_IV_OFFSET		FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_BUFFER_ADDRESS		FIELD32(0xffffffff)
+
+/*
+ * Word2
+ */
+#define RXD_W2_SIGNAL			FIELD32(0x000000ff)
+#define RXD_W2_RSSI			FIELD32(0x0000ff00)
+#define RXD_W2_TA			FIELD32(0xffff0000)
+
+/*
+ * Word3
+ */
+#define RXD_W3_TA			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define RXD_W4_IV			FIELD32(0xffffffff)
+
+/*
+ * Word5
+ */
+#define RXD_W5_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word6-9: Key
+ */
+#define RXD_W6_KEY			FIELD32(0xffffffff)
+#define RXD_W7_KEY			FIELD32(0xffffffff)
+#define RXD_W8_KEY			FIELD32(0xffffffff)
+#define RXD_W9_KEY			FIELD32(0xffffffff)
+
+/*
+ * Word10
+ */
+#define RXD_W10_DROP			FIELD32(0x00000001)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER	0
+#define MAX_TXPOWER	31
+#define DEFAULT_TXPOWER	24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+	(((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+	clamp_t(char, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT2500PCI_H */
diff --git a/drivers/net/wireless/rt2x00/rt2500usb.c b/drivers/net/wireless/rt2x00/rt2500usb.c
new file mode 100644
index 0000000..b50d873
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500usb.c
@@ -0,0 +1,2001 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2500usb
+	Abstract: rt2500usb device specific routines.
+	Supported chipsets: RT2570.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt2500usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2500usb_register_read and rt2500usb_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * If the csr_mutex is already held then the _lock variants must
+ * be used instead.
+ */
+static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
+					   const unsigned int offset,
+					   u16 *value)
+{
+	__le16 reg;
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+				      USB_VENDOR_REQUEST_IN, offset,
+				      &reg, sizeof(reg));
+	*value = le16_to_cpu(reg);
+}
+
+static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
+						const unsigned int offset,
+						u16 *value)
+{
+	__le16 reg;
+	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
+				       USB_VENDOR_REQUEST_IN, offset,
+				       &reg, sizeof(reg), REGISTER_TIMEOUT);
+	*value = le16_to_cpu(reg);
+}
+
+static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
+						const unsigned int offset,
+						void *value, const u16 length)
+{
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+				      USB_VENDOR_REQUEST_IN, offset,
+				      value, length);
+}
+
+static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
+					    const unsigned int offset,
+					    u16 value)
+{
+	__le16 reg = cpu_to_le16(value);
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+				      USB_VENDOR_REQUEST_OUT, offset,
+				      &reg, sizeof(reg));
+}
+
+static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
+						 const unsigned int offset,
+						 u16 value)
+{
+	__le16 reg = cpu_to_le16(value);
+	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
+				       USB_VENDOR_REQUEST_OUT, offset,
+				       &reg, sizeof(reg), REGISTER_TIMEOUT);
+}
+
+static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+						 const unsigned int offset,
+						 void *value, const u16 length)
+{
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+				      USB_VENDOR_REQUEST_OUT, offset,
+				      value, length);
+}
+
+static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+				  const unsigned int offset,
+				  struct rt2x00_field16 field,
+				  u16 *reg)
+{
+	unsigned int i;
+
+	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
+		if (!rt2x00_get_field16(*reg, field))
+			return 1;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
+		   offset, *reg);
+	*reg = ~0;
+
+	return 0;
+}
+
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
+
+static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
+				const unsigned int word, const u8 value)
+{
+	u16 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
+		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
+		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
+
+		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, u8 *value)
+{
+	u16 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
+		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
+
+		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
+
+		if (WAIT_FOR_BBP(rt2x00dev, &reg))
+			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
+	}
+
+	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, const u32 value)
+{
+	u16 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
+		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
+
+		reg = 0;
+		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
+		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
+		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
+		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
+
+		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
+				     const unsigned int offset,
+				     u32 *value)
+{
+	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
+}
+
+static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
+				      const unsigned int offset,
+				      u32 value)
+{
+	rt2500usb_register_write(rt2x00dev, offset, value);
+}
+
+static const struct rt2x00debug rt2500usb_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= _rt2500usb_register_read,
+		.write		= _rt2500usb_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= CSR_REG_SIZE / sizeof(u16),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt2500usb_bbp_read,
+		.write		= rt2500usb_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt2500usb_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u16 reg;
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
+	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
+				     enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	u16 reg;
+
+	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
+
+	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
+	else if (led->type == LED_TYPE_ACTIVITY)
+		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
+
+	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
+}
+
+static int rt2500usb_blink_set(struct led_classdev *led_cdev,
+			       unsigned long *delay_on,
+			       unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u16 reg;
+
+	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
+	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
+	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
+
+	return 0;
+}
+
+static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00_led *led,
+			       enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt2500usb_brightness_set;
+	led->led_dev.blink_set = rt2500usb_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+
+/*
+ * rt2500usb does not differentiate between shared and pairwise
+ * keys, so we should use the same function for both key types.
+ */
+static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_crypto *crypto,
+				struct ieee80211_key_conf *key)
+{
+	u32 mask;
+	u16 reg;
+	enum cipher curr_cipher;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * Disallow to set WEP key other than with index 0,
+		 * it is known that not work at least on some hardware.
+		 * SW crypto will be used in that case.
+		 */
+		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
+		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
+		    key->keyidx != 0)
+			return -EOPNOTSUPP;
+
+		/*
+		 * Pairwise key will always be entry 0, but this
+		 * could collide with a shared key on the same
+		 * position...
+		 */
+		mask = TXRX_CSR0_KEY_ID.bit_mask;
+
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
+		reg &= mask;
+
+		if (reg && reg == mask)
+			return -ENOSPC;
+
+		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
+
+		key->hw_key_idx += reg ? ffz(reg) : 0;
+		/*
+		 * Hardware requires that all keys use the same cipher
+		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
+		 * If this is not the first key, compare the cipher with the
+		 * first one and fall back to SW crypto if not the same.
+		 */
+		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
+			return -EOPNOTSUPP;
+
+		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
+					      crypto->key, sizeof(crypto->key));
+
+		/*
+		 * The driver does not support the IV/EIV generation
+		 * in hardware. However it demands the data to be provided
+		 * both separately as well as inside the frame.
+		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
+		 * to ensure rt2x00lib will not strip the data from the
+		 * frame after the copy, now we must tell mac80211
+		 * to generate the IV/EIV data.
+		 */
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
+	}
+
+	/*
+	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
+	 * a particular key is valid.
+	 */
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
+	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
+
+	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
+	if (crypto->cmd == SET_KEY)
+		mask |= 1 << key->hw_key_idx;
+	else if (crypto->cmd == DISABLE_KEY)
+		mask &= ~(1 << key->hw_key_idx);
+	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	return 0;
+}
+
+static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int filter_flags)
+{
+	u16 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+}
+
+static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
+				  struct rt2x00_intf *intf,
+				  struct rt2x00intf_conf *conf,
+				  const unsigned int flags)
+{
+	unsigned int bcn_preload;
+	u16 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable beacon config
+		 */
+		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
+		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
+				   2 * (conf->type != NL80211_IFTYPE_STATION));
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
+
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
+
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC)
+		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
+					      (3 * sizeof(__le16)));
+
+	if (flags & CONFIG_UPDATE_BSSID)
+		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
+					      (3 * sizeof(__le16)));
+}
+
+static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
+				 struct rt2x00lib_erp *erp,
+				 u32 changed)
+{
+	u16 reg;
+
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
+				   !!erp->short_preamble);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
+					 erp->basic_rates);
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
+				   erp->beacon_int * 4);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
+	}
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
+		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
+		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
+	}
+}
+
+static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
+				 struct antenna_setup *ant)
+{
+	u8 r2;
+	u8 r14;
+	u16 csr5;
+	u16 csr6;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
+	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
+	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
+	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
+
+	/*
+	 * Configure the TX antenna.
+	 */
+	switch (ant->tx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
+		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
+		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
+		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
+		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
+		break;
+	}
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+		break;
+	}
+
+	/*
+	 * RT2525E and RT5222 need to flip TX I/Q
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
+		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
+
+		/*
+		 * RT2525E does not need RX I/Q Flip.
+		 */
+		if (rt2x00_rf(rt2x00dev, RF2525E))
+			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+	} else {
+		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
+		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
+	}
+
+	rt2500usb_bbp_write(rt2x00dev, 2, r2);
+	rt2500usb_bbp_write(rt2x00dev, 14, r14);
+	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
+	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
+}
+
+static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
+				     struct rf_channel *rf, const int txpower)
+{
+	/*
+	 * Set TXpower.
+	 */
+	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+	/*
+	 * For RT2525E we should first set the channel to half band higher.
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525E)) {
+		static const u32 vals[] = {
+			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
+			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
+			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
+			0x00000902, 0x00000906
+		};
+
+		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
+		if (rf->rf4)
+			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
+	}
+
+	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
+	if (rf->rf4)
+		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
+}
+
+static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
+				     const int txpower)
+{
+	u32 rf3;
+
+	rt2x00_rf_read(rt2x00dev, 3, &rf3);
+	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+	rt2500usb_rf_write(rt2x00dev, 3, rf3);
+}
+
+static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u16 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
+		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
+				   rt2x00dev->beacon_int - 20);
+		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
+		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+
+		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
+		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+	} else {
+		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
+		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
+		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+	}
+
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_conf *libconf,
+			     const unsigned int flags)
+{
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
+					 libconf->conf->power_level);
+	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+		rt2500usb_config_txpower(rt2x00dev,
+					 libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt2500usb_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual)
+{
+	u16 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
+	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
+	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
+}
+
+static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				  struct link_qual *qual)
+{
+	u16 eeprom;
+	u16 value;
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
+	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
+	rt2500usb_bbp_write(rt2x00dev, 24, value);
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
+	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
+	rt2500usb_bbp_write(rt2x00dev, 25, value);
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
+	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
+	rt2500usb_bbp_write(rt2x00dev, 61, value);
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
+	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
+	rt2500usb_bbp_write(rt2x00dev, 17, value);
+
+	qual->vgc_level = value;
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2500usb_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u16 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+		break;
+	case QID_BEACON:
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
+		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
+		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2500usb_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u16 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+		break;
+	case QID_BEACON:
+		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
+		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
+		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
+		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Initialization functions.
+ */
+static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u16 reg;
+
+	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
+				    USB_MODE_TEST, REGISTER_TIMEOUT);
+	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
+				    0x00f0, REGISTER_TIMEOUT);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
+	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
+	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
+	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
+	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
+	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
+	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
+	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
+	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
+	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
+	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
+	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
+	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
+	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
+	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
+	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
+	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
+	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
+		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
+		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
+	} else {
+		reg = 0;
+		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
+		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
+	}
+	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
+
+	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
+			   rt2x00dev->rx->data_size);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
+	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
+	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
+
+	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
+	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
+	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
+
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+	return 0;
+}
+
+static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+		rt2500usb_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 value;
+	u8 reg_id;
+
+	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
+	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
+	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
+	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
+	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
+	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
+	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
+	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
+	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
+	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
+	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
+	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
+	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
+	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
+	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
+	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
+	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
+	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
+	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
+	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
+	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
+	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
+	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
+	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
+	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
+	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
+		     rt2500usb_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	return 0;
+}
+
+static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
+
+	/*
+	 * Disable synchronisation.
+	 */
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
+
+	rt2x00usb_disable_radio(rt2x00dev);
+}
+
+static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	u16 reg;
+	u16 reg2;
+	unsigned int i;
+	char put_to_sleep;
+	char bbp_state;
+	char rf_state;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	reg = 0;
+	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
+	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
+	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
+		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
+		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
+		if (bbp_state == state && rf_state == state)
+			return 0;
+		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
+		msleep(30);
+	}
+
+	return -EBUSY;
+}
+
+static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2500usb_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt2500usb_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		/* No support, but no error either */
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2500usb_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500usb_write_tx_desc(struct queue_entry *entry,
+				    struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *txd = (__le32 *) entry->skb->data;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_OFDM,
+			   (txdesc->rate_mode == RATE_MODE_OFDM));
+	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
+			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
+	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
+	rt2x00_desc_write(txd, 0, word);
+
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
+	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_desc_write(txd, 2, word);
+
+	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+	}
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500usb_beacondone(struct urb *urb);
+
+static void rt2500usb_write_beacon(struct queue_entry *entry,
+				   struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
+	int length;
+	u16 reg, reg0;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
+	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+
+	/*
+	 * Add space for the descriptor in front of the skb.
+	 */
+	skb_push(entry->skb, TXD_DESC_SIZE);
+	memset(entry->skb->data, 0, TXD_DESC_SIZE);
+
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt2500usb_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+
+	/*
+	 * USB devices cannot blindly pass the skb->len as the
+	 * length of the data to usb_fill_bulk_urb. Pass the skb
+	 * to the driver to determine what the length should be.
+	 */
+	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
+
+	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
+			  entry->skb->data, length, rt2500usb_beacondone,
+			  entry);
+
+	/*
+	 * Second we need to create the guardian byte.
+	 * We only need a single byte, so lets recycle
+	 * the 'flags' field we are not using for beacons.
+	 */
+	bcn_priv->guardian_data = 0;
+	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
+			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
+			  entry);
+
+	/*
+	 * Send out the guardian byte.
+	 */
+	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
+
+	/*
+	 * Enable beaconing again.
+	 */
+	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
+	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
+	reg0 = reg;
+	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
+	/*
+	 * Beacon generation will fail initially.
+	 * To prevent this we need to change the TXRX_CSR19
+	 * register several times (reg0 is the same as reg
+	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
+	 * and 1 in reg).
+	 */
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
+	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
+}
+
+static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
+{
+	int length;
+
+	/*
+	 * The length _must_ be a multiple of 2,
+	 * but it must _not_ be a multiple of the USB packet size.
+	 */
+	length = roundup(entry->skb->len, 2);
+	length += (2 * !(length % entry->queue->usb_maxpacket));
+
+	return length;
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2500usb_fill_rxdone(struct queue_entry *entry,
+				  struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *rxd =
+	    (__le32 *)(entry->skb->data +
+		       (entry_priv->urb->actual_length -
+			entry->queue->desc_size));
+	u32 word0;
+	u32 word1;
+
+	/*
+	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
+	 * frame data in rt2x00usb.
+	 */
+	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
+	rxd = (__le32 *)skbdesc->desc;
+
+	/*
+	 * It is now safe to read the descriptor on all architectures.
+	 */
+	rt2x00_desc_read(rxd, 0, &word0);
+	rt2x00_desc_read(rxd, 1, &word1);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
+	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
+		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
+
+	if (rxdesc->cipher != CIPHER_NONE) {
+		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
+		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
+		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+		/* ICV is located at the end of frame */
+
+		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+			rxdesc->flags |= RX_FLAG_DECRYPTED;
+		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+	}
+
+	/*
+	 * Obtain the status about this packet.
+	 * When frame was received with an OFDM bitrate,
+	 * the signal is the PLCP value. If it was received with
+	 * a CCK bitrate the signal is the rate in 100kbit/s.
+	 */
+	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+	rxdesc->rssi =
+	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	else
+		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+	/*
+	 * Adjust the skb memory window to the frame boundaries.
+	 */
+	skb_trim(entry->skb, rxdesc->size);
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500usb_beacondone(struct urb *urb)
+{
+	struct queue_entry *entry = (struct queue_entry *)urb->context;
+	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
+		return;
+
+	/*
+	 * Check if this was the guardian beacon,
+	 * if that was the case we need to send the real beacon now.
+	 * Otherwise we should free the sk_buffer, the device
+	 * should be doing the rest of the work now.
+	 */
+	if (bcn_priv->guardian_urb == urb) {
+		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
+	} else if (bcn_priv->urb == urb) {
+		dev_kfree_skb(entry->skb);
+		entry->skb = NULL;
+	}
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u16 word;
+	u8 *mac;
+	u8 bbp;
+
+	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
+				   LED_MODE_DEFAULT);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+				   DEFAULT_RSSI_OFFSET);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
+				  word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
+	}
+
+	/*
+	 * Switch lower vgc bound to current BBP R17 value,
+	 * lower the value a bit for better quality.
+	 */
+	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
+	bbp -= 6;
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
+	} else {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
+		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
+	}
+
+	return 0;
+}
+
+static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u16 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
+
+	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
+		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
+		return -ENODEV;
+	}
+
+	if (!rt2x00_rf(rt2x00dev, RF2522) &&
+	    !rt2x00_rf(rt2x00dev, RF2523) &&
+	    !rt2x00_rf(rt2x00dev, RF2524) &&
+	    !rt2x00_rf(rt2x00dev, RF2525) &&
+	    !rt2x00_rf(rt2x00dev, RF2525E) &&
+	    !rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
+	 * I am not 100% sure about this, but the legacy drivers do not
+	 * indicate antenna swapping in software is required when
+	 * diversity is enabled.
+	 */
+	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
+		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
+	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
+		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
+
+	/*
+	 * Store led mode, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	if (value == LED_MODE_TXRX_ACTIVITY ||
+	    value == LED_MODE_DEFAULT ||
+	    value == LED_MODE_ASUS)
+		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				   LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read the RSSI <-> dBm offset information.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
+	rt2x00dev->rssi_offset =
+	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+	return 0;
+}
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2522[] = {
+	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
+	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
+	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
+	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
+	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
+	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
+	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
+	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
+	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
+	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
+	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
+	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
+	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
+	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
+};
+
+/*
+ * RF value list for RF2523
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2523[] = {
+	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
+	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
+	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
+	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
+	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
+	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
+	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
+	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
+	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
+	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
+	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
+	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
+	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
+	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2524
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2524[] = {
+	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
+	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
+	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
+	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
+	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
+	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
+	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
+	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
+	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
+	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
+	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
+	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
+	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
+	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525[] = {
+	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
+	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
+	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
+	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
+	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
+	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
+	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
+	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
+	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
+	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
+	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
+	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
+	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
+	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525e
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525e[] = {
+	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
+	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
+	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
+	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
+	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
+	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
+	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
+	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
+	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
+	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
+	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
+	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
+	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
+	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
+};
+
+/*
+ * RF value list for RF5222
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5222[] = {
+	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
+	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
+	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
+	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
+	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
+	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
+	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
+	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
+	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
+	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
+	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
+	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
+	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
+	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
+	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
+	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
+	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
+	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
+	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
+	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
+	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
+	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
+	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
+	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
+	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
+	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
+	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
+	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
+	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
+	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
+
+	/* 802.11 UNII */
+	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
+	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
+	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
+	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
+	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
+};
+
+static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Initialize all hw fields.
+	 *
+	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
+	 * capable of sending the buffered frames out after the DTIM
+	 * transmission using rt2x00lib_beacondone. This will send out
+	 * multicast and broadcast traffic immediately instead of buffering it
+	 * infinitly and thus dropping it after some time.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+	/*
+	 * Disable powersaving as default.
+	 */
+	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	if (rt2x00_rf(rt2x00dev, RF2522)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
+		spec->channels = rf_vals_bg_2522;
+	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
+		spec->channels = rf_vals_bg_2523;
+	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
+		spec->channels = rf_vals_bg_2524;
+	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
+		spec->channels = rf_vals_bg_2525;
+	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
+		spec->channels = rf_vals_bg_2525e;
+	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
+		spec->channels = rf_vals_5222;
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = MAX_TXPOWER;
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	if (spec->num_channels > 14) {
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].max_power = MAX_TXPOWER;
+			info[i].default_power1 = DEFAULT_TXPOWER;
+		}
+	}
+
+	return 0;
+}
+
+static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u16 reg;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt2500usb_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt2500usb_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
+	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
+	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt2500usb_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device requires the atim queue
+	 */
+	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
+	if (!modparam_nohwcrypt) {
+		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
+	}
+	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+static const struct ieee80211_ops rt2500usb_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_tim		= rt2x00mac_set_tim,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2x00mac_conf_tx,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
+	.probe_hw		= rt2500usb_probe_hw,
+	.initialize		= rt2x00usb_initialize,
+	.uninitialize		= rt2x00usb_uninitialize,
+	.clear_entry		= rt2x00usb_clear_entry,
+	.set_device_state	= rt2500usb_set_device_state,
+	.rfkill_poll		= rt2500usb_rfkill_poll,
+	.link_stats		= rt2500usb_link_stats,
+	.reset_tuner		= rt2500usb_reset_tuner,
+	.watchdog		= rt2x00usb_watchdog,
+	.start_queue		= rt2500usb_start_queue,
+	.kick_queue		= rt2x00usb_kick_queue,
+	.stop_queue		= rt2500usb_stop_queue,
+	.flush_queue		= rt2x00usb_flush_queue,
+	.write_tx_desc		= rt2500usb_write_tx_desc,
+	.write_beacon		= rt2500usb_write_beacon,
+	.get_tx_data_len	= rt2500usb_get_tx_data_len,
+	.fill_rxdone		= rt2500usb_fill_rxdone,
+	.config_shared_key	= rt2500usb_config_key,
+	.config_pairwise_key	= rt2500usb_config_key,
+	.config_filter		= rt2500usb_config_filter,
+	.config_intf		= rt2500usb_config_intf,
+	.config_erp		= rt2500usb_config_erp,
+	.config_ant		= rt2500usb_config_ant,
+	.config			= rt2500usb_config,
+};
+
+static void rt2500usb_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 1;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
+		break;
+
+	case QID_ATIM:
+		queue->limit = 8;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt2500usb_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 1,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2500usb_queue_init,
+	.lib			= &rt2500usb_rt2x00_ops,
+	.hw			= &rt2500usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2500usb_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2500usb module information.
+ */
+static struct usb_device_id rt2500usb_device_table[] = {
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x1706) },
+	{ USB_DEVICE(0x0b05, 0x1707) },
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
+	{ USB_DEVICE(0x050d, 0x7051) },
+	/* Cisco Systems */
+	{ USB_DEVICE(0x13b1, 0x000d) },
+	{ USB_DEVICE(0x13b1, 0x0011) },
+	{ USB_DEVICE(0x13b1, 0x001a) },
+	/* Conceptronic */
+	{ USB_DEVICE(0x14b2, 0x3c02) },
+	/* D-LINK */
+	{ USB_DEVICE(0x2001, 0x3c00) },
+	/* Gigabyte */
+	{ USB_DEVICE(0x1044, 0x8001) },
+	{ USB_DEVICE(0x1044, 0x8007) },
+	/* Hercules */
+	{ USB_DEVICE(0x06f8, 0xe000) },
+	/* Melco */
+	{ USB_DEVICE(0x0411, 0x005e) },
+	{ USB_DEVICE(0x0411, 0x0066) },
+	{ USB_DEVICE(0x0411, 0x0067) },
+	{ USB_DEVICE(0x0411, 0x008b) },
+	{ USB_DEVICE(0x0411, 0x0097) },
+	/* MSI */
+	{ USB_DEVICE(0x0db0, 0x6861) },
+	{ USB_DEVICE(0x0db0, 0x6865) },
+	{ USB_DEVICE(0x0db0, 0x6869) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x1706) },
+	{ USB_DEVICE(0x148f, 0x2570) },
+	{ USB_DEVICE(0x148f, 0x9020) },
+	/* Sagem */
+	{ USB_DEVICE(0x079b, 0x004b) },
+	/* Siemens */
+	{ USB_DEVICE(0x0681, 0x3c06) },
+	/* SMC */
+	{ USB_DEVICE(0x0707, 0xee13) },
+	/* Spairon */
+	{ USB_DEVICE(0x114b, 0x0110) },
+	/* SURECOM */
+	{ USB_DEVICE(0x0769, 0x11f3) },
+	/* Trust */
+	{ USB_DEVICE(0x0eb0, 0x9020) },
+	/* VTech */
+	{ USB_DEVICE(0x0f88, 0x3012) },
+	/* Zinwell */
+	{ USB_DEVICE(0x5a57, 0x0260) },
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
+MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2500usb_probe(struct usb_interface *usb_intf,
+			   const struct usb_device_id *id)
+{
+	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
+}
+
+static struct usb_driver rt2500usb_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2500usb_device_table,
+	.probe		= rt2500usb_probe,
+	.disconnect	= rt2x00usb_disconnect,
+	.suspend	= rt2x00usb_suspend,
+	.resume		= rt2x00usb_resume,
+	.reset_resume	= rt2x00usb_resume,
+	.disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt2500usb_driver);
diff --git a/drivers/net/wireless/rt2x00/rt2500usb.h b/drivers/net/wireless/rt2x00/rt2500usb.h
new file mode 100644
index 0000000..78cc035
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500usb.h
@@ -0,0 +1,855 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2500usb
+	Abstract: Data structures and registers for the rt2500usb module.
+	Supported chipsets: RT2570.
+ */
+
+#ifndef RT2500USB_H
+#define RT2500USB_H
+
+/*
+ * RF chip defines.
+ */
+#define RF2522				0x0000
+#define RF2523				0x0001
+#define RF2524				0x0002
+#define RF2525				0x0003
+#define RF2525E				0x0005
+#define RF5222				0x0010
+
+/*
+ * RT2570 version
+ */
+#define RT2570_VERSION_B		2
+#define RT2570_VERSION_C		3
+#define RT2570_VERSION_D		4
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET		120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x0400
+#define CSR_REG_SIZE			0x0100
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x006e
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x0060
+#define RF_BASE				0x0004
+#define RF_SIZE				0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			2
+
+/*
+ * Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0			0x0400
+
+/*
+ * MAC_CSR1: System control.
+ * SOFT_RESET: Software reset, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset, 1: reset, 0, release.
+ * HOST_READY: Host ready after initialization.
+ */
+#define MAC_CSR1			0x0402
+#define MAC_CSR1_SOFT_RESET		FIELD16(0x00000001)
+#define MAC_CSR1_BBP_RESET		FIELD16(0x00000002)
+#define MAC_CSR1_HOST_READY		FIELD16(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2			0x0404
+#define MAC_CSR2_BYTE0			FIELD16(0x00ff)
+#define MAC_CSR2_BYTE1			FIELD16(0xff00)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ */
+#define MAC_CSR3			0x0406
+#define MAC_CSR3_BYTE2			FIELD16(0x00ff)
+#define MAC_CSR3_BYTE3			FIELD16(0xff00)
+
+/*
+ * MAC_CSR4: STA MAC register 2.
+ */
+#define MAC_CSR4			0X0408
+#define MAC_CSR4_BYTE4			FIELD16(0x00ff)
+#define MAC_CSR4_BYTE5			FIELD16(0xff00)
+
+/*
+ * MAC_CSR5: BSSID register 0.
+ */
+#define MAC_CSR5			0x040a
+#define MAC_CSR5_BYTE0			FIELD16(0x00ff)
+#define MAC_CSR5_BYTE1			FIELD16(0xff00)
+
+/*
+ * MAC_CSR6: BSSID register 1.
+ */
+#define MAC_CSR6			0x040c
+#define MAC_CSR6_BYTE2			FIELD16(0x00ff)
+#define MAC_CSR6_BYTE3			FIELD16(0xff00)
+
+/*
+ * MAC_CSR7: BSSID register 2.
+ */
+#define MAC_CSR7			0x040e
+#define MAC_CSR7_BYTE4			FIELD16(0x00ff)
+#define MAC_CSR7_BYTE5			FIELD16(0xff00)
+
+/*
+ * MAC_CSR8: Max frame length.
+ */
+#define MAC_CSR8			0x0410
+#define MAC_CSR8_MAX_FRAME_UNIT		FIELD16(0x0fff)
+
+/*
+ * Misc MAC_CSR registers.
+ * MAC_CSR9: Timer control.
+ * MAC_CSR10: Slot time.
+ * MAC_CSR11: SIFS.
+ * MAC_CSR12: EIFS.
+ * MAC_CSR13: Power mode0.
+ * MAC_CSR14: Power mode1.
+ * MAC_CSR15: Power saving transition0
+ * MAC_CSR16: Power saving transition1
+ */
+#define MAC_CSR9			0x0412
+#define MAC_CSR10			0x0414
+#define MAC_CSR11			0x0416
+#define MAC_CSR12			0x0418
+#define MAC_CSR13			0x041a
+#define MAC_CSR14			0x041c
+#define MAC_CSR15			0x041e
+#define MAC_CSR16			0x0420
+
+/*
+ * MAC_CSR17: Manual power control / status register.
+ * Allowed state: 0 deep_sleep, 1: sleep, 2: standby, 3: awake.
+ * SET_STATE: Set state. Write 1 to trigger, self cleared.
+ * BBP_DESIRE_STATE: BBP desired state.
+ * RF_DESIRE_STATE: RF desired state.
+ * BBP_CURRENT_STATE: BBP current state.
+ * RF_CURRENT_STATE: RF current state.
+ * PUT_TO_SLEEP: Put to sleep. Write 1 to trigger, self cleared.
+ */
+#define MAC_CSR17			0x0422
+#define MAC_CSR17_SET_STATE		FIELD16(0x0001)
+#define MAC_CSR17_BBP_DESIRE_STATE	FIELD16(0x0006)
+#define MAC_CSR17_RF_DESIRE_STATE	FIELD16(0x0018)
+#define MAC_CSR17_BBP_CURR_STATE	FIELD16(0x0060)
+#define MAC_CSR17_RF_CURR_STATE		FIELD16(0x0180)
+#define MAC_CSR17_PUT_TO_SLEEP		FIELD16(0x0200)
+
+/*
+ * MAC_CSR18: Wakeup timer register.
+ * DELAY_AFTER_BEACON: Delay after Tbcn expired in units of 1/16 TU.
+ * BEACONS_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * AUTO_WAKE: Enable auto wakeup / sleep mechanism.
+ */
+#define MAC_CSR18			0x0424
+#define MAC_CSR18_DELAY_AFTER_BEACON	FIELD16(0x00ff)
+#define MAC_CSR18_BEACONS_BEFORE_WAKEUP	FIELD16(0x7f00)
+#define MAC_CSR18_AUTO_WAKE		FIELD16(0x8000)
+
+/*
+ * MAC_CSR19: GPIO control register.
+ *	MAC_CSR19_VALx: GPIO value
+ *	MAC_CSR19_DIRx: GPIO direction: 0 = input; 1 = output
+ */
+#define MAC_CSR19			0x0426
+#define MAC_CSR19_VAL0			FIELD16(0x0001)
+#define MAC_CSR19_VAL1			FIELD16(0x0002)
+#define MAC_CSR19_VAL2			FIELD16(0x0004)
+#define MAC_CSR19_VAL3			FIELD16(0x0008)
+#define MAC_CSR19_VAL4			FIELD16(0x0010)
+#define MAC_CSR19_VAL5			FIELD16(0x0020)
+#define MAC_CSR19_VAL6			FIELD16(0x0040)
+#define MAC_CSR19_VAL7			FIELD16(0x0080)
+#define MAC_CSR19_DIR0			FIELD16(0x0100)
+#define MAC_CSR19_DIR1			FIELD16(0x0200)
+#define MAC_CSR19_DIR2			FIELD16(0x0400)
+#define MAC_CSR19_DIR3			FIELD16(0x0800)
+#define MAC_CSR19_DIR4			FIELD16(0x1000)
+#define MAC_CSR19_DIR5			FIELD16(0x2000)
+#define MAC_CSR19_DIR6			FIELD16(0x4000)
+#define MAC_CSR19_DIR7			FIELD16(0x8000)
+
+/*
+ * MAC_CSR20: LED control register.
+ * ACTIVITY: 0: idle, 1: active.
+ * LINK: 0: linkoff, 1: linkup.
+ * ACTIVITY_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR20			0x0428
+#define MAC_CSR20_ACTIVITY		FIELD16(0x0001)
+#define MAC_CSR20_LINK			FIELD16(0x0002)
+#define MAC_CSR20_ACTIVITY_POLARITY	FIELD16(0x0004)
+
+/*
+ * MAC_CSR21: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ */
+#define MAC_CSR21			0x042a
+#define MAC_CSR21_ON_PERIOD		FIELD16(0x00ff)
+#define MAC_CSR21_OFF_PERIOD		FIELD16(0xff00)
+
+/*
+ * MAC_CSR22: Collision window control register.
+ */
+#define MAC_CSR22			0x042c
+
+/*
+ * Transmit related CSRs.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: Security control register.
+ */
+#define TXRX_CSR0			0x0440
+#define TXRX_CSR0_ALGORITHM		FIELD16(0x0007)
+#define TXRX_CSR0_IV_OFFSET		FIELD16(0x01f8)
+#define TXRX_CSR0_KEY_ID		FIELD16(0x1e00)
+
+/*
+ * TXRX_CSR1: TX configuration.
+ * ACK_TIMEOUT: ACK Timeout in unit of 1-us.
+ * TSF_OFFSET: TSF offset in MAC header.
+ * AUTO_SEQUENCE: Let ASIC control frame sequence number.
+ */
+#define TXRX_CSR1			0x0442
+#define TXRX_CSR1_ACK_TIMEOUT		FIELD16(0x00ff)
+#define TXRX_CSR1_TSF_OFFSET		FIELD16(0x7f00)
+#define TXRX_CSR1_AUTO_SEQUENCE		FIELD16(0x8000)
+
+/*
+ * TXRX_CSR2: RX control.
+ * DISABLE_RX: Disable rx engine.
+ * DROP_CRC: Drop crc error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TODS: Drop frame tods bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MCAST: Drop multicast frames.
+ * DROP_BCAST: Drop broadcast frames.
+ */
+#define TXRX_CSR2			0x0444
+#define	TXRX_CSR2_DISABLE_RX		FIELD16(0x0001)
+#define TXRX_CSR2_DROP_CRC		FIELD16(0x0002)
+#define TXRX_CSR2_DROP_PHYSICAL		FIELD16(0x0004)
+#define TXRX_CSR2_DROP_CONTROL		FIELD16(0x0008)
+#define TXRX_CSR2_DROP_NOT_TO_ME	FIELD16(0x0010)
+#define TXRX_CSR2_DROP_TODS		FIELD16(0x0020)
+#define TXRX_CSR2_DROP_VERSION_ERROR	FIELD16(0x0040)
+#define TXRX_CSR2_DROP_MULTICAST	FIELD16(0x0200)
+#define TXRX_CSR2_DROP_BROADCAST	FIELD16(0x0400)
+
+/*
+ * RX BBP ID registers
+ * TXRX_CSR3: CCK RX BBP ID.
+ * TXRX_CSR4: OFDM RX BBP ID.
+ */
+#define TXRX_CSR3			0x0446
+#define TXRX_CSR4			0x0448
+
+/*
+ * TXRX_CSR5: CCK TX BBP ID0.
+ */
+#define TXRX_CSR5			0x044a
+#define TXRX_CSR5_BBP_ID0		FIELD16(0x007f)
+#define TXRX_CSR5_BBP_ID0_VALID		FIELD16(0x0080)
+#define TXRX_CSR5_BBP_ID1		FIELD16(0x7f00)
+#define TXRX_CSR5_BBP_ID1_VALID		FIELD16(0x8000)
+
+/*
+ * TXRX_CSR6: CCK TX BBP ID1.
+ */
+#define TXRX_CSR6			0x044c
+#define TXRX_CSR6_BBP_ID0		FIELD16(0x007f)
+#define TXRX_CSR6_BBP_ID0_VALID		FIELD16(0x0080)
+#define TXRX_CSR6_BBP_ID1		FIELD16(0x7f00)
+#define TXRX_CSR6_BBP_ID1_VALID		FIELD16(0x8000)
+
+/*
+ * TXRX_CSR7: OFDM TX BBP ID0.
+ */
+#define TXRX_CSR7			0x044e
+#define TXRX_CSR7_BBP_ID0		FIELD16(0x007f)
+#define TXRX_CSR7_BBP_ID0_VALID		FIELD16(0x0080)
+#define TXRX_CSR7_BBP_ID1		FIELD16(0x7f00)
+#define TXRX_CSR7_BBP_ID1_VALID		FIELD16(0x8000)
+
+/*
+ * TXRX_CSR8: OFDM TX BBP ID1.
+ */
+#define TXRX_CSR8			0x0450
+#define TXRX_CSR8_BBP_ID0		FIELD16(0x007f)
+#define TXRX_CSR8_BBP_ID0_VALID		FIELD16(0x0080)
+#define TXRX_CSR8_BBP_ID1		FIELD16(0x7f00)
+#define TXRX_CSR8_BBP_ID1_VALID		FIELD16(0x8000)
+
+/*
+ * TXRX_CSR9: TX ACK time-out.
+ */
+#define TXRX_CSR9			0x0452
+
+/*
+ * TXRX_CSR10: Auto responder control.
+ */
+#define TXRX_CSR10			0x0454
+#define TXRX_CSR10_AUTORESPOND_PREAMBLE FIELD16(0x0004)
+
+/*
+ * TXRX_CSR11: Auto responder basic rate.
+ */
+#define TXRX_CSR11			0x0456
+
+/*
+ * ACK/CTS time registers.
+ */
+#define TXRX_CSR12			0x0458
+#define TXRX_CSR13			0x045a
+#define TXRX_CSR14			0x045c
+#define TXRX_CSR15			0x045e
+#define TXRX_CSR16			0x0460
+#define TXRX_CSR17			0x0462
+
+/*
+ * TXRX_CSR18: Synchronization control register.
+ */
+#define TXRX_CSR18			0x0464
+#define TXRX_CSR18_OFFSET		FIELD16(0x000f)
+#define TXRX_CSR18_INTERVAL		FIELD16(0xfff0)
+
+/*
+ * TXRX_CSR19: Synchronization control register.
+ * TSF_COUNT: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * TBCN: Enable Tbcn with reload value.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR19			0x0466
+#define TXRX_CSR19_TSF_COUNT		FIELD16(0x0001)
+#define TXRX_CSR19_TSF_SYNC		FIELD16(0x0006)
+#define TXRX_CSR19_TBCN			FIELD16(0x0008)
+#define TXRX_CSR19_BEACON_GEN		FIELD16(0x0010)
+
+/*
+ * TXRX_CSR20: Tx BEACON offset time control register.
+ * OFFSET: In units of usec.
+ * BCN_EXPECT_WINDOW: Default: 2^CWmin
+ */
+#define TXRX_CSR20			0x0468
+#define TXRX_CSR20_OFFSET		FIELD16(0x1fff)
+#define TXRX_CSR20_BCN_EXPECT_WINDOW	FIELD16(0xe000)
+
+/*
+ * TXRX_CSR21
+ */
+#define TXRX_CSR21			0x046a
+
+/*
+ * Encryption related CSRs.
+ *
+ */
+
+/*
+ * SEC_CSR0: Shared key 0, word 0
+ * SEC_CSR1: Shared key 0, word 1
+ * SEC_CSR2: Shared key 0, word 2
+ * SEC_CSR3: Shared key 0, word 3
+ * SEC_CSR4: Shared key 0, word 4
+ * SEC_CSR5: Shared key 0, word 5
+ * SEC_CSR6: Shared key 0, word 6
+ * SEC_CSR7: Shared key 0, word 7
+ */
+#define SEC_CSR0			0x0480
+#define SEC_CSR1			0x0482
+#define SEC_CSR2			0x0484
+#define SEC_CSR3			0x0486
+#define SEC_CSR4			0x0488
+#define SEC_CSR5			0x048a
+#define SEC_CSR6			0x048c
+#define SEC_CSR7			0x048e
+
+/*
+ * SEC_CSR8: Shared key 1, word 0
+ * SEC_CSR9: Shared key 1, word 1
+ * SEC_CSR10: Shared key 1, word 2
+ * SEC_CSR11: Shared key 1, word 3
+ * SEC_CSR12: Shared key 1, word 4
+ * SEC_CSR13: Shared key 1, word 5
+ * SEC_CSR14: Shared key 1, word 6
+ * SEC_CSR15: Shared key 1, word 7
+ */
+#define SEC_CSR8			0x0490
+#define SEC_CSR9			0x0492
+#define SEC_CSR10			0x0494
+#define SEC_CSR11			0x0496
+#define SEC_CSR12			0x0498
+#define SEC_CSR13			0x049a
+#define SEC_CSR14			0x049c
+#define SEC_CSR15			0x049e
+
+/*
+ * SEC_CSR16: Shared key 2, word 0
+ * SEC_CSR17: Shared key 2, word 1
+ * SEC_CSR18: Shared key 2, word 2
+ * SEC_CSR19: Shared key 2, word 3
+ * SEC_CSR20: Shared key 2, word 4
+ * SEC_CSR21: Shared key 2, word 5
+ * SEC_CSR22: Shared key 2, word 6
+ * SEC_CSR23: Shared key 2, word 7
+ */
+#define SEC_CSR16			0x04a0
+#define SEC_CSR17			0x04a2
+#define SEC_CSR18			0X04A4
+#define SEC_CSR19			0x04a6
+#define SEC_CSR20			0x04a8
+#define SEC_CSR21			0x04aa
+#define SEC_CSR22			0x04ac
+#define SEC_CSR23			0x04ae
+
+/*
+ * SEC_CSR24: Shared key 3, word 0
+ * SEC_CSR25: Shared key 3, word 1
+ * SEC_CSR26: Shared key 3, word 2
+ * SEC_CSR27: Shared key 3, word 3
+ * SEC_CSR28: Shared key 3, word 4
+ * SEC_CSR29: Shared key 3, word 5
+ * SEC_CSR30: Shared key 3, word 6
+ * SEC_CSR31: Shared key 3, word 7
+ */
+#define SEC_CSR24			0x04b0
+#define SEC_CSR25			0x04b2
+#define SEC_CSR26			0x04b4
+#define SEC_CSR27			0x04b6
+#define SEC_CSR28			0x04b8
+#define SEC_CSR29			0x04ba
+#define SEC_CSR30			0x04bc
+#define SEC_CSR31			0x04be
+
+#define KEY_ENTRY(__idx) \
+	( SEC_CSR0 + ((__idx) * 16) )
+
+/*
+ * PHY control registers.
+ */
+
+/*
+ * PHY_CSR0: RF switching timing control.
+ */
+#define PHY_CSR0			0x04c0
+
+/*
+ * PHY_CSR1: TX PA configuration.
+ */
+#define PHY_CSR1			0x04c2
+
+/*
+ * MAC configuration registers.
+ */
+
+/*
+ * PHY_CSR2: TX MAC configuration.
+ * NOTE: Both register fields are complete dummy,
+ * documentation and legacy drivers are unclear un
+ * what this register means or what fields exists.
+ */
+#define PHY_CSR2			0x04c4
+#define PHY_CSR2_LNA			FIELD16(0x0002)
+#define PHY_CSR2_LNA_MODE		FIELD16(0x3000)
+
+/*
+ * PHY_CSR3: RX MAC configuration.
+ */
+#define PHY_CSR3			0x04c6
+
+/*
+ * PHY_CSR4: Interface configuration.
+ */
+#define PHY_CSR4			0x04c8
+#define PHY_CSR4_LOW_RF_LE		FIELD16(0x0001)
+
+/*
+ * BBP pre-TX registers.
+ * PHY_CSR5: BBP pre-TX CCK.
+ */
+#define PHY_CSR5			0x04ca
+#define PHY_CSR5_CCK			FIELD16(0x0003)
+#define PHY_CSR5_CCK_FLIP		FIELD16(0x0004)
+
+/*
+ * BBP pre-TX registers.
+ * PHY_CSR6: BBP pre-TX OFDM.
+ */
+#define PHY_CSR6			0x04cc
+#define PHY_CSR6_OFDM			FIELD16(0x0003)
+#define PHY_CSR6_OFDM_FLIP		FIELD16(0x0004)
+
+/*
+ * PHY_CSR7: BBP access register 0.
+ * BBP_DATA: BBP data.
+ * BBP_REG_ID: BBP register ID.
+ * BBP_READ_CONTROL: 0: write, 1: read.
+ */
+#define PHY_CSR7			0x04ce
+#define PHY_CSR7_DATA			FIELD16(0x00ff)
+#define PHY_CSR7_REG_ID			FIELD16(0x7f00)
+#define PHY_CSR7_READ_CONTROL		FIELD16(0x8000)
+
+/*
+ * PHY_CSR8: BBP access register 1.
+ * BBP_BUSY: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR8			0x04d0
+#define PHY_CSR8_BUSY			FIELD16(0x0001)
+
+/*
+ * PHY_CSR9: RF access register.
+ * RF_VALUE: Register value + id to program into rf/if.
+ */
+#define PHY_CSR9			0x04d2
+#define PHY_CSR9_RF_VALUE		FIELD16(0xffff)
+
+/*
+ * PHY_CSR10: RF access register.
+ * RF_VALUE: Register value + id to program into rf/if.
+ * RF_NUMBER_OF_BITS: Number of bits used in value (i:20, rfmd:22).
+ * RF_IF_SELECT: Chip to program: 0: rf, 1: if.
+ * RF_PLL_LD: Rf pll_ld status.
+ * RF_BUSY: 1: asic is busy execute rf programming.
+ */
+#define PHY_CSR10			0x04d4
+#define PHY_CSR10_RF_VALUE		FIELD16(0x00ff)
+#define PHY_CSR10_RF_NUMBER_OF_BITS	FIELD16(0x1f00)
+#define PHY_CSR10_RF_IF_SELECT		FIELD16(0x2000)
+#define PHY_CSR10_RF_PLL_LD		FIELD16(0x4000)
+#define PHY_CSR10_RF_BUSY		FIELD16(0x8000)
+
+/*
+ * STA_CSR0: FCS error count.
+ * FCS_ERROR: FCS error count, cleared when read.
+ */
+#define STA_CSR0			0x04e0
+#define STA_CSR0_FCS_ERROR		FIELD16(0xffff)
+
+/*
+ * STA_CSR1: PLCP error count.
+ */
+#define STA_CSR1			0x04e2
+
+/*
+ * STA_CSR2: LONG error count.
+ */
+#define STA_CSR2			0x04e4
+
+/*
+ * STA_CSR3: CCA false alarm.
+ * FALSE_CCA_ERROR: False CCA error count, cleared when read.
+ */
+#define STA_CSR3			0x04e6
+#define STA_CSR3_FALSE_CCA_ERROR	FIELD16(0xffff)
+
+/*
+ * STA_CSR4: RX FIFO overflow.
+ */
+#define STA_CSR4			0x04e8
+
+/*
+ * STA_CSR5: Beacon sent counter.
+ */
+#define STA_CSR5			0x04ea
+
+/*
+ *  Statistics registers
+ */
+#define STA_CSR6			0x04ec
+#define STA_CSR7			0x04ee
+#define STA_CSR8			0x04f0
+#define STA_CSR9			0x04f2
+#define STA_CSR10			0x04f4
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2: TX antenna control
+ */
+#define BBP_R2_TX_ANTENNA		FIELD8(0x03)
+#define BBP_R2_TX_IQ_FLIP		FIELD8(0x04)
+
+/*
+ * R14: RX antenna control
+ */
+#define BBP_R14_RX_ANTENNA		FIELD8(0x03)
+#define BBP_R14_RX_IQ_FLIP		FIELD8(0x04)
+
+/*
+ * RF registers.
+ */
+
+/*
+ * RF 1
+ */
+#define RF1_TUNER			FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TUNER			FIELD32(0x00000100)
+#define RF3_TXPOWER			FIELD32(0x00003e00)
+
+/*
+ * EEPROM contents.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0		0x0002
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1		0x0003
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2		0x0004
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * LED_MODE: 0: default, 1: TX/RX activity, 2: Single (ignore link), 3: rsvd.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA			0x000b
+#define EEPROM_ANTENNA_NUM		FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT	FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT	FIELD16(0x0030)
+#define EEPROM_ANTENNA_LED_MODE		FIELD16(0x01c0)
+#define EEPROM_ANTENNA_DYN_TXAGC	FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO	FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * CARDBUS_ACCEL: 0: enable, 1: disable.
+ * DYN_BBP_TUNE: 0: enable, 1: disable.
+ * CCK_TX_POWER: CCK TX power compensation.
+ */
+#define EEPROM_NIC			0x000c
+#define EEPROM_NIC_CARDBUS_ACCEL	FIELD16(0x0001)
+#define EEPROM_NIC_DYN_BBP_TUNE		FIELD16(0x0002)
+#define EEPROM_NIC_CCK_TX_POWER		FIELD16(0x000c)
+
+/*
+ * EEPROM geography.
+ * GEO: Default geography setting for device.
+ */
+#define EEPROM_GEOGRAPHY		0x000d
+#define EEPROM_GEOGRAPHY_GEO		FIELD16(0x0f00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START		0x000e
+#define EEPROM_BBP_SIZE			16
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER
+ */
+#define EEPROM_TXPOWER_START		0x001e
+#define EEPROM_TXPOWER_SIZE		7
+#define EEPROM_TXPOWER_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_2		FIELD16(0xff00)
+
+/*
+ * EEPROM Tuning threshold
+ */
+#define EEPROM_BBPTUNE			0x0030
+#define EEPROM_BBPTUNE_THRESHOLD	FIELD16(0x00ff)
+
+/*
+ * EEPROM BBP R24 Tuning.
+ */
+#define EEPROM_BBPTUNE_R24		0x0031
+#define EEPROM_BBPTUNE_R24_LOW		FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R24_HIGH		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R25 Tuning.
+ */
+#define EEPROM_BBPTUNE_R25		0x0032
+#define EEPROM_BBPTUNE_R25_LOW		FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R25_HIGH		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R24 Tuning.
+ */
+#define EEPROM_BBPTUNE_R61		0x0033
+#define EEPROM_BBPTUNE_R61_LOW		FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R61_HIGH		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP VGC Tuning.
+ */
+#define EEPROM_BBPTUNE_VGC		0x0034
+#define EEPROM_BBPTUNE_VGCUPPER		FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_VGCLOWER		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP R17 Tuning.
+ */
+#define EEPROM_BBPTUNE_R17		0x0035
+#define EEPROM_BBPTUNE_R17_LOW		FIELD16(0x00ff)
+#define EEPROM_BBPTUNE_R17_HIGH		FIELD16(0xff00)
+
+/*
+ * RSSI <-> dBm offset calibration
+ */
+#define EEPROM_CALIBRATE_OFFSET		0x0036
+#define EEPROM_CALIBRATE_OFFSET_RSSI	FIELD16(0x00ff)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			( 5 * sizeof(__le32) )
+#define RXD_DESC_SIZE			( 4 * sizeof(__le32) )
+
+/*
+ * TX descriptor format for TX, PRIO, ATIM and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_PACKET_ID		FIELD32(0x0000000f)
+#define TXD_W0_RETRY_LIMIT		FIELD32(0x000000f0)
+#define TXD_W0_MORE_FRAG		FIELD32(0x00000100)
+#define TXD_W0_ACK			FIELD32(0x00000200)
+#define TXD_W0_TIMESTAMP		FIELD32(0x00000400)
+#define TXD_W0_OFDM			FIELD32(0x00000800)
+#define TXD_W0_NEW_SEQ			FIELD32(0x00001000)
+#define TXD_W0_IFS			FIELD32(0x00006000)
+#define TXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define TXD_W0_CIPHER			FIELD32(0x20000000)
+#define TXD_W0_KEY_ID			FIELD32(0xc0000000)
+
+/*
+ * Word1
+ */
+#define TXD_W1_IV_OFFSET		FIELD32(0x0000003f)
+#define TXD_W1_AIFS			FIELD32(0x000000c0)
+#define TXD_W1_CWMIN			FIELD32(0x00000f00)
+#define TXD_W1_CWMAX			FIELD32(0x0000f000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL		FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE		FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW		FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH		FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV			FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000002)
+#define RXD_W0_MULTICAST		FIELD32(0x00000004)
+#define RXD_W0_BROADCAST		FIELD32(0x00000008)
+#define RXD_W0_MY_BSS			FIELD32(0x00000010)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000020)
+#define RXD_W0_OFDM			FIELD32(0x00000040)
+#define RXD_W0_PHYSICAL_ERROR		FIELD32(0x00000080)
+#define RXD_W0_CIPHER			FIELD32(0x00000100)
+#define RXD_W0_CIPHER_ERROR		FIELD32(0x00000200)
+#define RXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+
+/*
+ * Word1
+ */
+#define RXD_W1_RSSI			FIELD32(0x000000ff)
+#define RXD_W1_SIGNAL			FIELD32(0x0000ff00)
+
+/*
+ * Word2
+ */
+#define RXD_W2_IV			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ */
+#define RXD_W3_EIV			FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER	0
+#define MAX_TXPOWER	31
+#define DEFAULT_TXPOWER	24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+	(((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+	clamp_t(char, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT2500USB_H */
diff --git a/drivers/net/wireless/rt2x00/rt2800.h b/drivers/net/wireless/rt2x00/rt2800.h
new file mode 100644
index 0000000..95c1d7c
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800.h
@@ -0,0 +1,2986 @@
+/*
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800
+	Abstract: Data structures and registers for the rt2800 modules.
+	Supported chipsets: RT2800E, RT2800ED & RT2800U.
+ */
+
+#ifndef RT2800_H
+#define RT2800_H
+
+/*
+ * RF chip defines.
+ *
+ * RF2820 2.4G 2T3R
+ * RF2850 2.4G/5G 2T3R
+ * RF2720 2.4G 1T2R
+ * RF2750 2.4G/5G 1T2R
+ * RF3020 2.4G 1T1R
+ * RF2020 2.4G B/G
+ * RF3021 2.4G 1T2R
+ * RF3022 2.4G 2T2R
+ * RF3052 2.4G/5G 2T2R
+ * RF2853 2.4G/5G 3T3R
+ * RF3320 2.4G 1T1R(RT3350/RT3370/RT3390)
+ * RF3322 2.4G 2T2R(RT3352/RT3371/RT3372/RT3391/RT3392)
+ * RF3053 2.4G/5G 3T3R(RT3883/RT3563/RT3573/RT3593/RT3662)
+ * RF5592 2.4G/5G 2T2R
+ * RF3070 2.4G 1T1R
+ * RF5360 2.4G 1T1R
+ * RF5362 2.4G 1T1R
+ * RF5370 2.4G 1T1R
+ * RF5390 2.4G 1T1R
+ */
+#define RF2820				0x0001
+#define RF2850				0x0002
+#define RF2720				0x0003
+#define RF2750				0x0004
+#define RF3020				0x0005
+#define RF2020				0x0006
+#define RF3021				0x0007
+#define RF3022				0x0008
+#define RF3052				0x0009
+#define RF2853				0x000a
+#define RF3320				0x000b
+#define RF3322				0x000c
+#define RF3053				0x000d
+#define RF5592				0x000f
+#define RF3070				0x3070
+#define RF3290				0x3290
+#define RF5360				0x5360
+#define RF5362				0x5362
+#define RF5370				0x5370
+#define RF5372				0x5372
+#define RF5390				0x5390
+#define RF5392				0x5392
+
+/*
+ * Chipset revisions.
+ */
+#define REV_RT2860C			0x0100
+#define REV_RT2860D			0x0101
+#define REV_RT2872E			0x0200
+#define REV_RT3070E			0x0200
+#define REV_RT3070F			0x0201
+#define REV_RT3071E			0x0211
+#define REV_RT3090E			0x0211
+#define REV_RT3390E			0x0211
+#define REV_RT3593E			0x0211
+#define REV_RT5390F			0x0502
+#define REV_RT5390R			0x1502
+#define REV_RT5592C			0x0221
+
+#define DEFAULT_RSSI_OFFSET		120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x1000
+#define CSR_REG_SIZE			0x0800
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x0200
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x00ff
+#define RF_BASE				0x0004
+#define RF_SIZE				0x0010
+#define RFCSR_BASE			0x0000
+#define RFCSR_SIZE			0x0040
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			4
+
+/*
+ * Registers.
+ */
+
+
+/*
+ * MAC_CSR0_3290: MAC_CSR0 for RT3290 to identity MAC version number.
+ */
+#define MAC_CSR0_3290			0x0000
+
+/*
+ * E2PROM_CSR: PCI EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE: 0: 93c46, 1:93c66.
+ * LOAD_STATUS: 1:loading, 0:done.
+ */
+#define E2PROM_CSR			0x0004
+#define E2PROM_CSR_DATA_CLOCK		FIELD32(0x00000001)
+#define E2PROM_CSR_CHIP_SELECT		FIELD32(0x00000002)
+#define E2PROM_CSR_DATA_IN		FIELD32(0x00000004)
+#define E2PROM_CSR_DATA_OUT		FIELD32(0x00000008)
+#define E2PROM_CSR_TYPE			FIELD32(0x00000030)
+#define E2PROM_CSR_LOAD_STATUS		FIELD32(0x00000040)
+#define E2PROM_CSR_RELOAD		FIELD32(0x00000080)
+
+/*
+ * CMB_CTRL_CFG
+ */
+#define CMB_CTRL		0x0020
+#define AUX_OPT_BIT0		FIELD32(0x00000001)
+#define AUX_OPT_BIT1		FIELD32(0x00000002)
+#define AUX_OPT_BIT2		FIELD32(0x00000004)
+#define AUX_OPT_BIT3		FIELD32(0x00000008)
+#define AUX_OPT_BIT4		FIELD32(0x00000010)
+#define AUX_OPT_BIT5		FIELD32(0x00000020)
+#define AUX_OPT_BIT6		FIELD32(0x00000040)
+#define AUX_OPT_BIT7		FIELD32(0x00000080)
+#define AUX_OPT_BIT8		FIELD32(0x00000100)
+#define AUX_OPT_BIT9		FIELD32(0x00000200)
+#define AUX_OPT_BIT10		FIELD32(0x00000400)
+#define AUX_OPT_BIT11		FIELD32(0x00000800)
+#define AUX_OPT_BIT12		FIELD32(0x00001000)
+#define AUX_OPT_BIT13		FIELD32(0x00002000)
+#define AUX_OPT_BIT14		FIELD32(0x00004000)
+#define AUX_OPT_BIT15		FIELD32(0x00008000)
+#define LDO25_LEVEL		FIELD32(0x00030000)
+#define LDO25_LARGEA		FIELD32(0x00040000)
+#define LDO25_FRC_ON		FIELD32(0x00080000)
+#define CMB_RSV			FIELD32(0x00300000)
+#define XTAL_RDY		FIELD32(0x00400000)
+#define PLL_LD			FIELD32(0x00800000)
+#define LDO_CORE_LEVEL		FIELD32(0x0F000000)
+#define LDO_BGSEL		FIELD32(0x30000000)
+#define LDO3_EN			FIELD32(0x40000000)
+#define LDO0_EN			FIELD32(0x80000000)
+
+/*
+ * EFUSE_CSR_3290: RT3290 EEPROM
+ */
+#define EFUSE_CTRL_3290			0x0024
+
+/*
+ * EFUSE_DATA3 of 3290
+ */
+#define EFUSE_DATA3_3290		0x0028
+
+/*
+ * EFUSE_DATA2 of 3290
+ */
+#define EFUSE_DATA2_3290		0x002c
+
+/*
+ * EFUSE_DATA1 of 3290
+ */
+#define EFUSE_DATA1_3290		0x0030
+
+/*
+ * EFUSE_DATA0 of 3290
+ */
+#define EFUSE_DATA0_3290		0x0034
+
+/*
+ * OSC_CTRL_CFG
+ * Ring oscillator configuration
+ */
+#define OSC_CTRL		0x0038
+#define OSC_REF_CYCLE		FIELD32(0x00001fff)
+#define OSC_RSV			FIELD32(0x0000e000)
+#define OSC_CAL_CNT		FIELD32(0x0fff0000)
+#define OSC_CAL_ACK		FIELD32(0x10000000)
+#define OSC_CLK_32K_VLD		FIELD32(0x20000000)
+#define OSC_CAL_REQ		FIELD32(0x40000000)
+#define OSC_ROSC_EN		FIELD32(0x80000000)
+
+/*
+ * COEX_CFG_0
+ */
+#define COEX_CFG0		0x0040
+#define COEX_CFG_ANT		FIELD32(0xff000000)
+/*
+ * COEX_CFG_1
+ */
+#define COEX_CFG1		0x0044
+
+/*
+ * COEX_CFG_2
+ */
+#define COEX_CFG2		0x0048
+#define BT_COEX_CFG1		FIELD32(0xff000000)
+#define BT_COEX_CFG0		FIELD32(0x00ff0000)
+#define WL_COEX_CFG1		FIELD32(0x0000ff00)
+#define WL_COEX_CFG0		FIELD32(0x000000ff)
+/*
+ * PLL_CTRL_CFG
+ * PLL configuration register
+ */
+#define PLL_CTRL		0x0050
+#define PLL_RESERVED_INPUT1	FIELD32(0x000000ff)
+#define PLL_RESERVED_INPUT2	FIELD32(0x0000ff00)
+#define PLL_CONTROL		FIELD32(0x00070000)
+#define PLL_LPF_R1		FIELD32(0x00080000)
+#define PLL_LPF_C1_CTRL		FIELD32(0x00300000)
+#define PLL_LPF_C2_CTRL		FIELD32(0x00c00000)
+#define PLL_CP_CURRENT_CTRL	FIELD32(0x03000000)
+#define PLL_PFD_DELAY_CTRL	FIELD32(0x0c000000)
+#define PLL_LOCK_CTRL		FIELD32(0x70000000)
+#define PLL_VBGBK_EN		FIELD32(0x80000000)
+
+
+/*
+ * WLAN_CTRL_CFG
+ * RT3290 wlan configuration
+ */
+#define WLAN_FUN_CTRL			0x0080
+#define WLAN_EN				FIELD32(0x00000001)
+#define WLAN_CLK_EN			FIELD32(0x00000002)
+#define WLAN_RSV1			FIELD32(0x00000004)
+#define WLAN_RESET			FIELD32(0x00000008)
+#define PCIE_APP0_CLK_REQ		FIELD32(0x00000010)
+#define FRC_WL_ANT_SET			FIELD32(0x00000020)
+#define INV_TR_SW0			FIELD32(0x00000040)
+#define WLAN_GPIO_IN_BIT0		FIELD32(0x00000100)
+#define WLAN_GPIO_IN_BIT1		FIELD32(0x00000200)
+#define WLAN_GPIO_IN_BIT2		FIELD32(0x00000400)
+#define WLAN_GPIO_IN_BIT3		FIELD32(0x00000800)
+#define WLAN_GPIO_IN_BIT4		FIELD32(0x00001000)
+#define WLAN_GPIO_IN_BIT5		FIELD32(0x00002000)
+#define WLAN_GPIO_IN_BIT6		FIELD32(0x00004000)
+#define WLAN_GPIO_IN_BIT7		FIELD32(0x00008000)
+#define WLAN_GPIO_IN_BIT_ALL		FIELD32(0x0000ff00)
+#define WLAN_GPIO_OUT_BIT0		FIELD32(0x00010000)
+#define WLAN_GPIO_OUT_BIT1		FIELD32(0x00020000)
+#define WLAN_GPIO_OUT_BIT2		FIELD32(0x00040000)
+#define WLAN_GPIO_OUT_BIT3		FIELD32(0x00050000)
+#define WLAN_GPIO_OUT_BIT4		FIELD32(0x00100000)
+#define WLAN_GPIO_OUT_BIT5		FIELD32(0x00200000)
+#define WLAN_GPIO_OUT_BIT6		FIELD32(0x00400000)
+#define WLAN_GPIO_OUT_BIT7		FIELD32(0x00800000)
+#define WLAN_GPIO_OUT_BIT_ALL		FIELD32(0x00ff0000)
+#define WLAN_GPIO_OUT_OE_BIT0		FIELD32(0x01000000)
+#define WLAN_GPIO_OUT_OE_BIT1		FIELD32(0x02000000)
+#define WLAN_GPIO_OUT_OE_BIT2		FIELD32(0x04000000)
+#define WLAN_GPIO_OUT_OE_BIT3		FIELD32(0x08000000)
+#define WLAN_GPIO_OUT_OE_BIT4		FIELD32(0x10000000)
+#define WLAN_GPIO_OUT_OE_BIT5		FIELD32(0x20000000)
+#define WLAN_GPIO_OUT_OE_BIT6		FIELD32(0x40000000)
+#define WLAN_GPIO_OUT_OE_BIT7		FIELD32(0x80000000)
+#define WLAN_GPIO_OUT_OE_BIT_ALL	FIELD32(0xff000000)
+
+/*
+ * AUX_CTRL: Aux/PCI-E related configuration
+ */
+#define AUX_CTRL			0x10c
+#define AUX_CTRL_WAKE_PCIE_EN		FIELD32(0x00000002)
+#define AUX_CTRL_FORCE_PCIE_CLK		FIELD32(0x00000400)
+
+/*
+ * OPT_14: Unknown register used by rt3xxx devices.
+ */
+#define OPT_14_CSR			0x0114
+#define OPT_14_CSR_BIT0			FIELD32(0x00000001)
+
+/*
+ * INT_SOURCE_CSR: Interrupt source register.
+ * Write one to clear corresponding bit.
+ * TX_FIFO_STATUS: FIFO Statistics is full, sw should read TX_STA_FIFO
+ */
+#define INT_SOURCE_CSR			0x0200
+#define INT_SOURCE_CSR_RXDELAYINT	FIELD32(0x00000001)
+#define INT_SOURCE_CSR_TXDELAYINT	FIELD32(0x00000002)
+#define INT_SOURCE_CSR_RX_DONE		FIELD32(0x00000004)
+#define INT_SOURCE_CSR_AC0_DMA_DONE	FIELD32(0x00000008)
+#define INT_SOURCE_CSR_AC1_DMA_DONE	FIELD32(0x00000010)
+#define INT_SOURCE_CSR_AC2_DMA_DONE	FIELD32(0x00000020)
+#define INT_SOURCE_CSR_AC3_DMA_DONE	FIELD32(0x00000040)
+#define INT_SOURCE_CSR_HCCA_DMA_DONE	FIELD32(0x00000080)
+#define INT_SOURCE_CSR_MGMT_DMA_DONE	FIELD32(0x00000100)
+#define INT_SOURCE_CSR_MCU_COMMAND	FIELD32(0x00000200)
+#define INT_SOURCE_CSR_RXTX_COHERENT	FIELD32(0x00000400)
+#define INT_SOURCE_CSR_TBTT		FIELD32(0x00000800)
+#define INT_SOURCE_CSR_PRE_TBTT		FIELD32(0x00001000)
+#define INT_SOURCE_CSR_TX_FIFO_STATUS	FIELD32(0x00002000)
+#define INT_SOURCE_CSR_AUTO_WAKEUP	FIELD32(0x00004000)
+#define INT_SOURCE_CSR_GPTIMER		FIELD32(0x00008000)
+#define INT_SOURCE_CSR_RX_COHERENT	FIELD32(0x00010000)
+#define INT_SOURCE_CSR_TX_COHERENT	FIELD32(0x00020000)
+
+/*
+ * INT_MASK_CSR: Interrupt MASK register. 1: the interrupt is mask OFF.
+ */
+#define INT_MASK_CSR			0x0204
+#define INT_MASK_CSR_RXDELAYINT		FIELD32(0x00000001)
+#define INT_MASK_CSR_TXDELAYINT		FIELD32(0x00000002)
+#define INT_MASK_CSR_RX_DONE		FIELD32(0x00000004)
+#define INT_MASK_CSR_AC0_DMA_DONE	FIELD32(0x00000008)
+#define INT_MASK_CSR_AC1_DMA_DONE	FIELD32(0x00000010)
+#define INT_MASK_CSR_AC2_DMA_DONE	FIELD32(0x00000020)
+#define INT_MASK_CSR_AC3_DMA_DONE	FIELD32(0x00000040)
+#define INT_MASK_CSR_HCCA_DMA_DONE	FIELD32(0x00000080)
+#define INT_MASK_CSR_MGMT_DMA_DONE	FIELD32(0x00000100)
+#define INT_MASK_CSR_MCU_COMMAND	FIELD32(0x00000200)
+#define INT_MASK_CSR_RXTX_COHERENT	FIELD32(0x00000400)
+#define INT_MASK_CSR_TBTT		FIELD32(0x00000800)
+#define INT_MASK_CSR_PRE_TBTT		FIELD32(0x00001000)
+#define INT_MASK_CSR_TX_FIFO_STATUS	FIELD32(0x00002000)
+#define INT_MASK_CSR_AUTO_WAKEUP	FIELD32(0x00004000)
+#define INT_MASK_CSR_GPTIMER		FIELD32(0x00008000)
+#define INT_MASK_CSR_RX_COHERENT	FIELD32(0x00010000)
+#define INT_MASK_CSR_TX_COHERENT	FIELD32(0x00020000)
+
+/*
+ * WPDMA_GLO_CFG
+ */
+#define WPDMA_GLO_CFG 			0x0208
+#define WPDMA_GLO_CFG_ENABLE_TX_DMA	FIELD32(0x00000001)
+#define WPDMA_GLO_CFG_TX_DMA_BUSY    	FIELD32(0x00000002)
+#define WPDMA_GLO_CFG_ENABLE_RX_DMA	FIELD32(0x00000004)
+#define WPDMA_GLO_CFG_RX_DMA_BUSY	FIELD32(0x00000008)
+#define WPDMA_GLO_CFG_WP_DMA_BURST_SIZE	FIELD32(0x00000030)
+#define WPDMA_GLO_CFG_TX_WRITEBACK_DONE	FIELD32(0x00000040)
+#define WPDMA_GLO_CFG_BIG_ENDIAN	FIELD32(0x00000080)
+#define WPDMA_GLO_CFG_RX_HDR_SCATTER	FIELD32(0x0000ff00)
+#define WPDMA_GLO_CFG_HDR_SEG_LEN	FIELD32(0xffff0000)
+
+/*
+ * WPDMA_RST_IDX
+ */
+#define WPDMA_RST_IDX 			0x020c
+#define WPDMA_RST_IDX_DTX_IDX0		FIELD32(0x00000001)
+#define WPDMA_RST_IDX_DTX_IDX1		FIELD32(0x00000002)
+#define WPDMA_RST_IDX_DTX_IDX2		FIELD32(0x00000004)
+#define WPDMA_RST_IDX_DTX_IDX3		FIELD32(0x00000008)
+#define WPDMA_RST_IDX_DTX_IDX4		FIELD32(0x00000010)
+#define WPDMA_RST_IDX_DTX_IDX5		FIELD32(0x00000020)
+#define WPDMA_RST_IDX_DRX_IDX0		FIELD32(0x00010000)
+
+/*
+ * DELAY_INT_CFG
+ */
+#define DELAY_INT_CFG			0x0210
+#define DELAY_INT_CFG_RXMAX_PTIME	FIELD32(0x000000ff)
+#define DELAY_INT_CFG_RXMAX_PINT	FIELD32(0x00007f00)
+#define DELAY_INT_CFG_RXDLY_INT_EN	FIELD32(0x00008000)
+#define DELAY_INT_CFG_TXMAX_PTIME	FIELD32(0x00ff0000)
+#define DELAY_INT_CFG_TXMAX_PINT	FIELD32(0x7f000000)
+#define DELAY_INT_CFG_TXDLY_INT_EN	FIELD32(0x80000000)
+
+/*
+ * WMM_AIFSN_CFG: Aifsn for each EDCA AC
+ * AIFSN0: AC_VO
+ * AIFSN1: AC_VI
+ * AIFSN2: AC_BE
+ * AIFSN3: AC_BK
+ */
+#define WMM_AIFSN_CFG			0x0214
+#define WMM_AIFSN_CFG_AIFSN0		FIELD32(0x0000000f)
+#define WMM_AIFSN_CFG_AIFSN1		FIELD32(0x000000f0)
+#define WMM_AIFSN_CFG_AIFSN2		FIELD32(0x00000f00)
+#define WMM_AIFSN_CFG_AIFSN3		FIELD32(0x0000f000)
+
+/*
+ * WMM_CWMIN_CSR: CWmin for each EDCA AC
+ * CWMIN0: AC_VO
+ * CWMIN1: AC_VI
+ * CWMIN2: AC_BE
+ * CWMIN3: AC_BK
+ */
+#define WMM_CWMIN_CFG			0x0218
+#define WMM_CWMIN_CFG_CWMIN0		FIELD32(0x0000000f)
+#define WMM_CWMIN_CFG_CWMIN1		FIELD32(0x000000f0)
+#define WMM_CWMIN_CFG_CWMIN2		FIELD32(0x00000f00)
+#define WMM_CWMIN_CFG_CWMIN3		FIELD32(0x0000f000)
+
+/*
+ * WMM_CWMAX_CSR: CWmax for each EDCA AC
+ * CWMAX0: AC_VO
+ * CWMAX1: AC_VI
+ * CWMAX2: AC_BE
+ * CWMAX3: AC_BK
+ */
+#define WMM_CWMAX_CFG			0x021c
+#define WMM_CWMAX_CFG_CWMAX0		FIELD32(0x0000000f)
+#define WMM_CWMAX_CFG_CWMAX1		FIELD32(0x000000f0)
+#define WMM_CWMAX_CFG_CWMAX2		FIELD32(0x00000f00)
+#define WMM_CWMAX_CFG_CWMAX3		FIELD32(0x0000f000)
+
+/*
+ * AC_TXOP0: AC_VO/AC_VI TXOP register
+ * AC0TXOP: AC_VO in unit of 32us
+ * AC1TXOP: AC_VI in unit of 32us
+ */
+#define WMM_TXOP0_CFG			0x0220
+#define WMM_TXOP0_CFG_AC0TXOP		FIELD32(0x0000ffff)
+#define WMM_TXOP0_CFG_AC1TXOP		FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP1: AC_BE/AC_BK TXOP register
+ * AC2TXOP: AC_BE in unit of 32us
+ * AC3TXOP: AC_BK in unit of 32us
+ */
+#define WMM_TXOP1_CFG			0x0224
+#define WMM_TXOP1_CFG_AC2TXOP		FIELD32(0x0000ffff)
+#define WMM_TXOP1_CFG_AC3TXOP		FIELD32(0xffff0000)
+
+/*
+ * GPIO_CTRL:
+ *	GPIO_CTRL_VALx: GPIO value
+ *	GPIO_CTRL_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define GPIO_CTRL			0x0228
+#define GPIO_CTRL_VAL0			FIELD32(0x00000001)
+#define GPIO_CTRL_VAL1			FIELD32(0x00000002)
+#define GPIO_CTRL_VAL2			FIELD32(0x00000004)
+#define GPIO_CTRL_VAL3			FIELD32(0x00000008)
+#define GPIO_CTRL_VAL4			FIELD32(0x00000010)
+#define GPIO_CTRL_VAL5			FIELD32(0x00000020)
+#define GPIO_CTRL_VAL6			FIELD32(0x00000040)
+#define GPIO_CTRL_VAL7			FIELD32(0x00000080)
+#define GPIO_CTRL_DIR0			FIELD32(0x00000100)
+#define GPIO_CTRL_DIR1			FIELD32(0x00000200)
+#define GPIO_CTRL_DIR2			FIELD32(0x00000400)
+#define GPIO_CTRL_DIR3			FIELD32(0x00000800)
+#define GPIO_CTRL_DIR4			FIELD32(0x00001000)
+#define GPIO_CTRL_DIR5			FIELD32(0x00002000)
+#define GPIO_CTRL_DIR6			FIELD32(0x00004000)
+#define GPIO_CTRL_DIR7			FIELD32(0x00008000)
+#define GPIO_CTRL_VAL8			FIELD32(0x00010000)
+#define GPIO_CTRL_VAL9			FIELD32(0x00020000)
+#define GPIO_CTRL_VAL10			FIELD32(0x00040000)
+#define GPIO_CTRL_DIR8			FIELD32(0x01000000)
+#define GPIO_CTRL_DIR9			FIELD32(0x02000000)
+#define GPIO_CTRL_DIR10			FIELD32(0x04000000)
+
+/*
+ * MCU_CMD_CFG
+ */
+#define MCU_CMD_CFG			0x022c
+
+/*
+ * AC_VO register offsets
+ */
+#define TX_BASE_PTR0			0x0230
+#define TX_MAX_CNT0			0x0234
+#define TX_CTX_IDX0			0x0238
+#define TX_DTX_IDX0			0x023c
+
+/*
+ * AC_VI register offsets
+ */
+#define TX_BASE_PTR1			0x0240
+#define TX_MAX_CNT1			0x0244
+#define TX_CTX_IDX1			0x0248
+#define TX_DTX_IDX1			0x024c
+
+/*
+ * AC_BE register offsets
+ */
+#define TX_BASE_PTR2			0x0250
+#define TX_MAX_CNT2			0x0254
+#define TX_CTX_IDX2			0x0258
+#define TX_DTX_IDX2			0x025c
+
+/*
+ * AC_BK register offsets
+ */
+#define TX_BASE_PTR3			0x0260
+#define TX_MAX_CNT3			0x0264
+#define TX_CTX_IDX3			0x0268
+#define TX_DTX_IDX3			0x026c
+
+/*
+ * HCCA register offsets
+ */
+#define TX_BASE_PTR4			0x0270
+#define TX_MAX_CNT4			0x0274
+#define TX_CTX_IDX4			0x0278
+#define TX_DTX_IDX4			0x027c
+
+/*
+ * MGMT register offsets
+ */
+#define TX_BASE_PTR5			0x0280
+#define TX_MAX_CNT5			0x0284
+#define TX_CTX_IDX5			0x0288
+#define TX_DTX_IDX5			0x028c
+
+/*
+ * RX register offsets
+ */
+#define RX_BASE_PTR			0x0290
+#define RX_MAX_CNT			0x0294
+#define RX_CRX_IDX			0x0298
+#define RX_DRX_IDX			0x029c
+
+/*
+ * USB_DMA_CFG
+ * RX_BULK_AGG_TIMEOUT: Rx Bulk Aggregation TimeOut in unit of 33ns.
+ * RX_BULK_AGG_LIMIT: Rx Bulk Aggregation Limit in unit of 256 bytes.
+ * PHY_CLEAR: phy watch dog enable.
+ * TX_CLEAR: Clear USB DMA TX path.
+ * TXOP_HALT: Halt TXOP count down when TX buffer is full.
+ * RX_BULK_AGG_EN: Enable Rx Bulk Aggregation.
+ * RX_BULK_EN: Enable USB DMA Rx.
+ * TX_BULK_EN: Enable USB DMA Tx.
+ * EP_OUT_VALID: OUT endpoint data valid.
+ * RX_BUSY: USB DMA RX FSM busy.
+ * TX_BUSY: USB DMA TX FSM busy.
+ */
+#define USB_DMA_CFG			0x02a0
+#define USB_DMA_CFG_RX_BULK_AGG_TIMEOUT	FIELD32(0x000000ff)
+#define USB_DMA_CFG_RX_BULK_AGG_LIMIT	FIELD32(0x0000ff00)
+#define USB_DMA_CFG_PHY_CLEAR		FIELD32(0x00010000)
+#define USB_DMA_CFG_TX_CLEAR		FIELD32(0x00080000)
+#define USB_DMA_CFG_TXOP_HALT		FIELD32(0x00100000)
+#define USB_DMA_CFG_RX_BULK_AGG_EN	FIELD32(0x00200000)
+#define USB_DMA_CFG_RX_BULK_EN		FIELD32(0x00400000)
+#define USB_DMA_CFG_TX_BULK_EN		FIELD32(0x00800000)
+#define USB_DMA_CFG_EP_OUT_VALID	FIELD32(0x3f000000)
+#define USB_DMA_CFG_RX_BUSY		FIELD32(0x40000000)
+#define USB_DMA_CFG_TX_BUSY		FIELD32(0x80000000)
+
+/*
+ * US_CYC_CNT
+ * BT_MODE_EN: Bluetooth mode enable
+ * CLOCK CYCLE: Clock cycle count in 1us.
+ * PCI:0x21, PCIE:0x7d, USB:0x1e
+ */
+#define US_CYC_CNT			0x02a4
+#define US_CYC_CNT_BT_MODE_EN		FIELD32(0x00000100)
+#define US_CYC_CNT_CLOCK_CYCLE		FIELD32(0x000000ff)
+
+/*
+ * PBF_SYS_CTRL
+ * HOST_RAM_WRITE: enable Host program ram write selection
+ */
+#define PBF_SYS_CTRL			0x0400
+#define PBF_SYS_CTRL_READY		FIELD32(0x00000080)
+#define PBF_SYS_CTRL_HOST_RAM_WRITE	FIELD32(0x00010000)
+
+/*
+ * HOST-MCU shared memory
+ */
+#define HOST_CMD_CSR			0x0404
+#define HOST_CMD_CSR_HOST_COMMAND	FIELD32(0x000000ff)
+
+/*
+ * PBF registers
+ * Most are for debug. Driver doesn't touch PBF register.
+ */
+#define PBF_CFG				0x0408
+#define PBF_MAX_PCNT			0x040c
+#define PBF_CTRL			0x0410
+#define PBF_INT_STA			0x0414
+#define PBF_INT_ENA			0x0418
+
+/*
+ * BCN_OFFSET0:
+ */
+#define BCN_OFFSET0			0x042c
+#define BCN_OFFSET0_BCN0		FIELD32(0x000000ff)
+#define BCN_OFFSET0_BCN1		FIELD32(0x0000ff00)
+#define BCN_OFFSET0_BCN2		FIELD32(0x00ff0000)
+#define BCN_OFFSET0_BCN3		FIELD32(0xff000000)
+
+/*
+ * BCN_OFFSET1:
+ */
+#define BCN_OFFSET1			0x0430
+#define BCN_OFFSET1_BCN4		FIELD32(0x000000ff)
+#define BCN_OFFSET1_BCN5		FIELD32(0x0000ff00)
+#define BCN_OFFSET1_BCN6		FIELD32(0x00ff0000)
+#define BCN_OFFSET1_BCN7		FIELD32(0xff000000)
+
+/*
+ * TXRXQ_PCNT: PBF register
+ * PCNT_TX0Q: Page count for TX hardware queue 0
+ * PCNT_TX1Q: Page count for TX hardware queue 1
+ * PCNT_TX2Q: Page count for TX hardware queue 2
+ * PCNT_RX0Q: Page count for RX hardware queue
+ */
+#define TXRXQ_PCNT			0x0438
+#define TXRXQ_PCNT_TX0Q			FIELD32(0x000000ff)
+#define TXRXQ_PCNT_TX1Q			FIELD32(0x0000ff00)
+#define TXRXQ_PCNT_TX2Q			FIELD32(0x00ff0000)
+#define TXRXQ_PCNT_RX0Q			FIELD32(0xff000000)
+
+/*
+ * PBF register
+ * Debug. Driver doesn't touch PBF register.
+ */
+#define PBF_DBG				0x043c
+
+/*
+ * RF registers
+ */
+#define	RF_CSR_CFG			0x0500
+#define RF_CSR_CFG_DATA			FIELD32(0x000000ff)
+#define RF_CSR_CFG_REGNUM		FIELD32(0x00003f00)
+#define RF_CSR_CFG_WRITE		FIELD32(0x00010000)
+#define RF_CSR_CFG_BUSY			FIELD32(0x00020000)
+
+/*
+ * EFUSE_CSR: RT30x0 EEPROM
+ */
+#define EFUSE_CTRL			0x0580
+#define EFUSE_CTRL_ADDRESS_IN		FIELD32(0x03fe0000)
+#define EFUSE_CTRL_MODE			FIELD32(0x000000c0)
+#define EFUSE_CTRL_KICK			FIELD32(0x40000000)
+#define EFUSE_CTRL_PRESENT		FIELD32(0x80000000)
+
+/*
+ * EFUSE_DATA0
+ */
+#define EFUSE_DATA0			0x0590
+
+/*
+ * EFUSE_DATA1
+ */
+#define EFUSE_DATA1			0x0594
+
+/*
+ * EFUSE_DATA2
+ */
+#define EFUSE_DATA2			0x0598
+
+/*
+ * EFUSE_DATA3
+ */
+#define EFUSE_DATA3			0x059c
+
+/*
+ * LDO_CFG0
+ */
+#define LDO_CFG0			0x05d4
+#define LDO_CFG0_DELAY3			FIELD32(0x000000ff)
+#define LDO_CFG0_DELAY2			FIELD32(0x0000ff00)
+#define LDO_CFG0_DELAY1			FIELD32(0x00ff0000)
+#define LDO_CFG0_BGSEL			FIELD32(0x03000000)
+#define LDO_CFG0_LDO_CORE_VLEVEL	FIELD32(0x1c000000)
+#define LD0_CFG0_LDO25_LEVEL		FIELD32(0x60000000)
+#define LDO_CFG0_LDO25_LARGEA		FIELD32(0x80000000)
+
+/*
+ * GPIO_SWITCH
+ */
+#define GPIO_SWITCH			0x05dc
+#define GPIO_SWITCH_0			FIELD32(0x00000001)
+#define GPIO_SWITCH_1			FIELD32(0x00000002)
+#define GPIO_SWITCH_2			FIELD32(0x00000004)
+#define GPIO_SWITCH_3			FIELD32(0x00000008)
+#define GPIO_SWITCH_4			FIELD32(0x00000010)
+#define GPIO_SWITCH_5			FIELD32(0x00000020)
+#define GPIO_SWITCH_6			FIELD32(0x00000040)
+#define GPIO_SWITCH_7			FIELD32(0x00000080)
+
+/*
+ * FIXME: where the DEBUG_INDEX name come from?
+ */
+#define MAC_DEBUG_INDEX			0x05e8
+#define MAC_DEBUG_INDEX_XTAL		FIELD32(0x80000000)
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ * ASIC_REV: 0
+ * ASIC_VER: 2860 or 2870
+ */
+#define MAC_CSR0			0x1000
+#define MAC_CSR0_REVISION		FIELD32(0x0000ffff)
+#define MAC_CSR0_CHIPSET		FIELD32(0xffff0000)
+
+/*
+ * MAC_SYS_CTRL:
+ */
+#define MAC_SYS_CTRL			0x1004
+#define MAC_SYS_CTRL_RESET_CSR		FIELD32(0x00000001)
+#define MAC_SYS_CTRL_RESET_BBP		FIELD32(0x00000002)
+#define MAC_SYS_CTRL_ENABLE_TX		FIELD32(0x00000004)
+#define MAC_SYS_CTRL_ENABLE_RX		FIELD32(0x00000008)
+#define MAC_SYS_CTRL_CONTINUOUS_TX	FIELD32(0x00000010)
+#define MAC_SYS_CTRL_LOOPBACK		FIELD32(0x00000020)
+#define MAC_SYS_CTRL_WLAN_HALT		FIELD32(0x00000040)
+#define MAC_SYS_CTRL_RX_TIMESTAMP	FIELD32(0x00000080)
+
+/*
+ * MAC_ADDR_DW0: STA MAC register 0
+ */
+#define MAC_ADDR_DW0			0x1008
+#define MAC_ADDR_DW0_BYTE0		FIELD32(0x000000ff)
+#define MAC_ADDR_DW0_BYTE1		FIELD32(0x0000ff00)
+#define MAC_ADDR_DW0_BYTE2		FIELD32(0x00ff0000)
+#define MAC_ADDR_DW0_BYTE3		FIELD32(0xff000000)
+
+/*
+ * MAC_ADDR_DW1: STA MAC register 1
+ * UNICAST_TO_ME_MASK:
+ * Used to mask off bits from byte 5 of the MAC address
+ * to determine the UNICAST_TO_ME bit for RX frames.
+ * The full mask is complemented by BSS_ID_MASK:
+ *    MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_ADDR_DW1			0x100c
+#define MAC_ADDR_DW1_BYTE4		FIELD32(0x000000ff)
+#define MAC_ADDR_DW1_BYTE5		FIELD32(0x0000ff00)
+#define MAC_ADDR_DW1_UNICAST_TO_ME_MASK	FIELD32(0x00ff0000)
+
+/*
+ * MAC_BSSID_DW0: BSSID register 0
+ */
+#define MAC_BSSID_DW0			0x1010
+#define MAC_BSSID_DW0_BYTE0		FIELD32(0x000000ff)
+#define MAC_BSSID_DW0_BYTE1		FIELD32(0x0000ff00)
+#define MAC_BSSID_DW0_BYTE2		FIELD32(0x00ff0000)
+#define MAC_BSSID_DW0_BYTE3		FIELD32(0xff000000)
+
+/*
+ * MAC_BSSID_DW1: BSSID register 1
+ * BSS_ID_MASK:
+ *     0: 1-BSSID mode (BSS index = 0)
+ *     1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ *     2: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ *     3: 8-BSSID mode (BSS index: byte5, bit 0 - 2)
+ * This mask is used to mask off bits 0, 1 and 2 of byte 5 of the
+ * BSSID. This will make sure that those bits will be ignored
+ * when determining the MY_BSS of RX frames.
+ */
+#define MAC_BSSID_DW1			0x1014
+#define MAC_BSSID_DW1_BYTE4		FIELD32(0x000000ff)
+#define MAC_BSSID_DW1_BYTE5		FIELD32(0x0000ff00)
+#define MAC_BSSID_DW1_BSS_ID_MASK	FIELD32(0x00030000)
+#define MAC_BSSID_DW1_BSS_BCN_NUM	FIELD32(0x001c0000)
+
+/*
+ * MAX_LEN_CFG: Maximum frame length register.
+ * MAX_MPDU: rt2860b max 16k bytes
+ * MAX_PSDU: Maximum PSDU length
+ *	(power factor) 0:2^13, 1:2^14, 2:2^15, 3:2^16
+ */
+#define MAX_LEN_CFG			0x1018
+#define MAX_LEN_CFG_MAX_MPDU		FIELD32(0x00000fff)
+#define MAX_LEN_CFG_MAX_PSDU		FIELD32(0x00003000)
+#define MAX_LEN_CFG_MIN_PSDU		FIELD32(0x0000c000)
+#define MAX_LEN_CFG_MIN_MPDU		FIELD32(0x000f0000)
+
+/*
+ * BBP_CSR_CFG: BBP serial control register
+ * VALUE: Register value to program into BBP
+ * REG_NUM: Selected BBP register
+ * READ_CONTROL: 0 write BBP, 1 read BBP
+ * BUSY: ASIC is busy executing BBP commands
+ * BBP_PAR_DUR: 0 4 MAC clocks, 1 8 MAC clocks
+ * BBP_RW_MODE: 0 serial, 1 parallel
+ */
+#define BBP_CSR_CFG			0x101c
+#define BBP_CSR_CFG_VALUE		FIELD32(0x000000ff)
+#define BBP_CSR_CFG_REGNUM		FIELD32(0x0000ff00)
+#define BBP_CSR_CFG_READ_CONTROL	FIELD32(0x00010000)
+#define BBP_CSR_CFG_BUSY		FIELD32(0x00020000)
+#define BBP_CSR_CFG_BBP_PAR_DUR		FIELD32(0x00040000)
+#define BBP_CSR_CFG_BBP_RW_MODE		FIELD32(0x00080000)
+
+/*
+ * RF_CSR_CFG0: RF control register
+ * REGID_AND_VALUE: Register value to program into RF
+ * BITWIDTH: Selected RF register
+ * STANDBYMODE: 0 high when standby, 1 low when standby
+ * SEL: 0 RF_LE0 activate, 1 RF_LE1 activate
+ * BUSY: ASIC is busy executing RF commands
+ */
+#define RF_CSR_CFG0			0x1020
+#define RF_CSR_CFG0_REGID_AND_VALUE	FIELD32(0x00ffffff)
+#define RF_CSR_CFG0_BITWIDTH		FIELD32(0x1f000000)
+#define RF_CSR_CFG0_REG_VALUE_BW	FIELD32(0x1fffffff)
+#define RF_CSR_CFG0_STANDBYMODE		FIELD32(0x20000000)
+#define RF_CSR_CFG0_SEL			FIELD32(0x40000000)
+#define RF_CSR_CFG0_BUSY		FIELD32(0x80000000)
+
+/*
+ * RF_CSR_CFG1: RF control register
+ * REGID_AND_VALUE: Register value to program into RF
+ * RFGAP: Gap between BB_CONTROL_RF and RF_LE
+ *        0: 3 system clock cycle (37.5usec)
+ *        1: 5 system clock cycle (62.5usec)
+ */
+#define RF_CSR_CFG1			0x1024
+#define RF_CSR_CFG1_REGID_AND_VALUE	FIELD32(0x00ffffff)
+#define RF_CSR_CFG1_RFGAP		FIELD32(0x1f000000)
+
+/*
+ * RF_CSR_CFG2: RF control register
+ * VALUE: Register value to program into RF
+ */
+#define RF_CSR_CFG2			0x1028
+#define RF_CSR_CFG2_VALUE		FIELD32(0x00ffffff)
+
+/*
+ * LED_CFG: LED control
+ * ON_PERIOD: LED active time (ms) during TX (only used for LED mode 1)
+ * OFF_PERIOD: LED inactive time (ms) during TX (only used for LED mode 1)
+ * SLOW_BLINK_PERIOD: LED blink interval in seconds (only used for LED mode 2)
+ * color LED's:
+ *   0: off
+ *   1: blinking upon TX2
+ *   2: periodic slow blinking
+ *   3: always on
+ * LED polarity:
+ *   0: active low
+ *   1: active high
+ */
+#define LED_CFG				0x102c
+#define LED_CFG_ON_PERIOD		FIELD32(0x000000ff)
+#define LED_CFG_OFF_PERIOD		FIELD32(0x0000ff00)
+#define LED_CFG_SLOW_BLINK_PERIOD	FIELD32(0x003f0000)
+#define LED_CFG_R_LED_MODE		FIELD32(0x03000000)
+#define LED_CFG_G_LED_MODE		FIELD32(0x0c000000)
+#define LED_CFG_Y_LED_MODE		FIELD32(0x30000000)
+#define LED_CFG_LED_POLAR		FIELD32(0x40000000)
+
+/*
+ * AMPDU_BA_WINSIZE: Force BlockAck window size
+ * FORCE_WINSIZE_ENABLE:
+ *   0: Disable forcing of BlockAck window size
+ *   1: Enable forcing of BlockAck window size, overwrites values BlockAck
+ *      window size values in the TXWI
+ * FORCE_WINSIZE: BlockAck window size
+ */
+#define AMPDU_BA_WINSIZE		0x1040
+#define AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE FIELD32(0x00000020)
+#define AMPDU_BA_WINSIZE_FORCE_WINSIZE	FIELD32(0x0000001f)
+
+/*
+ * XIFS_TIME_CFG: MAC timing
+ * CCKM_SIFS_TIME: unit 1us. Applied after CCK RX/TX
+ * OFDM_SIFS_TIME: unit 1us. Applied after OFDM RX/TX
+ * OFDM_XIFS_TIME: unit 1us. Applied after OFDM RX
+ *	when MAC doesn't reference BBP signal BBRXEND
+ * EIFS: unit 1us
+ * BB_RXEND_ENABLE: reference RXEND signal to begin XIFS defer
+ *
+ */
+#define XIFS_TIME_CFG			0x1100
+#define XIFS_TIME_CFG_CCKM_SIFS_TIME	FIELD32(0x000000ff)
+#define XIFS_TIME_CFG_OFDM_SIFS_TIME	FIELD32(0x0000ff00)
+#define XIFS_TIME_CFG_OFDM_XIFS_TIME	FIELD32(0x000f0000)
+#define XIFS_TIME_CFG_EIFS		FIELD32(0x1ff00000)
+#define XIFS_TIME_CFG_BB_RXEND_ENABLE	FIELD32(0x20000000)
+
+/*
+ * BKOFF_SLOT_CFG:
+ */
+#define BKOFF_SLOT_CFG			0x1104
+#define BKOFF_SLOT_CFG_SLOT_TIME	FIELD32(0x000000ff)
+#define BKOFF_SLOT_CFG_CC_DELAY_TIME	FIELD32(0x0000ff00)
+
+/*
+ * NAV_TIME_CFG:
+ */
+#define NAV_TIME_CFG			0x1108
+#define NAV_TIME_CFG_SIFS		FIELD32(0x000000ff)
+#define NAV_TIME_CFG_SLOT_TIME		FIELD32(0x0000ff00)
+#define NAV_TIME_CFG_EIFS		FIELD32(0x01ff0000)
+#define NAV_TIME_ZERO_SIFS		FIELD32(0x02000000)
+
+/*
+ * CH_TIME_CFG: count as channel busy
+ * EIFS_BUSY: Count EIFS as channel busy
+ * NAV_BUSY: Count NAS as channel busy
+ * RX_BUSY: Count RX as channel busy
+ * TX_BUSY: Count TX as channel busy
+ * TMR_EN: Enable channel statistics timer
+ */
+#define CH_TIME_CFG     	        0x110c
+#define CH_TIME_CFG_EIFS_BUSY		FIELD32(0x00000010)
+#define CH_TIME_CFG_NAV_BUSY		FIELD32(0x00000008)
+#define CH_TIME_CFG_RX_BUSY		FIELD32(0x00000004)
+#define CH_TIME_CFG_TX_BUSY		FIELD32(0x00000002)
+#define CH_TIME_CFG_TMR_EN		FIELD32(0x00000001)
+
+/*
+ * PBF_LIFE_TIMER: TX/RX MPDU timestamp timer (free run) Unit: 1us
+ */
+#define PBF_LIFE_TIMER     	        0x1110
+
+/*
+ * BCN_TIME_CFG:
+ * BEACON_INTERVAL: in unit of 1/16 TU
+ * TSF_TICKING: Enable TSF auto counting
+ * TSF_SYNC: Enable TSF sync, 00: disable, 01: infra mode, 10: ad-hoc mode
+ * BEACON_GEN: Enable beacon generator
+ */
+#define BCN_TIME_CFG			0x1114
+#define BCN_TIME_CFG_BEACON_INTERVAL	FIELD32(0x0000ffff)
+#define BCN_TIME_CFG_TSF_TICKING	FIELD32(0x00010000)
+#define BCN_TIME_CFG_TSF_SYNC		FIELD32(0x00060000)
+#define BCN_TIME_CFG_TBTT_ENABLE	FIELD32(0x00080000)
+#define BCN_TIME_CFG_BEACON_GEN		FIELD32(0x00100000)
+#define BCN_TIME_CFG_TX_TIME_COMPENSATE	FIELD32(0xf0000000)
+
+/*
+ * TBTT_SYNC_CFG:
+ * BCN_AIFSN: Beacon AIFSN after TBTT interrupt in slots
+ * BCN_CWMIN: Beacon CWMin after TBTT interrupt in slots
+ */
+#define TBTT_SYNC_CFG			0x1118
+#define TBTT_SYNC_CFG_TBTT_ADJUST	FIELD32(0x000000ff)
+#define TBTT_SYNC_CFG_BCN_EXP_WIN	FIELD32(0x0000ff00)
+#define TBTT_SYNC_CFG_BCN_AIFSN		FIELD32(0x000f0000)
+#define TBTT_SYNC_CFG_BCN_CWMIN		FIELD32(0x00f00000)
+
+/*
+ * TSF_TIMER_DW0: Local lsb TSF timer, read-only
+ */
+#define TSF_TIMER_DW0			0x111c
+#define TSF_TIMER_DW0_LOW_WORD		FIELD32(0xffffffff)
+
+/*
+ * TSF_TIMER_DW1: Local msb TSF timer, read-only
+ */
+#define TSF_TIMER_DW1			0x1120
+#define TSF_TIMER_DW1_HIGH_WORD		FIELD32(0xffffffff)
+
+/*
+ * TBTT_TIMER: TImer remains till next TBTT, read-only
+ */
+#define TBTT_TIMER			0x1124
+
+/*
+ * INT_TIMER_CFG: timer configuration
+ * PRE_TBTT_TIMER: leadtime to tbtt for pretbtt interrupt in units of 1/16 TU
+ * GP_TIMER: period of general purpose timer in units of 1/16 TU
+ */
+#define INT_TIMER_CFG			0x1128
+#define INT_TIMER_CFG_PRE_TBTT_TIMER	FIELD32(0x0000ffff)
+#define INT_TIMER_CFG_GP_TIMER		FIELD32(0xffff0000)
+
+/*
+ * INT_TIMER_EN: GP-timer and pre-tbtt Int enable
+ */
+#define INT_TIMER_EN			0x112c
+#define INT_TIMER_EN_PRE_TBTT_TIMER	FIELD32(0x00000001)
+#define INT_TIMER_EN_GP_TIMER		FIELD32(0x00000002)
+
+/*
+ * CH_IDLE_STA: channel idle time (in us)
+ */
+#define CH_IDLE_STA			0x1130
+
+/*
+ * CH_BUSY_STA: channel busy time on primary channel (in us)
+ */
+#define CH_BUSY_STA			0x1134
+
+/*
+ * CH_BUSY_STA_SEC: channel busy time on secondary channel in HT40 mode (in us)
+ */
+#define CH_BUSY_STA_SEC			0x1138
+
+/*
+ * MAC_STATUS_CFG:
+ * BBP_RF_BUSY: When set to 0, BBP and RF are stable.
+ *	if 1 or higher one of the 2 registers is busy.
+ */
+#define MAC_STATUS_CFG			0x1200
+#define MAC_STATUS_CFG_BBP_RF_BUSY	FIELD32(0x00000003)
+
+/*
+ * PWR_PIN_CFG:
+ */
+#define PWR_PIN_CFG			0x1204
+
+/*
+ * AUTOWAKEUP_CFG: Manual power control / status register
+ * TBCN_BEFORE_WAKE: ForceWake has high privilege than PutToSleep when both set
+ * AUTOWAKE: 0:sleep, 1:awake
+ */
+#define AUTOWAKEUP_CFG			0x1208
+#define AUTOWAKEUP_CFG_AUTO_LEAD_TIME	FIELD32(0x000000ff)
+#define AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE	FIELD32(0x00007f00)
+#define AUTOWAKEUP_CFG_AUTOWAKE		FIELD32(0x00008000)
+
+/*
+ * EDCA_AC0_CFG:
+ */
+#define EDCA_AC0_CFG			0x1300
+#define EDCA_AC0_CFG_TX_OP		FIELD32(0x000000ff)
+#define EDCA_AC0_CFG_AIFSN		FIELD32(0x00000f00)
+#define EDCA_AC0_CFG_CWMIN		FIELD32(0x0000f000)
+#define EDCA_AC0_CFG_CWMAX		FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC1_CFG:
+ */
+#define EDCA_AC1_CFG			0x1304
+#define EDCA_AC1_CFG_TX_OP		FIELD32(0x000000ff)
+#define EDCA_AC1_CFG_AIFSN		FIELD32(0x00000f00)
+#define EDCA_AC1_CFG_CWMIN		FIELD32(0x0000f000)
+#define EDCA_AC1_CFG_CWMAX		FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC2_CFG:
+ */
+#define EDCA_AC2_CFG			0x1308
+#define EDCA_AC2_CFG_TX_OP		FIELD32(0x000000ff)
+#define EDCA_AC2_CFG_AIFSN		FIELD32(0x00000f00)
+#define EDCA_AC2_CFG_CWMIN		FIELD32(0x0000f000)
+#define EDCA_AC2_CFG_CWMAX		FIELD32(0x000f0000)
+
+/*
+ * EDCA_AC3_CFG:
+ */
+#define EDCA_AC3_CFG			0x130c
+#define EDCA_AC3_CFG_TX_OP		FIELD32(0x000000ff)
+#define EDCA_AC3_CFG_AIFSN		FIELD32(0x00000f00)
+#define EDCA_AC3_CFG_CWMIN		FIELD32(0x0000f000)
+#define EDCA_AC3_CFG_CWMAX		FIELD32(0x000f0000)
+
+/*
+ * EDCA_TID_AC_MAP:
+ */
+#define EDCA_TID_AC_MAP			0x1310
+
+/*
+ * TX_PWR_CFG:
+ */
+#define TX_PWR_CFG_RATE0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_RATE1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_RATE2		FIELD32(0x00000f00)
+#define TX_PWR_CFG_RATE3		FIELD32(0x0000f000)
+#define TX_PWR_CFG_RATE4		FIELD32(0x000f0000)
+#define TX_PWR_CFG_RATE5		FIELD32(0x00f00000)
+#define TX_PWR_CFG_RATE6		FIELD32(0x0f000000)
+#define TX_PWR_CFG_RATE7		FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_0:
+ */
+#define TX_PWR_CFG_0			0x1314
+#define TX_PWR_CFG_0_1MBS		FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_2MBS		FIELD32(0x000000f0)
+#define TX_PWR_CFG_0_55MBS		FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_11MBS		FIELD32(0x0000f000)
+#define TX_PWR_CFG_0_6MBS		FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_9MBS		FIELD32(0x00f00000)
+#define TX_PWR_CFG_0_12MBS		FIELD32(0x0f000000)
+#define TX_PWR_CFG_0_18MBS		FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_0_CCK1_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_CCK1_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_0_CCK5_CH0		FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_CCK5_CH1		FIELD32(0x0000f000)
+#define TX_PWR_CFG_0_OFDM6_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_OFDM6_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_0_OFDM12_CH0		FIELD32(0x0f000000)
+#define TX_PWR_CFG_0_OFDM12_CH1		FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_1:
+ */
+#define TX_PWR_CFG_1			0x1318
+#define TX_PWR_CFG_1_24MBS		FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_36MBS		FIELD32(0x000000f0)
+#define TX_PWR_CFG_1_48MBS		FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_54MBS		FIELD32(0x0000f000)
+#define TX_PWR_CFG_1_MCS0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_MCS1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_1_MCS2		FIELD32(0x0f000000)
+#define TX_PWR_CFG_1_MCS3		FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_1_OFDM24_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_OFDM24_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_1_OFDM48_CH0		FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_OFDM48_CH1		FIELD32(0x0000f000)
+#define TX_PWR_CFG_1_MCS0_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_MCS0_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_1_MCS2_CH0		FIELD32(0x0f000000)
+#define TX_PWR_CFG_1_MCS2_CH1		FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_2:
+ */
+#define TX_PWR_CFG_2			0x131c
+#define TX_PWR_CFG_2_MCS4		FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_MCS5		FIELD32(0x000000f0)
+#define TX_PWR_CFG_2_MCS6		FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_MCS7		FIELD32(0x0000f000)
+#define TX_PWR_CFG_2_MCS8		FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_MCS9		FIELD32(0x00f00000)
+#define TX_PWR_CFG_2_MCS10		FIELD32(0x0f000000)
+#define TX_PWR_CFG_2_MCS11		FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_2_MCS4_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_MCS4_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_2_MCS6_CH0		FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_MCS6_CH1		FIELD32(0x0000f000)
+#define TX_PWR_CFG_2_MCS8_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_MCS8_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_2_MCS10_CH0		FIELD32(0x0f000000)
+#define TX_PWR_CFG_2_MCS10_CH1		FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_3:
+ */
+#define TX_PWR_CFG_3			0x1320
+#define TX_PWR_CFG_3_MCS12		FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_MCS13		FIELD32(0x000000f0)
+#define TX_PWR_CFG_3_MCS14		FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_MCS15		FIELD32(0x0000f000)
+#define TX_PWR_CFG_3_UKNOWN1		FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_UKNOWN2		FIELD32(0x00f00000)
+#define TX_PWR_CFG_3_UKNOWN3		FIELD32(0x0f000000)
+#define TX_PWR_CFG_3_UKNOWN4		FIELD32(0xf0000000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_3_MCS12_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_MCS12_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_3_MCS14_CH0		FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_MCS14_CH1		FIELD32(0x0000f000)
+#define TX_PWR_CFG_3_STBC0_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_STBC0_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_3_STBC2_CH0		FIELD32(0x0f000000)
+#define TX_PWR_CFG_3_STBC2_CH1		FIELD32(0xf0000000)
+
+/*
+ * TX_PWR_CFG_4:
+ */
+#define TX_PWR_CFG_4			0x1324
+#define TX_PWR_CFG_4_UKNOWN5		FIELD32(0x0000000f)
+#define TX_PWR_CFG_4_UKNOWN6		FIELD32(0x000000f0)
+#define TX_PWR_CFG_4_UKNOWN7		FIELD32(0x00000f00)
+#define TX_PWR_CFG_4_UKNOWN8		FIELD32(0x0000f000)
+/* bits for 3T devices */
+#define TX_PWR_CFG_3_STBC4_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_STBC4_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_3_STBC6_CH0		FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_STBC6_CH1		FIELD32(0x0000f000)
+
+/*
+ * TX_PIN_CFG:
+ */
+#define TX_PIN_CFG			0x1328
+#define TX_PIN_CFG_PA_PE_DISABLE	0xfcfffff0
+#define TX_PIN_CFG_PA_PE_A0_EN		FIELD32(0x00000001)
+#define TX_PIN_CFG_PA_PE_G0_EN		FIELD32(0x00000002)
+#define TX_PIN_CFG_PA_PE_A1_EN		FIELD32(0x00000004)
+#define TX_PIN_CFG_PA_PE_G1_EN		FIELD32(0x00000008)
+#define TX_PIN_CFG_PA_PE_A0_POL		FIELD32(0x00000010)
+#define TX_PIN_CFG_PA_PE_G0_POL		FIELD32(0x00000020)
+#define TX_PIN_CFG_PA_PE_A1_POL		FIELD32(0x00000040)
+#define TX_PIN_CFG_PA_PE_G1_POL		FIELD32(0x00000080)
+#define TX_PIN_CFG_LNA_PE_A0_EN		FIELD32(0x00000100)
+#define TX_PIN_CFG_LNA_PE_G0_EN		FIELD32(0x00000200)
+#define TX_PIN_CFG_LNA_PE_A1_EN		FIELD32(0x00000400)
+#define TX_PIN_CFG_LNA_PE_G1_EN		FIELD32(0x00000800)
+#define TX_PIN_CFG_LNA_PE_A0_POL	FIELD32(0x00001000)
+#define TX_PIN_CFG_LNA_PE_G0_POL	FIELD32(0x00002000)
+#define TX_PIN_CFG_LNA_PE_A1_POL	FIELD32(0x00004000)
+#define TX_PIN_CFG_LNA_PE_G1_POL	FIELD32(0x00008000)
+#define TX_PIN_CFG_RFTR_EN		FIELD32(0x00010000)
+#define TX_PIN_CFG_RFTR_POL		FIELD32(0x00020000)
+#define TX_PIN_CFG_TRSW_EN		FIELD32(0x00040000)
+#define TX_PIN_CFG_TRSW_POL		FIELD32(0x00080000)
+#define TX_PIN_CFG_PA_PE_A2_EN		FIELD32(0x01000000)
+#define TX_PIN_CFG_PA_PE_G2_EN		FIELD32(0x02000000)
+#define TX_PIN_CFG_PA_PE_A2_POL		FIELD32(0x04000000)
+#define TX_PIN_CFG_PA_PE_G2_POL		FIELD32(0x08000000)
+#define TX_PIN_CFG_LNA_PE_A2_EN		FIELD32(0x10000000)
+#define TX_PIN_CFG_LNA_PE_G2_EN		FIELD32(0x20000000)
+#define TX_PIN_CFG_LNA_PE_A2_POL	FIELD32(0x40000000)
+#define TX_PIN_CFG_LNA_PE_G2_POL	FIELD32(0x80000000)
+
+/*
+ * TX_BAND_CFG: 0x1 use upper 20MHz, 0x0 use lower 20MHz
+ */
+#define TX_BAND_CFG			0x132c
+#define TX_BAND_CFG_HT40_MINUS		FIELD32(0x00000001)
+#define TX_BAND_CFG_A			FIELD32(0x00000002)
+#define TX_BAND_CFG_BG			FIELD32(0x00000004)
+
+/*
+ * TX_SW_CFG0:
+ */
+#define TX_SW_CFG0			0x1330
+
+/*
+ * TX_SW_CFG1:
+ */
+#define TX_SW_CFG1			0x1334
+
+/*
+ * TX_SW_CFG2:
+ */
+#define TX_SW_CFG2			0x1338
+
+/*
+ * TXOP_THRES_CFG:
+ */
+#define TXOP_THRES_CFG			0x133c
+
+/*
+ * TXOP_CTRL_CFG:
+ * TIMEOUT_TRUN_EN: Enable/Disable TXOP timeout truncation
+ * AC_TRUN_EN: Enable/Disable truncation for AC change
+ * TXRATEGRP_TRUN_EN: Enable/Disable truncation for TX rate group change
+ * USER_MODE_TRUN_EN: Enable/Disable truncation for user TXOP mode
+ * MIMO_PS_TRUN_EN: Enable/Disable truncation for MIMO PS RTS/CTS
+ * RESERVED_TRUN_EN: Reserved
+ * LSIG_TXOP_EN: Enable/Disable L-SIG TXOP protection
+ * EXT_CCA_EN: Enable/Disable extension channel CCA reference (Defer 40Mhz
+ *	       transmissions if extension CCA is clear).
+ * EXT_CCA_DLY: Extension CCA signal delay time (unit: us)
+ * EXT_CWMIN: CwMin for extension channel backoff
+ *	      0: Disabled
+ *
+ */
+#define TXOP_CTRL_CFG			0x1340
+#define TXOP_CTRL_CFG_TIMEOUT_TRUN_EN	FIELD32(0x00000001)
+#define TXOP_CTRL_CFG_AC_TRUN_EN	FIELD32(0x00000002)
+#define TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN	FIELD32(0x00000004)
+#define TXOP_CTRL_CFG_USER_MODE_TRUN_EN	FIELD32(0x00000008)
+#define TXOP_CTRL_CFG_MIMO_PS_TRUN_EN	FIELD32(0x00000010)
+#define TXOP_CTRL_CFG_RESERVED_TRUN_EN	FIELD32(0x00000020)
+#define TXOP_CTRL_CFG_LSIG_TXOP_EN	FIELD32(0x00000040)
+#define TXOP_CTRL_CFG_EXT_CCA_EN	FIELD32(0x00000080)
+#define TXOP_CTRL_CFG_EXT_CCA_DLY	FIELD32(0x0000ff00)
+#define TXOP_CTRL_CFG_EXT_CWMIN		FIELD32(0x000f0000)
+
+/*
+ * TX_RTS_CFG:
+ * RTS_THRES: unit:byte
+ * RTS_FBK_EN: enable rts rate fallback
+ */
+#define TX_RTS_CFG			0x1344
+#define TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT	FIELD32(0x000000ff)
+#define TX_RTS_CFG_RTS_THRES		FIELD32(0x00ffff00)
+#define TX_RTS_CFG_RTS_FBK_EN		FIELD32(0x01000000)
+
+/*
+ * TX_TIMEOUT_CFG:
+ * MPDU_LIFETIME: expiration time = 2^(9+MPDU LIFE TIME) us
+ * RX_ACK_TIMEOUT: unit:slot. Used for TX procedure
+ * TX_OP_TIMEOUT: TXOP timeout value for TXOP truncation.
+ *                it is recommended that:
+ *                (SLOT_TIME) > (TX_OP_TIMEOUT) > (RX_ACK_TIMEOUT)
+ */
+#define TX_TIMEOUT_CFG			0x1348
+#define TX_TIMEOUT_CFG_MPDU_LIFETIME	FIELD32(0x000000f0)
+#define TX_TIMEOUT_CFG_RX_ACK_TIMEOUT	FIELD32(0x0000ff00)
+#define TX_TIMEOUT_CFG_TX_OP_TIMEOUT	FIELD32(0x00ff0000)
+
+/*
+ * TX_RTY_CFG:
+ * SHORT_RTY_LIMIT: short retry limit
+ * LONG_RTY_LIMIT: long retry limit
+ * LONG_RTY_THRE: Long retry threshoold
+ * NON_AGG_RTY_MODE: Non-Aggregate MPDU retry mode
+ *                   0:expired by retry limit, 1: expired by mpdu life timer
+ * AGG_RTY_MODE: Aggregate MPDU retry mode
+ *               0:expired by retry limit, 1: expired by mpdu life timer
+ * TX_AUTO_FB_ENABLE: Tx retry PHY rate auto fallback enable
+ */
+#define TX_RTY_CFG			0x134c
+#define TX_RTY_CFG_SHORT_RTY_LIMIT	FIELD32(0x000000ff)
+#define TX_RTY_CFG_LONG_RTY_LIMIT	FIELD32(0x0000ff00)
+#define TX_RTY_CFG_LONG_RTY_THRE	FIELD32(0x0fff0000)
+#define TX_RTY_CFG_NON_AGG_RTY_MODE	FIELD32(0x10000000)
+#define TX_RTY_CFG_AGG_RTY_MODE		FIELD32(0x20000000)
+#define TX_RTY_CFG_TX_AUTO_FB_ENABLE	FIELD32(0x40000000)
+
+/*
+ * TX_LINK_CFG:
+ * REMOTE_MFB_LIFETIME: remote MFB life time. unit: 32us
+ * MFB_ENABLE: TX apply remote MFB 1:enable
+ * REMOTE_UMFS_ENABLE: remote unsolicit  MFB enable
+ *                     0: not apply remote remote unsolicit (MFS=7)
+ * TX_MRQ_EN: MCS request TX enable
+ * TX_RDG_EN: RDG TX enable
+ * TX_CF_ACK_EN: Piggyback CF-ACK enable
+ * REMOTE_MFB: remote MCS feedback
+ * REMOTE_MFS: remote MCS feedback sequence number
+ */
+#define TX_LINK_CFG			0x1350
+#define TX_LINK_CFG_REMOTE_MFB_LIFETIME	FIELD32(0x000000ff)
+#define TX_LINK_CFG_MFB_ENABLE		FIELD32(0x00000100)
+#define TX_LINK_CFG_REMOTE_UMFS_ENABLE	FIELD32(0x00000200)
+#define TX_LINK_CFG_TX_MRQ_EN		FIELD32(0x00000400)
+#define TX_LINK_CFG_TX_RDG_EN		FIELD32(0x00000800)
+#define TX_LINK_CFG_TX_CF_ACK_EN	FIELD32(0x00001000)
+#define TX_LINK_CFG_REMOTE_MFB		FIELD32(0x00ff0000)
+#define TX_LINK_CFG_REMOTE_MFS		FIELD32(0xff000000)
+
+/*
+ * HT_FBK_CFG0:
+ */
+#define HT_FBK_CFG0			0x1354
+#define HT_FBK_CFG0_HTMCS0FBK		FIELD32(0x0000000f)
+#define HT_FBK_CFG0_HTMCS1FBK		FIELD32(0x000000f0)
+#define HT_FBK_CFG0_HTMCS2FBK		FIELD32(0x00000f00)
+#define HT_FBK_CFG0_HTMCS3FBK		FIELD32(0x0000f000)
+#define HT_FBK_CFG0_HTMCS4FBK		FIELD32(0x000f0000)
+#define HT_FBK_CFG0_HTMCS5FBK		FIELD32(0x00f00000)
+#define HT_FBK_CFG0_HTMCS6FBK		FIELD32(0x0f000000)
+#define HT_FBK_CFG0_HTMCS7FBK		FIELD32(0xf0000000)
+
+/*
+ * HT_FBK_CFG1:
+ */
+#define HT_FBK_CFG1			0x1358
+#define HT_FBK_CFG1_HTMCS8FBK		FIELD32(0x0000000f)
+#define HT_FBK_CFG1_HTMCS9FBK		FIELD32(0x000000f0)
+#define HT_FBK_CFG1_HTMCS10FBK		FIELD32(0x00000f00)
+#define HT_FBK_CFG1_HTMCS11FBK		FIELD32(0x0000f000)
+#define HT_FBK_CFG1_HTMCS12FBK		FIELD32(0x000f0000)
+#define HT_FBK_CFG1_HTMCS13FBK		FIELD32(0x00f00000)
+#define HT_FBK_CFG1_HTMCS14FBK		FIELD32(0x0f000000)
+#define HT_FBK_CFG1_HTMCS15FBK		FIELD32(0xf0000000)
+
+/*
+ * LG_FBK_CFG0:
+ */
+#define LG_FBK_CFG0			0x135c
+#define LG_FBK_CFG0_OFDMMCS0FBK		FIELD32(0x0000000f)
+#define LG_FBK_CFG0_OFDMMCS1FBK		FIELD32(0x000000f0)
+#define LG_FBK_CFG0_OFDMMCS2FBK		FIELD32(0x00000f00)
+#define LG_FBK_CFG0_OFDMMCS3FBK		FIELD32(0x0000f000)
+#define LG_FBK_CFG0_OFDMMCS4FBK		FIELD32(0x000f0000)
+#define LG_FBK_CFG0_OFDMMCS5FBK		FIELD32(0x00f00000)
+#define LG_FBK_CFG0_OFDMMCS6FBK		FIELD32(0x0f000000)
+#define LG_FBK_CFG0_OFDMMCS7FBK		FIELD32(0xf0000000)
+
+/*
+ * LG_FBK_CFG1:
+ */
+#define LG_FBK_CFG1			0x1360
+#define LG_FBK_CFG0_CCKMCS0FBK		FIELD32(0x0000000f)
+#define LG_FBK_CFG0_CCKMCS1FBK		FIELD32(0x000000f0)
+#define LG_FBK_CFG0_CCKMCS2FBK		FIELD32(0x00000f00)
+#define LG_FBK_CFG0_CCKMCS3FBK		FIELD32(0x0000f000)
+
+/*
+ * CCK_PROT_CFG: CCK Protection
+ * PROTECT_RATE: Protection control frame rate for CCK TX(RTS/CTS/CFEnd)
+ * PROTECT_CTRL: Protection control frame type for CCK TX
+ *               0:none, 1:RTS/CTS, 2:CTS-to-self
+ * PROTECT_NAV_SHORT: TXOP protection type for CCK TX with short NAV
+ * PROTECT_NAV_LONG: TXOP protection type for CCK TX with long NAV
+ * TX_OP_ALLOW_CCK: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_OFDM: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_MM20: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_MM40: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_GF20: CCK TXOP allowance, 0:disallow
+ * TX_OP_ALLOW_GF40: CCK TXOP allowance, 0:disallow
+ * RTS_TH_EN: RTS threshold enable on CCK TX
+ */
+#define CCK_PROT_CFG			0x1364
+#define CCK_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define CCK_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define CCK_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define CCK_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define CCK_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define CCK_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * OFDM_PROT_CFG: OFDM Protection
+ */
+#define OFDM_PROT_CFG			0x1368
+#define OFDM_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define OFDM_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define OFDM_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define OFDM_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define OFDM_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define OFDM_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * MM20_PROT_CFG: MM20 Protection
+ */
+#define MM20_PROT_CFG			0x136c
+#define MM20_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define MM20_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define MM20_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define MM20_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define MM20_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define MM20_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * MM40_PROT_CFG: MM40 Protection
+ */
+#define MM40_PROT_CFG			0x1370
+#define MM40_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define MM40_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define MM40_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define MM40_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define MM40_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define MM40_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * GF20_PROT_CFG: GF20 Protection
+ */
+#define GF20_PROT_CFG			0x1374
+#define GF20_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define GF20_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define GF20_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define GF20_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define GF20_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define GF20_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * GF40_PROT_CFG: GF40 Protection
+ */
+#define GF40_PROT_CFG			0x1378
+#define GF40_PROT_CFG_PROTECT_RATE	FIELD32(0x0000ffff)
+#define GF40_PROT_CFG_PROTECT_CTRL	FIELD32(0x00030000)
+#define GF40_PROT_CFG_PROTECT_NAV_SHORT	FIELD32(0x00040000)
+#define GF40_PROT_CFG_PROTECT_NAV_LONG	FIELD32(0x00080000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_CCK	FIELD32(0x00100000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_OFDM	FIELD32(0x00200000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_MM20	FIELD32(0x00400000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_MM40	FIELD32(0x00800000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_GF20	FIELD32(0x01000000)
+#define GF40_PROT_CFG_TX_OP_ALLOW_GF40	FIELD32(0x02000000)
+#define GF40_PROT_CFG_RTS_TH_EN		FIELD32(0x04000000)
+
+/*
+ * EXP_CTS_TIME:
+ */
+#define EXP_CTS_TIME			0x137c
+
+/*
+ * EXP_ACK_TIME:
+ */
+#define EXP_ACK_TIME			0x1380
+
+/* TX_PWR_CFG_5 */
+#define TX_PWR_CFG_5			0x1384
+#define TX_PWR_CFG_5_MCS16_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_5_MCS16_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_5_MCS16_CH2		FIELD32(0x00000f00)
+#define TX_PWR_CFG_5_MCS18_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_5_MCS18_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_5_MCS18_CH2		FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_6 */
+#define TX_PWR_CFG_6			0x1388
+#define TX_PWR_CFG_6_MCS20_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_6_MCS20_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_6_MCS20_CH2		FIELD32(0x00000f00)
+#define TX_PWR_CFG_6_MCS22_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_6_MCS22_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_6_MCS22_CH2		FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_0_EXT */
+#define TX_PWR_CFG_0_EXT		0x1390
+#define TX_PWR_CFG_0_EXT_CCK1_CH2	FIELD32(0x0000000f)
+#define TX_PWR_CFG_0_EXT_CCK5_CH2	FIELD32(0x00000f00)
+#define TX_PWR_CFG_0_EXT_OFDM6_CH2	FIELD32(0x000f0000)
+#define TX_PWR_CFG_0_EXT_OFDM12_CH2	FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_1_EXT */
+#define TX_PWR_CFG_1_EXT		0x1394
+#define TX_PWR_CFG_1_EXT_OFDM24_CH2	FIELD32(0x0000000f)
+#define TX_PWR_CFG_1_EXT_OFDM48_CH2	FIELD32(0x00000f00)
+#define TX_PWR_CFG_1_EXT_MCS0_CH2	FIELD32(0x000f0000)
+#define TX_PWR_CFG_1_EXT_MCS2_CH2	FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_2_EXT */
+#define TX_PWR_CFG_2_EXT		0x1398
+#define TX_PWR_CFG_2_EXT_MCS4_CH2	FIELD32(0x0000000f)
+#define TX_PWR_CFG_2_EXT_MCS6_CH2	FIELD32(0x00000f00)
+#define TX_PWR_CFG_2_EXT_MCS8_CH2	FIELD32(0x000f0000)
+#define TX_PWR_CFG_2_EXT_MCS10_CH2	FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_3_EXT */
+#define TX_PWR_CFG_3_EXT		0x139c
+#define TX_PWR_CFG_3_EXT_MCS12_CH2	FIELD32(0x0000000f)
+#define TX_PWR_CFG_3_EXT_MCS14_CH2	FIELD32(0x00000f00)
+#define TX_PWR_CFG_3_EXT_STBC0_CH2	FIELD32(0x000f0000)
+#define TX_PWR_CFG_3_EXT_STBC2_CH2	FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_4_EXT */
+#define TX_PWR_CFG_4_EXT		0x13a0
+#define TX_PWR_CFG_4_EXT_STBC4_CH2	FIELD32(0x0000000f)
+#define TX_PWR_CFG_4_EXT_STBC6_CH2	FIELD32(0x00000f00)
+
+/* TX_PWR_CFG_7 */
+#define TX_PWR_CFG_7			0x13d4
+#define TX_PWR_CFG_7_OFDM54_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_7_OFDM54_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_7_OFDM54_CH2		FIELD32(0x00000f00)
+#define TX_PWR_CFG_7_MCS7_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_7_MCS7_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_7_MCS7_CH2		FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_8 */
+#define TX_PWR_CFG_8			0x13d8
+#define TX_PWR_CFG_8_MCS15_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_8_MCS15_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_8_MCS15_CH2		FIELD32(0x00000f00)
+#define TX_PWR_CFG_8_MCS23_CH0		FIELD32(0x000f0000)
+#define TX_PWR_CFG_8_MCS23_CH1		FIELD32(0x00f00000)
+#define TX_PWR_CFG_8_MCS23_CH2		FIELD32(0x0f000000)
+
+/* TX_PWR_CFG_9 */
+#define TX_PWR_CFG_9			0x13dc
+#define TX_PWR_CFG_9_STBC7_CH0		FIELD32(0x0000000f)
+#define TX_PWR_CFG_9_STBC7_CH1		FIELD32(0x000000f0)
+#define TX_PWR_CFG_9_STBC7_CH2		FIELD32(0x00000f00)
+
+/*
+ * RX_FILTER_CFG: RX configuration register.
+ */
+#define RX_FILTER_CFG			0x1400
+#define RX_FILTER_CFG_DROP_CRC_ERROR	FIELD32(0x00000001)
+#define RX_FILTER_CFG_DROP_PHY_ERROR	FIELD32(0x00000002)
+#define RX_FILTER_CFG_DROP_NOT_TO_ME	FIELD32(0x00000004)
+#define RX_FILTER_CFG_DROP_NOT_MY_BSSD	FIELD32(0x00000008)
+#define RX_FILTER_CFG_DROP_VER_ERROR	FIELD32(0x00000010)
+#define RX_FILTER_CFG_DROP_MULTICAST	FIELD32(0x00000020)
+#define RX_FILTER_CFG_DROP_BROADCAST	FIELD32(0x00000040)
+#define RX_FILTER_CFG_DROP_DUPLICATE	FIELD32(0x00000080)
+#define RX_FILTER_CFG_DROP_CF_END_ACK	FIELD32(0x00000100)
+#define RX_FILTER_CFG_DROP_CF_END	FIELD32(0x00000200)
+#define RX_FILTER_CFG_DROP_ACK		FIELD32(0x00000400)
+#define RX_FILTER_CFG_DROP_CTS		FIELD32(0x00000800)
+#define RX_FILTER_CFG_DROP_RTS		FIELD32(0x00001000)
+#define RX_FILTER_CFG_DROP_PSPOLL	FIELD32(0x00002000)
+#define RX_FILTER_CFG_DROP_BA		FIELD32(0x00004000)
+#define RX_FILTER_CFG_DROP_BAR		FIELD32(0x00008000)
+#define RX_FILTER_CFG_DROP_CNTL		FIELD32(0x00010000)
+
+/*
+ * AUTO_RSP_CFG:
+ * AUTORESPONDER: 0: disable, 1: enable
+ * BAC_ACK_POLICY: 0:long, 1:short preamble
+ * CTS_40_MMODE: Response CTS 40MHz duplicate mode
+ * CTS_40_MREF: Response CTS 40MHz duplicate mode
+ * AR_PREAMBLE: Auto responder preamble 0:long, 1:short preamble
+ * DUAL_CTS_EN: Power bit value in control frame
+ * ACK_CTS_PSM_BIT:Power bit value in control frame
+ */
+#define AUTO_RSP_CFG			0x1404
+#define AUTO_RSP_CFG_AUTORESPONDER	FIELD32(0x00000001)
+#define AUTO_RSP_CFG_BAC_ACK_POLICY	FIELD32(0x00000002)
+#define AUTO_RSP_CFG_CTS_40_MMODE	FIELD32(0x00000004)
+#define AUTO_RSP_CFG_CTS_40_MREF	FIELD32(0x00000008)
+#define AUTO_RSP_CFG_AR_PREAMBLE	FIELD32(0x00000010)
+#define AUTO_RSP_CFG_DUAL_CTS_EN	FIELD32(0x00000040)
+#define AUTO_RSP_CFG_ACK_CTS_PSM_BIT	FIELD32(0x00000080)
+
+/*
+ * LEGACY_BASIC_RATE:
+ */
+#define LEGACY_BASIC_RATE		0x1408
+
+/*
+ * HT_BASIC_RATE:
+ */
+#define HT_BASIC_RATE			0x140c
+
+/*
+ * HT_CTRL_CFG:
+ */
+#define HT_CTRL_CFG			0x1410
+
+/*
+ * SIFS_COST_CFG:
+ */
+#define SIFS_COST_CFG			0x1414
+
+/*
+ * RX_PARSER_CFG:
+ * Set NAV for all received frames
+ */
+#define RX_PARSER_CFG			0x1418
+
+/*
+ * TX_SEC_CNT0:
+ */
+#define TX_SEC_CNT0			0x1500
+
+/*
+ * RX_SEC_CNT0:
+ */
+#define RX_SEC_CNT0			0x1504
+
+/*
+ * CCMP_FC_MUTE:
+ */
+#define CCMP_FC_MUTE			0x1508
+
+/*
+ * TXOP_HLDR_ADDR0:
+ */
+#define TXOP_HLDR_ADDR0			0x1600
+
+/*
+ * TXOP_HLDR_ADDR1:
+ */
+#define TXOP_HLDR_ADDR1			0x1604
+
+/*
+ * TXOP_HLDR_ET:
+ */
+#define TXOP_HLDR_ET			0x1608
+
+/*
+ * QOS_CFPOLL_RA_DW0:
+ */
+#define QOS_CFPOLL_RA_DW0		0x160c
+
+/*
+ * QOS_CFPOLL_RA_DW1:
+ */
+#define QOS_CFPOLL_RA_DW1		0x1610
+
+/*
+ * QOS_CFPOLL_QC:
+ */
+#define QOS_CFPOLL_QC			0x1614
+
+/*
+ * RX_STA_CNT0: RX PLCP error count & RX CRC error count
+ */
+#define RX_STA_CNT0			0x1700
+#define RX_STA_CNT0_CRC_ERR		FIELD32(0x0000ffff)
+#define RX_STA_CNT0_PHY_ERR		FIELD32(0xffff0000)
+
+/*
+ * RX_STA_CNT1: RX False CCA count & RX LONG frame count
+ */
+#define RX_STA_CNT1			0x1704
+#define RX_STA_CNT1_FALSE_CCA		FIELD32(0x0000ffff)
+#define RX_STA_CNT1_PLCP_ERR		FIELD32(0xffff0000)
+
+/*
+ * RX_STA_CNT2:
+ */
+#define RX_STA_CNT2			0x1708
+#define RX_STA_CNT2_RX_DUPLI_COUNT	FIELD32(0x0000ffff)
+#define RX_STA_CNT2_RX_FIFO_OVERFLOW	FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT0: TX Beacon count
+ */
+#define TX_STA_CNT0			0x170c
+#define TX_STA_CNT0_TX_FAIL_COUNT	FIELD32(0x0000ffff)
+#define TX_STA_CNT0_TX_BEACON_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT1: TX tx count
+ */
+#define TX_STA_CNT1			0x1710
+#define TX_STA_CNT1_TX_SUCCESS		FIELD32(0x0000ffff)
+#define TX_STA_CNT1_TX_RETRANSMIT	FIELD32(0xffff0000)
+
+/*
+ * TX_STA_CNT2: TX tx count
+ */
+#define TX_STA_CNT2			0x1714
+#define TX_STA_CNT2_TX_ZERO_LEN_COUNT	FIELD32(0x0000ffff)
+#define TX_STA_CNT2_TX_UNDER_FLOW_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_STA_FIFO: TX Result for specific PID status fifo register.
+ *
+ * This register is implemented as FIFO with 16 entries in the HW. Each
+ * register read fetches the next tx result. If the FIFO is full because
+ * it wasn't read fast enough after the according interrupt (TX_FIFO_STATUS)
+ * triggered, the hw seems to simply drop further tx results.
+ *
+ * VALID: 1: this tx result is valid
+ *        0: no valid tx result -> driver should stop reading
+ * PID_TYPE: The PID latched from the PID field in the TXWI, can be used
+ *           to match a frame with its tx result (even though the PID is
+ *           only 4 bits wide).
+ * PID_QUEUE: Part of PID_TYPE, this is the queue index number (0-3)
+ * PID_ENTRY: Part of PID_TYPE, this is the queue entry index number (1-3)
+ *            This identification number is calculated by ((idx % 3) + 1).
+ * TX_SUCCESS: Indicates tx success (1) or failure (0)
+ * TX_AGGRE: Indicates if the frame was part of an aggregate (1) or not (0)
+ * TX_ACK_REQUIRED: Indicates if the frame needed to get ack'ed (1) or not (0)
+ * WCID: The wireless client ID.
+ * MCS: The tx rate used during the last transmission of this frame, be it
+ *      successful or not.
+ * PHYMODE: The phymode used for the transmission.
+ */
+#define TX_STA_FIFO			0x1718
+#define TX_STA_FIFO_VALID		FIELD32(0x00000001)
+#define TX_STA_FIFO_PID_TYPE		FIELD32(0x0000001e)
+#define TX_STA_FIFO_PID_QUEUE		FIELD32(0x00000006)
+#define TX_STA_FIFO_PID_ENTRY		FIELD32(0x00000018)
+#define TX_STA_FIFO_TX_SUCCESS		FIELD32(0x00000020)
+#define TX_STA_FIFO_TX_AGGRE		FIELD32(0x00000040)
+#define TX_STA_FIFO_TX_ACK_REQUIRED	FIELD32(0x00000080)
+#define TX_STA_FIFO_WCID		FIELD32(0x0000ff00)
+#define TX_STA_FIFO_SUCCESS_RATE	FIELD32(0xffff0000)
+#define TX_STA_FIFO_MCS			FIELD32(0x007f0000)
+#define TX_STA_FIFO_PHYMODE		FIELD32(0xc0000000)
+
+/*
+ * TX_AGG_CNT: Debug counter
+ */
+#define TX_AGG_CNT			0x171c
+#define TX_AGG_CNT_NON_AGG_TX_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT_AGG_TX_COUNT		FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT0:
+ */
+#define TX_AGG_CNT0			0x1720
+#define TX_AGG_CNT0_AGG_SIZE_1_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT0_AGG_SIZE_2_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT1:
+ */
+#define TX_AGG_CNT1			0x1724
+#define TX_AGG_CNT1_AGG_SIZE_3_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT1_AGG_SIZE_4_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT2:
+ */
+#define TX_AGG_CNT2			0x1728
+#define TX_AGG_CNT2_AGG_SIZE_5_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT2_AGG_SIZE_6_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT3:
+ */
+#define TX_AGG_CNT3			0x172c
+#define TX_AGG_CNT3_AGG_SIZE_7_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT3_AGG_SIZE_8_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT4:
+ */
+#define TX_AGG_CNT4			0x1730
+#define TX_AGG_CNT4_AGG_SIZE_9_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT4_AGG_SIZE_10_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT5:
+ */
+#define TX_AGG_CNT5			0x1734
+#define TX_AGG_CNT5_AGG_SIZE_11_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT5_AGG_SIZE_12_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT6:
+ */
+#define TX_AGG_CNT6			0x1738
+#define TX_AGG_CNT6_AGG_SIZE_13_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT6_AGG_SIZE_14_COUNT	FIELD32(0xffff0000)
+
+/*
+ * TX_AGG_CNT7:
+ */
+#define TX_AGG_CNT7			0x173c
+#define TX_AGG_CNT7_AGG_SIZE_15_COUNT	FIELD32(0x0000ffff)
+#define TX_AGG_CNT7_AGG_SIZE_16_COUNT	FIELD32(0xffff0000)
+
+/*
+ * MPDU_DENSITY_CNT:
+ * TX_ZERO_DEL: TX zero length delimiter count
+ * RX_ZERO_DEL: RX zero length delimiter count
+ */
+#define MPDU_DENSITY_CNT		0x1740
+#define MPDU_DENSITY_CNT_TX_ZERO_DEL	FIELD32(0x0000ffff)
+#define MPDU_DENSITY_CNT_RX_ZERO_DEL	FIELD32(0xffff0000)
+
+/*
+ * Security key table memory.
+ *
+ * The pairwise key table shares some memory with the beacon frame
+ * buffers 6 and 7. That basically means that when beacon 6 & 7
+ * are used we should only use the reduced pairwise key table which
+ * has a maximum of 222 entries.
+ *
+ * ---------------------------------------------
+ * |0x4000 | Pairwise Key   | Reduced Pairwise |
+ * |       | Table          | Key Table        |
+ * |       | Size: 256 * 32 | Size: 222 * 32   |
+ * |0x5BC0 |                |-------------------
+ * |       |                | Beacon 6         |
+ * |0x5DC0 |                |-------------------
+ * |       |                | Beacon 7         |
+ * |0x5FC0 |                |-------------------
+ * |0x5FFF |                |
+ * --------------------------
+ *
+ * MAC_WCID_BASE: 8-bytes (use only 6 bytes) * 256 entry
+ * PAIRWISE_KEY_TABLE_BASE: 32-byte * 256 entry
+ * MAC_IVEIV_TABLE_BASE: 8-byte * 256-entry
+ * MAC_WCID_ATTRIBUTE_BASE: 4-byte * 256-entry
+ * SHARED_KEY_TABLE_BASE: 32-byte * 16-entry
+ * SHARED_KEY_MODE_BASE: 4-byte * 16-entry
+ */
+#define MAC_WCID_BASE			0x1800
+#define PAIRWISE_KEY_TABLE_BASE		0x4000
+#define MAC_IVEIV_TABLE_BASE		0x6000
+#define MAC_WCID_ATTRIBUTE_BASE		0x6800
+#define SHARED_KEY_TABLE_BASE		0x6c00
+#define SHARED_KEY_MODE_BASE		0x7000
+
+#define MAC_WCID_ENTRY(__idx) \
+	(MAC_WCID_BASE + ((__idx) * sizeof(struct mac_wcid_entry)))
+#define PAIRWISE_KEY_ENTRY(__idx) \
+	(PAIRWISE_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)))
+#define MAC_IVEIV_ENTRY(__idx) \
+	(MAC_IVEIV_TABLE_BASE + ((__idx) * sizeof(struct mac_iveiv_entry)))
+#define MAC_WCID_ATTR_ENTRY(__idx) \
+	(MAC_WCID_ATTRIBUTE_BASE + ((__idx) * sizeof(u32)))
+#define SHARED_KEY_ENTRY(__idx) \
+	(SHARED_KEY_TABLE_BASE + ((__idx) * sizeof(struct hw_key_entry)))
+#define SHARED_KEY_MODE_ENTRY(__idx) \
+	(SHARED_KEY_MODE_BASE + ((__idx) * sizeof(u32)))
+
+struct mac_wcid_entry {
+	u8 mac[6];
+	u8 reserved[2];
+} __packed;
+
+struct hw_key_entry {
+	u8 key[16];
+	u8 tx_mic[8];
+	u8 rx_mic[8];
+} __packed;
+
+struct mac_iveiv_entry {
+	u8 iv[8];
+} __packed;
+
+/*
+ * MAC_WCID_ATTRIBUTE:
+ */
+#define MAC_WCID_ATTRIBUTE_KEYTAB	FIELD32(0x00000001)
+#define MAC_WCID_ATTRIBUTE_CIPHER	FIELD32(0x0000000e)
+#define MAC_WCID_ATTRIBUTE_BSS_IDX	FIELD32(0x00000070)
+#define MAC_WCID_ATTRIBUTE_RX_WIUDF	FIELD32(0x00000380)
+#define MAC_WCID_ATTRIBUTE_CIPHER_EXT	FIELD32(0x00000400)
+#define MAC_WCID_ATTRIBUTE_BSS_IDX_EXT	FIELD32(0x00000800)
+#define MAC_WCID_ATTRIBUTE_WAPI_MCBC	FIELD32(0x00008000)
+#define MAC_WCID_ATTRIBUTE_WAPI_KEY_IDX	FIELD32(0xff000000)
+
+/*
+ * SHARED_KEY_MODE:
+ */
+#define SHARED_KEY_MODE_BSS0_KEY0	FIELD32(0x00000007)
+#define SHARED_KEY_MODE_BSS0_KEY1	FIELD32(0x00000070)
+#define SHARED_KEY_MODE_BSS0_KEY2	FIELD32(0x00000700)
+#define SHARED_KEY_MODE_BSS0_KEY3	FIELD32(0x00007000)
+#define SHARED_KEY_MODE_BSS1_KEY0	FIELD32(0x00070000)
+#define SHARED_KEY_MODE_BSS1_KEY1	FIELD32(0x00700000)
+#define SHARED_KEY_MODE_BSS1_KEY2	FIELD32(0x07000000)
+#define SHARED_KEY_MODE_BSS1_KEY3	FIELD32(0x70000000)
+
+/*
+ * HOST-MCU communication
+ */
+
+/*
+ * H2M_MAILBOX_CSR: Host-to-MCU Mailbox.
+ * CMD_TOKEN: Command id, 0xff disable status reporting.
+ */
+#define H2M_MAILBOX_CSR			0x7010
+#define H2M_MAILBOX_CSR_ARG0		FIELD32(0x000000ff)
+#define H2M_MAILBOX_CSR_ARG1		FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CSR_CMD_TOKEN	FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CSR_OWNER		FIELD32(0xff000000)
+
+/*
+ * H2M_MAILBOX_CID:
+ * Free slots contain 0xff. MCU will store command's token to lowest free slot.
+ * If all slots are occupied status will be dropped.
+ */
+#define H2M_MAILBOX_CID			0x7014
+#define H2M_MAILBOX_CID_CMD0		FIELD32(0x000000ff)
+#define H2M_MAILBOX_CID_CMD1		FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CID_CMD2		FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CID_CMD3		FIELD32(0xff000000)
+
+/*
+ * H2M_MAILBOX_STATUS:
+ * Command status will be saved to same slot as command id.
+ */
+#define H2M_MAILBOX_STATUS		0x701c
+
+/*
+ * H2M_INT_SRC:
+ */
+#define H2M_INT_SRC			0x7024
+
+/*
+ * H2M_BBP_AGENT:
+ */
+#define H2M_BBP_AGENT			0x7028
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE		FIELD8(0x1f)
+#define MCU_LEDCS_POLARITY		FIELD8(0x01)
+
+/*
+ * HW_CS_CTS_BASE:
+ * Carrier-sense CTS frame base address.
+ * It's where mac stores carrier-sense frame for carrier-sense function.
+ */
+#define HW_CS_CTS_BASE			0x7700
+
+/*
+ * HW_DFS_CTS_BASE:
+ * DFS CTS frame base address. It's where mac stores CTS frame for DFS.
+ */
+#define HW_DFS_CTS_BASE			0x7780
+
+/*
+ * TXRX control registers - base address 0x3000
+ */
+
+/*
+ * TXRX_CSR1:
+ * rt2860b  UNKNOWN reg use R/O Reg Addr 0x77d0 first..
+ */
+#define TXRX_CSR1			0x77d0
+
+/*
+ * HW_DEBUG_SETTING_BASE:
+ * since NULL frame won't be that long (256 byte)
+ * We steal 16 tail bytes to save debugging settings
+ */
+#define HW_DEBUG_SETTING_BASE		0x77f0
+#define HW_DEBUG_SETTING_BASE2		0x7770
+
+/*
+ * HW_BEACON_BASE
+ * In order to support maximum 8 MBSS and its maximum length
+ * is 512 bytes for each beacon
+ * Three section discontinue memory segments will be used.
+ * 1. The original region for BCN 0~3
+ * 2. Extract memory from FCE table for BCN 4~5
+ * 3. Extract memory from Pair-wise key table for BCN 6~7
+ *    It occupied those memory of wcid 238~253 for BCN 6
+ *    and wcid 222~237 for BCN 7 (see Security key table memory
+ *    for more info).
+ *
+ * IMPORTANT NOTE: Not sure why legacy driver does this,
+ * but HW_BEACON_BASE7 is 0x0200 bytes below HW_BEACON_BASE6.
+ */
+#define HW_BEACON_BASE0			0x7800
+#define HW_BEACON_BASE1			0x7a00
+#define HW_BEACON_BASE2			0x7c00
+#define HW_BEACON_BASE3			0x7e00
+#define HW_BEACON_BASE4			0x7200
+#define HW_BEACON_BASE5			0x7400
+#define HW_BEACON_BASE6			0x5dc0
+#define HW_BEACON_BASE7			0x5bc0
+
+#define HW_BEACON_BASE(__index) \
+	(((__index) < 4) ? (HW_BEACON_BASE0 + (__index * 0x0200)) : \
+	  (((__index) < 6) ? (HW_BEACON_BASE4 + ((__index - 4) * 0x0200)) : \
+	  (HW_BEACON_BASE6 - ((__index - 6) * 0x0200))))
+
+#define BEACON_BASE_TO_OFFSET(_base)	(((_base) - 0x4000) / 64)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * BBP 1: TX Antenna & Power Control
+ * POWER_CTRL:
+ * 0 - normal,
+ * 1 - drop tx power by 6dBm,
+ * 2 - drop tx power by 12dBm,
+ * 3 - increase tx power by 6dBm
+ */
+#define BBP1_TX_POWER_CTRL		FIELD8(0x03)
+#define BBP1_TX_ANTENNA			FIELD8(0x18)
+
+/*
+ * BBP 3: RX Antenna
+ */
+#define BBP3_RX_ADC			FIELD8(0x03)
+#define BBP3_RX_ANTENNA			FIELD8(0x18)
+#define BBP3_HT40_MINUS			FIELD8(0x20)
+#define BBP3_ADC_MODE_SWITCH		FIELD8(0x40)
+#define BBP3_ADC_INIT_MODE		FIELD8(0x80)
+
+/*
+ * BBP 4: Bandwidth
+ */
+#define BBP4_TX_BF			FIELD8(0x01)
+#define BBP4_BANDWIDTH			FIELD8(0x18)
+#define BBP4_MAC_IF_CTRL		FIELD8(0x40)
+
+/* BBP27 */
+#define BBP27_RX_CHAIN_SEL		FIELD8(0x60)
+
+/*
+ * BBP 47: Bandwidth
+ */
+#define BBP47_TSSI_REPORT_SEL		FIELD8(0x03)
+#define BBP47_TSSI_UPDATE_REQ		FIELD8(0x04)
+#define BBP47_TSSI_TSSI_MODE		FIELD8(0x18)
+#define BBP47_TSSI_ADC6			FIELD8(0x80)
+
+/*
+ * BBP 49
+ */
+#define BBP49_UPDATE_FLAG		FIELD8(0x01)
+
+/*
+ * BBP 105:
+ * - bit0: detect SIG on primary channel only (on 40MHz bandwidth)
+ * - bit1: FEQ (Feed Forward Compensation) for independend streams
+ * - bit2: MLD (Maximum Likehood Detection) for 2 streams (reserved on single
+ *	   stream)
+ * - bit4: channel estimation updates based on remodulation of
+ *	   L-SIG and HT-SIG symbols
+ */
+#define BBP105_DETECT_SIG_ON_PRIMARY	FIELD8(0x01)
+#define BBP105_FEQ			FIELD8(0x02)
+#define BBP105_MLD			FIELD8(0x04)
+#define BBP105_SIG_REMODULATION		FIELD8(0x08)
+
+/*
+ * BBP 109
+ */
+#define BBP109_TX0_POWER		FIELD8(0x0f)
+#define BBP109_TX1_POWER		FIELD8(0xf0)
+
+/* BBP 110 */
+#define BBP110_TX2_POWER		FIELD8(0x0f)
+
+
+/*
+ * BBP 138: Unknown
+ */
+#define BBP138_RX_ADC1			FIELD8(0x02)
+#define BBP138_RX_ADC2			FIELD8(0x04)
+#define BBP138_TX_DAC1			FIELD8(0x20)
+#define BBP138_TX_DAC2			FIELD8(0x40)
+
+/*
+ * BBP 152: Rx Ant
+ */
+#define BBP152_RX_DEFAULT_ANT		FIELD8(0x80)
+
+/*
+ * BBP 254: unknown
+ */
+#define BBP254_BIT7			FIELD8(0x80)
+
+/*
+ * RFCSR registers
+ * The wordsize of the RFCSR is 8 bits.
+ */
+
+/*
+ * RFCSR 1:
+ */
+#define RFCSR1_RF_BLOCK_EN		FIELD8(0x01)
+#define RFCSR1_PLL_PD			FIELD8(0x02)
+#define RFCSR1_RX0_PD			FIELD8(0x04)
+#define RFCSR1_TX0_PD			FIELD8(0x08)
+#define RFCSR1_RX1_PD			FIELD8(0x10)
+#define RFCSR1_TX1_PD			FIELD8(0x20)
+#define RFCSR1_RX2_PD			FIELD8(0x40)
+#define RFCSR1_TX2_PD			FIELD8(0x80)
+
+/*
+ * RFCSR 2:
+ */
+#define RFCSR2_RESCAL_EN		FIELD8(0x80)
+
+/*
+ * RFCSR 3:
+ */
+#define RFCSR3_K			FIELD8(0x0f)
+/* Bits [7-4] for RF3320 (RT3370/RT3390), on other chipsets reserved */
+#define RFCSR3_PA1_BIAS_CCK		FIELD8(0x70)
+#define RFCSR3_PA2_CASCODE_BIAS_CCKK	FIELD8(0x80)
+/* Bits for RF3290/RF5360/RF5362/RF5370/RF5372/RF5390/RF5392 */
+#define RFCSR3_VCOCAL_EN		FIELD8(0x80)
+/* Bits for RF3050 */
+#define RFCSR3_BIT1			FIELD8(0x02)
+#define RFCSR3_BIT2			FIELD8(0x04)
+#define RFCSR3_BIT3			FIELD8(0x08)
+#define RFCSR3_BIT4			FIELD8(0x10)
+#define RFCSR3_BIT5			FIELD8(0x20)
+
+/*
+ * FRCSR 5:
+ */
+#define RFCSR5_R1			FIELD8(0x0c)
+
+/*
+ * RFCSR 6:
+ */
+#define RFCSR6_R1			FIELD8(0x03)
+#define RFCSR6_R2			FIELD8(0x40)
+#define RFCSR6_TXDIV			FIELD8(0x0c)
+/* bits for RF3053 */
+#define RFCSR6_VCO_IC			FIELD8(0xc0)
+
+/*
+ * RFCSR 7:
+ */
+#define RFCSR7_RF_TUNING		FIELD8(0x01)
+#define RFCSR7_BIT1			FIELD8(0x02)
+#define RFCSR7_BIT2			FIELD8(0x04)
+#define RFCSR7_BIT3			FIELD8(0x08)
+#define RFCSR7_BIT4			FIELD8(0x10)
+#define RFCSR7_BIT5			FIELD8(0x20)
+#define RFCSR7_BITS67			FIELD8(0xc0)
+
+/*
+ * RFCSR 9:
+ */
+#define RFCSR9_K			FIELD8(0x0f)
+#define RFCSR9_N			FIELD8(0x10)
+#define RFCSR9_UNKNOWN			FIELD8(0x60)
+#define RFCSR9_MOD			FIELD8(0x80)
+
+/*
+ * RFCSR 11:
+ */
+#define RFCSR11_R			FIELD8(0x03)
+#define RFCSR11_PLL_MOD			FIELD8(0x0c)
+#define RFCSR11_MOD			FIELD8(0xc0)
+/* bits for RF3053 */
+/* TODO: verify RFCSR11_MOD usage on other chips */
+#define RFCSR11_PLL_IDOH		FIELD8(0x40)
+
+
+/*
+ * RFCSR 12:
+ */
+#define RFCSR12_TX_POWER		FIELD8(0x1f)
+#define RFCSR12_DR0			FIELD8(0xe0)
+
+/*
+ * RFCSR 13:
+ */
+#define RFCSR13_TX_POWER		FIELD8(0x1f)
+#define RFCSR13_DR0			FIELD8(0xe0)
+
+/*
+ * RFCSR 15:
+ */
+#define RFCSR15_TX_LO2_EN		FIELD8(0x08)
+
+/*
+ * RFCSR 16:
+ */
+#define RFCSR16_TXMIXER_GAIN		FIELD8(0x07)
+
+/*
+ * RFCSR 17:
+ */
+#define RFCSR17_TXMIXER_GAIN		FIELD8(0x07)
+#define RFCSR17_TX_LO1_EN		FIELD8(0x08)
+#define RFCSR17_R			FIELD8(0x20)
+#define RFCSR17_CODE			FIELD8(0x7f)
+
+/* RFCSR 18 */
+#define RFCSR18_XO_TUNE_BYPASS		FIELD8(0x40)
+
+
+/*
+ * RFCSR 20:
+ */
+#define RFCSR20_RX_LO1_EN		FIELD8(0x08)
+
+/*
+ * RFCSR 21:
+ */
+#define RFCSR21_RX_LO2_EN		FIELD8(0x08)
+
+/*
+ * RFCSR 22:
+ */
+#define RFCSR22_BASEBAND_LOOPBACK	FIELD8(0x01)
+
+/*
+ * RFCSR 23:
+ */
+#define RFCSR23_FREQ_OFFSET		FIELD8(0x7f)
+
+/*
+ * RFCSR 24:
+ */
+#define RFCSR24_TX_AGC_FC		FIELD8(0x1f)
+#define RFCSR24_TX_H20M			FIELD8(0x20)
+#define RFCSR24_TX_CALIB		FIELD8(0x7f)
+
+/*
+ * RFCSR 27:
+ */
+#define RFCSR27_R1			FIELD8(0x03)
+#define RFCSR27_R2			FIELD8(0x04)
+#define RFCSR27_R3			FIELD8(0x30)
+#define RFCSR27_R4			FIELD8(0x40)
+
+/*
+ * RFCSR 29:
+ */
+#define RFCSR29_ADC6_TEST		FIELD8(0x01)
+#define RFCSR29_ADC6_INT_TEST		FIELD8(0x02)
+#define RFCSR29_RSSI_RESET		FIELD8(0x04)
+#define RFCSR29_RSSI_ON			FIELD8(0x08)
+#define RFCSR29_RSSI_RIP_CTRL		FIELD8(0x30)
+#define RFCSR29_RSSI_GAIN		FIELD8(0xc0)
+
+/*
+ * RFCSR 30:
+ */
+#define RFCSR30_TX_H20M			FIELD8(0x02)
+#define RFCSR30_RX_H20M			FIELD8(0x04)
+#define RFCSR30_RX_VCM			FIELD8(0x18)
+#define RFCSR30_RF_CALIBRATION		FIELD8(0x80)
+
+/*
+ * RFCSR 31:
+ */
+#define RFCSR31_RX_AGC_FC		FIELD8(0x1f)
+#define RFCSR31_RX_H20M			FIELD8(0x20)
+#define RFCSR31_RX_CALIB		FIELD8(0x7f)
+
+/* RFCSR 32 bits for RF3053 */
+#define RFCSR32_TX_AGC_FC		FIELD8(0xf8)
+
+/* RFCSR 36 bits for RF3053 */
+#define RFCSR36_RF_BS			FIELD8(0x80)
+
+/*
+ * RFCSR 38:
+ */
+#define RFCSR38_RX_LO1_EN		FIELD8(0x20)
+
+/*
+ * RFCSR 39:
+ */
+#define RFCSR39_RX_DIV			FIELD8(0x40)
+#define RFCSR39_RX_LO2_EN		FIELD8(0x80)
+
+/*
+ * RFCSR 49:
+ */
+#define RFCSR49_TX			FIELD8(0x3f)
+#define RFCSR49_EP			FIELD8(0xc0)
+/* bits for RT3593 */
+#define RFCSR49_TX_LO1_IC		FIELD8(0x1c)
+#define RFCSR49_TX_DIV			FIELD8(0x20)
+
+/*
+ * RFCSR 50:
+ */
+#define RFCSR50_TX			FIELD8(0x3f)
+#define RFCSR50_EP			FIELD8(0xc0)
+/* bits for RT3593 */
+#define RFCSR50_TX_LO1_EN		FIELD8(0x20)
+#define RFCSR50_TX_LO2_EN		FIELD8(0x10)
+
+/* RFCSR 51 */
+/* bits for RT3593 */
+#define RFCSR51_BITS01			FIELD8(0x03)
+#define RFCSR51_BITS24			FIELD8(0x1c)
+#define RFCSR51_BITS57			FIELD8(0xe0)
+
+#define RFCSR53_TX_POWER		FIELD8(0x3f)
+#define RFCSR53_UNKNOWN			FIELD8(0xc0)
+
+#define RFCSR54_TX_POWER		FIELD8(0x3f)
+#define RFCSR54_UNKNOWN			FIELD8(0xc0)
+
+#define RFCSR55_TX_POWER		FIELD8(0x3f)
+#define RFCSR55_UNKNOWN			FIELD8(0xc0)
+
+#define RFCSR57_DRV_CC			FIELD8(0xfc)
+
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 2
+ */
+#define RF2_ANTENNA_RX2			FIELD32(0x00000040)
+#define RF2_ANTENNA_TX1			FIELD32(0x00004000)
+#define RF2_ANTENNA_RX1			FIELD32(0x00020000)
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER_G			FIELD32(0x00003e00)
+#define RF3_TXPOWER_A_7DBM_BOOST	FIELD32(0x00000200)
+#define RF3_TXPOWER_A			FIELD32(0x00003c00)
+
+/*
+ * RF 4
+ */
+#define RF4_TXPOWER_G			FIELD32(0x000007c0)
+#define RF4_TXPOWER_A_7DBM_BOOST	FIELD32(0x00000040)
+#define RF4_TXPOWER_A			FIELD32(0x00000780)
+#define RF4_FREQ_OFFSET			FIELD32(0x001f8000)
+#define RF4_HT40			FIELD32(0x00200000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+enum rt2800_eeprom_word {
+	EEPROM_CHIP_ID = 0,
+	EEPROM_VERSION,
+	EEPROM_MAC_ADDR_0,
+	EEPROM_MAC_ADDR_1,
+	EEPROM_MAC_ADDR_2,
+	EEPROM_NIC_CONF0,
+	EEPROM_NIC_CONF1,
+	EEPROM_FREQ,
+	EEPROM_LED_AG_CONF,
+	EEPROM_LED_ACT_CONF,
+	EEPROM_LED_POLARITY,
+	EEPROM_NIC_CONF2,
+	EEPROM_LNA,
+	EEPROM_RSSI_BG,
+	EEPROM_RSSI_BG2,
+	EEPROM_TXMIXER_GAIN_BG,
+	EEPROM_RSSI_A,
+	EEPROM_RSSI_A2,
+	EEPROM_TXMIXER_GAIN_A,
+	EEPROM_EIRP_MAX_TX_POWER,
+	EEPROM_TXPOWER_DELTA,
+	EEPROM_TXPOWER_BG1,
+	EEPROM_TXPOWER_BG2,
+	EEPROM_TSSI_BOUND_BG1,
+	EEPROM_TSSI_BOUND_BG2,
+	EEPROM_TSSI_BOUND_BG3,
+	EEPROM_TSSI_BOUND_BG4,
+	EEPROM_TSSI_BOUND_BG5,
+	EEPROM_TXPOWER_A1,
+	EEPROM_TXPOWER_A2,
+	EEPROM_TSSI_BOUND_A1,
+	EEPROM_TSSI_BOUND_A2,
+	EEPROM_TSSI_BOUND_A3,
+	EEPROM_TSSI_BOUND_A4,
+	EEPROM_TSSI_BOUND_A5,
+	EEPROM_TXPOWER_BYRATE,
+	EEPROM_BBP_START,
+
+	/* IDs for extended EEPROM format used by three-chain devices */
+	EEPROM_EXT_LNA2,
+	EEPROM_EXT_TXPOWER_BG3,
+	EEPROM_EXT_TXPOWER_A3,
+
+	/* New values must be added before this */
+	EEPROM_WORD_COUNT
+};
+
+/*
+ * EEPROM Version
+ */
+#define EEPROM_VERSION_FAE		FIELD16(0x00ff)
+#define EEPROM_VERSION_VERSION		FIELD16(0xff00)
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM NIC Configuration 0
+ * RXPATH: 1: 1R, 2: 2R, 3: 3R
+ * TXPATH: 1: 1T, 2: 2T, 3: 3T
+ * RF_TYPE: RFIC type
+ */
+#define EEPROM_NIC_CONF0_RXPATH		FIELD16(0x000f)
+#define EEPROM_NIC_CONF0_TXPATH		FIELD16(0x00f0)
+#define EEPROM_NIC_CONF0_RF_TYPE	FIELD16(0x0f00)
+
+/*
+ * EEPROM NIC Configuration 1
+ * HW_RADIO: 0: disable, 1: enable
+ * EXTERNAL_TX_ALC: 0: disable, 1: enable
+ * EXTERNAL_LNA_2G: 0: disable, 1: enable
+ * EXTERNAL_LNA_5G: 0: disable, 1: enable
+ * CARDBUS_ACCEL: 0: enable, 1: disable
+ * BW40M_SB_2G: 0: disable, 1: enable
+ * BW40M_SB_5G: 0: disable, 1: enable
+ * WPS_PBC: 0: disable, 1: enable
+ * BW40M_2G: 0: enable, 1: disable
+ * BW40M_5G: 0: enable, 1: disable
+ * BROADBAND_EXT_LNA: 0: disable, 1: enable
+ * ANT_DIVERSITY: 00: Disable, 01: Diversity,
+ * 				  10: Main antenna, 11: Aux antenna
+ * INTERNAL_TX_ALC: 0: disable, 1: enable
+ * BT_COEXIST: 0: disable, 1: enable
+ * DAC_TEST: 0: disable, 1: enable
+ */
+#define EEPROM_NIC_CONF1_HW_RADIO		FIELD16(0x0001)
+#define EEPROM_NIC_CONF1_EXTERNAL_TX_ALC	FIELD16(0x0002)
+#define EEPROM_NIC_CONF1_EXTERNAL_LNA_2G	FIELD16(0x0004)
+#define EEPROM_NIC_CONF1_EXTERNAL_LNA_5G	FIELD16(0x0008)
+#define EEPROM_NIC_CONF1_CARDBUS_ACCEL		FIELD16(0x0010)
+#define EEPROM_NIC_CONF1_BW40M_SB_2G		FIELD16(0x0020)
+#define EEPROM_NIC_CONF1_BW40M_SB_5G		FIELD16(0x0040)
+#define EEPROM_NIC_CONF1_WPS_PBC		FIELD16(0x0080)
+#define EEPROM_NIC_CONF1_BW40M_2G		FIELD16(0x0100)
+#define EEPROM_NIC_CONF1_BW40M_5G		FIELD16(0x0200)
+#define EEPROM_NIC_CONF1_BROADBAND_EXT_LNA	FIELD16(0x400)
+#define EEPROM_NIC_CONF1_ANT_DIVERSITY		FIELD16(0x1800)
+#define EEPROM_NIC_CONF1_INTERNAL_TX_ALC	FIELD16(0x2000)
+#define EEPROM_NIC_CONF1_BT_COEXIST		FIELD16(0x4000)
+#define EEPROM_NIC_CONF1_DAC_TEST		FIELD16(0x8000)
+
+/*
+ * EEPROM frequency
+ */
+#define EEPROM_FREQ_OFFSET		FIELD16(0x00ff)
+#define EEPROM_FREQ_LED_MODE		FIELD16(0x7f00)
+#define EEPROM_FREQ_LED_POLARITY	FIELD16(0x1000)
+
+/*
+ * EEPROM LED
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED_POLARITY_RDY_BG	FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A	FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT		FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0	FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1	FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2	FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3	FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4	FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE		FIELD16(0x1f00)
+
+/*
+ * EEPROM NIC Configuration 2
+ * RX_STREAM: 0: Reserved, 1: 1 Stream, 2: 2 Stream
+ * TX_STREAM: 0: Reserved, 1: 1 Stream, 2: 2 Stream
+ * CRYSTAL: 00: Reserved, 01: One crystal, 10: Two crystal, 11: Reserved
+ */
+#define EEPROM_NIC_CONF2_RX_STREAM	FIELD16(0x000f)
+#define EEPROM_NIC_CONF2_TX_STREAM	FIELD16(0x00f0)
+#define EEPROM_NIC_CONF2_CRYSTAL	FIELD16(0x0600)
+
+/*
+ * EEPROM LNA
+ */
+#define EEPROM_LNA_BG			FIELD16(0x00ff)
+#define EEPROM_LNA_A0			FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI BG offset
+ */
+#define EEPROM_RSSI_BG_OFFSET0		FIELD16(0x00ff)
+#define EEPROM_RSSI_BG_OFFSET1		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI BG2 offset
+ */
+#define EEPROM_RSSI_BG2_OFFSET2		FIELD16(0x00ff)
+#define EEPROM_RSSI_BG2_LNA_A1		FIELD16(0xff00)
+
+/*
+ * EEPROM TXMIXER GAIN BG offset (note overlaps with EEPROM RSSI BG2).
+ */
+#define EEPROM_TXMIXER_GAIN_BG_VAL	FIELD16(0x0007)
+
+/*
+ * EEPROM RSSI A offset
+ */
+#define EEPROM_RSSI_A_OFFSET0		FIELD16(0x00ff)
+#define EEPROM_RSSI_A_OFFSET1		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI A2 offset
+ */
+#define EEPROM_RSSI_A2_OFFSET2		FIELD16(0x00ff)
+#define EEPROM_RSSI_A2_LNA_A2		FIELD16(0xff00)
+
+/*
+ * EEPROM TXMIXER GAIN A offset (note overlaps with EEPROM RSSI A2).
+ */
+#define EEPROM_TXMIXER_GAIN_A_VAL	FIELD16(0x0007)
+
+/*
+ * EEPROM EIRP Maximum TX power values(unit: dbm)
+ */
+#define EEPROM_EIRP_MAX_TX_POWER_2GHZ	FIELD16(0x00ff)
+#define EEPROM_EIRP_MAX_TX_POWER_5GHZ	FIELD16(0xff00)
+
+/*
+ * EEPROM TXpower delta: 20MHZ AND 40 MHZ use different power.
+ * This is delta in 40MHZ.
+ * VALUE: Tx Power dalta value, MAX=4(unit: dbm)
+ * TYPE: 1: Plus the delta value, 0: minus the delta value
+ * ENABLE: enable tx power compensation for 40BW
+ */
+#define EEPROM_TXPOWER_DELTA_VALUE_2G	FIELD16(0x003f)
+#define EEPROM_TXPOWER_DELTA_TYPE_2G	FIELD16(0x0040)
+#define EEPROM_TXPOWER_DELTA_ENABLE_2G	FIELD16(0x0080)
+#define EEPROM_TXPOWER_DELTA_VALUE_5G	FIELD16(0x3f00)
+#define EEPROM_TXPOWER_DELTA_TYPE_5G	FIELD16(0x4000)
+#define EEPROM_TXPOWER_DELTA_ENABLE_5G	FIELD16(0x8000)
+
+/*
+ * EEPROM TXPOWER 802.11BG
+ */
+#define EEPROM_TXPOWER_BG_SIZE		7
+#define EEPROM_TXPOWER_BG_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_BG_2		FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * MINUS4: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -4)
+ * MINUS3: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -3)
+ */
+#define EEPROM_TSSI_BOUND_BG1_MINUS4	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG1_MINUS3	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * MINUS2: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -2)
+ * MINUS1: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -1)
+ */
+#define EEPROM_TSSI_BOUND_BG2_MINUS2	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG2_MINUS1	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * REF: Reference TSSI value, no tx power changes needed
+ * PLUS1: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 1)
+ */
+#define EEPROM_TSSI_BOUND_BG3_REF	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG3_PLUS1	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * PLUS2: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 2)
+ * PLUS3: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 3)
+ */
+#define EEPROM_TSSI_BOUND_BG4_PLUS2	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG4_PLUS3	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11BG
+ * PLUS4: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 4)
+ * AGC_STEP: Temperature compensation step.
+ */
+#define EEPROM_TSSI_BOUND_BG5_PLUS4	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_BG5_AGC_STEP	FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_SIZE		6
+#define EEPROM_TXPOWER_A_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2		FIELD16(0xff00)
+
+/* EEPROM_TXPOWER_{A,G} fields for RT3593 */
+#define EEPROM_TXPOWER_ALC		FIELD8(0x1f)
+#define EEPROM_TXPOWER_FINE_CTRL	FIELD8(0xe0)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * MINUS4: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -4)
+ * MINUS3: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -3)
+ */
+#define EEPROM_TSSI_BOUND_A1_MINUS4	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A1_MINUS3	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * MINUS2: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -2)
+ * MINUS1: If the actual TSSI is below this boundary, tx power needs to be
+ *         reduced by (agc_step * -1)
+ */
+#define EEPROM_TSSI_BOUND_A2_MINUS2	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A2_MINUS1	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * REF: Reference TSSI value, no tx power changes needed
+ * PLUS1: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 1)
+ */
+#define EEPROM_TSSI_BOUND_A3_REF	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A3_PLUS1	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * PLUS2: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 2)
+ * PLUS3: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 3)
+ */
+#define EEPROM_TSSI_BOUND_A4_PLUS2	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A4_PLUS3	FIELD16(0xff00)
+
+/*
+ * EEPROM temperature compensation boundaries 802.11A
+ * PLUS4: If the actual TSSI is above this boundary, tx power needs to be
+ *        increased by (agc_step * 4)
+ * AGC_STEP: Temperature compensation step.
+ */
+#define EEPROM_TSSI_BOUND_A5_PLUS4	FIELD16(0x00ff)
+#define EEPROM_TSSI_BOUND_A5_AGC_STEP	FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER by rate: tx power per tx rate for HT20 mode
+ */
+#define EEPROM_TXPOWER_BYRATE_SIZE	9
+
+#define EEPROM_TXPOWER_BYRATE_RATE0	FIELD16(0x000f)
+#define EEPROM_TXPOWER_BYRATE_RATE1	FIELD16(0x00f0)
+#define EEPROM_TXPOWER_BYRATE_RATE2	FIELD16(0x0f00)
+#define EEPROM_TXPOWER_BYRATE_RATE3	FIELD16(0xf000)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_SIZE			16
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/* EEPROM_EXT_LNA2 */
+#define EEPROM_EXT_LNA2_A1		FIELD16(0x00ff)
+#define EEPROM_EXT_LNA2_A2		FIELD16(0xff00)
+
+/*
+ * EEPROM IQ Calibration, unlike other entries those are byte addresses.
+ */
+
+#define EEPROM_IQ_GAIN_CAL_TX0_2G			0x130
+#define EEPROM_IQ_PHASE_CAL_TX0_2G			0x131
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_2G			0x132
+#define EEPROM_IQ_GAIN_CAL_TX1_2G			0x133
+#define EEPROM_IQ_PHASE_CAL_TX1_2G			0x134
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_2G			0x135
+#define EEPROM_IQ_GAIN_CAL_RX0_2G			0x136
+#define EEPROM_IQ_PHASE_CAL_RX0_2G			0x137
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_2G			0x138
+#define EEPROM_IQ_GAIN_CAL_RX1_2G			0x139
+#define EEPROM_IQ_PHASE_CAL_RX1_2G			0x13A
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_2G			0x13B
+#define EEPROM_RF_IQ_COMPENSATION_CONTROL		0x13C
+#define EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL	0x13D
+#define EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G		0x144
+#define EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G		0x145
+#define EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G	0X146
+#define EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G	0x147
+#define EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G	0x148
+#define EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G	0x149
+#define EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G		0x14A
+#define EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G		0x14B
+#define EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G	0X14C
+#define EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G	0x14D
+#define EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G	0x14E
+#define EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G	0x14F
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH36_TO_CH64_5G	0x150
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH36_TO_CH64_5G	0x151
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH100_TO_CH138_5G	0x152
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH100_TO_CH138_5G	0x153
+#define EEPROM_IQ_GROUPDELAY_CAL_TX0_CH140_TO_CH165_5G	0x154
+#define EEPROM_IQ_GROUPDELAY_CAL_TX1_CH140_TO_CH165_5G	0x155
+#define EEPROM_IQ_GAIN_CAL_RX0_CH36_TO_CH64_5G		0x156
+#define EEPROM_IQ_PHASE_CAL_RX0_CH36_TO_CH64_5G		0x157
+#define EEPROM_IQ_GAIN_CAL_RX0_CH100_TO_CH138_5G	0X158
+#define EEPROM_IQ_PHASE_CAL_RX0_CH100_TO_CH138_5G	0x159
+#define EEPROM_IQ_GAIN_CAL_RX0_CH140_TO_CH165_5G	0x15A
+#define EEPROM_IQ_PHASE_CAL_RX0_CH140_TO_CH165_5G	0x15B
+#define EEPROM_IQ_GAIN_CAL_RX1_CH36_TO_CH64_5G		0x15C
+#define EEPROM_IQ_PHASE_CAL_RX1_CH36_TO_CH64_5G		0x15D
+#define EEPROM_IQ_GAIN_CAL_RX1_CH100_TO_CH138_5G	0X15E
+#define EEPROM_IQ_PHASE_CAL_RX1_CH100_TO_CH138_5G	0x15F
+#define EEPROM_IQ_GAIN_CAL_RX1_CH140_TO_CH165_5G	0x160
+#define EEPROM_IQ_PHASE_CAL_RX1_CH140_TO_CH165_5G	0x161
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH36_TO_CH64_5G	0x162
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH36_TO_CH64_5G	0x163
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH100_TO_CH138_5G	0x164
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH100_TO_CH138_5G	0x165
+#define EEPROM_IQ_GROUPDELAY_CAL_RX0_CH140_TO_CH165_5G	0x166
+#define EEPROM_IQ_GROUPDELAY_CAL_RX1_CH140_TO_CH165_5G	0x167
+
+/*
+ * MCU mailbox commands.
+ * MCU_SLEEP - go to power-save mode.
+ *             arg1: 1: save as much power as possible, 0: save less power.
+ *             status: 1: success, 2: already asleep,
+ *                     3: maybe MAC is busy so can't finish this task.
+ * MCU_RADIO_OFF
+ *             arg0: 0: do power-saving, NOT turn off radio.
+ */
+#define MCU_SLEEP			0x30
+#define MCU_WAKEUP			0x31
+#define MCU_RADIO_OFF			0x35
+#define MCU_CURRENT			0x36
+#define MCU_LED				0x50
+#define MCU_LED_STRENGTH		0x51
+#define MCU_LED_AG_CONF			0x52
+#define MCU_LED_ACT_CONF		0x53
+#define MCU_LED_LED_POLARITY		0x54
+#define MCU_RADAR			0x60
+#define MCU_BOOT_SIGNAL			0x72
+#define MCU_ANT_SELECT			0X73
+#define MCU_FREQ_OFFSET			0x74
+#define MCU_BBP_SIGNAL			0x80
+#define MCU_POWER_SAVE			0x83
+#define MCU_BAND_SELECT			0x91
+
+/*
+ * MCU mailbox tokens
+ */
+#define TOKEN_SLEEP			1
+#define TOKEN_RADIO_OFF			2
+#define TOKEN_WAKEUP			3
+
+
+/*
+ * DMA descriptor defines.
+ */
+
+#define TXWI_DESC_SIZE_4WORDS		(4 * sizeof(__le32))
+#define TXWI_DESC_SIZE_5WORDS		(5 * sizeof(__le32))
+
+#define RXWI_DESC_SIZE_4WORDS		(4 * sizeof(__le32))
+#define RXWI_DESC_SIZE_5WORDS		(5 * sizeof(__le32))
+#define RXWI_DESC_SIZE_6WORDS		(6 * sizeof(__le32))
+
+/*
+ * TX WI structure
+ */
+
+/*
+ * Word0
+ * FRAG: 1 To inform TKIP engine this is a fragment.
+ * MIMO_PS: The remote peer is in dynamic MIMO-PS mode
+ * TX_OP: 0:HT TXOP rule , 1:PIFS TX ,2:Backoff, 3:sifs
+ * BW: Channel bandwidth 0:20MHz, 1:40 MHz (for legacy rates this will
+ *     duplicate the frame to both channels).
+ * STBC: 1: STBC support MCS =0-7, 2,3 : RESERVED
+ * AMPDU: 1: this frame is eligible for AMPDU aggregation, the hw will
+ *        aggregate consecutive frames with the same RA and QoS TID. If
+ *        a frame A with the same RA and QoS TID but AMPDU=0 is queued
+ *        directly after a frame B with AMPDU=1, frame A might still
+ *        get aggregated into the AMPDU started by frame B. So, setting
+ *        AMPDU to 0 does _not_ necessarily mean the frame is sent as
+ *        MPDU, it can still end up in an AMPDU if the previous frame
+ *        was tagged as AMPDU.
+ */
+#define TXWI_W0_FRAG			FIELD32(0x00000001)
+#define TXWI_W0_MIMO_PS			FIELD32(0x00000002)
+#define TXWI_W0_CF_ACK			FIELD32(0x00000004)
+#define TXWI_W0_TS			FIELD32(0x00000008)
+#define TXWI_W0_AMPDU			FIELD32(0x00000010)
+#define TXWI_W0_MPDU_DENSITY		FIELD32(0x000000e0)
+#define TXWI_W0_TX_OP			FIELD32(0x00000300)
+#define TXWI_W0_MCS			FIELD32(0x007f0000)
+#define TXWI_W0_BW			FIELD32(0x00800000)
+#define TXWI_W0_SHORT_GI		FIELD32(0x01000000)
+#define TXWI_W0_STBC			FIELD32(0x06000000)
+#define TXWI_W0_IFS			FIELD32(0x08000000)
+#define TXWI_W0_PHYMODE			FIELD32(0xc0000000)
+
+/*
+ * Word1
+ * ACK: 0: No Ack needed, 1: Ack needed
+ * NSEQ: 0: Don't assign hw sequence number, 1: Assign hw sequence number
+ * BW_WIN_SIZE: BA windows size of the recipient
+ * WIRELESS_CLI_ID: Client ID for WCID table access
+ * MPDU_TOTAL_BYTE_COUNT: Length of 802.11 frame
+ * PACKETID: Will be latched into the TX_STA_FIFO register once the according
+ *           frame was processed. If multiple frames are aggregated together
+ *           (AMPDU==1) the reported tx status will always contain the packet
+ *           id of the first frame. 0: Don't report tx status for this frame.
+ * PACKETID_QUEUE: Part of PACKETID, This is the queue index (0-3)
+ * PACKETID_ENTRY: Part of PACKETID, THis is the queue entry index (1-3)
+ *                 This identification number is calculated by ((idx % 3) + 1).
+ *		   The (+1) is required to prevent PACKETID to become 0.
+ */
+#define TXWI_W1_ACK			FIELD32(0x00000001)
+#define TXWI_W1_NSEQ			FIELD32(0x00000002)
+#define TXWI_W1_BW_WIN_SIZE		FIELD32(0x000000fc)
+#define TXWI_W1_WIRELESS_CLI_ID		FIELD32(0x0000ff00)
+#define TXWI_W1_MPDU_TOTAL_BYTE_COUNT	FIELD32(0x0fff0000)
+#define TXWI_W1_PACKETID		FIELD32(0xf0000000)
+#define TXWI_W1_PACKETID_QUEUE		FIELD32(0x30000000)
+#define TXWI_W1_PACKETID_ENTRY		FIELD32(0xc0000000)
+
+/*
+ * Word2
+ */
+#define TXWI_W2_IV			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ */
+#define TXWI_W3_EIV			FIELD32(0xffffffff)
+
+/*
+ * RX WI structure
+ */
+
+/*
+ * Word0
+ */
+#define RXWI_W0_WIRELESS_CLI_ID		FIELD32(0x000000ff)
+#define RXWI_W0_KEY_INDEX		FIELD32(0x00000300)
+#define RXWI_W0_BSSID			FIELD32(0x00001c00)
+#define RXWI_W0_UDF			FIELD32(0x0000e000)
+#define RXWI_W0_MPDU_TOTAL_BYTE_COUNT	FIELD32(0x0fff0000)
+#define RXWI_W0_TID			FIELD32(0xf0000000)
+
+/*
+ * Word1
+ */
+#define RXWI_W1_FRAG			FIELD32(0x0000000f)
+#define RXWI_W1_SEQUENCE		FIELD32(0x0000fff0)
+#define RXWI_W1_MCS			FIELD32(0x007f0000)
+#define RXWI_W1_BW			FIELD32(0x00800000)
+#define RXWI_W1_SHORT_GI		FIELD32(0x01000000)
+#define RXWI_W1_STBC			FIELD32(0x06000000)
+#define RXWI_W1_PHYMODE			FIELD32(0xc0000000)
+
+/*
+ * Word2
+ */
+#define RXWI_W2_RSSI0			FIELD32(0x000000ff)
+#define RXWI_W2_RSSI1			FIELD32(0x0000ff00)
+#define RXWI_W2_RSSI2			FIELD32(0x00ff0000)
+
+/*
+ * Word3
+ */
+#define RXWI_W3_SNR0			FIELD32(0x000000ff)
+#define RXWI_W3_SNR1			FIELD32(0x0000ff00)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_G_TXPOWER	0
+#define MIN_A_TXPOWER	-7
+#define MAX_G_TXPOWER	31
+#define MAX_A_TXPOWER	15
+#define DEFAULT_TXPOWER	5
+
+#define MIN_A_TXPOWER_3593	0
+#define MAX_A_TXPOWER_3593	31
+
+#define TXPOWER_G_FROM_DEV(__txpower) \
+	((__txpower) > MAX_G_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_A_FROM_DEV(__txpower) \
+	((__txpower) > MAX_A_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+/*
+ *  Board's maximun TX power limitation
+ */
+#define EIRP_MAX_TX_POWER_LIMIT	0x50
+
+/*
+ * Number of TBTT intervals after which we have to adjust
+ * the hw beacon timer.
+ */
+#define BCN_TBTT_OFFSET 64
+
+/*
+ * Hardware has 255 WCID table entries. First 32 entries are reserved for
+ * shared keys. Since parts of the pairwise key table might be shared with
+ * the beacon frame buffers 6 & 7 we could only use the first 222 entries.
+ */
+#define WCID_START	33
+#define WCID_END	222
+#define STA_IDS_SIZE	(WCID_END - WCID_START + 2)
+
+/*
+ * RT2800 driver data structure
+ */
+struct rt2800_drv_data {
+	u8 calibration_bw20;
+	u8 calibration_bw40;
+	u8 bbp25;
+	u8 bbp26;
+	u8 txmixer_gain_24g;
+	u8 txmixer_gain_5g;
+	unsigned int tbtt_tick;
+	DECLARE_BITMAP(sta_ids, STA_IDS_SIZE);
+};
+
+#endif /* RT2800_H */
diff --git a/drivers/net/wireless/rt2x00/rt2800lib.c b/drivers/net/wireless/rt2x00/rt2800lib.c
new file mode 100644
index 0000000..69c1c09
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800lib.c
@@ -0,0 +1,8022 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
+	Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+
+	Based on the original rt2800pci.c and rt2800usb.c.
+	  Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+	  Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	  Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+	  Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	  Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+	  Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	  <http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800lib
+	Abstract: rt2800 generic device routines.
+ */
+
+#include <linux/crc-ccitt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2800lib.h"
+#include "rt2800.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2800_register_read and rt2800_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * The _lock versions must be used if you already hold the csr_mutex
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
+#define WAIT_FOR_RFCSR(__dev, __reg) \
+	rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
+#define WAIT_FOR_MCU(__dev, __reg) \
+	rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
+			    H2M_MAILBOX_CSR_OWNER, (__reg))
+
+static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+	/* check for rt2872 on SoC */
+	if (!rt2x00_is_soc(rt2x00dev) ||
+	    !rt2x00_rt(rt2x00dev, RT2872))
+		return false;
+
+	/* we know for sure that these rf chipsets are used on rt305x boards */
+	if (rt2x00_rf(rt2x00dev, RF3020) ||
+	    rt2x00_rf(rt2x00dev, RF3021) ||
+	    rt2x00_rf(rt2x00dev, RF3022))
+		return true;
+
+	rt2x00_warn(rt2x00dev, "Unknown RF chipset on rt305x\n");
+	return false;
+}
+
+static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
+			     const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
+
+		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
+			    const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
+		rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
+
+		rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RFCSR becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
+		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
+		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
+		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
+
+		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
+			      const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RFCSR becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
+		rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
+		rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
+
+		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
+
+		WAIT_FOR_RFCSR(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
+			    const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
+		rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
+		rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
+		rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
+
+		rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static const unsigned int rt2800_eeprom_map[EEPROM_WORD_COUNT] = {
+	[EEPROM_CHIP_ID]		= 0x0000,
+	[EEPROM_VERSION]		= 0x0001,
+	[EEPROM_MAC_ADDR_0]		= 0x0002,
+	[EEPROM_MAC_ADDR_1]		= 0x0003,
+	[EEPROM_MAC_ADDR_2]		= 0x0004,
+	[EEPROM_NIC_CONF0]		= 0x001a,
+	[EEPROM_NIC_CONF1]		= 0x001b,
+	[EEPROM_FREQ]			= 0x001d,
+	[EEPROM_LED_AG_CONF]		= 0x001e,
+	[EEPROM_LED_ACT_CONF]		= 0x001f,
+	[EEPROM_LED_POLARITY]		= 0x0020,
+	[EEPROM_NIC_CONF2]		= 0x0021,
+	[EEPROM_LNA]			= 0x0022,
+	[EEPROM_RSSI_BG]		= 0x0023,
+	[EEPROM_RSSI_BG2]		= 0x0024,
+	[EEPROM_TXMIXER_GAIN_BG]	= 0x0024, /* overlaps with RSSI_BG2 */
+	[EEPROM_RSSI_A]			= 0x0025,
+	[EEPROM_RSSI_A2]		= 0x0026,
+	[EEPROM_TXMIXER_GAIN_A]		= 0x0026, /* overlaps with RSSI_A2 */
+	[EEPROM_EIRP_MAX_TX_POWER]	= 0x0027,
+	[EEPROM_TXPOWER_DELTA]		= 0x0028,
+	[EEPROM_TXPOWER_BG1]		= 0x0029,
+	[EEPROM_TXPOWER_BG2]		= 0x0030,
+	[EEPROM_TSSI_BOUND_BG1]		= 0x0037,
+	[EEPROM_TSSI_BOUND_BG2]		= 0x0038,
+	[EEPROM_TSSI_BOUND_BG3]		= 0x0039,
+	[EEPROM_TSSI_BOUND_BG4]		= 0x003a,
+	[EEPROM_TSSI_BOUND_BG5]		= 0x003b,
+	[EEPROM_TXPOWER_A1]		= 0x003c,
+	[EEPROM_TXPOWER_A2]		= 0x0053,
+	[EEPROM_TSSI_BOUND_A1]		= 0x006a,
+	[EEPROM_TSSI_BOUND_A2]		= 0x006b,
+	[EEPROM_TSSI_BOUND_A3]		= 0x006c,
+	[EEPROM_TSSI_BOUND_A4]		= 0x006d,
+	[EEPROM_TSSI_BOUND_A5]		= 0x006e,
+	[EEPROM_TXPOWER_BYRATE]		= 0x006f,
+	[EEPROM_BBP_START]		= 0x0078,
+};
+
+static const unsigned int rt2800_eeprom_map_ext[EEPROM_WORD_COUNT] = {
+	[EEPROM_CHIP_ID]		= 0x0000,
+	[EEPROM_VERSION]		= 0x0001,
+	[EEPROM_MAC_ADDR_0]		= 0x0002,
+	[EEPROM_MAC_ADDR_1]		= 0x0003,
+	[EEPROM_MAC_ADDR_2]		= 0x0004,
+	[EEPROM_NIC_CONF0]		= 0x001a,
+	[EEPROM_NIC_CONF1]		= 0x001b,
+	[EEPROM_NIC_CONF2]		= 0x001c,
+	[EEPROM_EIRP_MAX_TX_POWER]	= 0x0020,
+	[EEPROM_FREQ]			= 0x0022,
+	[EEPROM_LED_AG_CONF]		= 0x0023,
+	[EEPROM_LED_ACT_CONF]		= 0x0024,
+	[EEPROM_LED_POLARITY]		= 0x0025,
+	[EEPROM_LNA]			= 0x0026,
+	[EEPROM_EXT_LNA2]		= 0x0027,
+	[EEPROM_RSSI_BG]		= 0x0028,
+	[EEPROM_RSSI_BG2]		= 0x0029,
+	[EEPROM_RSSI_A]			= 0x002a,
+	[EEPROM_RSSI_A2]		= 0x002b,
+	[EEPROM_TXPOWER_BG1]		= 0x0030,
+	[EEPROM_TXPOWER_BG2]		= 0x0037,
+	[EEPROM_EXT_TXPOWER_BG3]	= 0x003e,
+	[EEPROM_TSSI_BOUND_BG1]		= 0x0045,
+	[EEPROM_TSSI_BOUND_BG2]		= 0x0046,
+	[EEPROM_TSSI_BOUND_BG3]		= 0x0047,
+	[EEPROM_TSSI_BOUND_BG4]		= 0x0048,
+	[EEPROM_TSSI_BOUND_BG5]		= 0x0049,
+	[EEPROM_TXPOWER_A1]		= 0x004b,
+	[EEPROM_TXPOWER_A2]		= 0x0065,
+	[EEPROM_EXT_TXPOWER_A3]		= 0x007f,
+	[EEPROM_TSSI_BOUND_A1]		= 0x009a,
+	[EEPROM_TSSI_BOUND_A2]		= 0x009b,
+	[EEPROM_TSSI_BOUND_A3]		= 0x009c,
+	[EEPROM_TSSI_BOUND_A4]		= 0x009d,
+	[EEPROM_TSSI_BOUND_A5]		= 0x009e,
+	[EEPROM_TXPOWER_BYRATE]		= 0x00a0,
+};
+
+static unsigned int rt2800_eeprom_word_index(struct rt2x00_dev *rt2x00dev,
+					     const enum rt2800_eeprom_word word)
+{
+	const unsigned int *map;
+	unsigned int index;
+
+	if (WARN_ONCE(word >= EEPROM_WORD_COUNT,
+		      "%s: invalid EEPROM word %d\n",
+		      wiphy_name(rt2x00dev->hw->wiphy), word))
+		return 0;
+
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		map = rt2800_eeprom_map_ext;
+	else
+		map = rt2800_eeprom_map;
+
+	index = map[word];
+
+	/* Index 0 is valid only for EEPROM_CHIP_ID.
+	 * Otherwise it means that the offset of the
+	 * given word is not initialized in the map,
+	 * or that the field is not usable on the
+	 * actual chipset.
+	 */
+	WARN_ONCE(word != EEPROM_CHIP_ID && index == 0,
+		  "%s: invalid access of EEPROM word %d\n",
+		  wiphy_name(rt2x00dev->hw->wiphy), word);
+
+	return index;
+}
+
+static void *rt2800_eeprom_addr(struct rt2x00_dev *rt2x00dev,
+				const enum rt2800_eeprom_word word)
+{
+	unsigned int index;
+
+	index = rt2800_eeprom_word_index(rt2x00dev, word);
+	return rt2x00_eeprom_addr(rt2x00dev, index);
+}
+
+static void rt2800_eeprom_read(struct rt2x00_dev *rt2x00dev,
+			       const enum rt2800_eeprom_word word, u16 *data)
+{
+	unsigned int index;
+
+	index = rt2800_eeprom_word_index(rt2x00dev, word);
+	rt2x00_eeprom_read(rt2x00dev, index, data);
+}
+
+static void rt2800_eeprom_write(struct rt2x00_dev *rt2x00dev,
+				const enum rt2800_eeprom_word word, u16 data)
+{
+	unsigned int index;
+
+	index = rt2800_eeprom_word_index(rt2x00dev, word);
+	rt2x00_eeprom_write(rt2x00dev, index, data);
+}
+
+static void rt2800_eeprom_read_from_array(struct rt2x00_dev *rt2x00dev,
+					  const enum rt2800_eeprom_word array,
+					  unsigned int offset,
+					  u16 *data)
+{
+	unsigned int index;
+
+	index = rt2800_eeprom_word_index(rt2x00dev, array);
+	rt2x00_eeprom_read(rt2x00dev, index + offset, data);
+}
+
+static int rt2800_enable_wlan_rt3290(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	int i, count;
+
+	rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
+	if (rt2x00_get_field32(reg, WLAN_EN))
+		return 0;
+
+	rt2x00_set_field32(&reg, WLAN_GPIO_OUT_OE_BIT_ALL, 0xff);
+	rt2x00_set_field32(&reg, FRC_WL_ANT_SET, 1);
+	rt2x00_set_field32(&reg, WLAN_CLK_EN, 0);
+	rt2x00_set_field32(&reg, WLAN_EN, 1);
+	rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+
+	udelay(REGISTER_BUSY_DELAY);
+
+	count = 0;
+	do {
+		/*
+		 * Check PLL_LD & XTAL_RDY.
+		 */
+		for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+			rt2800_register_read(rt2x00dev, CMB_CTRL, &reg);
+			if (rt2x00_get_field32(reg, PLL_LD) &&
+			    rt2x00_get_field32(reg, XTAL_RDY))
+				break;
+			udelay(REGISTER_BUSY_DELAY);
+		}
+
+		if (i >= REGISTER_BUSY_COUNT) {
+
+			if (count >= 10)
+				return -EIO;
+
+			rt2800_register_write(rt2x00dev, 0x58, 0x018);
+			udelay(REGISTER_BUSY_DELAY);
+			rt2800_register_write(rt2x00dev, 0x58, 0x418);
+			udelay(REGISTER_BUSY_DELAY);
+			rt2800_register_write(rt2x00dev, 0x58, 0x618);
+			udelay(REGISTER_BUSY_DELAY);
+			count++;
+		} else {
+			count = 0;
+		}
+
+		rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
+		rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 0);
+		rt2x00_set_field32(&reg, WLAN_CLK_EN, 1);
+		rt2x00_set_field32(&reg, WLAN_RESET, 1);
+		rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+		udelay(10);
+		rt2x00_set_field32(&reg, WLAN_RESET, 0);
+		rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+		udelay(10);
+		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, 0x7fffffff);
+	} while (count != 0);
+
+	return 0;
+}
+
+void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
+			const u8 command, const u8 token,
+			const u8 arg0, const u8 arg1)
+{
+	u32 reg;
+
+	/*
+	 * SOC devices don't support MCU requests.
+	 */
+	if (rt2x00_is_soc(rt2x00dev))
+		return;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the MCU becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
+		rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
+
+		reg = 0;
+		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
+		rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+EXPORT_SYMBOL_GPL(rt2800_mcu_request);
+
+int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i = 0;
+	u32 reg;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
+		if (reg && reg != ~0)
+			return 0;
+		msleep(1);
+	}
+
+	rt2x00_err(rt2x00dev, "Unstable hardware\n");
+	return -EBUSY;
+}
+EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
+
+int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u32 reg;
+
+	/*
+	 * Some devices are really slow to respond here. Wait a whole second
+	 * before timing out.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
+		if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
+		    !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
+			return 0;
+
+		msleep(10);
+	}
+
+	rt2x00_err(rt2x00dev, "WPDMA TX/RX busy [0x%08x]\n", reg);
+	return -EACCES;
+}
+EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
+
+void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
+	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_disable_wpdma);
+
+void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
+			       unsigned short *txwi_size,
+			       unsigned short *rxwi_size)
+{
+	switch (rt2x00dev->chip.rt) {
+	case RT3593:
+		*txwi_size = TXWI_DESC_SIZE_4WORDS;
+		*rxwi_size = RXWI_DESC_SIZE_5WORDS;
+		break;
+
+	case RT5592:
+		*txwi_size = TXWI_DESC_SIZE_5WORDS;
+		*rxwi_size = RXWI_DESC_SIZE_6WORDS;
+		break;
+
+	default:
+		*txwi_size = TXWI_DESC_SIZE_4WORDS;
+		*rxwi_size = RXWI_DESC_SIZE_4WORDS;
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800_get_txwi_rxwi_size);
+
+static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
+{
+	u16 fw_crc;
+	u16 crc;
+
+	/*
+	 * The last 2 bytes in the firmware array are the crc checksum itself,
+	 * this means that we should never pass those 2 bytes to the crc
+	 * algorithm.
+	 */
+	fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+	/*
+	 * Use the crc ccitt algorithm.
+	 * This will return the same value as the legacy driver which
+	 * used bit ordering reversion on the both the firmware bytes
+	 * before input input as well as on the final output.
+	 * Obviously using crc ccitt directly is much more efficient.
+	 */
+	crc = crc_ccitt(~0, data, len - 2);
+
+	/*
+	 * There is a small difference between the crc-itu-t + bitrev and
+	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
+	 * will be swapped, use swab16 to convert the crc to the correct
+	 * value.
+	 */
+	crc = swab16(crc);
+
+	return fw_crc == crc;
+}
+
+int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
+			  const u8 *data, const size_t len)
+{
+	size_t offset = 0;
+	size_t fw_len;
+	bool multiple;
+
+	/*
+	 * PCI(e) & SOC devices require firmware with a length
+	 * of 8kb. USB devices require firmware files with a length
+	 * of 4kb. Certain USB chipsets however require different firmware,
+	 * which Ralink only provides attached to the original firmware
+	 * file. Thus for USB devices, firmware files have a length
+	 * which is a multiple of 4kb. The firmware for rt3290 chip also
+	 * have a length which is a multiple of 4kb.
+	 */
+	if (rt2x00_is_usb(rt2x00dev) || rt2x00_rt(rt2x00dev, RT3290))
+		fw_len = 4096;
+	else
+		fw_len = 8192;
+
+	multiple = true;
+	/*
+	 * Validate the firmware length
+	 */
+	if (len != fw_len && (!multiple || (len % fw_len) != 0))
+		return FW_BAD_LENGTH;
+
+	/*
+	 * Check if the chipset requires one of the upper parts
+	 * of the firmware.
+	 */
+	if (rt2x00_is_usb(rt2x00dev) &&
+	    !rt2x00_rt(rt2x00dev, RT2860) &&
+	    !rt2x00_rt(rt2x00dev, RT2872) &&
+	    !rt2x00_rt(rt2x00dev, RT3070) &&
+	    ((len / fw_len) == 1))
+		return FW_BAD_VERSION;
+
+	/*
+	 * 8kb firmware files must be checked as if it were
+	 * 2 separate firmware files.
+	 */
+	while (offset < len) {
+		if (!rt2800_check_firmware_crc(data + offset, fw_len))
+			return FW_BAD_CRC;
+
+		offset += fw_len;
+	}
+
+	return FW_OK;
+}
+EXPORT_SYMBOL_GPL(rt2800_check_firmware);
+
+int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
+			 const u8 *data, const size_t len)
+{
+	unsigned int i;
+	u32 reg;
+	int retval;
+
+	if (rt2x00_rt(rt2x00dev, RT3290)) {
+		retval = rt2800_enable_wlan_rt3290(rt2x00dev);
+		if (retval)
+			return -EBUSY;
+	}
+
+	/*
+	 * If driver doesn't wake up firmware here,
+	 * rt2800_load_firmware will hang forever when interface is up again.
+	 */
+	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
+
+	/*
+	 * Wait for stable hardware.
+	 */
+	if (rt2800_wait_csr_ready(rt2x00dev))
+		return -EBUSY;
+
+	if (rt2x00_is_pci(rt2x00dev)) {
+		if (rt2x00_rt(rt2x00dev, RT3290) ||
+		    rt2x00_rt(rt2x00dev, RT3572) ||
+		    rt2x00_rt(rt2x00dev, RT5390) ||
+		    rt2x00_rt(rt2x00dev, RT5392)) {
+			rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
+			rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
+			rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
+			rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
+		}
+		rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
+	}
+
+	rt2800_disable_wpdma(rt2x00dev);
+
+	/*
+	 * Write firmware to the device.
+	 */
+	rt2800_drv_write_firmware(rt2x00dev, data, len);
+
+	/*
+	 * Wait for device to stabilize.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
+		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
+			break;
+		msleep(1);
+	}
+
+	if (i == REGISTER_BUSY_COUNT) {
+		rt2x00_err(rt2x00dev, "PBF system register not ready\n");
+		return -EBUSY;
+	}
+
+	/*
+	 * Disable DMA, will be reenabled later when enabling
+	 * the radio.
+	 */
+	rt2800_disable_wpdma(rt2x00dev);
+
+	/*
+	 * Initialize firmware.
+	 */
+	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+	if (rt2x00_is_usb(rt2x00dev)) {
+		rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
+		rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
+	}
+	msleep(1);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_load_firmware);
+
+void rt2800_write_tx_data(struct queue_entry *entry,
+			  struct txentry_desc *txdesc)
+{
+	__le32 *txwi = rt2800_drv_get_txwi(entry);
+	u32 word;
+	int i;
+
+	/*
+	 * Initialize TX Info descriptor
+	 */
+	rt2x00_desc_read(txwi, 0, &word);
+	rt2x00_set_field32(&word, TXWI_W0_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
+			   test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
+	rt2x00_set_field32(&word, TXWI_W0_TS,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
+			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
+			   txdesc->u.ht.mpdu_density);
+	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
+	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
+	rt2x00_set_field32(&word, TXWI_W0_BW,
+			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
+			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
+	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
+	rt2x00_desc_write(txwi, 0, word);
+
+	rt2x00_desc_read(txwi, 1, &word);
+	rt2x00_set_field32(&word, TXWI_W1_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
+			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
+	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
+			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
+			   txdesc->key_idx : txdesc->u.ht.wcid);
+	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
+			   txdesc->length);
+	rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
+	rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
+	rt2x00_desc_write(txwi, 1, word);
+
+	/*
+	 * Always write 0 to IV/EIV fields (word 2 and 3), hardware will insert
+	 * the IV from the IVEIV register when TXD_W3_WIV is set to 0.
+	 * When TXD_W3_WIV is set to 1 it will use the IV data
+	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
+	 * crypto entry in the registers should be used to encrypt the frame.
+	 *
+	 * Nulify all remaining words as well, we don't know how to program them.
+	 */
+	for (i = 2; i < entry->queue->winfo_size / sizeof(__le32); i++)
+		_rt2x00_desc_write(txwi, i, 0);
+}
+EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
+
+static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
+{
+	s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
+	s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
+	s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
+	u16 eeprom;
+	u8 offset0;
+	u8 offset1;
+	u8 offset2;
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
+		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
+		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
+		rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
+		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
+	} else {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
+		offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
+		offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
+		rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
+		offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
+	}
+
+	/*
+	 * Convert the value from the descriptor into the RSSI value
+	 * If the value in the descriptor is 0, it is considered invalid
+	 * and the default (extremely low) rssi value is assumed
+	 */
+	rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
+	rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
+	rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
+
+	/*
+	 * mac80211 only accepts a single RSSI value. Calculating the
+	 * average doesn't deliver a fair answer either since -60:-60 would
+	 * be considered equally good as -50:-70 while the second is the one
+	 * which gives less energy...
+	 */
+	rssi0 = max(rssi0, rssi1);
+	return (int)max(rssi0, rssi2);
+}
+
+void rt2800_process_rxwi(struct queue_entry *entry,
+			 struct rxdone_entry_desc *rxdesc)
+{
+	__le32 *rxwi = (__le32 *) entry->skb->data;
+	u32 word;
+
+	rt2x00_desc_read(rxwi, 0, &word);
+
+	rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
+	rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
+
+	rt2x00_desc_read(rxwi, 1, &word);
+
+	if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
+		rxdesc->flags |= RX_FLAG_SHORT_GI;
+
+	if (rt2x00_get_field32(word, RXWI_W1_BW))
+		rxdesc->flags |= RX_FLAG_40MHZ;
+
+	/*
+	 * Detect RX rate, always use MCS as signal type.
+	 */
+	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
+	rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
+	rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
+
+	/*
+	 * Mask of 0x8 bit to remove the short preamble flag.
+	 */
+	if (rxdesc->rate_mode == RATE_MODE_CCK)
+		rxdesc->signal &= ~0x8;
+
+	rt2x00_desc_read(rxwi, 2, &word);
+
+	/*
+	 * Convert descriptor AGC value to RSSI value.
+	 */
+	rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
+	/*
+	 * Remove RXWI descriptor from start of the buffer.
+	 */
+	skb_pull(entry->skb, entry->queue->winfo_size);
+}
+EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
+
+void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct txdone_entry_desc txdesc;
+	u32 word;
+	u16 mcs, real_mcs;
+	int aggr, ampdu;
+
+	/*
+	 * Obtain the status about this packet.
+	 */
+	txdesc.flags = 0;
+	rt2x00_desc_read(txwi, 0, &word);
+
+	mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
+	ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
+
+	real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
+	aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
+
+	/*
+	 * If a frame was meant to be sent as a single non-aggregated MPDU
+	 * but ended up in an aggregate the used tx rate doesn't correlate
+	 * with the one specified in the TXWI as the whole aggregate is sent
+	 * with the same rate.
+	 *
+	 * For example: two frames are sent to rt2x00, the first one sets
+	 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
+	 * and requests MCS15. If the hw aggregates both frames into one
+	 * AMDPU the tx status for both frames will contain MCS7 although
+	 * the frame was sent successfully.
+	 *
+	 * Hence, replace the requested rate with the real tx rate to not
+	 * confuse the rate control algortihm by providing clearly wrong
+	 * data.
+	 */
+	if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
+		skbdesc->tx_rate_idx = real_mcs;
+		mcs = real_mcs;
+	}
+
+	if (aggr == 1 || ampdu == 1)
+		__set_bit(TXDONE_AMPDU, &txdesc.flags);
+
+	/*
+	 * Ralink has a retry mechanism using a global fallback
+	 * table. We setup this fallback table to try the immediate
+	 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
+	 * always contains the MCS used for the last transmission, be
+	 * it successful or not.
+	 */
+	if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
+		/*
+		 * Transmission succeeded. The number of retries is
+		 * mcs - real_mcs
+		 */
+		__set_bit(TXDONE_SUCCESS, &txdesc.flags);
+		txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
+	} else {
+		/*
+		 * Transmission failed. The number of retries is
+		 * always 7 in this case (for a total number of 8
+		 * frames sent).
+		 */
+		__set_bit(TXDONE_FAILURE, &txdesc.flags);
+		txdesc.retry = rt2x00dev->long_retry;
+	}
+
+	/*
+	 * the frame was retried at least once
+	 * -> hw used fallback rates
+	 */
+	if (txdesc.retry)
+		__set_bit(TXDONE_FALLBACK, &txdesc.flags);
+
+	rt2x00lib_txdone(entry, &txdesc);
+}
+EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
+
+static unsigned int rt2800_hw_beacon_base(struct rt2x00_dev *rt2x00dev,
+					  unsigned int index)
+{
+	return HW_BEACON_BASE(index);
+}
+
+static inline u8 rt2800_get_beacon_offset(struct rt2x00_dev *rt2x00dev,
+					  unsigned int index)
+{
+	return BEACON_BASE_TO_OFFSET(rt2800_hw_beacon_base(rt2x00dev, index));
+}
+
+static void rt2800_update_beacons_setup(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue = rt2x00dev->bcn;
+	struct queue_entry *entry;
+	int i, bcn_num = 0;
+	u64 off, reg = 0;
+	u32 bssid_dw1;
+
+	/*
+	 * Setup offsets of all active beacons in BCN_OFFSET{0,1} registers.
+	 */
+	for (i = 0; i < queue->limit; i++) {
+		entry = &queue->entries[i];
+		if (!test_bit(ENTRY_BCN_ENABLED, &entry->flags))
+			continue;
+		off = rt2800_get_beacon_offset(rt2x00dev, entry->entry_idx);
+		reg |= off << (8 * bcn_num);
+		bcn_num++;
+	}
+
+	WARN_ON_ONCE(bcn_num != rt2x00dev->intf_beaconing);
+
+	rt2800_register_write(rt2x00dev, BCN_OFFSET0, (u32) reg);
+	rt2800_register_write(rt2x00dev, BCN_OFFSET1, (u32) (reg >> 32));
+
+	/*
+	 * H/W sends up to MAC_BSSID_DW1_BSS_BCN_NUM + 1 consecutive beacons.
+	 */
+	rt2800_register_read(rt2x00dev, MAC_BSSID_DW1, &bssid_dw1);
+	rt2x00_set_field32(&bssid_dw1, MAC_BSSID_DW1_BSS_BCN_NUM,
+			   bcn_num > 0 ? bcn_num - 1 : 0);
+	rt2800_register_write(rt2x00dev, MAC_BSSID_DW1, bssid_dw1);
+}
+
+void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	unsigned int beacon_base;
+	unsigned int padding_len;
+	u32 orig_reg, reg;
+	const int txwi_desc_size = entry->queue->winfo_size;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+	orig_reg = reg;
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+	/*
+	 * Add space for the TXWI in front of the skb.
+	 */
+	memset(skb_push(entry->skb, txwi_desc_size), 0, txwi_desc_size);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+	skbdesc->desc = entry->skb->data;
+	skbdesc->desc_len = txwi_desc_size;
+
+	/*
+	 * Add the TXWI for the beacon to the skb.
+	 */
+	rt2800_write_tx_data(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+
+	/*
+	 * Write entire beacon with TXWI and padding to register.
+	 */
+	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+	if (padding_len && skb_pad(entry->skb, padding_len)) {
+		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+		/* skb freed by skb_pad() on failure */
+		entry->skb = NULL;
+		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+		return;
+	}
+
+	beacon_base = rt2800_hw_beacon_base(rt2x00dev, entry->entry_idx);
+
+	rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
+				   entry->skb->len + padding_len);
+	__set_bit(ENTRY_BCN_ENABLED, &entry->flags);
+
+	/*
+	 * Change global beacons settings.
+	 */
+	rt2800_update_beacons_setup(rt2x00dev);
+
+	/*
+	 * Restore beaconing state.
+	 */
+	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+
+	/*
+	 * Clean up beacon skb.
+	 */
+	dev_kfree_skb_any(entry->skb);
+	entry->skb = NULL;
+}
+EXPORT_SYMBOL_GPL(rt2800_write_beacon);
+
+static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
+						unsigned int index)
+{
+	int i;
+	const int txwi_desc_size = rt2x00dev->bcn->winfo_size;
+	unsigned int beacon_base;
+
+	beacon_base = rt2800_hw_beacon_base(rt2x00dev, index);
+
+	/*
+	 * For the Beacon base registers we only need to clear
+	 * the whole TXWI which (when set to 0) will invalidate
+	 * the entire beacon.
+	 */
+	for (i = 0; i < txwi_desc_size; i += sizeof(__le32))
+		rt2800_register_write(rt2x00dev, beacon_base + i, 0);
+}
+
+void rt2800_clear_beacon(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 orig_reg, reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &orig_reg);
+	reg = orig_reg;
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+	/*
+	 * Clear beacon.
+	 */
+	rt2800_clear_beacon_register(rt2x00dev, entry->entry_idx);
+	__clear_bit(ENTRY_BCN_ENABLED, &entry->flags);
+
+	/*
+	 * Change global beacons settings.
+	 */
+	rt2800_update_beacons_setup(rt2x00dev);
+	/*
+	 * Restore beaconing state.
+	 */
+	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+const struct rt2x00debug rt2800_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2800_register_read,
+		.write		= rt2800_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		/* NOTE: The local EEPROM access functions can't
+		 * be used here, use the generic versions instead.
+		 */
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt2800_bbp_read,
+		.write		= rt2800_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt2800_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+	.rfcsr	= {
+		.read		= rt2800_rfcsr_read,
+		.write		= rt2800_rfcsr_write,
+		.word_base	= RFCSR_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= RFCSR_SIZE / sizeof(u8),
+	},
+};
+EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	if (rt2x00_rt(rt2x00dev, RT3290)) {
+		rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
+		return rt2x00_get_field32(reg, WLAN_GPIO_IN_BIT0);
+	} else {
+		rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+		return rt2x00_get_field32(reg, GPIO_CTRL_VAL2);
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2800_brightness_set(struct led_classdev *led_cdev,
+				  enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	unsigned int bg_mode =
+	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
+	unsigned int polarity =
+		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
+				   EEPROM_FREQ_LED_POLARITY);
+	unsigned int ledmode =
+		rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
+				   EEPROM_FREQ_LED_MODE);
+	u32 reg;
+
+	/* Check for SoC (SOC devices don't support MCU requests) */
+	if (rt2x00_is_soc(led->rt2x00dev)) {
+		rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
+
+		/* Set LED Polarity */
+		rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
+
+		/* Set LED Mode */
+		if (led->type == LED_TYPE_RADIO) {
+			rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
+					   enabled ? 3 : 0);
+		} else if (led->type == LED_TYPE_ASSOC) {
+			rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
+					   enabled ? 3 : 0);
+		} else if (led->type == LED_TYPE_QUALITY) {
+			rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
+					   enabled ? 3 : 0);
+		}
+
+		rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
+
+	} else {
+		if (led->type == LED_TYPE_RADIO) {
+			rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
+					      enabled ? 0x20 : 0);
+		} else if (led->type == LED_TYPE_ASSOC) {
+			rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
+					      enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
+		} else if (led->type == LED_TYPE_QUALITY) {
+			/*
+			 * The brightness is divided into 6 levels (0 - 5),
+			 * The specs tell us the following levels:
+			 *	0, 1 ,3, 7, 15, 31
+			 * to determine the level in a simple way we can simply
+			 * work with bitshifting:
+			 *	(1 << level) - 1
+			 */
+			rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
+					      (1 << brightness / (LED_FULL / 6)) - 1,
+					      polarity);
+		}
+	}
+}
+
+static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
+		     struct rt2x00_led *led, enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt2800_brightness_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
+			       const u8 *address,
+			       int wcid)
+{
+	struct mac_wcid_entry wcid_entry;
+	u32 offset;
+
+	offset = MAC_WCID_ENTRY(wcid);
+
+	memset(&wcid_entry, 0xff, sizeof(wcid_entry));
+	if (address)
+		memcpy(wcid_entry.mac, address, ETH_ALEN);
+
+	rt2800_register_multiwrite(rt2x00dev, offset,
+				      &wcid_entry, sizeof(wcid_entry));
+}
+
+static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
+{
+	u32 offset;
+	offset = MAC_WCID_ATTR_ENTRY(wcid);
+	rt2800_register_write(rt2x00dev, offset, 0);
+}
+
+static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
+					   int wcid, u32 bssidx)
+{
+	u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
+	u32 reg;
+
+	/*
+	 * The BSS Idx numbers is split in a main value of 3 bits,
+	 * and a extended field for adding one additional bit to the value.
+	 */
+	rt2800_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
+	rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
+			   (bssidx & 0x8) >> 3);
+	rt2800_register_write(rt2x00dev, offset, reg);
+}
+
+static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
+					   struct rt2x00lib_crypto *crypto,
+					   struct ieee80211_key_conf *key)
+{
+	struct mac_iveiv_entry iveiv_entry;
+	u32 offset;
+	u32 reg;
+
+	offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
+
+	if (crypto->cmd == SET_KEY) {
+		rt2800_register_read(rt2x00dev, offset, &reg);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
+				   !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
+		/*
+		 * Both the cipher as the BSS Idx numbers are split in a main
+		 * value of 3 bits, and a extended field for adding one additional
+		 * bit to the value.
+		 */
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
+				   (crypto->cipher & 0x7));
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
+				   (crypto->cipher & 0x8) >> 3);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
+		rt2800_register_write(rt2x00dev, offset, reg);
+	} else {
+		/* Delete the cipher without touching the bssidx */
+		rt2800_register_read(rt2x00dev, offset, &reg);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
+		rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
+		rt2800_register_write(rt2x00dev, offset, reg);
+	}
+
+	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
+
+	memset(&iveiv_entry, 0, sizeof(iveiv_entry));
+	if ((crypto->cipher == CIPHER_TKIP) ||
+	    (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
+	    (crypto->cipher == CIPHER_AES))
+		iveiv_entry.iv[3] |= 0x20;
+	iveiv_entry.iv[3] |= key->keyidx << 6;
+	rt2800_register_multiwrite(rt2x00dev, offset,
+				      &iveiv_entry, sizeof(iveiv_entry));
+}
+
+int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_crypto *crypto,
+			     struct ieee80211_key_conf *key)
+{
+	struct hw_key_entry key_entry;
+	struct rt2x00_field32 field;
+	u32 offset;
+	u32 reg;
+
+	if (crypto->cmd == SET_KEY) {
+		key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
+
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		offset = SHARED_KEY_ENTRY(key->hw_key_idx);
+		rt2800_register_multiwrite(rt2x00dev, offset,
+					      &key_entry, sizeof(key_entry));
+	}
+
+	/*
+	 * The cipher types are stored over multiple registers
+	 * starting with SHARED_KEY_MODE_BASE each word will have
+	 * 32 bits and contains the cipher types for 2 bssidx each.
+	 * Using the correct defines correctly will cause overhead,
+	 * so just calculate the correct offset.
+	 */
+	field.bit_offset = 4 * (key->hw_key_idx % 8);
+	field.bit_mask = 0x7 << field.bit_offset;
+
+	offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
+
+	rt2800_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, field,
+			   (crypto->cmd == SET_KEY) * crypto->cipher);
+	rt2800_register_write(rt2x00dev, offset, reg);
+
+	/*
+	 * Update WCID information
+	 */
+	rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
+	rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
+				       crypto->bssidx);
+	rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
+
+int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00lib_crypto *crypto,
+			       struct ieee80211_key_conf *key)
+{
+	struct hw_key_entry key_entry;
+	u32 offset;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * Allow key configuration only for STAs that are
+		 * known by the hw.
+		 */
+		if (crypto->wcid > WCID_END)
+			return -ENOSPC;
+		key->hw_key_idx = crypto->wcid;
+
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+		rt2800_register_multiwrite(rt2x00dev, offset,
+					      &key_entry, sizeof(key_entry));
+	}
+
+	/*
+	 * Update WCID information
+	 */
+	rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
+
+int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
+		   struct ieee80211_sta *sta)
+{
+	int wcid;
+	struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+
+	/*
+	 * Search for the first free WCID entry and return the corresponding
+	 * index.
+	 */
+	wcid = find_first_zero_bit(drv_data->sta_ids, STA_IDS_SIZE) + WCID_START;
+
+	/*
+	 * Store selected wcid even if it is invalid so that we can
+	 * later decide if the STA is uploaded into the hw.
+	 */
+	sta_priv->wcid = wcid;
+
+	/*
+	 * No space left in the device, however, we can still communicate
+	 * with the STA -> No error.
+	 */
+	if (wcid > WCID_END)
+		return 0;
+
+	__set_bit(wcid - WCID_START, drv_data->sta_ids);
+
+	/*
+	 * Clean up WCID attributes and write STA address to the device.
+	 */
+	rt2800_delete_wcid_attr(rt2x00dev, wcid);
+	rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
+	rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
+				       rt2x00lib_get_bssidx(rt2x00dev, vif));
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_sta_add);
+
+int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+
+	if (wcid > WCID_END)
+		return 0;
+	/*
+	 * Remove WCID entry, no need to clean the attributes as they will
+	 * get renewed when the WCID is reused.
+	 */
+	rt2800_config_wcid(rt2x00dev, NULL, wcid);
+	__clear_bit(wcid - WCID_START, drv_data->sta_ids);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_sta_remove);
+
+void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
+			  const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
+			   !(filter_flags & FIF_PSPOLL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 0);
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
+			   !(filter_flags & FIF_CONTROL));
+	rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_config_filter);
+
+void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
+			struct rt2x00intf_conf *conf, const unsigned int flags)
+{
+	u32 reg;
+	bool update_bssid = false;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
+		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+		if (conf->sync == TSF_SYNC_AP_NONE) {
+			/*
+			 * Tune beacon queue transmit parameters for AP mode
+			 */
+			rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
+			rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
+		} else {
+			rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
+			rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
+			rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
+		}
+	}
+
+	if (flags & CONFIG_UPDATE_MAC) {
+		if (flags & CONFIG_UPDATE_TYPE &&
+		    conf->sync == TSF_SYNC_AP_NONE) {
+			/*
+			 * The BSSID register has to be set to our own mac
+			 * address in AP mode.
+			 */
+			memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
+			update_bssid = true;
+		}
+
+		if (!is_zero_ether_addr((const u8 *)conf->mac)) {
+			reg = le32_to_cpu(conf->mac[1]);
+			rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
+			conf->mac[1] = cpu_to_le32(reg);
+		}
+
+		rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
+					      conf->mac, sizeof(conf->mac));
+	}
+
+	if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
+		if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
+			reg = le32_to_cpu(conf->bssid[1]);
+			rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
+			rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 0);
+			conf->bssid[1] = cpu_to_le32(reg);
+		}
+
+		rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
+					      conf->bssid, sizeof(conf->bssid));
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800_config_intf);
+
+static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
+				    struct rt2x00lib_erp *erp)
+{
+	bool any_sta_nongf = !!(erp->ht_opmode &
+				IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
+	u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
+	u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
+	u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
+	u32 reg;
+
+	/* default protection rate for HT20: OFDM 24M */
+	mm20_rate = gf20_rate = 0x4004;
+
+	/* default protection rate for HT40: duplicate OFDM 24M */
+	mm40_rate = gf40_rate = 0x4084;
+
+	switch (protection) {
+	case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
+		/*
+		 * All STAs in this BSS are HT20/40 but there might be
+		 * STAs not supporting greenfield mode.
+		 * => Disable protection for HT transmissions.
+		 */
+		mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
+
+		break;
+	case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
+		/*
+		 * All STAs in this BSS are HT20 or HT20/40 but there
+		 * might be STAs not supporting greenfield mode.
+		 * => Protect all HT40 transmissions.
+		 */
+		mm20_mode = gf20_mode = 0;
+		mm40_mode = gf40_mode = 2;
+
+		break;
+	case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
+		/*
+		 * Nonmember protection:
+		 * According to 802.11n we _should_ protect all
+		 * HT transmissions (but we don't have to).
+		 *
+		 * But if cts_protection is enabled we _shall_ protect
+		 * all HT transmissions using a CCK rate.
+		 *
+		 * And if any station is non GF we _shall_ protect
+		 * GF transmissions.
+		 *
+		 * We decide to protect everything
+		 * -> fall through to mixed mode.
+		 */
+	case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
+		/*
+		 * Legacy STAs are present
+		 * => Protect all HT transmissions.
+		 */
+		mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
+
+		/*
+		 * If erp protection is needed we have to protect HT
+		 * transmissions with CCK 11M long preamble.
+		 */
+		if (erp->cts_protection) {
+			/* don't duplicate RTS/CTS in CCK mode */
+			mm20_rate = mm40_rate = 0x0003;
+			gf20_rate = gf40_rate = 0x0003;
+		}
+		break;
+	}
+
+	/* check for STAs not supporting greenfield mode */
+	if (any_sta_nongf)
+		gf20_mode = gf40_mode = 2;
+
+	/* Update HT protection config */
+	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
+	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
+	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
+	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
+	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+}
+
+void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
+		       u32 changed)
+{
+	u32 reg;
+
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
+		rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
+				   !!erp->short_preamble);
+		rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
+				   !!erp->short_preamble);
+		rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
+	}
+
+	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
+		rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
+		rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
+				   erp->cts_protection ? 2 : 0);
+		rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES) {
+		rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
+					 erp->basic_rates);
+		rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
+	}
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
+		rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
+				   erp->slot_time);
+		rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
+
+		rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
+		rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
+	}
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+	}
+
+	if (changed & BSS_CHANGED_HT)
+		rt2800_config_ht_opmode(rt2x00dev, erp);
+}
+EXPORT_SYMBOL_GPL(rt2800_config_erp);
+
+static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 eeprom;
+	u8 led_ctrl, led_g_mode, led_r_mode;
+
+	rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
+		rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
+	} else {
+		rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
+		rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
+	}
+	rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+	rt2800_register_read(rt2x00dev, LED_CFG, &reg);
+	led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
+	led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
+	if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
+	    led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
+		led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
+		if (led_ctrl == 0 || led_ctrl > 0x40) {
+			rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
+			rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
+			rt2800_register_write(rt2x00dev, LED_CFG, reg);
+		} else {
+			rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
+					   (led_g_mode << 2) | led_r_mode, 1);
+		}
+	}
+}
+
+static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
+				     enum antenna ant)
+{
+	u32 reg;
+	u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
+	u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
+
+	if (rt2x00_is_pci(rt2x00dev)) {
+		rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
+		rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
+		rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
+	} else if (rt2x00_is_usb(rt2x00dev))
+		rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
+				   eesk_pin, 0);
+
+	rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+	rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
+	rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, gpio_bit3);
+	rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+}
+
+void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
+{
+	u8 r1;
+	u8 r3;
+	u16 eeprom;
+
+	rt2800_bbp_read(rt2x00dev, 1, &r1);
+	rt2800_bbp_read(rt2x00dev, 3, &r3);
+
+	if (rt2x00_rt(rt2x00dev, RT3572) &&
+	    rt2x00_has_cap_bt_coexist(rt2x00dev))
+		rt2800_config_3572bt_ant(rt2x00dev);
+
+	/*
+	 * Configure the TX antenna.
+	 */
+	switch (ant->tx_chain_num) {
+	case 1:
+		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
+		break;
+	case 2:
+		if (rt2x00_rt(rt2x00dev, RT3572) &&
+		    rt2x00_has_cap_bt_coexist(rt2x00dev))
+			rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
+		else
+			rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
+		break;
+	case 3:
+		rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
+		break;
+	}
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx_chain_num) {
+	case 1:
+		if (rt2x00_rt(rt2x00dev, RT3070) ||
+		    rt2x00_rt(rt2x00dev, RT3090) ||
+		    rt2x00_rt(rt2x00dev, RT3352) ||
+		    rt2x00_rt(rt2x00dev, RT3390)) {
+			rt2800_eeprom_read(rt2x00dev,
+					   EEPROM_NIC_CONF1, &eeprom);
+			if (rt2x00_get_field16(eeprom,
+						EEPROM_NIC_CONF1_ANT_DIVERSITY))
+				rt2800_set_ant_diversity(rt2x00dev,
+						rt2x00dev->default_ant.rx);
+		}
+		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
+		break;
+	case 2:
+		if (rt2x00_rt(rt2x00dev, RT3572) &&
+		    rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+			rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
+			rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
+				rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
+			rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
+		} else {
+			rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
+		}
+		break;
+	case 3:
+		rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
+		break;
+	}
+
+	rt2800_bbp_write(rt2x00dev, 3, r3);
+	rt2800_bbp_write(rt2x00dev, 1, r1);
+
+	if (rt2x00_rt(rt2x00dev, RT3593)) {
+		if (ant->rx_chain_num == 1)
+			rt2800_bbp_write(rt2x00dev, 86, 0x00);
+		else
+			rt2800_bbp_write(rt2x00dev, 86, 0x46);
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800_config_ant);
+
+static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+				   struct rt2x00lib_conf *libconf)
+{
+	u16 eeprom;
+	short lna_gain;
+
+	if (libconf->rf.channel <= 14) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
+		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
+	} else if (libconf->rf.channel <= 64) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
+		lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
+	} else if (libconf->rf.channel <= 128) {
+		if (rt2x00_rt(rt2x00dev, RT3593)) {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
+			lna_gain = rt2x00_get_field16(eeprom,
+						      EEPROM_EXT_LNA2_A1);
+		} else {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
+			lna_gain = rt2x00_get_field16(eeprom,
+						      EEPROM_RSSI_BG2_LNA_A1);
+		}
+	} else {
+		if (rt2x00_rt(rt2x00dev, RT3593)) {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &eeprom);
+			lna_gain = rt2x00_get_field16(eeprom,
+						      EEPROM_EXT_LNA2_A2);
+		} else {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
+			lna_gain = rt2x00_get_field16(eeprom,
+						      EEPROM_RSSI_A2_LNA_A2);
+		}
+	}
+
+	rt2x00dev->lna_gain = lna_gain;
+}
+
+#define FREQ_OFFSET_BOUND	0x5f
+
+static void rt2800_adjust_freq_offset(struct rt2x00_dev *rt2x00dev)
+{
+	u8 freq_offset, prev_freq_offset;
+	u8 rfcsr, prev_rfcsr;
+
+	freq_offset = rt2x00_get_field8(rt2x00dev->freq_offset, RFCSR17_CODE);
+	freq_offset = min_t(u8, freq_offset, FREQ_OFFSET_BOUND);
+
+	rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
+	prev_rfcsr = rfcsr;
+
+	rt2x00_set_field8(&rfcsr, RFCSR17_CODE, freq_offset);
+	if (rfcsr == prev_rfcsr)
+		return;
+
+	if (rt2x00_is_usb(rt2x00dev)) {
+		rt2800_mcu_request(rt2x00dev, MCU_FREQ_OFFSET, 0xff,
+				   freq_offset, prev_rfcsr);
+		return;
+	}
+
+	prev_freq_offset = rt2x00_get_field8(prev_rfcsr, RFCSR17_CODE);
+	while (prev_freq_offset != freq_offset) {
+		if (prev_freq_offset < freq_offset)
+			prev_freq_offset++;
+		else
+			prev_freq_offset--;
+
+		rt2x00_set_field8(&rfcsr, RFCSR17_CODE, prev_freq_offset);
+		rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
+
+		usleep_range(1000, 1500);
+	}
+}
+
+static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+	if (rt2x00dev->default_ant.tx_chain_num == 1)
+		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
+
+	if (rt2x00dev->default_ant.rx_chain_num == 1) {
+		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
+		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
+	} else if (rt2x00dev->default_ant.rx_chain_num == 2)
+		rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
+
+	if (rf->channel > 14) {
+		/*
+		 * When TX power is below 0, we should increase it by 7 to
+		 * make it a positive value (Minimum value is -7).
+		 * However this means that values between 0 and 7 have
+		 * double meaning, and we should set a 7DBm boost flag.
+		 */
+		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
+				   (info->default_power1 >= 0));
+
+		if (info->default_power1 < 0)
+			info->default_power1 += 7;
+
+		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
+
+		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
+				   (info->default_power2 >= 0));
+
+		if (info->default_power2 < 0)
+			info->default_power2 += 7;
+
+		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
+	} else {
+		rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
+		rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
+	}
+
+	rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
+
+	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+
+	udelay(200);
+
+	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+
+	udelay(200);
+
+	rt2800_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2800_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt2800_rf_write(rt2x00dev, 4, rf->rf4);
+}
+
+static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 rfcsr, calib_tx, calib_rx;
+
+	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
+
+	rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR3_K, rf->rf3);
+	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
+	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
+	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
+	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
+			  rt2x00dev->default_ant.rx_chain_num <= 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD,
+			  rt2x00dev->default_ant.rx_chain_num <= 2);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
+			  rt2x00dev->default_ant.tx_chain_num <= 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD,
+			  rt2x00dev->default_ant.tx_chain_num <= 2);
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
+	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+
+	if (rt2x00_rt(rt2x00dev, RT3390)) {
+		calib_tx = conf_is_ht40(conf) ? 0x68 : 0x4f;
+		calib_rx = conf_is_ht40(conf) ? 0x6f : 0x4f;
+	} else {
+		if (conf_is_ht40(conf)) {
+			calib_tx = drv_data->calibration_bw40;
+			calib_rx = drv_data->calibration_bw40;
+		} else {
+			calib_tx = drv_data->calibration_bw20;
+			calib_rx = drv_data->calibration_bw20;
+		}
+	}
+
+	rt2800_rfcsr_read(rt2x00dev, 24, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR24_TX_CALIB, calib_tx);
+	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR31_RX_CALIB, calib_rx);
+	rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
+	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+	msleep(1);
+	rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
+	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+}
+
+static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 rfcsr;
+	u32 reg;
+
+	if (rf->channel <= 14) {
+		rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
+		rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
+	} else {
+		rt2800_bbp_write(rt2x00dev, 25, 0x09);
+		rt2800_bbp_write(rt2x00dev, 26, 0xff);
+	}
+
+	rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
+	rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
+
+	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
+	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
+	rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
+	if (rf->channel <= 14) {
+		rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
+		rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
+				  info->default_power1);
+	} else {
+		rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
+		rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
+				(info->default_power1 & 0x3) |
+				((info->default_power1 & 0xC) << 1));
+	}
+	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
+	if (rf->channel <= 14) {
+		rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
+		rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
+				  info->default_power2);
+	} else {
+		rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
+		rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
+				(info->default_power2 & 0x3) |
+				((info->default_power2 & 0xC) << 1));
+	}
+	rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+	if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+		if (rf->channel <= 14) {
+			rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+			rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+		}
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+	} else {
+		switch (rt2x00dev->default_ant.tx_chain_num) {
+		case 1:
+			rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+		case 2:
+			rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+			break;
+		}
+
+		switch (rt2x00dev->default_ant.rx_chain_num) {
+		case 1:
+			rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+		case 2:
+			rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+			break;
+		}
+	}
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
+	rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+
+	if (conf_is_ht40(conf)) {
+		rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw40);
+		rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw40);
+	} else {
+		rt2800_rfcsr_write(rt2x00dev, 24, drv_data->calibration_bw20);
+		rt2800_rfcsr_write(rt2x00dev, 31, drv_data->calibration_bw20);
+	}
+
+	if (rf->channel <= 14) {
+		rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
+		rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
+		rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+		rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
+		rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+		rfcsr = 0x4c;
+		rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
+				  drv_data->txmixer_gain_24g);
+		rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+		rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+		rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
+		rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
+		rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
+		rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+		rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
+	} else {
+		rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR7_BIT2, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR7_BIT3, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR7_BIT4, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR7_BITS67, 0);
+		rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+		rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
+		rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+		rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
+		rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
+		rfcsr = 0x7a;
+		rt2x00_set_field8(&rfcsr, RFCSR16_TXMIXER_GAIN,
+				  drv_data->txmixer_gain_5g);
+		rt2800_rfcsr_write(rt2x00dev, 16, rfcsr);
+		rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+		if (rf->channel <= 64) {
+			rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
+			rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
+			rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
+		} else if (rf->channel <= 128) {
+			rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
+			rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
+			rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+		} else {
+			rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
+			rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
+			rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+		}
+		rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
+		rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
+	}
+
+	rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+	rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
+	if (rf->channel <= 14)
+		rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
+	else
+		rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 0);
+	rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+	rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+	rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+}
+
+static void rt2800_config_channel_rf3053(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 txrx_agc_fc;
+	u8 txrx_h20m;
+	u8 rfcsr;
+	u8 bbp;
+	const bool txbf_enabled = false; /* TODO */
+
+	/* TODO: use TX{0,1,2}FinePowerControl values from EEPROM */
+	rt2800_bbp_read(rt2x00dev, 109, &bbp);
+	rt2x00_set_field8(&bbp, BBP109_TX0_POWER, 0);
+	rt2x00_set_field8(&bbp, BBP109_TX1_POWER, 0);
+	rt2800_bbp_write(rt2x00dev, 109, bbp);
+
+	rt2800_bbp_read(rt2x00dev, 110, &bbp);
+	rt2x00_set_field8(&bbp, BBP110_TX2_POWER, 0);
+	rt2800_bbp_write(rt2x00dev, 110, bbp);
+
+	if (rf->channel <= 14) {
+		/* Restore BBP 25 & 26 for 2.4 GHz */
+		rt2800_bbp_write(rt2x00dev, 25, drv_data->bbp25);
+		rt2800_bbp_write(rt2x00dev, 26, drv_data->bbp26);
+	} else {
+		/* Hard code BBP 25 & 26 for 5GHz */
+
+		/* Enable IQ Phase correction */
+		rt2800_bbp_write(rt2x00dev, 25, 0x09);
+		/* Setup IQ Phase correction value */
+		rt2800_bbp_write(rt2x00dev, 26, 0xff);
+	}
+
+	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3 & 0xf);
+
+	rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR11_R, (rf->rf2 & 0x3));
+	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR11_PLL_IDOH, 1);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 1);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR11_PLL_MOD, 2);
+	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 53, &rfcsr);
+	if (rf->channel <= 14) {
+		rfcsr = 0;
+		rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
+				  info->default_power1 & 0x1f);
+	} else {
+		if (rt2x00_is_usb(rt2x00dev))
+			rfcsr = 0x40;
+
+		rt2x00_set_field8(&rfcsr, RFCSR53_TX_POWER,
+				  ((info->default_power1 & 0x18) << 1) |
+				  (info->default_power1 & 7));
+	}
+	rt2800_rfcsr_write(rt2x00dev, 53, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 55, &rfcsr);
+	if (rf->channel <= 14) {
+		rfcsr = 0;
+		rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
+				  info->default_power2 & 0x1f);
+	} else {
+		if (rt2x00_is_usb(rt2x00dev))
+			rfcsr = 0x40;
+
+		rt2x00_set_field8(&rfcsr, RFCSR55_TX_POWER,
+				  ((info->default_power2 & 0x18) << 1) |
+				  (info->default_power2 & 7));
+	}
+	rt2800_rfcsr_write(rt2x00dev, 55, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 54, &rfcsr);
+	if (rf->channel <= 14) {
+		rfcsr = 0;
+		rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
+				  info->default_power3 & 0x1f);
+	} else {
+		if (rt2x00_is_usb(rt2x00dev))
+			rfcsr = 0x40;
+
+		rt2x00_set_field8(&rfcsr, RFCSR54_TX_POWER,
+				  ((info->default_power3 & 0x18) << 1) |
+				  (info->default_power3 & 7));
+	}
+	rt2800_rfcsr_write(rt2x00dev, 54, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+
+	switch (rt2x00dev->default_ant.tx_chain_num) {
+	case 3:
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
+		/* fallthrough */
+	case 2:
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+		/* fallthrough */
+	case 1:
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+		break;
+	}
+
+	switch (rt2x00dev->default_ant.rx_chain_num) {
+	case 3:
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
+		/* fallthrough */
+	case 2:
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+		/* fallthrough */
+	case 1:
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+		break;
+	}
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	if (conf_is_ht40(conf)) {
+		txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw40,
+						RFCSR24_TX_AGC_FC);
+		txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw40,
+					      RFCSR24_TX_H20M);
+	} else {
+		txrx_agc_fc = rt2x00_get_field8(drv_data->calibration_bw20,
+						RFCSR24_TX_AGC_FC);
+		txrx_h20m = rt2x00_get_field8(drv_data->calibration_bw20,
+					      RFCSR24_TX_H20M);
+	}
+
+	/* NOTE: the reference driver does not writes the new value
+	 * back to RFCSR 32
+	 */
+	rt2800_rfcsr_read(rt2x00dev, 32, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR32_TX_AGC_FC, txrx_agc_fc);
+
+	if (rf->channel <= 14)
+		rfcsr = 0xa0;
+	else
+		rfcsr = 0x80;
+	rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, txrx_h20m);
+	rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, txrx_h20m);
+	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+	/* Band selection */
+	rt2800_rfcsr_read(rt2x00dev, 36, &rfcsr);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 1);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR36_RF_BS, 0);
+	rt2800_rfcsr_write(rt2x00dev, 36, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 34, &rfcsr);
+	if (rf->channel <= 14)
+		rfcsr = 0x3c;
+	else
+		rfcsr = 0x20;
+	rt2800_rfcsr_write(rt2x00dev, 34, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
+	if (rf->channel <= 14)
+		rfcsr = 0x1a;
+	else
+		rfcsr = 0x12;
+	rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
+	if (rf->channel >= 1 && rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
+	else if (rf->channel >= 36 && rf->channel <= 64)
+		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
+	else if (rf->channel >= 100 && rf->channel <= 128)
+		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 2);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR6_VCO_IC, 1);
+	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
+	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+	rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
+
+	if (rf->channel <= 14) {
+		rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
+		rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+	} else {
+		rt2800_rfcsr_write(rt2x00dev, 10, 0xd8);
+		rt2800_rfcsr_write(rt2x00dev, 13, 0x23);
+	}
+
+	rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR51_BITS01, 1);
+	rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
+	if (rf->channel <= 14) {
+		rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 5);
+		rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 3);
+	} else {
+		rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, 4);
+		rt2x00_set_field8(&rfcsr, RFCSR51_BITS57, 2);
+	}
+	rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 3);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX_LO1_IC, 2);
+
+	if (txbf_enabled)
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX_DIV, 1);
+
+	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO1_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 57, &rfcsr);
+	if (rf->channel <= 14)
+		rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x1b);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR57_DRV_CC, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 57, rfcsr);
+
+	if (rf->channel <= 14) {
+		rt2800_rfcsr_write(rt2x00dev, 44, 0x93);
+		rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
+	} else {
+		rt2800_rfcsr_write(rt2x00dev, 44, 0x9b);
+		rt2800_rfcsr_write(rt2x00dev, 52, 0x05);
+	}
+
+	/* Initiate VCO calibration */
+	rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
+	if (rf->channel <= 14) {
+		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+	} else {
+		rt2x00_set_field8(&rfcsr, RFCSR3_BIT1, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR3_BIT2, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR3_BIT3, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR3_BIT4, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR3_BIT5, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+	}
+	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+	if (rf->channel >= 1 && rf->channel <= 14) {
+		rfcsr = 0x23;
+		if (txbf_enabled)
+			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+		rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
+	} else if (rf->channel >= 36 && rf->channel <= 64) {
+		rfcsr = 0x36;
+		if (txbf_enabled)
+			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+		rt2800_rfcsr_write(rt2x00dev, 39, 0x36);
+
+		rt2800_rfcsr_write(rt2x00dev, 45, 0xeb);
+	} else if (rf->channel >= 100 && rf->channel <= 128) {
+		rfcsr = 0x32;
+		if (txbf_enabled)
+			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+		rt2800_rfcsr_write(rt2x00dev, 45, 0xb3);
+	} else {
+		rfcsr = 0x30;
+		if (txbf_enabled)
+			rt2x00_set_field8(&rfcsr, RFCSR39_RX_DIV, 1);
+		rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+		rt2800_rfcsr_write(rt2x00dev, 45, 0x9b);
+	}
+}
+
+#define POWER_BOUND		0x27
+#define POWER_BOUND_5G		0x2b
+
+static void rt2800_config_channel_rf3290(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	u8 rfcsr;
+
+	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+	rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
+	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
+	if (info->default_power1 > POWER_BOUND)
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	if (rf->channel <= 14) {
+		if (rf->channel == 6)
+			rt2800_bbp_write(rt2x00dev, 68, 0x0c);
+		else
+			rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+		if (rf->channel >= 1 && rf->channel <= 6)
+			rt2800_bbp_write(rt2x00dev, 59, 0x0f);
+		else if (rf->channel >= 7 && rf->channel <= 11)
+			rt2800_bbp_write(rt2x00dev, 59, 0x0e);
+		else if (rf->channel >= 12 && rf->channel <= 14)
+			rt2800_bbp_write(rt2x00dev, 59, 0x0d);
+	}
+}
+
+static void rt2800_config_channel_rf3322(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	u8 rfcsr;
+
+	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+
+	if (info->default_power1 > POWER_BOUND)
+		rt2800_rfcsr_write(rt2x00dev, 47, POWER_BOUND);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 47, info->default_power1);
+
+	if (info->default_power2 > POWER_BOUND)
+		rt2800_rfcsr_write(rt2x00dev, 48, POWER_BOUND);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 48, info->default_power2);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+
+	if ( rt2x00dev->default_ant.tx_chain_num == 2 )
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
+
+	if ( rt2x00dev->default_ant.rx_chain_num == 2 )
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
+
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_rfcsr_write(rt2x00dev, 31, 80);
+}
+
+static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	u8 rfcsr;
+
+	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
+	rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
+	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
+	if (info->default_power1 > POWER_BOUND)
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, POWER_BOUND);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+	if (rt2x00_rt(rt2x00dev, RT5392)) {
+		rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
+		if (info->default_power2 > POWER_BOUND)
+			rt2x00_set_field8(&rfcsr, RFCSR50_TX, POWER_BOUND);
+		else
+			rt2x00_set_field8(&rfcsr, RFCSR50_TX,
+					  info->default_power2);
+		rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+	}
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	if (rt2x00_rt(rt2x00dev, RT5392)) {
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+	}
+	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	if (rf->channel <= 14) {
+		int idx = rf->channel-1;
+
+		if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+			if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+				/* r55/r59 value array of channel 1~14 */
+				static const char r55_bt_rev[] = {0x83, 0x83,
+					0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
+					0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
+				static const char r59_bt_rev[] = {0x0e, 0x0e,
+					0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
+					0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
+
+				rt2800_rfcsr_write(rt2x00dev, 55,
+						   r55_bt_rev[idx]);
+				rt2800_rfcsr_write(rt2x00dev, 59,
+						   r59_bt_rev[idx]);
+			} else {
+				static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
+					0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
+					0x88, 0x88, 0x86, 0x85, 0x84};
+
+				rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
+			}
+		} else {
+			if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+				static const char r55_nonbt_rev[] = {0x23, 0x23,
+					0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
+					0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
+				static const char r59_nonbt_rev[] = {0x07, 0x07,
+					0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
+					0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
+
+				rt2800_rfcsr_write(rt2x00dev, 55,
+						   r55_nonbt_rev[idx]);
+				rt2800_rfcsr_write(rt2x00dev, 59,
+						   r59_nonbt_rev[idx]);
+			} else if (rt2x00_rt(rt2x00dev, RT5390) ||
+				   rt2x00_rt(rt2x00dev, RT5392)) {
+				static const char r59_non_bt[] = {0x8f, 0x8f,
+					0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
+					0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
+
+				rt2800_rfcsr_write(rt2x00dev, 59,
+						   r59_non_bt[idx]);
+			}
+		}
+	}
+}
+
+static void rt2800_config_channel_rf55xx(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_conf *conf,
+					 struct rf_channel *rf,
+					 struct channel_info *info)
+{
+	u8 rfcsr, ep_reg;
+	u32 reg;
+	int power_bound;
+
+	/* TODO */
+	const bool is_11b = false;
+	const bool is_type_ep = false;
+
+	rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL,
+			   (rf->channel > 14 || conf_is_ht40(conf)) ? 5 : 0);
+	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+	/* Order of values on rf_channel entry: N, K, mod, R */
+	rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1 & 0xff);
+
+	rt2800_rfcsr_read(rt2x00dev,  9, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR9_K, rf->rf2 & 0xf);
+	rt2x00_set_field8(&rfcsr, RFCSR9_N, (rf->rf1 & 0x100) >> 8);
+	rt2x00_set_field8(&rfcsr, RFCSR9_MOD, ((rf->rf3 - 8) & 0x4) >> 2);
+	rt2800_rfcsr_write(rt2x00dev, 9, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf4 - 1);
+	rt2x00_set_field8(&rfcsr, RFCSR11_MOD, (rf->rf3 - 8) & 0x3);
+	rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
+
+	if (rf->channel <= 14) {
+		rt2800_rfcsr_write(rt2x00dev, 10, 0x90);
+		/* FIXME: RF11 owerwrite ? */
+		rt2800_rfcsr_write(rt2x00dev, 11, 0x4A);
+		rt2800_rfcsr_write(rt2x00dev, 12, 0x52);
+		rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
+		rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
+		rt2800_rfcsr_write(rt2x00dev, 24, 0x4A);
+		rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
+		rt2800_rfcsr_write(rt2x00dev, 36, 0x80);
+		rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+		rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
+		rt2800_rfcsr_write(rt2x00dev, 39, 0x1B);
+		rt2800_rfcsr_write(rt2x00dev, 40, 0x0D);
+		rt2800_rfcsr_write(rt2x00dev, 41, 0x9B);
+		rt2800_rfcsr_write(rt2x00dev, 42, 0xD5);
+		rt2800_rfcsr_write(rt2x00dev, 43, 0x72);
+		rt2800_rfcsr_write(rt2x00dev, 44, 0x0E);
+		rt2800_rfcsr_write(rt2x00dev, 45, 0xA2);
+		rt2800_rfcsr_write(rt2x00dev, 46, 0x6B);
+		rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+		rt2800_rfcsr_write(rt2x00dev, 51, 0x3E);
+		rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
+		rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
+		rt2800_rfcsr_write(rt2x00dev, 56, 0xA1);
+		rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
+		rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
+		rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+		rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
+		rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
+
+		/* TODO RF27 <- tssi */
+
+		rfcsr = rf->channel <= 10 ? 0x07 : 0x06;
+		rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
+		rt2800_rfcsr_write(rt2x00dev, 59, rfcsr);
+
+		if (is_11b) {
+			/* CCK */
+			rt2800_rfcsr_write(rt2x00dev, 31, 0xF8);
+			rt2800_rfcsr_write(rt2x00dev, 32, 0xC0);
+			if (is_type_ep)
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x06);
+			else
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x47);
+		} else {
+			/* OFDM */
+			if (is_type_ep)
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x03);
+			else
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+		}
+
+		power_bound = POWER_BOUND;
+		ep_reg = 0x2;
+	} else {
+		rt2800_rfcsr_write(rt2x00dev, 10, 0x97);
+		/* FIMXE: RF11 overwrite */
+		rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
+		rt2800_rfcsr_write(rt2x00dev, 25, 0xBF);
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x42);
+		rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+		rt2800_rfcsr_write(rt2x00dev, 37, 0x04);
+		rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+		rt2800_rfcsr_write(rt2x00dev, 40, 0x42);
+		rt2800_rfcsr_write(rt2x00dev, 41, 0xBB);
+		rt2800_rfcsr_write(rt2x00dev, 42, 0xD7);
+		rt2800_rfcsr_write(rt2x00dev, 45, 0x41);
+		rt2800_rfcsr_write(rt2x00dev, 48, 0x00);
+		rt2800_rfcsr_write(rt2x00dev, 57, 0x77);
+		rt2800_rfcsr_write(rt2x00dev, 60, 0x05);
+		rt2800_rfcsr_write(rt2x00dev, 61, 0x01);
+
+		/* TODO RF27 <- tssi */
+
+		if (rf->channel >= 36 && rf->channel <= 64) {
+
+			rt2800_rfcsr_write(rt2x00dev, 12, 0x2E);
+			rt2800_rfcsr_write(rt2x00dev, 13, 0x22);
+			rt2800_rfcsr_write(rt2x00dev, 22, 0x60);
+			rt2800_rfcsr_write(rt2x00dev, 23, 0x7F);
+			if (rf->channel <= 50)
+				rt2800_rfcsr_write(rt2x00dev, 24, 0x09);
+			else if (rf->channel >= 52)
+				rt2800_rfcsr_write(rt2x00dev, 24, 0x07);
+			rt2800_rfcsr_write(rt2x00dev, 39, 0x1C);
+			rt2800_rfcsr_write(rt2x00dev, 43, 0x5B);
+			rt2800_rfcsr_write(rt2x00dev, 44, 0X40);
+			rt2800_rfcsr_write(rt2x00dev, 46, 0X00);
+			rt2800_rfcsr_write(rt2x00dev, 51, 0xFE);
+			rt2800_rfcsr_write(rt2x00dev, 52, 0x0C);
+			rt2800_rfcsr_write(rt2x00dev, 54, 0xF8);
+			if (rf->channel <= 50) {
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x06),
+				rt2800_rfcsr_write(rt2x00dev, 56, 0xD3);
+			} else if (rf->channel >= 52) {
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x04);
+				rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
+			}
+
+			rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
+			rt2800_rfcsr_write(rt2x00dev, 59, 0x7F);
+			rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
+
+		} else if (rf->channel >= 100 && rf->channel <= 165) {
+
+			rt2800_rfcsr_write(rt2x00dev, 12, 0x0E);
+			rt2800_rfcsr_write(rt2x00dev, 13, 0x42);
+			rt2800_rfcsr_write(rt2x00dev, 22, 0x40);
+			if (rf->channel <= 153) {
+				rt2800_rfcsr_write(rt2x00dev, 23, 0x3C);
+				rt2800_rfcsr_write(rt2x00dev, 24, 0x06);
+			} else if (rf->channel >= 155) {
+				rt2800_rfcsr_write(rt2x00dev, 23, 0x38);
+				rt2800_rfcsr_write(rt2x00dev, 24, 0x05);
+			}
+			if (rf->channel <= 138) {
+				rt2800_rfcsr_write(rt2x00dev, 39, 0x1A);
+				rt2800_rfcsr_write(rt2x00dev, 43, 0x3B);
+				rt2800_rfcsr_write(rt2x00dev, 44, 0x20);
+				rt2800_rfcsr_write(rt2x00dev, 46, 0x18);
+			} else if (rf->channel >= 140) {
+				rt2800_rfcsr_write(rt2x00dev, 39, 0x18);
+				rt2800_rfcsr_write(rt2x00dev, 43, 0x1B);
+				rt2800_rfcsr_write(rt2x00dev, 44, 0x10);
+				rt2800_rfcsr_write(rt2x00dev, 46, 0X08);
+			}
+			if (rf->channel <= 124)
+				rt2800_rfcsr_write(rt2x00dev, 51, 0xFC);
+			else if (rf->channel >= 126)
+				rt2800_rfcsr_write(rt2x00dev, 51, 0xEC);
+			if (rf->channel <= 138)
+				rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
+			else if (rf->channel >= 140)
+				rt2800_rfcsr_write(rt2x00dev, 52, 0x06);
+			rt2800_rfcsr_write(rt2x00dev, 54, 0xEB);
+			if (rf->channel <= 138)
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x01);
+			else if (rf->channel >= 140)
+				rt2800_rfcsr_write(rt2x00dev, 55, 0x00);
+			if (rf->channel <= 128)
+				rt2800_rfcsr_write(rt2x00dev, 56, 0xBB);
+			else if (rf->channel >= 130)
+				rt2800_rfcsr_write(rt2x00dev, 56, 0xAB);
+			if (rf->channel <= 116)
+				rt2800_rfcsr_write(rt2x00dev, 58, 0x1D);
+			else if (rf->channel >= 118)
+				rt2800_rfcsr_write(rt2x00dev, 58, 0x15);
+			if (rf->channel <= 138)
+				rt2800_rfcsr_write(rt2x00dev, 59, 0x3F);
+			else if (rf->channel >= 140)
+				rt2800_rfcsr_write(rt2x00dev, 59, 0x7C);
+			if (rf->channel <= 116)
+				rt2800_rfcsr_write(rt2x00dev, 62, 0x1D);
+			else if (rf->channel >= 118)
+				rt2800_rfcsr_write(rt2x00dev, 62, 0x15);
+		}
+
+		power_bound = POWER_BOUND_5G;
+		ep_reg = 0x3;
+	}
+
+	rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
+	if (info->default_power1 > power_bound)
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, power_bound);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
+	if (is_type_ep)
+		rt2x00_set_field8(&rfcsr, RFCSR49_EP, ep_reg);
+	rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
+	if (info->default_power2 > power_bound)
+		rt2x00_set_field8(&rfcsr, RFCSR50_TX, power_bound);
+	else
+		rt2x00_set_field8(&rfcsr, RFCSR50_TX, info->default_power2);
+	if (is_type_ep)
+		rt2x00_set_field8(&rfcsr, RFCSR50_EP, ep_reg);
+	rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD,
+			  rt2x00dev->default_ant.tx_chain_num >= 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD,
+			  rt2x00dev->default_ant.tx_chain_num == 2);
+	rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 0);
+
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD,
+			  rt2x00dev->default_ant.rx_chain_num >= 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD,
+			  rt2x00dev->default_ant.rx_chain_num == 2);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 0);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0xe4);
+
+	if (conf_is_ht40(conf))
+		rt2800_rfcsr_write(rt2x00dev, 30, 0x16);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+
+	if (!is_11b) {
+		rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+		rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+	}
+
+	/* TODO proper frequency adjustment */
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	/* TODO merge with others */
+	rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+	rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+
+	/* BBP settings */
+	rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+	rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+	rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+
+	rt2800_bbp_write(rt2x00dev, 79, (rf->channel <= 14) ? 0x1C : 0x18);
+	rt2800_bbp_write(rt2x00dev, 80, (rf->channel <= 14) ? 0x0E : 0x08);
+	rt2800_bbp_write(rt2x00dev, 81, (rf->channel <= 14) ? 0x3A : 0x38);
+	rt2800_bbp_write(rt2x00dev, 82, (rf->channel <= 14) ? 0x62 : 0x92);
+
+	/* GLRT band configuration */
+	rt2800_bbp_write(rt2x00dev, 195, 128);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0xE0 : 0xF0);
+	rt2800_bbp_write(rt2x00dev, 195, 129);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x1F : 0x1E);
+	rt2800_bbp_write(rt2x00dev, 195, 130);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x38 : 0x28);
+	rt2800_bbp_write(rt2x00dev, 195, 131);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x32 : 0x20);
+	rt2800_bbp_write(rt2x00dev, 195, 133);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x28 : 0x7F);
+	rt2800_bbp_write(rt2x00dev, 195, 124);
+	rt2800_bbp_write(rt2x00dev, 196, (rf->channel <= 14) ? 0x19 : 0x7F);
+}
+
+static void rt2800_bbp_write_with_rx_chain(struct rt2x00_dev *rt2x00dev,
+					   const unsigned int word,
+					   const u8 value)
+{
+	u8 chain, reg;
+
+	for (chain = 0; chain < rt2x00dev->default_ant.rx_chain_num; chain++) {
+		rt2800_bbp_read(rt2x00dev, 27, &reg);
+		rt2x00_set_field8(&reg,  BBP27_RX_CHAIN_SEL, chain);
+		rt2800_bbp_write(rt2x00dev, 27, reg);
+
+		rt2800_bbp_write(rt2x00dev, word, value);
+	}
+}
+
+static void rt2800_iq_calibrate(struct rt2x00_dev *rt2x00dev, int channel)
+{
+	u8 cal;
+
+	/* TX0 IQ Gain */
+	rt2800_bbp_write(rt2x00dev, 158, 0x2c);
+	if (channel <= 14)
+		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX0_2G);
+	else if (channel >= 36 && channel <= 64)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5G);
+	else if (channel >= 100 && channel <= 138)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5G);
+	else if (channel >= 140 && channel <= 165)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5G);
+	else
+		cal = 0;
+	rt2800_bbp_write(rt2x00dev, 159, cal);
+
+	/* TX0 IQ Phase */
+	rt2800_bbp_write(rt2x00dev, 158, 0x2d);
+	if (channel <= 14)
+		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX0_2G);
+	else if (channel >= 36 && channel <= 64)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5G);
+	else if (channel >= 100 && channel <= 138)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5G);
+	else if (channel >= 140 && channel <= 165)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5G);
+	else
+		cal = 0;
+	rt2800_bbp_write(rt2x00dev, 159, cal);
+
+	/* TX1 IQ Gain */
+	rt2800_bbp_write(rt2x00dev, 158, 0x4a);
+	if (channel <= 14)
+		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_GAIN_CAL_TX1_2G);
+	else if (channel >= 36 && channel <= 64)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5G);
+	else if (channel >= 100 && channel <= 138)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5G);
+	else if (channel >= 140 && channel <= 165)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5G);
+	else
+		cal = 0;
+	rt2800_bbp_write(rt2x00dev, 159, cal);
+
+	/* TX1 IQ Phase */
+	rt2800_bbp_write(rt2x00dev, 158, 0x4b);
+	if (channel <= 14)
+		cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_IQ_PHASE_CAL_TX1_2G);
+	else if (channel >= 36 && channel <= 64)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5G);
+	else if (channel >= 100 && channel <= 138)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5G);
+	else if (channel >= 140 && channel <= 165)
+		cal = rt2x00_eeprom_byte(rt2x00dev,
+					 EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5G);
+	else
+		cal = 0;
+	rt2800_bbp_write(rt2x00dev, 159, cal);
+
+	/* FIXME: possible RX0, RX1 callibration ? */
+
+	/* RF IQ compensation control */
+	rt2800_bbp_write(rt2x00dev, 158, 0x04);
+	cal = rt2x00_eeprom_byte(rt2x00dev, EEPROM_RF_IQ_COMPENSATION_CONTROL);
+	rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
+
+	/* RF IQ imbalance compensation control */
+	rt2800_bbp_write(rt2x00dev, 158, 0x03);
+	cal = rt2x00_eeprom_byte(rt2x00dev,
+				 EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CONTROL);
+	rt2800_bbp_write(rt2x00dev, 159, cal != 0xff ? cal : 0);
+}
+
+static char rt2800_txpower_to_dev(struct rt2x00_dev *rt2x00dev,
+				  unsigned int channel,
+				  char txpower)
+{
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		txpower = rt2x00_get_field8(txpower, EEPROM_TXPOWER_ALC);
+
+	if (channel <= 14)
+		return clamp_t(char, txpower, MIN_G_TXPOWER, MAX_G_TXPOWER);
+
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		return clamp_t(char, txpower, MIN_A_TXPOWER_3593,
+			       MAX_A_TXPOWER_3593);
+	else
+		return clamp_t(char, txpower, MIN_A_TXPOWER, MAX_A_TXPOWER);
+}
+
+static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
+				  struct ieee80211_conf *conf,
+				  struct rf_channel *rf,
+				  struct channel_info *info)
+{
+	u32 reg;
+	unsigned int tx_pin;
+	u8 bbp, rfcsr;
+
+	info->default_power1 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+						     info->default_power1);
+	info->default_power2 = rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+						     info->default_power2);
+	if (rt2x00dev->default_ant.tx_chain_num > 2)
+		info->default_power3 =
+			rt2800_txpower_to_dev(rt2x00dev, rf->channel,
+					      info->default_power3);
+
+	switch (rt2x00dev->chip.rf) {
+	case RF2020:
+	case RF3020:
+	case RF3021:
+	case RF3022:
+	case RF3320:
+		rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
+		break;
+	case RF3052:
+		rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
+		break;
+	case RF3053:
+		rt2800_config_channel_rf3053(rt2x00dev, conf, rf, info);
+		break;
+	case RF3290:
+		rt2800_config_channel_rf3290(rt2x00dev, conf, rf, info);
+		break;
+	case RF3322:
+		rt2800_config_channel_rf3322(rt2x00dev, conf, rf, info);
+		break;
+	case RF3070:
+	case RF5360:
+	case RF5362:
+	case RF5370:
+	case RF5372:
+	case RF5390:
+	case RF5392:
+		rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
+		break;
+	case RF5592:
+		rt2800_config_channel_rf55xx(rt2x00dev, conf, rf, info);
+		break;
+	default:
+		rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
+	}
+
+	if (rt2x00_rf(rt2x00dev, RF3070) ||
+	    rt2x00_rf(rt2x00dev, RF3290) ||
+	    rt2x00_rf(rt2x00dev, RF3322) ||
+	    rt2x00_rf(rt2x00dev, RF5360) ||
+	    rt2x00_rf(rt2x00dev, RF5362) ||
+	    rt2x00_rf(rt2x00dev, RF5370) ||
+	    rt2x00_rf(rt2x00dev, RF5372) ||
+	    rt2x00_rf(rt2x00dev, RF5390) ||
+	    rt2x00_rf(rt2x00dev, RF5392)) {
+		rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
+		rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+		rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+		rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+	}
+
+	/*
+	 * Change BBP settings
+	 */
+	if (rt2x00_rt(rt2x00dev, RT3352)) {
+		rt2800_bbp_write(rt2x00dev, 27, 0x0);
+		rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 27, 0x20);
+		rt2800_bbp_write(rt2x00dev, 66, 0x26 + rt2x00dev->lna_gain);
+	} else if (rt2x00_rt(rt2x00dev, RT3593)) {
+		if (rf->channel > 14) {
+			/* Disable CCK Packet detection on 5GHz */
+			rt2800_bbp_write(rt2x00dev, 70, 0x00);
+		} else {
+			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+		}
+
+		if (conf_is_ht40(conf))
+			rt2800_bbp_write(rt2x00dev, 105, 0x04);
+		else
+			rt2800_bbp_write(rt2x00dev, 105, 0x34);
+
+		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 77, 0x98);
+	} else {
+		rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
+		rt2800_bbp_write(rt2x00dev, 86, 0);
+	}
+
+	if (rf->channel <= 14) {
+		if (!rt2x00_rt(rt2x00dev, RT5390) &&
+		    !rt2x00_rt(rt2x00dev, RT5392)) {
+			if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+				rt2800_bbp_write(rt2x00dev, 82, 0x62);
+				rt2800_bbp_write(rt2x00dev, 75, 0x46);
+			} else {
+				if (rt2x00_rt(rt2x00dev, RT3593))
+					rt2800_bbp_write(rt2x00dev, 82, 0x62);
+				else
+					rt2800_bbp_write(rt2x00dev, 82, 0x84);
+				rt2800_bbp_write(rt2x00dev, 75, 0x50);
+			}
+			if (rt2x00_rt(rt2x00dev, RT3593))
+				rt2800_bbp_write(rt2x00dev, 83, 0x8a);
+		}
+
+	} else {
+		if (rt2x00_rt(rt2x00dev, RT3572))
+			rt2800_bbp_write(rt2x00dev, 82, 0x94);
+		else if (rt2x00_rt(rt2x00dev, RT3593))
+			rt2800_bbp_write(rt2x00dev, 82, 0x82);
+		else
+			rt2800_bbp_write(rt2x00dev, 82, 0xf2);
+
+		if (rt2x00_rt(rt2x00dev, RT3593))
+			rt2800_bbp_write(rt2x00dev, 83, 0x9a);
+
+		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
+			rt2800_bbp_write(rt2x00dev, 75, 0x46);
+		else
+			rt2800_bbp_write(rt2x00dev, 75, 0x50);
+	}
+
+	rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
+	rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
+	rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
+	rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
+
+	if (rt2x00_rt(rt2x00dev, RT3572))
+		rt2800_rfcsr_write(rt2x00dev, 8, 0);
+
+	tx_pin = 0;
+
+	switch (rt2x00dev->default_ant.tx_chain_num) {
+	case 3:
+		/* Turn on tertiary PAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN,
+				   rf->channel > 14);
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN,
+				   rf->channel <= 14);
+		/* fall-through */
+	case 2:
+		/* Turn on secondary PAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
+				   rf->channel > 14);
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
+				   rf->channel <= 14);
+		/* fall-through */
+	case 1:
+		/* Turn on primary PAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN,
+				   rf->channel > 14);
+		if (rt2x00_has_cap_bt_coexist(rt2x00dev))
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
+		else
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
+					   rf->channel <= 14);
+		break;
+	}
+
+	switch (rt2x00dev->default_ant.rx_chain_num) {
+	case 3:
+		/* Turn on tertiary LNAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A2_EN, 1);
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G2_EN, 1);
+		/* fall-through */
+	case 2:
+		/* Turn on secondary LNAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
+		/* fall-through */
+	case 1:
+		/* Turn on primary LNAs */
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
+		rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
+		break;
+	}
+
+	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
+	rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
+
+	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+	if (rt2x00_rt(rt2x00dev, RT3572)) {
+		rt2800_rfcsr_write(rt2x00dev, 8, 0x80);
+
+		/* AGC init */
+		if (rf->channel <= 14)
+			reg = 0x1c + (2 * rt2x00dev->lna_gain);
+		else
+			reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
+
+		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+	}
+
+	if (rt2x00_rt(rt2x00dev, RT3593)) {
+		rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+
+		/* Band selection */
+		if (rt2x00_is_usb(rt2x00dev) ||
+		    rt2x00_is_pcie(rt2x00dev)) {
+			/* GPIO #8 controls all paths */
+			rt2x00_set_field32(&reg, GPIO_CTRL_DIR8, 0);
+			if (rf->channel <= 14)
+				rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 1);
+			else
+				rt2x00_set_field32(&reg, GPIO_CTRL_VAL8, 0);
+		}
+
+		/* LNA PE control. */
+		if (rt2x00_is_usb(rt2x00dev)) {
+			/* GPIO #4 controls PE0 and PE1,
+			 * GPIO #7 controls PE2
+			 */
+			rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
+			rt2x00_set_field32(&reg, GPIO_CTRL_DIR7, 0);
+
+			rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
+			rt2x00_set_field32(&reg, GPIO_CTRL_VAL7, 1);
+		} else if (rt2x00_is_pcie(rt2x00dev)) {
+			/* GPIO #4 controls PE0, PE1 and PE2 */
+			rt2x00_set_field32(&reg, GPIO_CTRL_DIR4, 0);
+			rt2x00_set_field32(&reg, GPIO_CTRL_VAL4, 1);
+		}
+
+		rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+		/* AGC init */
+		if (rf->channel <= 14)
+			reg = 0x1c + 2 * rt2x00dev->lna_gain;
+		else
+			reg = 0x22 + ((rt2x00dev->lna_gain * 5) / 3);
+
+		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+
+		usleep_range(1000, 1500);
+	}
+
+	if (rt2x00_rt(rt2x00dev, RT5592)) {
+		rt2800_bbp_write(rt2x00dev, 195, 141);
+		rt2800_bbp_write(rt2x00dev, 196, conf_is_ht40(conf) ? 0x10 : 0x1a);
+
+		/* AGC init */
+		reg = (rf->channel <= 14 ? 0x1c : 0x24) + 2 * rt2x00dev->lna_gain;
+		rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, reg);
+
+		rt2800_iq_calibrate(rt2x00dev, rf->channel);
+	}
+
+	rt2800_bbp_read(rt2x00dev, 4, &bbp);
+	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
+	rt2800_bbp_write(rt2x00dev, 4, bbp);
+
+	rt2800_bbp_read(rt2x00dev, 3, &bbp);
+	rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
+	rt2800_bbp_write(rt2x00dev, 3, bbp);
+
+	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
+		if (conf_is_ht40(conf)) {
+			rt2800_bbp_write(rt2x00dev, 69, 0x1a);
+			rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+			rt2800_bbp_write(rt2x00dev, 73, 0x16);
+		} else {
+			rt2800_bbp_write(rt2x00dev, 69, 0x16);
+			rt2800_bbp_write(rt2x00dev, 70, 0x08);
+			rt2800_bbp_write(rt2x00dev, 73, 0x11);
+		}
+	}
+
+	msleep(1);
+
+	/*
+	 * Clear channel statistic counters
+	 */
+	rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
+	rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
+	rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
+
+	/*
+	 * Clear update flag
+	 */
+	if (rt2x00_rt(rt2x00dev, RT3352)) {
+		rt2800_bbp_read(rt2x00dev, 49, &bbp);
+		rt2x00_set_field8(&bbp, BBP49_UPDATE_FLAG, 0);
+		rt2800_bbp_write(rt2x00dev, 49, bbp);
+	}
+}
+
+static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
+{
+	u8 tssi_bounds[9];
+	u8 current_tssi;
+	u16 eeprom;
+	u8 step;
+	int i;
+
+	/*
+	 * First check if temperature compensation is supported.
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
+	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC))
+		return 0;
+
+	/*
+	 * Read TSSI boundaries for temperature compensation from
+	 * the EEPROM.
+	 *
+	 * Array idx               0    1    2    3    4    5    6    7    8
+	 * Matching Delta value   -4   -3   -2   -1    0   +1   +2   +3   +4
+	 * Example TSSI bounds  0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
+	 */
+	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom);
+		tssi_bounds[0] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG1_MINUS4);
+		tssi_bounds[1] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG1_MINUS3);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom);
+		tssi_bounds[2] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG2_MINUS2);
+		tssi_bounds[3] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG2_MINUS1);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom);
+		tssi_bounds[4] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG3_REF);
+		tssi_bounds[5] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG3_PLUS1);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom);
+		tssi_bounds[6] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG4_PLUS2);
+		tssi_bounds[7] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG4_PLUS3);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom);
+		tssi_bounds[8] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_BG5_PLUS4);
+
+		step = rt2x00_get_field16(eeprom,
+					  EEPROM_TSSI_BOUND_BG5_AGC_STEP);
+	} else {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom);
+		tssi_bounds[0] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A1_MINUS4);
+		tssi_bounds[1] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A1_MINUS3);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom);
+		tssi_bounds[2] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A2_MINUS2);
+		tssi_bounds[3] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A2_MINUS1);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom);
+		tssi_bounds[4] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A3_REF);
+		tssi_bounds[5] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A3_PLUS1);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom);
+		tssi_bounds[6] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A4_PLUS2);
+		tssi_bounds[7] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A4_PLUS3);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom);
+		tssi_bounds[8] = rt2x00_get_field16(eeprom,
+					EEPROM_TSSI_BOUND_A5_PLUS4);
+
+		step = rt2x00_get_field16(eeprom,
+					  EEPROM_TSSI_BOUND_A5_AGC_STEP);
+	}
+
+	/*
+	 * Check if temperature compensation is supported.
+	 */
+	if (tssi_bounds[4] == 0xff || step == 0xff)
+		return 0;
+
+	/*
+	 * Read current TSSI (BBP 49).
+	 */
+	rt2800_bbp_read(rt2x00dev, 49, &current_tssi);
+
+	/*
+	 * Compare TSSI value (BBP49) with the compensation boundaries
+	 * from the EEPROM and increase or decrease tx power.
+	 */
+	for (i = 0; i <= 3; i++) {
+		if (current_tssi > tssi_bounds[i])
+			break;
+	}
+
+	if (i == 4) {
+		for (i = 8; i >= 5; i--) {
+			if (current_tssi < tssi_bounds[i])
+				break;
+		}
+	}
+
+	return (i - 4) * step;
+}
+
+static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
+				      enum ieee80211_band band)
+{
+	u16 eeprom;
+	u8 comp_en;
+	u8 comp_type;
+	int comp_value = 0;
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
+
+	/*
+	 * HT40 compensation not required.
+	 */
+	if (eeprom == 0xffff ||
+	    !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+		return 0;
+
+	if (band == IEEE80211_BAND_2GHZ) {
+		comp_en = rt2x00_get_field16(eeprom,
+				 EEPROM_TXPOWER_DELTA_ENABLE_2G);
+		if (comp_en) {
+			comp_type = rt2x00_get_field16(eeprom,
+					   EEPROM_TXPOWER_DELTA_TYPE_2G);
+			comp_value = rt2x00_get_field16(eeprom,
+					    EEPROM_TXPOWER_DELTA_VALUE_2G);
+			if (!comp_type)
+				comp_value = -comp_value;
+		}
+	} else {
+		comp_en = rt2x00_get_field16(eeprom,
+				 EEPROM_TXPOWER_DELTA_ENABLE_5G);
+		if (comp_en) {
+			comp_type = rt2x00_get_field16(eeprom,
+					   EEPROM_TXPOWER_DELTA_TYPE_5G);
+			comp_value = rt2x00_get_field16(eeprom,
+					    EEPROM_TXPOWER_DELTA_VALUE_5G);
+			if (!comp_type)
+				comp_value = -comp_value;
+		}
+	}
+
+	return comp_value;
+}
+
+static int rt2800_get_txpower_reg_delta(struct rt2x00_dev *rt2x00dev,
+					int power_level, int max_power)
+{
+	int delta;
+
+	if (rt2x00_has_cap_power_limit(rt2x00dev))
+		return 0;
+
+	/*
+	 * XXX: We don't know the maximum transmit power of our hardware since
+	 * the EEPROM doesn't expose it. We only know that we are calibrated
+	 * to 100% tx power.
+	 *
+	 * Hence, we assume the regulatory limit that cfg80211 calulated for
+	 * the current channel is our maximum and if we are requested to lower
+	 * the value we just reduce our tx power accordingly.
+	 */
+	delta = power_level - max_power;
+	return min(delta, 0);
+}
+
+static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
+				   enum ieee80211_band band, int power_level,
+				   u8 txpower, int delta)
+{
+	u16 eeprom;
+	u8 criterion;
+	u8 eirp_txpower;
+	u8 eirp_txpower_criterion;
+	u8 reg_limit;
+
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		return min_t(u8, txpower, 0xc);
+
+	if (rt2x00_has_cap_power_limit(rt2x00dev)) {
+		/*
+		 * Check if eirp txpower exceed txpower_limit.
+		 * We use OFDM 6M as criterion and its eirp txpower
+		 * is stored at EEPROM_EIRP_MAX_TX_POWER.
+		 * .11b data rate need add additional 4dbm
+		 * when calculating eirp txpower.
+		 */
+		rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+					      1, &eeprom);
+		criterion = rt2x00_get_field16(eeprom,
+					       EEPROM_TXPOWER_BYRATE_RATE0);
+
+		rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER,
+				   &eeprom);
+
+		if (band == IEEE80211_BAND_2GHZ)
+			eirp_txpower_criterion = rt2x00_get_field16(eeprom,
+						 EEPROM_EIRP_MAX_TX_POWER_2GHZ);
+		else
+			eirp_txpower_criterion = rt2x00_get_field16(eeprom,
+						 EEPROM_EIRP_MAX_TX_POWER_5GHZ);
+
+		eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
+			       (is_rate_b ? 4 : 0) + delta;
+
+		reg_limit = (eirp_txpower > power_level) ?
+					(eirp_txpower - power_level) : 0;
+	} else
+		reg_limit = 0;
+
+	txpower = max(0, txpower + delta - reg_limit);
+	return min_t(u8, txpower, 0xc);
+}
+
+
+enum {
+	TX_PWR_CFG_0_IDX,
+	TX_PWR_CFG_1_IDX,
+	TX_PWR_CFG_2_IDX,
+	TX_PWR_CFG_3_IDX,
+	TX_PWR_CFG_4_IDX,
+	TX_PWR_CFG_5_IDX,
+	TX_PWR_CFG_6_IDX,
+	TX_PWR_CFG_7_IDX,
+	TX_PWR_CFG_8_IDX,
+	TX_PWR_CFG_9_IDX,
+	TX_PWR_CFG_0_EXT_IDX,
+	TX_PWR_CFG_1_EXT_IDX,
+	TX_PWR_CFG_2_EXT_IDX,
+	TX_PWR_CFG_3_EXT_IDX,
+	TX_PWR_CFG_4_EXT_IDX,
+	TX_PWR_CFG_IDX_COUNT,
+};
+
+static void rt2800_config_txpower_rt3593(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_channel *chan,
+					 int power_level)
+{
+	u8 txpower;
+	u16 eeprom;
+	u32 regs[TX_PWR_CFG_IDX_COUNT];
+	unsigned int offset;
+	enum ieee80211_band band = chan->band;
+	int delta;
+	int i;
+
+	memset(regs, '\0', sizeof(regs));
+
+	/* TODO: adapt TX power reduction from the rt28xx code */
+
+	/* calculate temperature compensation delta */
+	delta = rt2800_get_gain_calibration_delta(rt2x00dev);
+
+	if (band == IEEE80211_BAND_5GHZ)
+		offset = 16;
+	else
+		offset = 0;
+
+	if (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+		offset += 8;
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset, &eeprom);
+
+	/* CCK 1MBS,2MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_CCK1_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_CCK1_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+			   TX_PWR_CFG_0_EXT_CCK1_CH2, txpower);
+
+	/* CCK 5.5MBS,11MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 1, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_CCK5_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_CCK5_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+			   TX_PWR_CFG_0_EXT_CCK5_CH2, txpower);
+
+	/* OFDM 6MBS,9MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_OFDM6_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_OFDM6_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+			   TX_PWR_CFG_0_EXT_OFDM6_CH2, txpower);
+
+	/* OFDM 12MBS,18MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_OFDM12_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_IDX],
+			   TX_PWR_CFG_0_OFDM12_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_0_EXT_IDX],
+			   TX_PWR_CFG_0_EXT_OFDM12_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 1, &eeprom);
+
+	/* OFDM 24MBS,36MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_OFDM24_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_OFDM24_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+			   TX_PWR_CFG_1_EXT_OFDM24_CH2, txpower);
+
+	/* OFDM 48MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_OFDM48_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_OFDM48_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+			   TX_PWR_CFG_1_EXT_OFDM48_CH2, txpower);
+
+	/* OFDM 54MBS */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_OFDM54_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_OFDM54_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_OFDM54_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 2, &eeprom);
+
+	/* MCS 0,1 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_MCS0_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_MCS0_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+			   TX_PWR_CFG_1_EXT_MCS0_CH2, txpower);
+
+	/* MCS 2,3 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_MCS2_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_IDX],
+			   TX_PWR_CFG_1_MCS2_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_1_EXT_IDX],
+			   TX_PWR_CFG_1_EXT_MCS2_CH2, txpower);
+
+	/* MCS 4,5 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS4_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS4_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+			   TX_PWR_CFG_2_EXT_MCS4_CH2, txpower);
+
+	/* MCS 6 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS6_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS6_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+			   TX_PWR_CFG_2_EXT_MCS6_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 3, &eeprom);
+
+	/* MCS 7 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_MCS7_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_MCS7_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_7_IDX],
+			   TX_PWR_CFG_7_MCS7_CH2, txpower);
+
+	/* MCS 8,9 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS8_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS8_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+			   TX_PWR_CFG_2_EXT_MCS8_CH2, txpower);
+
+	/* MCS 10,11 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS10_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_IDX],
+			   TX_PWR_CFG_2_MCS10_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_2_EXT_IDX],
+			   TX_PWR_CFG_2_EXT_MCS10_CH2, txpower);
+
+	/* MCS 12,13 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_MCS12_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_MCS12_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+			   TX_PWR_CFG_3_EXT_MCS12_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 4, &eeprom);
+
+	/* MCS 14 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_MCS14_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_MCS14_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+			   TX_PWR_CFG_3_EXT_MCS14_CH2, txpower);
+
+	/* MCS 15 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS15_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS15_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS15_CH2, txpower);
+
+	/* MCS 16,17 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS16_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS16_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS16_CH2, txpower);
+
+	/* MCS 18,19 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS18_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS18_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_5_IDX],
+			   TX_PWR_CFG_5_MCS18_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 5, &eeprom);
+
+	/* MCS 20,21 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS20_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS20_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS20_CH2, txpower);
+
+	/* MCS 22 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS22_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS22_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_6_IDX],
+			   TX_PWR_CFG_6_MCS22_CH2, txpower);
+
+	/* MCS 23 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS23_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS23_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_8_IDX],
+			   TX_PWR_CFG_8_MCS23_CH2, txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 6, &eeprom);
+
+	/* STBC, MCS 0,1 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_STBC0_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_STBC0_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+			   TX_PWR_CFG_3_EXT_STBC0_CH2, txpower);
+
+	/* STBC, MCS 2,3 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE1);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_STBC2_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_IDX],
+			   TX_PWR_CFG_3_STBC2_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_3_EXT_IDX],
+			   TX_PWR_CFG_3_EXT_STBC2_CH2, txpower);
+
+	/* STBC, MCS 4,5 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE2);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE0,
+			   txpower);
+
+	/* STBC, MCS 6 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE3);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE2, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_IDX], TX_PWR_CFG_RATE3, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_4_EXT_IDX], TX_PWR_CFG_RATE2,
+			   txpower);
+
+	/* read the next four txpower values */
+	rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+				      offset + 7, &eeprom);
+
+	/* STBC, MCS 7 */
+	txpower = rt2x00_get_field16(eeprom, EEPROM_TXPOWER_BYRATE_RATE0);
+	txpower = rt2800_compensate_txpower(rt2x00dev, 0, band, power_level,
+					    txpower, delta);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+			   TX_PWR_CFG_9_STBC7_CH0, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+			   TX_PWR_CFG_9_STBC7_CH1, txpower);
+	rt2x00_set_field32(&regs[TX_PWR_CFG_9_IDX],
+			   TX_PWR_CFG_9_STBC7_CH2, txpower);
+
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, regs[TX_PWR_CFG_0_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, regs[TX_PWR_CFG_1_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, regs[TX_PWR_CFG_2_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, regs[TX_PWR_CFG_3_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, regs[TX_PWR_CFG_4_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_5, regs[TX_PWR_CFG_5_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_6, regs[TX_PWR_CFG_6_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_7, regs[TX_PWR_CFG_7_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_8, regs[TX_PWR_CFG_8_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_9, regs[TX_PWR_CFG_9_IDX]);
+
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_0_EXT,
+			      regs[TX_PWR_CFG_0_EXT_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_1_EXT,
+			      regs[TX_PWR_CFG_1_EXT_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_2_EXT,
+			      regs[TX_PWR_CFG_2_EXT_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_3_EXT,
+			      regs[TX_PWR_CFG_3_EXT_IDX]);
+	rt2800_register_write(rt2x00dev, TX_PWR_CFG_4_EXT,
+			      regs[TX_PWR_CFG_4_EXT_IDX]);
+
+	for (i = 0; i < TX_PWR_CFG_IDX_COUNT; i++)
+		rt2x00_dbg(rt2x00dev,
+			   "band:%cGHz, BW:%c0MHz, TX_PWR_CFG_%d%s = %08lx\n",
+			   (band == IEEE80211_BAND_5GHZ) ? '5' : '2',
+			   (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) ?
+								'4' : '2',
+			   (i > TX_PWR_CFG_9_IDX) ?
+					(i - TX_PWR_CFG_9_IDX - 1) : i,
+			   (i > TX_PWR_CFG_9_IDX) ? "_EXT" : "",
+			   (unsigned long) regs[i]);
+}
+
+/*
+ * We configure transmit power using MAC TX_PWR_CFG_{0,...,N} registers and
+ * BBP R1 register. TX_PWR_CFG_X allow to configure per rate TX power values,
+ * 4 bits for each rate (tune from 0 to 15 dBm). BBP_R1 controls transmit power
+ * for all rates, but allow to set only 4 discrete values: -12, -6, 0 and 6 dBm.
+ * Reference per rate transmit power values are located in the EEPROM at
+ * EEPROM_TXPOWER_BYRATE offset. We adjust them and BBP R1 settings according to
+ * current conditions (i.e. band, bandwidth, temperature, user settings).
+ */
+static void rt2800_config_txpower_rt28xx(struct rt2x00_dev *rt2x00dev,
+					 struct ieee80211_channel *chan,
+					 int power_level)
+{
+	u8 txpower, r1;
+	u16 eeprom;
+	u32 reg, offset;
+	int i, is_rate_b, delta, power_ctrl;
+	enum ieee80211_band band = chan->band;
+
+	/*
+	 * Calculate HT40 compensation. For 40MHz we need to add or subtract
+	 * value read from EEPROM (different for 2GHz and for 5GHz).
+	 */
+	delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
+
+	/*
+	 * Calculate temperature compensation. Depends on measurement of current
+	 * TSSI (Transmitter Signal Strength Indication) we know TX power (due
+	 * to temperature or maybe other factors) is smaller or bigger than
+	 * expected. We adjust it, based on TSSI reference and boundaries values
+	 * provided in EEPROM.
+	 */
+	switch (rt2x00dev->chip.rt) {
+	case RT2860:
+	case RT2872:
+	case RT2883:
+	case RT3070:
+	case RT3071:
+	case RT3090:
+	case RT3572:
+		delta += rt2800_get_gain_calibration_delta(rt2x00dev);
+		break;
+	default:
+		/* TODO: temperature compensation code for other chips. */
+		break;
+	}
+
+	/*
+	 * Decrease power according to user settings, on devices with unknown
+	 * maximum tx power. For other devices we take user power_level into
+	 * consideration on rt2800_compensate_txpower().
+	 */
+	delta += rt2800_get_txpower_reg_delta(rt2x00dev, power_level,
+					      chan->max_power);
+
+	/*
+	 * BBP_R1 controls TX power for all rates, it allow to set the following
+	 * gains -12, -6, 0, +6 dBm by setting values 2, 1, 0, 3 respectively.
+	 *
+	 * TODO: we do not use +6 dBm option to do not increase power beyond
+	 * regulatory limit, however this could be utilized for devices with
+	 * CAPABILITY_POWER_LIMIT.
+	 */
+	if (delta <= -12) {
+		power_ctrl = 2;
+		delta += 12;
+	} else if (delta <= -6) {
+		power_ctrl = 1;
+		delta += 6;
+	} else {
+		power_ctrl = 0;
+	}
+	rt2800_bbp_read(rt2x00dev, 1, &r1);
+	rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, power_ctrl);
+	rt2800_bbp_write(rt2x00dev, 1, r1);
+
+	offset = TX_PWR_CFG_0;
+
+	for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
+		/* just to be safe */
+		if (offset > TX_PWR_CFG_4)
+			break;
+
+		rt2800_register_read(rt2x00dev, offset, &reg);
+
+		/* read the next four txpower values */
+		rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+					      i, &eeprom);
+
+		is_rate_b = i ? 0 : 1;
+		/*
+		 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
+		 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE0);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
+		 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE1);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
+		 * TX_PWR_CFG_2: MCS6,  TX_PWR_CFG_3: MCS14,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE2);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
+		 * TX_PWR_CFG_2: MCS7,  TX_PWR_CFG_3: MCS15,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE3);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
+
+		/* read the next four txpower values */
+		rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_TXPOWER_BYRATE,
+					      i + 1, &eeprom);
+
+		is_rate_b = 0;
+		/*
+		 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
+		 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE0);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
+		 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE1);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
+		 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE2);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
+
+		/*
+		 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
+		 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
+		 * TX_PWR_CFG_4: unknown
+		 */
+		txpower = rt2x00_get_field16(eeprom,
+					     EEPROM_TXPOWER_BYRATE_RATE3);
+		txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
+					     power_level, txpower, delta);
+		rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
+
+		rt2800_register_write(rt2x00dev, offset, reg);
+
+		/* next TX_PWR_CFG register */
+		offset += 4;
+	}
+}
+
+static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
+				  struct ieee80211_channel *chan,
+				  int power_level)
+{
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		rt2800_config_txpower_rt3593(rt2x00dev, chan, power_level);
+	else
+		rt2800_config_txpower_rt28xx(rt2x00dev, chan, power_level);
+}
+
+void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_config_txpower(rt2x00dev, rt2x00dev->hw->conf.chandef.chan,
+			      rt2x00dev->tx_power);
+}
+EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
+
+void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev)
+{
+	u32	tx_pin;
+	u8	rfcsr;
+
+	/*
+	 * A voltage-controlled oscillator(VCO) is an electronic oscillator
+	 * designed to be controlled in oscillation frequency by a voltage
+	 * input. Maybe the temperature will affect the frequency of
+	 * oscillation to be shifted. The VCO calibration will be called
+	 * periodically to adjust the frequency to be precision.
+	*/
+
+	rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
+	tx_pin &= TX_PIN_CFG_PA_PE_DISABLE;
+	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+	switch (rt2x00dev->chip.rf) {
+	case RF2020:
+	case RF3020:
+	case RF3021:
+	case RF3022:
+	case RF3320:
+	case RF3052:
+		rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
+		rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
+		break;
+	case RF3053:
+	case RF3070:
+	case RF3290:
+	case RF5360:
+	case RF5362:
+	case RF5370:
+	case RF5372:
+	case RF5390:
+	case RF5392:
+		rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR3_VCOCAL_EN, 1);
+		rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
+		break;
+	default:
+		return;
+	}
+
+	mdelay(1);
+
+	rt2800_register_read(rt2x00dev, TX_PIN_CFG, &tx_pin);
+	if (rt2x00dev->rf_channel <= 14) {
+		switch (rt2x00dev->default_ant.tx_chain_num) {
+		case 3:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G2_EN, 1);
+			/* fall through */
+		case 2:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
+			/* fall through */
+		case 1:
+		default:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
+			break;
+		}
+	} else {
+		switch (rt2x00dev->default_ant.tx_chain_num) {
+		case 3:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A2_EN, 1);
+			/* fall through */
+		case 2:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
+			/* fall through */
+		case 1:
+		default:
+			rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, 1);
+			break;
+		}
+	}
+	rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
+
+}
+EXPORT_SYMBOL_GPL(rt2800_vco_calibration);
+
+static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+				      struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
+}
+
+static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
+
+		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
+				   libconf->conf->listen_interval - 1);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
+		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
+
+		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+	} else {
+		rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
+		rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
+		rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
+
+		rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+	}
+}
+
+void rt2800_config(struct rt2x00_dev *rt2x00dev,
+		   struct rt2x00lib_conf *libconf,
+		   const unsigned int flags)
+{
+	/* Always recalculate LNA gain before changing configuration */
+	rt2800_config_lna_gain(rt2x00dev, libconf);
+
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
+		rt2800_config_channel(rt2x00dev, libconf->conf,
+				      &libconf->rf, &libconf->channel);
+		rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
+				      libconf->conf->power_level);
+	}
+	if (flags & IEEE80211_CONF_CHANGE_POWER)
+		rt2800_config_txpower(rt2x00dev, libconf->conf->chandef.chan,
+				      libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt2800_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt2800_config_ps(rt2x00dev, libconf);
+}
+EXPORT_SYMBOL_GPL(rt2800_config);
+
+/*
+ * Link tuning
+ */
+void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
+{
+	u32 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
+}
+EXPORT_SYMBOL_GPL(rt2800_link_stats);
+
+static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
+{
+	u8 vgc;
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
+		if (rt2x00_rt(rt2x00dev, RT3070) ||
+		    rt2x00_rt(rt2x00dev, RT3071) ||
+		    rt2x00_rt(rt2x00dev, RT3090) ||
+		    rt2x00_rt(rt2x00dev, RT3290) ||
+		    rt2x00_rt(rt2x00dev, RT3390) ||
+		    rt2x00_rt(rt2x00dev, RT3572) ||
+		    rt2x00_rt(rt2x00dev, RT3593) ||
+		    rt2x00_rt(rt2x00dev, RT5390) ||
+		    rt2x00_rt(rt2x00dev, RT5392) ||
+		    rt2x00_rt(rt2x00dev, RT5592))
+			vgc = 0x1c + (2 * rt2x00dev->lna_gain);
+		else
+			vgc = 0x2e + rt2x00dev->lna_gain;
+	} else { /* 5GHZ band */
+		if (rt2x00_rt(rt2x00dev, RT3593))
+			vgc = 0x20 + (rt2x00dev->lna_gain * 5) / 3;
+		else if (rt2x00_rt(rt2x00dev, RT5592))
+			vgc = 0x24 + (2 * rt2x00dev->lna_gain);
+		else {
+			if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
+				vgc = 0x32 + (rt2x00dev->lna_gain * 5) / 3;
+			else
+				vgc = 0x3a + (rt2x00dev->lna_gain * 5) / 3;
+		}
+	}
+
+	return vgc;
+}
+
+static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
+				  struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level != vgc_level) {
+		if (rt2x00_rt(rt2x00dev, RT3572) ||
+		    rt2x00_rt(rt2x00dev, RT3593)) {
+			rt2800_bbp_write_with_rx_chain(rt2x00dev, 66,
+						       vgc_level);
+		} else if (rt2x00_rt(rt2x00dev, RT5592)) {
+			rt2800_bbp_write(rt2x00dev, 83, qual->rssi > -65 ? 0x4a : 0x7a);
+			rt2800_bbp_write_with_rx_chain(rt2x00dev, 66, vgc_level);
+		} else {
+			rt2800_bbp_write(rt2x00dev, 66, vgc_level);
+		}
+
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
+{
+	rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
+}
+EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
+
+void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
+		       const u32 count)
+{
+	u8 vgc;
+
+	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
+		return;
+
+	/* When RSSI is better than a certain threshold, increase VGC
+	 * with a chip specific value in order to improve the balance
+	 * between sensibility and noise isolation.
+	 */
+
+	vgc = rt2800_get_default_vgc(rt2x00dev);
+
+	switch (rt2x00dev->chip.rt) {
+	case RT3572:
+	case RT3593:
+		if (qual->rssi > -65) {
+			if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)
+				vgc += 0x20;
+			else
+				vgc += 0x10;
+		}
+		break;
+
+	case RT5592:
+		if (qual->rssi > -65)
+			vgc += 0x20;
+		break;
+
+	default:
+		if (qual->rssi > -80)
+			vgc += 0x10;
+		break;
+	}
+
+	rt2800_set_vgc(rt2x00dev, qual, vgc);
+}
+EXPORT_SYMBOL_GPL(rt2800_link_tuner);
+
+/*
+ * Initialization functions.
+ */
+static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 eeprom;
+	unsigned int i;
+	int ret;
+
+	rt2800_disable_wpdma(rt2x00dev);
+
+	ret = rt2800_drv_init_registers(rt2x00dev);
+	if (ret)
+		return ret;
+
+	rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
+	rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
+
+	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
+	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+	rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
+
+	rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
+	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
+	rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
+	rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
+
+	if (rt2x00_rt(rt2x00dev, RT3290)) {
+		rt2800_register_read(rt2x00dev, WLAN_FUN_CTRL, &reg);
+		if (rt2x00_get_field32(reg, WLAN_EN) == 1) {
+			rt2x00_set_field32(&reg, PCIE_APP0_CLK_REQ, 1);
+			rt2800_register_write(rt2x00dev, WLAN_FUN_CTRL, reg);
+		}
+
+		rt2800_register_read(rt2x00dev, CMB_CTRL, &reg);
+		if (!(rt2x00_get_field32(reg, LDO0_EN) == 1)) {
+			rt2x00_set_field32(&reg, LDO0_EN, 1);
+			rt2x00_set_field32(&reg, LDO_BGSEL, 3);
+			rt2800_register_write(rt2x00dev, CMB_CTRL, reg);
+		}
+
+		rt2800_register_read(rt2x00dev, OSC_CTRL, &reg);
+		rt2x00_set_field32(&reg, OSC_ROSC_EN, 1);
+		rt2x00_set_field32(&reg, OSC_CAL_REQ, 1);
+		rt2x00_set_field32(&reg, OSC_REF_CYCLE, 0x27);
+		rt2800_register_write(rt2x00dev, OSC_CTRL, reg);
+
+		rt2800_register_read(rt2x00dev, COEX_CFG0, &reg);
+		rt2x00_set_field32(&reg, COEX_CFG_ANT, 0x5e);
+		rt2800_register_write(rt2x00dev, COEX_CFG0, reg);
+
+		rt2800_register_read(rt2x00dev, COEX_CFG2, &reg);
+		rt2x00_set_field32(&reg, BT_COEX_CFG1, 0x00);
+		rt2x00_set_field32(&reg, BT_COEX_CFG0, 0x17);
+		rt2x00_set_field32(&reg, WL_COEX_CFG1, 0x93);
+		rt2x00_set_field32(&reg, WL_COEX_CFG0, 0x7f);
+		rt2800_register_write(rt2x00dev, COEX_CFG2, reg);
+
+		rt2800_register_read(rt2x00dev, PLL_CTRL, &reg);
+		rt2x00_set_field32(&reg, PLL_CONTROL, 1);
+		rt2800_register_write(rt2x00dev, PLL_CTRL, reg);
+	}
+
+	if (rt2x00_rt(rt2x00dev, RT3071) ||
+	    rt2x00_rt(rt2x00dev, RT3090) ||
+	    rt2x00_rt(rt2x00dev, RT3290) ||
+	    rt2x00_rt(rt2x00dev, RT3390)) {
+
+		if (rt2x00_rt(rt2x00dev, RT3290))
+			rt2800_register_write(rt2x00dev, TX_SW_CFG0,
+					      0x00000404);
+		else
+			rt2800_register_write(rt2x00dev, TX_SW_CFG0,
+					      0x00000400);
+
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
+		    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
+					   &eeprom);
+			if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
+				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+						      0x0000002c);
+			else
+				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+						      0x0000000f);
+		} else {
+			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+		}
+	} else if (rt2x00_rt(rt2x00dev, RT3070)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+
+		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
+			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
+		} else {
+			rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+			rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+		}
+	} else if (rt2800_is_305x_soc(rt2x00dev)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
+	} else if (rt2x00_rt(rt2x00dev, RT3352)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+	} else if (rt2x00_rt(rt2x00dev, RT3572)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+	} else if (rt2x00_rt(rt2x00dev, RT3593)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000402);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
+		if (rt2x00_rt_rev_lt(rt2x00dev, RT3593, REV_RT3593E)) {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
+					   &eeprom);
+			if (rt2x00_get_field16(eeprom,
+					       EEPROM_NIC_CONF1_DAC_TEST))
+				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+						      0x0000001f);
+			else
+				rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+						      0x0000000f);
+		} else {
+			rt2800_register_write(rt2x00dev, TX_SW_CFG2,
+					      0x00000000);
+		}
+	} else if (rt2x00_rt(rt2x00dev, RT5390) ||
+		   rt2x00_rt(rt2x00dev, RT5392) ||
+		   rt2x00_rt(rt2x00dev, RT5592)) {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
+	} else {
+		rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
+		rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
+	}
+
+	rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
+	rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
+	rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
+	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
+	rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
+	rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
+	rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
+	    rt2x00_rt(rt2x00dev, RT2883) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
+		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
+	else
+		rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
+	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
+	rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
+	rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, LED_CFG, &reg);
+	rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
+	rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
+	rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
+	rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
+	rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
+	rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
+	rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
+	rt2800_register_write(rt2x00dev, LED_CFG, reg);
+
+	rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
+
+	rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
+	rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
+	rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
+	rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
+	rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
+	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
+	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
+	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
+	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
+	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
+	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+
+	if (rt2x00_is_usb(rt2x00dev)) {
+		rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
+
+		rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
+		rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
+		rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+	}
+
+	/*
+	 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
+	 * although it is reserved.
+	 */
+	rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
+	rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
+	rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
+
+	reg = rt2x00_rt(rt2x00dev, RT5592) ? 0x00000082 : 0x00000002;
+	rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, reg);
+
+	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
+	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
+			   IEEE80211_MAX_RTS_THRESHOLD);
+	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
+	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
+
+	rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
+
+	/*
+	 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
+	 * time should be set to 16. However, the original Ralink driver uses
+	 * 16 for both and indeed using a value of 10 for CCK SIFS results in
+	 * connection problems with 11g + CTS protection. Hence, use the same
+	 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
+	 */
+	rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
+	rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
+	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
+	rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
+	rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
+	rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
+	rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
+
+	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
+
+	/*
+	 * ASIC will keep garbage value after boot, clear encryption keys.
+	 */
+	for (i = 0; i < 4; i++)
+		rt2800_register_write(rt2x00dev,
+					 SHARED_KEY_MODE_ENTRY(i), 0);
+
+	for (i = 0; i < 256; i++) {
+		rt2800_config_wcid(rt2x00dev, NULL, i);
+		rt2800_delete_wcid_attr(rt2x00dev, i);
+		rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
+	}
+
+	/*
+	 * Clear all beacons
+	 */
+	for (i = 0; i < 8; i++)
+		rt2800_clear_beacon_register(rt2x00dev, i);
+
+	if (rt2x00_is_usb(rt2x00dev)) {
+		rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
+		rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
+		rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
+	} else if (rt2x00_is_pcie(rt2x00dev)) {
+		rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
+		rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
+		rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
+	}
+
+	rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
+	rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
+	rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
+
+	rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
+	rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
+	rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
+
+	rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
+	rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
+
+	rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
+	rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
+	rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
+
+	/*
+	 * Do not force the BA window size, we use the TXWI to set it
+	 */
+	rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
+	rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
+	rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
+	rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
+
+	/*
+	 * We must clear the error counters.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
+	rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
+	rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
+	rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
+	rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
+	rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
+
+	/*
+	 * Setup leadtime for pre tbtt interrupt to 6ms
+	 */
+	rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
+	rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
+	rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
+
+	/*
+	 * Set up channel statistics timer
+	 */
+	rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
+	rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
+	rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
+	rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
+	rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
+	rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
+	rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
+
+	return 0;
+}
+
+static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u32 reg;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
+		if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
+			return 0;
+
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP/RF register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	/*
+	 * BBP was enabled after firmware was loaded,
+	 * but we need to reactivate it now.
+	 */
+	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+	msleep(1);
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2800_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static void rt2800_bbp4_mac_if_ctrl(struct rt2x00_dev *rt2x00dev)
+{
+	u8 value;
+
+	rt2800_bbp_read(rt2x00dev, 4, &value);
+	rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
+	rt2800_bbp_write(rt2x00dev, 4, value);
+}
+
+static void rt2800_init_freq_calibration(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 142, 1);
+	rt2800_bbp_write(rt2x00dev, 143, 57);
+}
+
+static void rt2800_init_bbp_5592_glrt(struct rt2x00_dev *rt2x00dev)
+{
+	const u8 glrt_table[] = {
+		0xE0, 0x1F, 0X38, 0x32, 0x08, 0x28, 0x19, 0x0A, 0xFF, 0x00, /* 128 ~ 137 */
+		0x16, 0x10, 0x10, 0x0B, 0x36, 0x2C, 0x26, 0x24, 0x42, 0x36, /* 138 ~ 147 */
+		0x30, 0x2D, 0x4C, 0x46, 0x3D, 0x40, 0x3E, 0x42, 0x3D, 0x40, /* 148 ~ 157 */
+		0X3C, 0x34, 0x2C, 0x2F, 0x3C, 0x35, 0x2E, 0x2A, 0x49, 0x41, /* 158 ~ 167 */
+		0x36, 0x31, 0x30, 0x30, 0x0E, 0x0D, 0x28, 0x21, 0x1C, 0x16, /* 168 ~ 177 */
+		0x50, 0x4A, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00, /* 178 ~ 187 */
+		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 188 ~ 197 */
+		0x00, 0x00, 0x7D, 0x14, 0x32, 0x2C, 0x36, 0x4C, 0x43, 0x2C, /* 198 ~ 207 */
+		0x2E, 0x36, 0x30, 0x6E,					    /* 208 ~ 211 */
+	};
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(glrt_table); i++) {
+		rt2800_bbp_write(rt2x00dev, 195, 128 + i);
+		rt2800_bbp_write(rt2x00dev, 196, glrt_table[i]);
+	}
+};
+
+static void rt2800_init_bbp_early(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 65, 0x2C);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+	rt2800_bbp_write(rt2x00dev, 68, 0x0B);
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+	rt2800_bbp_write(rt2x00dev, 73, 0x10);
+	rt2800_bbp_write(rt2x00dev, 81, 0x37);
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+	rt2800_bbp_write(rt2x00dev, 83, 0x6A);
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+	rt2800_bbp_write(rt2x00dev, 103, 0x00);
+	rt2800_bbp_write(rt2x00dev, 105, 0x05);
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_disable_unused_dac_adc(struct rt2x00_dev *rt2x00dev)
+{
+	u16 eeprom;
+	u8 value;
+
+	rt2800_bbp_read(rt2x00dev, 138, &value);
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+		value |= 0x20;
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+		value &= ~0x02;
+	rt2800_bbp_write(rt2x00dev, 138, value);
+}
+
+static void rt2800_init_bbp_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 78, 0x0e);
+	rt2800_bbp_write(rt2x00dev, 80, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x01);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_init_bbp_28xx(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
+		rt2800_bbp_write(rt2x00dev, 69, 0x16);
+		rt2800_bbp_write(rt2x00dev, 73, 0x12);
+	} else {
+		rt2800_bbp_write(rt2x00dev, 69, 0x12);
+		rt2800_bbp_write(rt2x00dev, 73, 0x10);
+	}
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 81, 0x37);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
+		rt2800_bbp_write(rt2x00dev, 84, 0x19);
+	else
+		rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+}
+
+static void rt2800_init_bbp_30xx(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 79, 0x13);
+	rt2800_bbp_write(rt2x00dev, 80, 0x05);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
+	    rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
+	    rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E))
+		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+	else
+		rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+	if (rt2x00_rt(rt2x00dev, RT3071) ||
+	    rt2x00_rt(rt2x00dev, RT3090))
+		rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3290(struct rt2x00_dev *rt2x00dev)
+{
+	u8 value;
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x13);
+	rt2800_bbp_write(rt2x00dev, 75, 0x46);
+	rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+	rt2800_bbp_write(rt2x00dev, 77, 0x58);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 74, 0x0b);
+	rt2800_bbp_write(rt2x00dev, 79, 0x18);
+	rt2800_bbp_write(rt2x00dev, 80, 0x09);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x7a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x9a);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+	rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x1c);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x03);
+
+	rt2800_bbp_write(rt2x00dev, 128, 0x12);
+
+	rt2800_bbp_write(rt2x00dev, 67, 0x24);
+	rt2800_bbp_write(rt2x00dev, 143, 0x04);
+	rt2800_bbp_write(rt2x00dev, 142, 0x99);
+	rt2800_bbp_write(rt2x00dev, 150, 0x30);
+	rt2800_bbp_write(rt2x00dev, 151, 0x2e);
+	rt2800_bbp_write(rt2x00dev, 152, 0x20);
+	rt2800_bbp_write(rt2x00dev, 153, 0x34);
+	rt2800_bbp_write(rt2x00dev, 154, 0x40);
+	rt2800_bbp_write(rt2x00dev, 155, 0x3b);
+	rt2800_bbp_write(rt2x00dev, 253, 0x04);
+
+	rt2800_bbp_read(rt2x00dev, 47, &value);
+	rt2x00_set_field8(&value, BBP47_TSSI_ADC6, 1);
+	rt2800_bbp_write(rt2x00dev, 47, value);
+
+	/* Use 5-bit ADC for Acquisition and 8-bit ADC for data */
+	rt2800_bbp_read(rt2x00dev, 3, &value);
+	rt2x00_set_field8(&value, BBP3_ADC_MODE_SWITCH, 1);
+	rt2x00_set_field8(&value, BBP3_ADC_INIT_MODE, 1);
+	rt2800_bbp_write(rt2x00dev, 3, value);
+}
+
+static void rt2800_init_bbp_3352(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 3, 0x00);
+	rt2800_bbp_write(rt2x00dev, 4, 0x50);
+
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 47, 0x48);
+
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x13);
+	rt2800_bbp_write(rt2x00dev, 75, 0x46);
+	rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+	rt2800_bbp_write(rt2x00dev, 77, 0x59);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 78, 0x0e);
+	rt2800_bbp_write(rt2x00dev, 80, 0x08);
+	rt2800_bbp_write(rt2x00dev, 81, 0x37);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 88, 0x90);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+	rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x34);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x05);
+
+	rt2800_bbp_write(rt2x00dev, 120, 0x50);
+
+	rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+
+	rt2800_bbp_write(rt2x00dev, 163, 0xbd);
+	/* Set ITxBF timeout to 0x9c40=1000msec */
+	rt2800_bbp_write(rt2x00dev, 179, 0x02);
+	rt2800_bbp_write(rt2x00dev, 180, 0x00);
+	rt2800_bbp_write(rt2x00dev, 182, 0x40);
+	rt2800_bbp_write(rt2x00dev, 180, 0x01);
+	rt2800_bbp_write(rt2x00dev, 182, 0x9c);
+	rt2800_bbp_write(rt2x00dev, 179, 0x00);
+	/* Reprogram the inband interface to put right values in RXWI */
+	rt2800_bbp_write(rt2x00dev, 142, 0x04);
+	rt2800_bbp_write(rt2x00dev, 143, 0x3b);
+	rt2800_bbp_write(rt2x00dev, 142, 0x06);
+	rt2800_bbp_write(rt2x00dev, 143, 0xa0);
+	rt2800_bbp_write(rt2x00dev, 142, 0x07);
+	rt2800_bbp_write(rt2x00dev, 143, 0xa1);
+	rt2800_bbp_write(rt2x00dev, 142, 0x08);
+	rt2800_bbp_write(rt2x00dev, 143, 0xa2);
+
+	rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+}
+
+static void rt2800_init_bbp_3390(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 79, 0x13);
+	rt2800_bbp_write(rt2x00dev, 80, 0x05);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E))
+		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+	else
+		rt2800_bbp_write(rt2x00dev, 103, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+	rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3572(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x10);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 79, 0x13);
+	rt2800_bbp_write(rt2x00dev, 80, 0x05);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x6a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x99);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x00);
+
+	rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x05);
+
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+
+	rt2800_disable_unused_dac_adc(rt2x00dev);
+}
+
+static void rt2800_init_bbp_3593(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_init_bbp_early(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 79, 0x13);
+	rt2800_bbp_write(rt2x00dev, 80, 0x05);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+	rt2800_bbp_write(rt2x00dev, 137, 0x0f);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x19);
+
+	/* Enable DC filter */
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT3593, REV_RT3593E))
+		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+}
+
+static void rt2800_init_bbp_53xx(struct rt2x00_dev *rt2x00dev)
+{
+	int ant, div_mode;
+	u16 eeprom;
+	u8 value;
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	rt2800_bbp_write(rt2x00dev, 65, 0x2c);
+	rt2800_bbp_write(rt2x00dev, 66, 0x38);
+
+	rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+	rt2800_bbp_write(rt2x00dev, 69, 0x12);
+	rt2800_bbp_write(rt2x00dev, 73, 0x13);
+	rt2800_bbp_write(rt2x00dev, 75, 0x46);
+	rt2800_bbp_write(rt2x00dev, 76, 0x28);
+
+	rt2800_bbp_write(rt2x00dev, 77, 0x59);
+
+	rt2800_bbp_write(rt2x00dev, 70, 0x0a);
+
+	rt2800_bbp_write(rt2x00dev, 79, 0x13);
+	rt2800_bbp_write(rt2x00dev, 80, 0x05);
+	rt2800_bbp_write(rt2x00dev, 81, 0x33);
+
+	rt2800_bbp_write(rt2x00dev, 82, 0x62);
+
+	rt2800_bbp_write(rt2x00dev, 83, 0x7a);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x9a);
+
+	rt2800_bbp_write(rt2x00dev, 86, 0x38);
+
+	if (rt2x00_rt(rt2x00dev, RT5392))
+		rt2800_bbp_write(rt2x00dev, 88, 0x90);
+
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x02);
+
+	if (rt2x00_rt(rt2x00dev, RT5392)) {
+		rt2800_bbp_write(rt2x00dev, 95, 0x9a);
+		rt2800_bbp_write(rt2x00dev, 98, 0x12);
+	}
+
+	rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_bbp_write(rt2x00dev, 104, 0x92);
+
+	rt2800_bbp_write(rt2x00dev, 105, 0x3c);
+
+	if (rt2x00_rt(rt2x00dev, RT5390))
+		rt2800_bbp_write(rt2x00dev, 106, 0x03);
+	else if (rt2x00_rt(rt2x00dev, RT5392))
+		rt2800_bbp_write(rt2x00dev, 106, 0x12);
+	else
+		WARN_ON(1);
+
+	rt2800_bbp_write(rt2x00dev, 128, 0x12);
+
+	if (rt2x00_rt(rt2x00dev, RT5392)) {
+		rt2800_bbp_write(rt2x00dev, 134, 0xd0);
+		rt2800_bbp_write(rt2x00dev, 135, 0xf6);
+	}
+
+	rt2800_disable_unused_dac_adc(rt2x00dev);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
+	div_mode = rt2x00_get_field16(eeprom,
+				      EEPROM_NIC_CONF1_ANT_DIVERSITY);
+	ant = (div_mode == 3) ? 1 : 0;
+
+	/* check if this is a Bluetooth combo card */
+	if (rt2x00_has_cap_bt_coexist(rt2x00dev)) {
+		u32 reg;
+
+		rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+		rt2x00_set_field32(&reg, GPIO_CTRL_DIR3, 0);
+		rt2x00_set_field32(&reg, GPIO_CTRL_DIR6, 0);
+		rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 0);
+		rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 0);
+		if (ant == 0)
+			rt2x00_set_field32(&reg, GPIO_CTRL_VAL3, 1);
+		else if (ant == 1)
+			rt2x00_set_field32(&reg, GPIO_CTRL_VAL6, 1);
+		rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+	}
+
+	/* This chip has hardware antenna diversity*/
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
+		rt2800_bbp_write(rt2x00dev, 150, 0); /* Disable Antenna Software OFDM */
+		rt2800_bbp_write(rt2x00dev, 151, 0); /* Disable Antenna Software CCK */
+		rt2800_bbp_write(rt2x00dev, 154, 0); /* Clear previously selected antenna */
+	}
+
+	rt2800_bbp_read(rt2x00dev, 152, &value);
+	if (ant == 0)
+		rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
+	else
+		rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
+	rt2800_bbp_write(rt2x00dev, 152, value);
+
+	rt2800_init_freq_calibration(rt2x00dev);
+}
+
+static void rt2800_init_bbp_5592(struct rt2x00_dev *rt2x00dev)
+{
+	int ant, div_mode;
+	u16 eeprom;
+	u8 value;
+
+	rt2800_init_bbp_early(rt2x00dev);
+
+	rt2800_bbp_read(rt2x00dev, 105, &value);
+	rt2x00_set_field8(&value, BBP105_MLD,
+			  rt2x00dev->default_ant.rx_chain_num == 2);
+	rt2800_bbp_write(rt2x00dev, 105, value);
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 20, 0x06);
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+	rt2800_bbp_write(rt2x00dev, 65, 0x2C);
+	rt2800_bbp_write(rt2x00dev, 68, 0xDD);
+	rt2800_bbp_write(rt2x00dev, 69, 0x1A);
+	rt2800_bbp_write(rt2x00dev, 70, 0x05);
+	rt2800_bbp_write(rt2x00dev, 73, 0x13);
+	rt2800_bbp_write(rt2x00dev, 74, 0x0F);
+	rt2800_bbp_write(rt2x00dev, 75, 0x4F);
+	rt2800_bbp_write(rt2x00dev, 76, 0x28);
+	rt2800_bbp_write(rt2x00dev, 77, 0x59);
+	rt2800_bbp_write(rt2x00dev, 84, 0x9A);
+	rt2800_bbp_write(rt2x00dev, 86, 0x38);
+	rt2800_bbp_write(rt2x00dev, 88, 0x90);
+	rt2800_bbp_write(rt2x00dev, 91, 0x04);
+	rt2800_bbp_write(rt2x00dev, 92, 0x02);
+	rt2800_bbp_write(rt2x00dev, 95, 0x9a);
+	rt2800_bbp_write(rt2x00dev, 98, 0x12);
+	rt2800_bbp_write(rt2x00dev, 103, 0xC0);
+	rt2800_bbp_write(rt2x00dev, 104, 0x92);
+	/* FIXME BBP105 owerwrite */
+	rt2800_bbp_write(rt2x00dev, 105, 0x3C);
+	rt2800_bbp_write(rt2x00dev, 106, 0x35);
+	rt2800_bbp_write(rt2x00dev, 128, 0x12);
+	rt2800_bbp_write(rt2x00dev, 134, 0xD0);
+	rt2800_bbp_write(rt2x00dev, 135, 0xF6);
+	rt2800_bbp_write(rt2x00dev, 137, 0x0F);
+
+	/* Initialize GLRT (Generalized Likehood Radio Test) */
+	rt2800_init_bbp_5592_glrt(rt2x00dev);
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
+	div_mode = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_ANT_DIVERSITY);
+	ant = (div_mode == 3) ? 1 : 0;
+	rt2800_bbp_read(rt2x00dev, 152, &value);
+	if (ant == 0) {
+		/* Main antenna */
+		rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
+	} else {
+		/* Auxiliary antenna */
+		rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
+	}
+	rt2800_bbp_write(rt2x00dev, 152, value);
+
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C)) {
+		rt2800_bbp_read(rt2x00dev, 254, &value);
+		rt2x00_set_field8(&value, BBP254_BIT7, 1);
+		rt2800_bbp_write(rt2x00dev, 254, value);
+	}
+
+	rt2800_init_freq_calibration(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 84, 0x19);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
+		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+}
+
+static void rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (rt2800_is_305x_soc(rt2x00dev))
+		rt2800_init_bbp_305x_soc(rt2x00dev);
+
+	switch (rt2x00dev->chip.rt) {
+	case RT2860:
+	case RT2872:
+	case RT2883:
+		rt2800_init_bbp_28xx(rt2x00dev);
+		break;
+	case RT3070:
+	case RT3071:
+	case RT3090:
+		rt2800_init_bbp_30xx(rt2x00dev);
+		break;
+	case RT3290:
+		rt2800_init_bbp_3290(rt2x00dev);
+		break;
+	case RT3352:
+		rt2800_init_bbp_3352(rt2x00dev);
+		break;
+	case RT3390:
+		rt2800_init_bbp_3390(rt2x00dev);
+		break;
+	case RT3572:
+		rt2800_init_bbp_3572(rt2x00dev);
+		break;
+	case RT3593:
+		rt2800_init_bbp_3593(rt2x00dev);
+		return;
+	case RT5390:
+	case RT5392:
+		rt2800_init_bbp_53xx(rt2x00dev);
+		break;
+	case RT5592:
+		rt2800_init_bbp_5592(rt2x00dev);
+		return;
+	}
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2800_eeprom_read_from_array(rt2x00dev, EEPROM_BBP_START, i,
+					      &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt2800_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+}
+
+static void rt2800_led_open_drain_enable(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
+	rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
+	rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
+}
+
+static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, bool bw40,
+				u8 filter_target)
+{
+	unsigned int i;
+	u8 bbp;
+	u8 rfcsr;
+	u8 passband;
+	u8 stopband;
+	u8 overtuned = 0;
+	u8 rfcsr24 = (bw40) ? 0x27 : 0x07;
+
+	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+
+	rt2800_bbp_read(rt2x00dev, 4, &bbp);
+	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
+	rt2800_bbp_write(rt2x00dev, 4, bbp);
+
+	rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
+	rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
+	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+	/*
+	 * Set power & frequency of passband test tone
+	 */
+	rt2800_bbp_write(rt2x00dev, 24, 0);
+
+	for (i = 0; i < 100; i++) {
+		rt2800_bbp_write(rt2x00dev, 25, 0x90);
+		msleep(1);
+
+		rt2800_bbp_read(rt2x00dev, 55, &passband);
+		if (passband)
+			break;
+	}
+
+	/*
+	 * Set power & frequency of stopband test tone
+	 */
+	rt2800_bbp_write(rt2x00dev, 24, 0x06);
+
+	for (i = 0; i < 100; i++) {
+		rt2800_bbp_write(rt2x00dev, 25, 0x90);
+		msleep(1);
+
+		rt2800_bbp_read(rt2x00dev, 55, &stopband);
+
+		if ((passband - stopband) <= filter_target) {
+			rfcsr24++;
+			overtuned += ((passband - stopband) == filter_target);
+		} else
+			break;
+
+		rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+	}
+
+	rfcsr24 -= !!overtuned;
+
+	rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
+	return rfcsr24;
+}
+
+static void rt2800_rf_init_calibration(struct rt2x00_dev *rt2x00dev,
+				       const unsigned int rf_reg)
+{
+	u8 rfcsr;
+
+	rt2800_rfcsr_read(rt2x00dev, rf_reg, &rfcsr);
+	rt2x00_set_field8(&rfcsr, FIELD8(0x80), 1);
+	rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
+	msleep(1);
+	rt2x00_set_field8(&rfcsr, FIELD8(0x80), 0);
+	rt2800_rfcsr_write(rt2x00dev, rf_reg, rfcsr);
+}
+
+static void rt2800_rx_filter_calibration(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 filter_tgt_bw20;
+	u8 filter_tgt_bw40;
+	u8 rfcsr, bbp;
+
+	/*
+	 * TODO: sync filter_tgt values with vendor driver
+	 */
+	if (rt2x00_rt(rt2x00dev, RT3070)) {
+		filter_tgt_bw20 = 0x16;
+		filter_tgt_bw40 = 0x19;
+	} else {
+		filter_tgt_bw20 = 0x13;
+		filter_tgt_bw40 = 0x15;
+	}
+
+	drv_data->calibration_bw20 =
+		rt2800_init_rx_filter(rt2x00dev, false, filter_tgt_bw20);
+	drv_data->calibration_bw40 =
+		rt2800_init_rx_filter(rt2x00dev, true, filter_tgt_bw40);
+
+	/*
+	 * Save BBP 25 & 26 values for later use in channel switching (for 3052)
+	 */
+	rt2800_bbp_read(rt2x00dev, 25, &drv_data->bbp25);
+	rt2800_bbp_read(rt2x00dev, 26, &drv_data->bbp26);
+
+	/*
+	 * Set back to initial state
+	 */
+	rt2800_bbp_write(rt2x00dev, 24, 0);
+
+	rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
+	rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
+
+	/*
+	 * Set BBP back to BW20
+	 */
+	rt2800_bbp_read(rt2x00dev, 4, &bbp);
+	rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
+	rt2800_bbp_write(rt2x00dev, 4, bbp);
+}
+
+static void rt2800_normal_mode_setup_3xxx(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 min_gain, rfcsr, bbp;
+	u16 eeprom;
+
+	rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
+
+	rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
+	if (rt2x00_rt(rt2x00dev, RT3070) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
+		if (!rt2x00_has_cap_external_lna_bg(rt2x00dev))
+			rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
+	}
+
+	min_gain = rt2x00_rt(rt2x00dev, RT3070) ? 1 : 2;
+	if (drv_data->txmixer_gain_24g >= min_gain) {
+		rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
+				  drv_data->txmixer_gain_24g);
+	}
+
+	rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
+
+	if (rt2x00_rt(rt2x00dev, RT3090)) {
+		/*  Turn off unused DAC1 and ADC1 to reduce power consumption */
+		rt2800_bbp_read(rt2x00dev, 138, &bbp);
+		rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
+		if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+			rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
+		if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+			rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
+		rt2800_bbp_write(rt2x00dev, 138, bbp);
+	}
+
+	if (rt2x00_rt(rt2x00dev, RT3070)) {
+		rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
+		if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
+			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
+		else
+			rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
+		rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
+	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
+		   rt2x00_rt(rt2x00dev, RT3090) ||
+		   rt2x00_rt(rt2x00dev, RT3390)) {
+		rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
+		rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
+		rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
+		rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+		rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
+		rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
+
+		rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
+		rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
+
+		rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
+		rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
+	}
+}
+
+static void rt2800_normal_mode_setup_3593(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u8 rfcsr;
+	u8 tx_gain;
+
+	rt2800_rfcsr_read(rt2x00dev, 50, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR50_TX_LO2_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 50, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 51, &rfcsr);
+	tx_gain = rt2x00_get_field8(drv_data->txmixer_gain_24g,
+				    RFCSR17_TXMIXER_GAIN);
+	rt2x00_set_field8(&rfcsr, RFCSR51_BITS24, tx_gain);
+	rt2800_rfcsr_write(rt2x00dev, 51, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
+	rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
+	rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
+
+	rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
+	rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
+
+	/* TODO: enable stream mode */
+}
+
+static void rt2800_normal_mode_setup_5xxx(struct rt2x00_dev *rt2x00dev)
+{
+	u8 reg;
+	u16 eeprom;
+
+	/*  Turn off unused DAC1 and ADC1 to reduce power consumption */
+	rt2800_bbp_read(rt2x00dev, 138, &reg);
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
+		rt2x00_set_field8(&reg, BBP138_RX_ADC1, 0);
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
+		rt2x00_set_field8(&reg, BBP138_TX_DAC1, 1);
+	rt2800_bbp_write(rt2x00dev, 138, reg);
+
+	rt2800_rfcsr_read(rt2x00dev, 38, &reg);
+	rt2x00_set_field8(&reg, RFCSR38_RX_LO1_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 38, reg);
+
+	rt2800_rfcsr_read(rt2x00dev, 39, &reg);
+	rt2x00_set_field8(&reg, RFCSR39_RX_LO2_EN, 0);
+	rt2800_rfcsr_write(rt2x00dev, 39, reg);
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_rfcsr_read(rt2x00dev, 30, &reg);
+	rt2x00_set_field8(&reg, RFCSR30_RX_VCM, 2);
+	rt2800_rfcsr_write(rt2x00dev, 30, reg);
+}
+
+static void rt2800_init_rfcsr_305x_soc(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
+	rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
+	rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
+}
+
+static void rt2800_init_rfcsr_30xx(struct rt2x00_dev *rt2x00dev)
+{
+	u8 rfcsr;
+	u16 eeprom;
+	u32 reg;
+
+	/* XXX vendor driver do this only for 3070 */
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
+	rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
+
+	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
+		rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+		rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+		rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+	} else if (rt2x00_rt(rt2x00dev, RT3071) ||
+		   rt2x00_rt(rt2x00dev, RT3090)) {
+		rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
+
+		rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
+		rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
+		rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+		rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+		rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+		if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+		    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
+			rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1,
+					   &eeprom);
+			if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
+				rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+			else
+				rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+		}
+		rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+		rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
+		rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
+		rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+	}
+
+	rt2800_rx_filter_calibration(rt2x00dev);
+
+	if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
+	    rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E))
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3290(struct rt2x00_dev *rt2x00dev)
+{
+	u8 rfcsr;
+
+	rt2800_rf_init_calibration(rt2x00dev, 2);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
+	rt2800_rfcsr_write(rt2x00dev, 8, 0xf3);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x83);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x05);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+	rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+	rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+	rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
+	rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+	rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
+	rt2800_rfcsr_write(rt2x00dev, 43, 0x7b);
+	rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+	rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+	rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+	rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 49, 0x98);
+	rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
+	rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
+	rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+	rt2800_rfcsr_write(rt2x00dev, 56, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
+	rt2800_rfcsr_write(rt2x00dev, 59, 0x09);
+	rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+	rt2800_rfcsr_write(rt2x00dev, 61, 0xc1);
+
+	rt2800_rfcsr_read(rt2x00dev, 29, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR29_RSSI_GAIN, 3);
+	rt2800_rfcsr_write(rt2x00dev, 29, rfcsr);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3352(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 0, 0xf0);
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x23);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0x50);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x18);
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x33);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0xd2);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x42);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x1c);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x5a);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0x01);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x45);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x01);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 36, 0xbd);
+	rt2800_rfcsr_write(rt2x00dev, 37, 0x3c);
+	rt2800_rfcsr_write(rt2x00dev, 38, 0x5f);
+	rt2800_rfcsr_write(rt2x00dev, 39, 0xc5);
+	rt2800_rfcsr_write(rt2x00dev, 40, 0x33);
+	rt2800_rfcsr_write(rt2x00dev, 41, 0x5b);
+	rt2800_rfcsr_write(rt2x00dev, 42, 0x5b);
+	rt2800_rfcsr_write(rt2x00dev, 43, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 44, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 45, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 46, 0xdd);
+	rt2800_rfcsr_write(rt2x00dev, 47, 0x0d);
+	rt2800_rfcsr_write(rt2x00dev, 48, 0x14);
+	rt2800_rfcsr_write(rt2x00dev, 49, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 50, 0x2d);
+	rt2800_rfcsr_write(rt2x00dev, 51, 0x7f);
+	rt2800_rfcsr_write(rt2x00dev, 52, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 53, 0x52);
+	rt2800_rfcsr_write(rt2x00dev, 54, 0x1b);
+	rt2800_rfcsr_write(rt2x00dev, 55, 0x7f);
+	rt2800_rfcsr_write(rt2x00dev, 56, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 57, 0x52);
+	rt2800_rfcsr_write(rt2x00dev, 58, 0x1b);
+	rt2800_rfcsr_write(rt2x00dev, 59, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 60, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 61, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+
+	rt2800_rx_filter_calibration(rt2x00dev);
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3390(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
+	rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
+	rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
+	rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
+
+	rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
+	rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
+	rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+	rt2800_rx_filter_calibration(rt2x00dev);
+
+	if (rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_3572(struct rt2x00_dev *rt2x00dev)
+{
+	u8 rfcsr;
+	u32 reg;
+
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 0, 0x70);
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x81);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 4, 0x4c);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x05);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x4a);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x70);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x65);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0xa0);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
+	rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0xac);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0xd0);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x3c);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x09);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x10);
+
+	rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
+	rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
+
+	rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+	rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+	msleep(1);
+	rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+	rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+	rt2800_rx_filter_calibration(rt2x00dev);
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3xxx(rt2x00dev);
+}
+
+static void rt3593_post_bbp_init(struct rt2x00_dev *rt2x00dev)
+{
+	u8 bbp;
+	bool txbf_enabled = false; /* FIXME */
+
+	rt2800_bbp_read(rt2x00dev, 105, &bbp);
+	if (rt2x00dev->default_ant.rx_chain_num == 1)
+		rt2x00_set_field8(&bbp, BBP105_MLD, 0);
+	else
+		rt2x00_set_field8(&bbp, BBP105_MLD, 1);
+	rt2800_bbp_write(rt2x00dev, 105, bbp);
+
+	rt2800_bbp4_mac_if_ctrl(rt2x00dev);
+
+	rt2800_bbp_write(rt2x00dev, 92, 0x02);
+	rt2800_bbp_write(rt2x00dev, 82, 0x82);
+	rt2800_bbp_write(rt2x00dev, 106, 0x05);
+	rt2800_bbp_write(rt2x00dev, 104, 0x92);
+	rt2800_bbp_write(rt2x00dev, 88, 0x90);
+	rt2800_bbp_write(rt2x00dev, 148, 0xc8);
+	rt2800_bbp_write(rt2x00dev, 47, 0x48);
+	rt2800_bbp_write(rt2x00dev, 120, 0x50);
+
+	if (txbf_enabled)
+		rt2800_bbp_write(rt2x00dev, 163, 0xbd);
+	else
+		rt2800_bbp_write(rt2x00dev, 163, 0x9d);
+
+	/* SNR mapping */
+	rt2800_bbp_write(rt2x00dev, 142, 6);
+	rt2800_bbp_write(rt2x00dev, 143, 160);
+	rt2800_bbp_write(rt2x00dev, 142, 7);
+	rt2800_bbp_write(rt2x00dev, 143, 161);
+	rt2800_bbp_write(rt2x00dev, 142, 8);
+	rt2800_bbp_write(rt2x00dev, 143, 162);
+
+	/* ADC/DAC control */
+	rt2800_bbp_write(rt2x00dev, 31, 0x08);
+
+	/* RX AGC energy lower bound in log2 */
+	rt2800_bbp_write(rt2x00dev, 68, 0x0b);
+
+	/* FIXME: BBP 105 owerwrite? */
+	rt2800_bbp_write(rt2x00dev, 105, 0x04);
+
+}
+
+static void rt2800_init_rfcsr_3593(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u32 reg;
+	u8 rfcsr;
+
+	/* Disable GPIO #4 and #7 function for LAN PE control */
+	rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
+	rt2x00_set_field32(&reg, GPIO_SWITCH_4, 0);
+	rt2x00_set_field32(&reg, GPIO_SWITCH_7, 0);
+	rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
+
+	/* Initialize default register values */
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 8, 0xf1);
+	rt2800_rfcsr_write(rt2x00dev, 9, 0x02);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0xd3);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x4e);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x12);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x40);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 32, 0x78);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0x3b);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x3c);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0xe0);
+	rt2800_rfcsr_write(rt2x00dev, 38, 0x86);
+	rt2800_rfcsr_write(rt2x00dev, 39, 0x23);
+	rt2800_rfcsr_write(rt2x00dev, 44, 0xd3);
+	rt2800_rfcsr_write(rt2x00dev, 45, 0xbb);
+	rt2800_rfcsr_write(rt2x00dev, 46, 0x60);
+	rt2800_rfcsr_write(rt2x00dev, 49, 0x8e);
+	rt2800_rfcsr_write(rt2x00dev, 50, 0x86);
+	rt2800_rfcsr_write(rt2x00dev, 51, 0x75);
+	rt2800_rfcsr_write(rt2x00dev, 52, 0x45);
+	rt2800_rfcsr_write(rt2x00dev, 53, 0x18);
+	rt2800_rfcsr_write(rt2x00dev, 54, 0x18);
+	rt2800_rfcsr_write(rt2x00dev, 55, 0x18);
+	rt2800_rfcsr_write(rt2x00dev, 56, 0xdb);
+	rt2800_rfcsr_write(rt2x00dev, 57, 0x6e);
+
+	/* Initiate calibration */
+	/* TODO: use rt2800_rf_init_calibration ? */
+	rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
+	rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	rt2800_rfcsr_read(rt2x00dev, 18, &rfcsr);
+	rt2x00_set_field8(&rfcsr, RFCSR18_XO_TUNE_BYPASS, 1);
+	rt2800_rfcsr_write(rt2x00dev, 18, rfcsr);
+
+	rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
+	rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
+	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+	usleep_range(1000, 1500);
+	rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
+	rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
+	rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
+
+	/* Set initial values for RX filter calibration */
+	drv_data->calibration_bw20 = 0x1f;
+	drv_data->calibration_bw40 = 0x2f;
+
+	/* Save BBP 25 & 26 values for later use in channel switching */
+	rt2800_bbp_read(rt2x00dev, 25, &drv_data->bbp25);
+	rt2800_bbp_read(rt2x00dev, 26, &drv_data->bbp26);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+	rt2800_normal_mode_setup_3593(rt2x00dev);
+
+	rt3593_post_bbp_init(rt2x00dev);
+
+	/* TODO: enable stream mode support */
+}
+
+static void rt2800_init_rfcsr_5390(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_rf_init_calibration(rt2x00dev, 2);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+		rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
+
+	rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
+	if (rt2x00_is_usb(rt2x00dev) &&
+	    rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+		rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+	rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
+	rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+
+	rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
+	rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+	rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
+	rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
+	rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+	rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+		rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
+	rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
+
+	rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+		rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
+	rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
+	rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
+		rt2800_rfcsr_write(rt2x00dev, 56, 0x42);
+	else
+		rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
+	rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
+	rt2800_rfcsr_write(rt2x00dev, 59, 0x8f);
+
+	rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
+		if (rt2x00_is_usb(rt2x00dev))
+			rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
+		else
+			rt2800_rfcsr_write(rt2x00dev, 61, 0xd5);
+	} else {
+		if (rt2x00_is_usb(rt2x00dev))
+			rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
+		else
+			rt2800_rfcsr_write(rt2x00dev, 61, 0xb5);
+	}
+	rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
+
+	rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_5392(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_rf_init_calibration(rt2x00dev, 2);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x17);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
+	rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
+	rt2800_rfcsr_write(rt2x00dev, 12, 0x46);
+	rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x4d);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0x8d);
+	rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 23, 0x0b);
+	rt2800_rfcsr_write(rt2x00dev, 24, 0x44);
+	rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+	rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 30, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
+	rt2800_rfcsr_write(rt2x00dev, 32, 0x20);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+	rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 38, 0x89);
+	rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
+	rt2800_rfcsr_write(rt2x00dev, 40, 0x0f);
+	rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
+	rt2800_rfcsr_write(rt2x00dev, 42, 0xd5);
+	rt2800_rfcsr_write(rt2x00dev, 43, 0x9b);
+	rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
+	rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
+	rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
+	rt2800_rfcsr_write(rt2x00dev, 47, 0x0c);
+	rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
+	rt2800_rfcsr_write(rt2x00dev, 50, 0x94);
+	rt2800_rfcsr_write(rt2x00dev, 51, 0x3a);
+	rt2800_rfcsr_write(rt2x00dev, 52, 0x48);
+	rt2800_rfcsr_write(rt2x00dev, 53, 0x44);
+	rt2800_rfcsr_write(rt2x00dev, 54, 0x38);
+	rt2800_rfcsr_write(rt2x00dev, 55, 0x43);
+	rt2800_rfcsr_write(rt2x00dev, 56, 0xa1);
+	rt2800_rfcsr_write(rt2x00dev, 57, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 58, 0x39);
+	rt2800_rfcsr_write(rt2x00dev, 59, 0x07);
+	rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
+	rt2800_rfcsr_write(rt2x00dev, 61, 0x91);
+	rt2800_rfcsr_write(rt2x00dev, 62, 0x39);
+	rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
+
+	rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr_5592(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_rf_init_calibration(rt2x00dev, 30);
+
+	rt2800_rfcsr_write(rt2x00dev, 1, 0x3F);
+	rt2800_rfcsr_write(rt2x00dev, 3, 0x08);
+	rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 6, 0xE4);
+	rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
+	rt2800_rfcsr_write(rt2x00dev, 19, 0x4D);
+	rt2800_rfcsr_write(rt2x00dev, 20, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 21, 0x8D);
+	rt2800_rfcsr_write(rt2x00dev, 26, 0x82);
+	rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
+	rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
+	rt2800_rfcsr_write(rt2x00dev, 33, 0xC0);
+	rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
+	rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
+	rt2800_rfcsr_write(rt2x00dev, 47, 0x0C);
+	rt2800_rfcsr_write(rt2x00dev, 53, 0x22);
+	rt2800_rfcsr_write(rt2x00dev, 63, 0x07);
+
+	rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
+	msleep(1);
+
+	rt2800_adjust_freq_offset(rt2x00dev);
+
+	/* Enable DC filter */
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5592, REV_RT5592C))
+		rt2800_bbp_write(rt2x00dev, 103, 0xc0);
+
+	rt2800_normal_mode_setup_5xxx(rt2x00dev);
+
+	if (rt2x00_rt_rev_lt(rt2x00dev, RT5592, REV_RT5592C))
+		rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
+
+	rt2800_led_open_drain_enable(rt2x00dev);
+}
+
+static void rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
+{
+	if (rt2800_is_305x_soc(rt2x00dev)) {
+		rt2800_init_rfcsr_305x_soc(rt2x00dev);
+		return;
+	}
+
+	switch (rt2x00dev->chip.rt) {
+	case RT3070:
+	case RT3071:
+	case RT3090:
+		rt2800_init_rfcsr_30xx(rt2x00dev);
+		break;
+	case RT3290:
+		rt2800_init_rfcsr_3290(rt2x00dev);
+		break;
+	case RT3352:
+		rt2800_init_rfcsr_3352(rt2x00dev);
+		break;
+	case RT3390:
+		rt2800_init_rfcsr_3390(rt2x00dev);
+		break;
+	case RT3572:
+		rt2800_init_rfcsr_3572(rt2x00dev);
+		break;
+	case RT3593:
+		rt2800_init_rfcsr_3593(rt2x00dev);
+		break;
+	case RT5390:
+		rt2800_init_rfcsr_5390(rt2x00dev);
+		break;
+	case RT5392:
+		rt2800_init_rfcsr_5392(rt2x00dev);
+		break;
+	case RT5592:
+		rt2800_init_rfcsr_5592(rt2x00dev);
+		break;
+	}
+}
+
+int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 word;
+
+	/*
+	 * Initialize MAC registers.
+	 */
+	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
+		     rt2800_init_registers(rt2x00dev)))
+		return -EIO;
+
+	/*
+	 * Wait BBP/RF to wake up.
+	 */
+	if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev)))
+		return -EIO;
+
+	/*
+	 * Send signal during boot time to initialize firmware.
+	 */
+	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+	if (rt2x00_is_usb(rt2x00dev))
+		rt2800_register_write(rt2x00dev, H2M_INT_SRC, 0);
+	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
+	msleep(1);
+
+	/*
+	 * Make sure BBP is up and running.
+	 */
+	if (unlikely(rt2800_wait_bbp_ready(rt2x00dev)))
+		return -EIO;
+
+	/*
+	 * Initialize BBP/RF registers.
+	 */
+	rt2800_init_bbp(rt2x00dev);
+	rt2800_init_rfcsr(rt2x00dev);
+
+	if (rt2x00_is_usb(rt2x00dev) &&
+	    (rt2x00_rt(rt2x00dev, RT3070) ||
+	     rt2x00_rt(rt2x00dev, RT3071) ||
+	     rt2x00_rt(rt2x00dev, RT3572))) {
+		udelay(200);
+		rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
+		udelay(10);
+	}
+
+	/*
+	 * Enable RX.
+	 */
+	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+	udelay(50);
+
+	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
+	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
+	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+	/*
+	 * Initialize LED control
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
+	rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
+			   word & 0xff, (word >> 8) & 0xff);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
+	rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
+			   word & 0xff, (word >> 8) & 0xff);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
+	rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
+			   word & 0xff, (word >> 8) & 0xff);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_enable_radio);
+
+void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2800_disable_wpdma(rt2x00dev);
+
+	/* Wait for DMA, ignore error */
+	rt2800_wait_wpdma_ready(rt2x00dev);
+
+	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+}
+EXPORT_SYMBOL_GPL(rt2800_disable_radio);
+
+int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 efuse_ctrl_reg;
+
+	if (rt2x00_rt(rt2x00dev, RT3290))
+		efuse_ctrl_reg = EFUSE_CTRL_3290;
+	else
+		efuse_ctrl_reg = EFUSE_CTRL;
+
+	rt2800_register_read(rt2x00dev, efuse_ctrl_reg, &reg);
+	return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
+}
+EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
+
+static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
+{
+	u32 reg;
+	u16 efuse_ctrl_reg;
+	u16 efuse_data0_reg;
+	u16 efuse_data1_reg;
+	u16 efuse_data2_reg;
+	u16 efuse_data3_reg;
+
+	if (rt2x00_rt(rt2x00dev, RT3290)) {
+		efuse_ctrl_reg = EFUSE_CTRL_3290;
+		efuse_data0_reg = EFUSE_DATA0_3290;
+		efuse_data1_reg = EFUSE_DATA1_3290;
+		efuse_data2_reg = EFUSE_DATA2_3290;
+		efuse_data3_reg = EFUSE_DATA3_3290;
+	} else {
+		efuse_ctrl_reg = EFUSE_CTRL;
+		efuse_data0_reg = EFUSE_DATA0;
+		efuse_data1_reg = EFUSE_DATA1;
+		efuse_data2_reg = EFUSE_DATA2;
+		efuse_data3_reg = EFUSE_DATA3;
+	}
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	rt2800_register_read_lock(rt2x00dev, efuse_ctrl_reg, &reg);
+	rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
+	rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
+	rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
+	rt2800_register_write_lock(rt2x00dev, efuse_ctrl_reg, reg);
+
+	/* Wait until the EEPROM has been loaded */
+	rt2800_regbusy_read(rt2x00dev, efuse_ctrl_reg, EFUSE_CTRL_KICK, &reg);
+	/* Apparently the data is read from end to start */
+	rt2800_register_read_lock(rt2x00dev, efuse_data3_reg, &reg);
+	/* The returned value is in CPU order, but eeprom is le */
+	*(u32 *)&rt2x00dev->eeprom[i] = cpu_to_le32(reg);
+	rt2800_register_read_lock(rt2x00dev, efuse_data2_reg, &reg);
+	*(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg);
+	rt2800_register_read_lock(rt2x00dev, efuse_data1_reg, &reg);
+	*(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg);
+	rt2800_register_read_lock(rt2x00dev, efuse_data0_reg, &reg);
+	*(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+int rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+
+	for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
+		rt2800_efuse_read(rt2x00dev, i);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
+
+static u8 rt2800_get_txmixer_gain_24g(struct rt2x00_dev *rt2x00dev)
+{
+	u16 word;
+
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		return 0;
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &word);
+	if ((word & 0x00ff) != 0x00ff)
+		return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_BG_VAL);
+
+	return 0;
+}
+
+static u8 rt2800_get_txmixer_gain_5g(struct rt2x00_dev *rt2x00dev)
+{
+	u16 word;
+
+	if (rt2x00_rt(rt2x00dev, RT3593))
+		return 0;
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_A, &word);
+	if ((word & 0x00ff) != 0x00ff)
+		return rt2x00_get_field16(word, EEPROM_TXMIXER_GAIN_A_VAL);
+
+	return 0;
+}
+
+static int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u16 word;
+	u8 *mac;
+	u8 default_lna_gain;
+	int retval;
+
+	/*
+	 * Read the EEPROM.
+	 */
+	retval = rt2800_read_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2800_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	} else if (rt2x00_rt(rt2x00dev, RT2860) ||
+		   rt2x00_rt(rt2x00dev, RT2872)) {
+		/*
+		 * There is a max of 2 RX streams for RT28x0 series
+		 */
+		if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
+			rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
+	}
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
+	if ((word & 0x00ff) == 0x00ff) {
+		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+	}
+	if ((word & 0xff00) == 0xff00) {
+		rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
+				   LED_MODE_TXRX_ACTIVITY);
+		rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
+		rt2x00_eeprom_dbg(rt2x00dev, "Led Mode: 0x%04x\n", word);
+	}
+
+	/*
+	 * During the LNA validation we are going to use
+	 * lna0 as correct value. Note that EEPROM_LNA
+	 * is never validated.
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
+	default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
+	rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
+
+	drv_data->txmixer_gain_24g = rt2800_get_txmixer_gain_24g(rt2x00dev);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
+	if (!rt2x00_rt(rt2x00dev, RT3593)) {
+		if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
+		    rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
+			rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
+					   default_lna_gain);
+	}
+	rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
+
+	drv_data->txmixer_gain_5g = rt2800_get_txmixer_gain_5g(rt2x00dev);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
+	rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
+	if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
+		rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
+	if (!rt2x00_rt(rt2x00dev, RT3593)) {
+		if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
+		    rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
+			rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
+					   default_lna_gain);
+	}
+	rt2800_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
+
+	if (rt2x00_rt(rt2x00dev, RT3593)) {
+		rt2800_eeprom_read(rt2x00dev, EEPROM_EXT_LNA2, &word);
+		if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0x00 ||
+		    rt2x00_get_field16(word, EEPROM_EXT_LNA2_A1) == 0xff)
+			rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
+					   default_lna_gain);
+		if (rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0x00 ||
+		    rt2x00_get_field16(word, EEPROM_EXT_LNA2_A2) == 0xff)
+			rt2x00_set_field16(&word, EEPROM_EXT_LNA2_A1,
+					   default_lna_gain);
+		rt2800_eeprom_write(rt2x00dev, EEPROM_EXT_LNA2, word);
+	}
+
+	return 0;
+}
+
+static int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u16 value;
+	u16 eeprom;
+	u16 rf;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
+
+	/*
+	 * Identify RF chipset by EEPROM value
+	 * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
+	 * RT53xx: defined in "EEPROM_CHIP_ID" field
+	 */
+	if (rt2x00_rt(rt2x00dev, RT3290) ||
+	    rt2x00_rt(rt2x00dev, RT5390) ||
+	    rt2x00_rt(rt2x00dev, RT5392))
+		rt2800_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &rf);
+	else
+		rf = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
+
+	switch (rf) {
+	case RF2820:
+	case RF2850:
+	case RF2720:
+	case RF2750:
+	case RF3020:
+	case RF2020:
+	case RF3021:
+	case RF3022:
+	case RF3052:
+	case RF3053:
+	case RF3070:
+	case RF3290:
+	case RF3320:
+	case RF3322:
+	case RF5360:
+	case RF5362:
+	case RF5370:
+	case RF5372:
+	case RF5390:
+	case RF5392:
+	case RF5592:
+		break;
+	default:
+		rt2x00_err(rt2x00dev, "Invalid RF chipset 0x%04x detected\n",
+			   rf);
+		return -ENODEV;
+	}
+
+	rt2x00_set_rf(rt2x00dev, rf);
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx_chain_num =
+	    rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
+	rt2x00dev->default_ant.rx_chain_num =
+	    rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
+
+	rt2800_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
+
+	if (rt2x00_rt(rt2x00dev, RT3070) ||
+	    rt2x00_rt(rt2x00dev, RT3090) ||
+	    rt2x00_rt(rt2x00dev, RT3352) ||
+	    rt2x00_rt(rt2x00dev, RT3390)) {
+		value = rt2x00_get_field16(eeprom,
+				EEPROM_NIC_CONF1_ANT_DIVERSITY);
+		switch (value) {
+		case 0:
+		case 1:
+		case 2:
+			rt2x00dev->default_ant.tx = ANTENNA_A;
+			rt2x00dev->default_ant.rx = ANTENNA_A;
+			break;
+		case 3:
+			rt2x00dev->default_ant.tx = ANTENNA_A;
+			rt2x00dev->default_ant.rx = ANTENNA_B;
+			break;
+		}
+	} else {
+		rt2x00dev->default_ant.tx = ANTENNA_A;
+		rt2x00dev->default_ant.rx = ANTENNA_A;
+	}
+
+	if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390R)) {
+		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; /* Unused */
+		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; /* Unused */
+	}
+
+	/*
+	 * Determine external LNA informations.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
+		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
+		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+	/*
+	 * Detect if this device has Bluetooth co-existence.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
+		__set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read frequency offset and RF programming sequence.
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
+	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+	/*
+	 * Store led settings, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+	rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
+
+	rt2x00dev->led_mcu_reg = eeprom;
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Check if support EIRP tx power limit feature.
+	 */
+	rt2800_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
+
+	if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
+					EIRP_MAX_TX_POWER_LIMIT)
+		__set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
+
+	return 0;
+}
+
+/*
+ * RF value list for rt28xx
+ * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
+ */
+static const struct rf_channel rf_vals[] = {
+	{ 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
+	{ 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
+	{ 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
+	{ 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
+	{ 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
+	{ 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
+	{ 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
+	{ 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
+	{ 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
+	{ 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
+	{ 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
+	{ 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
+	{ 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
+	{ 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
+	{ 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
+	{ 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
+	{ 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
+	{ 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
+	{ 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
+	{ 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
+	{ 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
+	{ 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
+	{ 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
+	{ 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
+	{ 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
+	{ 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
+	{ 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
+	{ 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
+	{ 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
+	{ 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
+	{ 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
+	{ 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
+	{ 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
+	{ 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
+	{ 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
+	{ 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
+	{ 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
+	{ 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
+	{ 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
+	{ 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
+
+	/* 802.11 UNII */
+	{ 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
+	{ 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
+	{ 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
+	{ 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
+	{ 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
+	{ 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
+	{ 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
+	{ 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
+	{ 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
+	{ 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
+	{ 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
+
+	/* 802.11 Japan */
+	{ 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
+	{ 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
+	{ 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
+	{ 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
+	{ 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
+	{ 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
+	{ 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
+};
+
+/*
+ * RF value list for rt3xxx
+ * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052 & RF3053)
+ */
+static const struct rf_channel rf_vals_3x[] = {
+	{1,  241, 2, 2 },
+	{2,  241, 2, 7 },
+	{3,  242, 2, 2 },
+	{4,  242, 2, 7 },
+	{5,  243, 2, 2 },
+	{6,  243, 2, 7 },
+	{7,  244, 2, 2 },
+	{8,  244, 2, 7 },
+	{9,  245, 2, 2 },
+	{10, 245, 2, 7 },
+	{11, 246, 2, 2 },
+	{12, 246, 2, 7 },
+	{13, 247, 2, 2 },
+	{14, 248, 2, 4 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{36, 0x56, 0, 4},
+	{38, 0x56, 0, 6},
+	{40, 0x56, 0, 8},
+	{44, 0x57, 0, 0},
+	{46, 0x57, 0, 2},
+	{48, 0x57, 0, 4},
+	{52, 0x57, 0, 8},
+	{54, 0x57, 0, 10},
+	{56, 0x58, 0, 0},
+	{60, 0x58, 0, 4},
+	{62, 0x58, 0, 6},
+	{64, 0x58, 0, 8},
+
+	/* 802.11 HyperLan 2 */
+	{100, 0x5b, 0, 8},
+	{102, 0x5b, 0, 10},
+	{104, 0x5c, 0, 0},
+	{108, 0x5c, 0, 4},
+	{110, 0x5c, 0, 6},
+	{112, 0x5c, 0, 8},
+	{116, 0x5d, 0, 0},
+	{118, 0x5d, 0, 2},
+	{120, 0x5d, 0, 4},
+	{124, 0x5d, 0, 8},
+	{126, 0x5d, 0, 10},
+	{128, 0x5e, 0, 0},
+	{132, 0x5e, 0, 4},
+	{134, 0x5e, 0, 6},
+	{136, 0x5e, 0, 8},
+	{140, 0x5f, 0, 0},
+
+	/* 802.11 UNII */
+	{149, 0x5f, 0, 9},
+	{151, 0x5f, 0, 11},
+	{153, 0x60, 0, 1},
+	{157, 0x60, 0, 5},
+	{159, 0x60, 0, 7},
+	{161, 0x60, 0, 9},
+	{165, 0x61, 0, 1},
+	{167, 0x61, 0, 3},
+	{169, 0x61, 0, 5},
+	{171, 0x61, 0, 7},
+	{173, 0x61, 0, 9},
+};
+
+static const struct rf_channel rf_vals_5592_xtal20[] = {
+	/* Channel, N, K, mod, R */
+	{1, 482, 4, 10, 3},
+	{2, 483, 4, 10, 3},
+	{3, 484, 4, 10, 3},
+	{4, 485, 4, 10, 3},
+	{5, 486, 4, 10, 3},
+	{6, 487, 4, 10, 3},
+	{7, 488, 4, 10, 3},
+	{8, 489, 4, 10, 3},
+	{9, 490, 4, 10, 3},
+	{10, 491, 4, 10, 3},
+	{11, 492, 4, 10, 3},
+	{12, 493, 4, 10, 3},
+	{13, 494, 4, 10, 3},
+	{14, 496, 8, 10, 3},
+	{36, 172, 8, 12, 1},
+	{38, 173, 0, 12, 1},
+	{40, 173, 4, 12, 1},
+	{42, 173, 8, 12, 1},
+	{44, 174, 0, 12, 1},
+	{46, 174, 4, 12, 1},
+	{48, 174, 8, 12, 1},
+	{50, 175, 0, 12, 1},
+	{52, 175, 4, 12, 1},
+	{54, 175, 8, 12, 1},
+	{56, 176, 0, 12, 1},
+	{58, 176, 4, 12, 1},
+	{60, 176, 8, 12, 1},
+	{62, 177, 0, 12, 1},
+	{64, 177, 4, 12, 1},
+	{100, 183, 4, 12, 1},
+	{102, 183, 8, 12, 1},
+	{104, 184, 0, 12, 1},
+	{106, 184, 4, 12, 1},
+	{108, 184, 8, 12, 1},
+	{110, 185, 0, 12, 1},
+	{112, 185, 4, 12, 1},
+	{114, 185, 8, 12, 1},
+	{116, 186, 0, 12, 1},
+	{118, 186, 4, 12, 1},
+	{120, 186, 8, 12, 1},
+	{122, 187, 0, 12, 1},
+	{124, 187, 4, 12, 1},
+	{126, 187, 8, 12, 1},
+	{128, 188, 0, 12, 1},
+	{130, 188, 4, 12, 1},
+	{132, 188, 8, 12, 1},
+	{134, 189, 0, 12, 1},
+	{136, 189, 4, 12, 1},
+	{138, 189, 8, 12, 1},
+	{140, 190, 0, 12, 1},
+	{149, 191, 6, 12, 1},
+	{151, 191, 10, 12, 1},
+	{153, 192, 2, 12, 1},
+	{155, 192, 6, 12, 1},
+	{157, 192, 10, 12, 1},
+	{159, 193, 2, 12, 1},
+	{161, 193, 6, 12, 1},
+	{165, 194, 2, 12, 1},
+	{184, 164, 0, 12, 1},
+	{188, 164, 4, 12, 1},
+	{192, 165, 8, 12, 1},
+	{196, 166, 0, 12, 1},
+};
+
+static const struct rf_channel rf_vals_5592_xtal40[] = {
+	/* Channel, N, K, mod, R */
+	{1, 241, 2, 10, 3},
+	{2, 241, 7, 10, 3},
+	{3, 242, 2, 10, 3},
+	{4, 242, 7, 10, 3},
+	{5, 243, 2, 10, 3},
+	{6, 243, 7, 10, 3},
+	{7, 244, 2, 10, 3},
+	{8, 244, 7, 10, 3},
+	{9, 245, 2, 10, 3},
+	{10, 245, 7, 10, 3},
+	{11, 246, 2, 10, 3},
+	{12, 246, 7, 10, 3},
+	{13, 247, 2, 10, 3},
+	{14, 248, 4, 10, 3},
+	{36, 86, 4, 12, 1},
+	{38, 86, 6, 12, 1},
+	{40, 86, 8, 12, 1},
+	{42, 86, 10, 12, 1},
+	{44, 87, 0, 12, 1},
+	{46, 87, 2, 12, 1},
+	{48, 87, 4, 12, 1},
+	{50, 87, 6, 12, 1},
+	{52, 87, 8, 12, 1},
+	{54, 87, 10, 12, 1},
+	{56, 88, 0, 12, 1},
+	{58, 88, 2, 12, 1},
+	{60, 88, 4, 12, 1},
+	{62, 88, 6, 12, 1},
+	{64, 88, 8, 12, 1},
+	{100, 91, 8, 12, 1},
+	{102, 91, 10, 12, 1},
+	{104, 92, 0, 12, 1},
+	{106, 92, 2, 12, 1},
+	{108, 92, 4, 12, 1},
+	{110, 92, 6, 12, 1},
+	{112, 92, 8, 12, 1},
+	{114, 92, 10, 12, 1},
+	{116, 93, 0, 12, 1},
+	{118, 93, 2, 12, 1},
+	{120, 93, 4, 12, 1},
+	{122, 93, 6, 12, 1},
+	{124, 93, 8, 12, 1},
+	{126, 93, 10, 12, 1},
+	{128, 94, 0, 12, 1},
+	{130, 94, 2, 12, 1},
+	{132, 94, 4, 12, 1},
+	{134, 94, 6, 12, 1},
+	{136, 94, 8, 12, 1},
+	{138, 94, 10, 12, 1},
+	{140, 95, 0, 12, 1},
+	{149, 95, 9, 12, 1},
+	{151, 95, 11, 12, 1},
+	{153, 96, 1, 12, 1},
+	{155, 96, 3, 12, 1},
+	{157, 96, 5, 12, 1},
+	{159, 96, 7, 12, 1},
+	{161, 96, 9, 12, 1},
+	{165, 97, 1, 12, 1},
+	{184, 82, 0, 12, 1},
+	{188, 82, 4, 12, 1},
+	{192, 82, 8, 12, 1},
+	{196, 83, 0, 12, 1},
+};
+
+static int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *default_power1;
+	char *default_power2;
+	char *default_power3;
+	unsigned int i;
+	u32 reg;
+
+	/*
+	 * Disable powersaving as default.
+	 */
+	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+	/*
+	 * Initialize all hw fields.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_HT_CCK_RATES);
+	ieee80211_hw_set(rt2x00dev->hw, REPORTS_TX_ACK_STATUS);
+	ieee80211_hw_set(rt2x00dev->hw, AMPDU_AGGREGATION);
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+
+	/*
+	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
+	 * unless we are capable of sending the buffered frames out after the
+	 * DTIM transmission using rt2x00lib_beacondone. This will send out
+	 * multicast and broadcast traffic immediately instead of buffering it
+	 * infinitly and thus dropping it after some time.
+	 */
+	if (!rt2x00_is_usb(rt2x00dev))
+		ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2800_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * As rt2800 has a global fallback table we cannot specify
+	 * more then one tx rate per frame but since the hw will
+	 * try several rates (based on the fallback table) we should
+	 * initialize max_report_rates to the maximum number of rates
+	 * we are going to try. Otherwise mac80211 will truncate our
+	 * reported tx rates and the rc algortihm will end up with
+	 * incorrect data.
+	 */
+	rt2x00dev->hw->max_rates = 1;
+	rt2x00dev->hw->max_report_rates = 7;
+	rt2x00dev->hw->max_rate_tries = 1;
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	switch (rt2x00dev->chip.rf) {
+	case RF2720:
+	case RF2820:
+		spec->num_channels = 14;
+		spec->channels = rf_vals;
+		break;
+
+	case RF2750:
+	case RF2850:
+		spec->num_channels = ARRAY_SIZE(rf_vals);
+		spec->channels = rf_vals;
+		break;
+
+	case RF2020:
+	case RF3020:
+	case RF3021:
+	case RF3022:
+	case RF3070:
+	case RF3290:
+	case RF3320:
+	case RF3322:
+	case RF5360:
+	case RF5362:
+	case RF5370:
+	case RF5372:
+	case RF5390:
+	case RF5392:
+		spec->num_channels = 14;
+		spec->channels = rf_vals_3x;
+		break;
+
+	case RF3052:
+	case RF3053:
+		spec->num_channels = ARRAY_SIZE(rf_vals_3x);
+		spec->channels = rf_vals_3x;
+		break;
+
+	case RF5592:
+		rt2800_register_read(rt2x00dev, MAC_DEBUG_INDEX, &reg);
+		if (rt2x00_get_field32(reg, MAC_DEBUG_INDEX_XTAL)) {
+			spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal40);
+			spec->channels = rf_vals_5592_xtal40;
+		} else {
+			spec->num_channels = ARRAY_SIZE(rf_vals_5592_xtal20);
+			spec->channels = rf_vals_5592_xtal20;
+		}
+		break;
+	}
+
+	if (WARN_ON_ONCE(!spec->channels))
+		return -ENODEV;
+
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	if (spec->num_channels > 14)
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+
+	/*
+	 * Initialize HT information.
+	 */
+	if (!rt2x00_rf(rt2x00dev, RF2020))
+		spec->ht.ht_supported = true;
+	else
+		spec->ht.ht_supported = false;
+
+	spec->ht.cap =
+	    IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
+	    IEEE80211_HT_CAP_GRN_FLD |
+	    IEEE80211_HT_CAP_SGI_20 |
+	    IEEE80211_HT_CAP_SGI_40;
+
+	if (rt2x00dev->default_ant.tx_chain_num >= 2)
+		spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
+
+	spec->ht.cap |= rt2x00dev->default_ant.rx_chain_num <<
+			IEEE80211_HT_CAP_RX_STBC_SHIFT;
+
+	spec->ht.ampdu_factor = 3;
+	spec->ht.ampdu_density = 4;
+	spec->ht.mcs.tx_params =
+	    IEEE80211_HT_MCS_TX_DEFINED |
+	    IEEE80211_HT_MCS_TX_RX_DIFF |
+	    ((rt2x00dev->default_ant.tx_chain_num - 1) <<
+	     IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
+
+	switch (rt2x00dev->default_ant.rx_chain_num) {
+	case 3:
+		spec->ht.mcs.rx_mask[2] = 0xff;
+	case 2:
+		spec->ht.mcs.rx_mask[1] = 0xff;
+	case 1:
+		spec->ht.mcs.rx_mask[0] = 0xff;
+		spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
+		break;
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	default_power1 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
+	default_power2 = rt2800_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
+
+	if (rt2x00dev->default_ant.tx_chain_num > 2)
+		default_power3 = rt2800_eeprom_addr(rt2x00dev,
+						    EEPROM_EXT_TXPOWER_BG3);
+	else
+		default_power3 = NULL;
+
+	for (i = 0; i < 14; i++) {
+		info[i].default_power1 = default_power1[i];
+		info[i].default_power2 = default_power2[i];
+		if (default_power3)
+			info[i].default_power3 = default_power3[i];
+	}
+
+	if (spec->num_channels > 14) {
+		default_power1 = rt2800_eeprom_addr(rt2x00dev,
+						    EEPROM_TXPOWER_A1);
+		default_power2 = rt2800_eeprom_addr(rt2x00dev,
+						    EEPROM_TXPOWER_A2);
+
+		if (rt2x00dev->default_ant.tx_chain_num > 2)
+			default_power3 =
+				rt2800_eeprom_addr(rt2x00dev,
+						   EEPROM_EXT_TXPOWER_A3);
+		else
+			default_power3 = NULL;
+
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].default_power1 = default_power1[i - 14];
+			info[i].default_power2 = default_power2[i - 14];
+			if (default_power3)
+				info[i].default_power3 = default_power3[i - 14];
+		}
+	}
+
+	switch (rt2x00dev->chip.rf) {
+	case RF2020:
+	case RF3020:
+	case RF3021:
+	case RF3022:
+	case RF3320:
+	case RF3052:
+	case RF3053:
+	case RF3070:
+	case RF3290:
+	case RF5360:
+	case RF5362:
+	case RF5370:
+	case RF5372:
+	case RF5390:
+	case RF5392:
+		__set_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags);
+		break;
+	}
+
+	return 0;
+}
+
+static int rt2800_probe_rt(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u32 rt;
+	u32 rev;
+
+	if (rt2x00_rt(rt2x00dev, RT3290))
+		rt2800_register_read(rt2x00dev, MAC_CSR0_3290, &reg);
+	else
+		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
+
+	rt = rt2x00_get_field32(reg, MAC_CSR0_CHIPSET);
+	rev = rt2x00_get_field32(reg, MAC_CSR0_REVISION);
+
+	switch (rt) {
+	case RT2860:
+	case RT2872:
+	case RT2883:
+	case RT3070:
+	case RT3071:
+	case RT3090:
+	case RT3290:
+	case RT3352:
+	case RT3390:
+	case RT3572:
+	case RT3593:
+	case RT5390:
+	case RT5392:
+	case RT5592:
+		break;
+	default:
+		rt2x00_err(rt2x00dev, "Invalid RT chipset 0x%04x, rev %04x detected\n",
+			   rt, rev);
+		return -ENODEV;
+	}
+
+	rt2x00_set_rt(rt2x00dev, rt, rev);
+
+	return 0;
+}
+
+int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	retval = rt2800_probe_rt(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt2800_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt2800_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2800_register_read(rt2x00dev, GPIO_CTRL, &reg);
+	rt2x00_set_field32(&reg, GPIO_CTRL_DIR2, 1);
+	rt2800_register_write(rt2x00dev, GPIO_CTRL, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt2800_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Set device capabilities.
+	 */
+	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
+	if (!rt2x00_is_usb(rt2x00dev))
+		__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set device requirements.
+	 */
+	if (!rt2x00_is_soc(rt2x00dev))
+		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
+	if (!rt2800_hwcrypt_disabled(rt2x00dev))
+		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
+	if (rt2x00_is_usb(rt2x00dev))
+		__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+	else {
+		__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+		__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
+	}
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_probe_hw);
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+void rt2800_get_key_seq(struct ieee80211_hw *hw,
+			struct ieee80211_key_conf *key,
+			struct ieee80211_key_seq *seq)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct mac_iveiv_entry iveiv_entry;
+	u32 offset;
+
+	if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
+		return;
+
+	offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
+	rt2800_register_multiread(rt2x00dev, offset,
+				      &iveiv_entry, sizeof(iveiv_entry));
+
+	memcpy(&seq->tkip.iv16, &iveiv_entry.iv[0], 2);
+	memcpy(&seq->tkip.iv32, &iveiv_entry.iv[4], 4);
+}
+EXPORT_SYMBOL_GPL(rt2800_get_key_seq);
+
+int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u32 reg;
+	bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
+
+	rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
+	rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
+	rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
+	rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
+	rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
+
+int rt2800_conf_tx(struct ieee80211_hw *hw,
+		   struct ieee80211_vif *vif, u16 queue_idx,
+		   const struct ieee80211_tx_queue_params *params)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+	struct rt2x00_field32 field;
+	int retval;
+	u32 reg;
+	u32 offset;
+
+	/*
+	 * First pass the configuration through rt2x00lib, that will
+	 * update the queue settings and validate the input. After that
+	 * we are free to update the registers based on the value
+	 * in the queue parameter.
+	 */
+	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
+	if (retval)
+		return retval;
+
+	/*
+	 * We only need to perform additional register initialization
+	 * for WMM queues/
+	 */
+	if (queue_idx >= 4)
+		return 0;
+
+	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+	/* Update WMM TXOP register */
+	offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
+	field.bit_offset = (queue_idx & 1) * 16;
+	field.bit_mask = 0xffff << field.bit_offset;
+
+	rt2800_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, field, queue->txop);
+	rt2800_register_write(rt2x00dev, offset, reg);
+
+	/* Update WMM registers */
+	field.bit_offset = queue_idx * 4;
+	field.bit_mask = 0xf << field.bit_offset;
+
+	rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
+	rt2x00_set_field32(&reg, field, queue->aifs);
+	rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_min);
+	rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
+
+	rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_max);
+	rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
+
+	/* Update EDCA registers */
+	offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
+
+	rt2800_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
+	rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
+	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
+	rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
+	rt2800_register_write(rt2x00dev, offset, reg);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800_conf_tx);
+
+u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
+	rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
+	tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
+
+	return tsf;
+}
+EXPORT_SYMBOL_GPL(rt2800_get_tsf);
+
+int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+			struct ieee80211_ampdu_params *params)
+{
+	struct ieee80211_sta *sta = params->sta;
+	enum ieee80211_ampdu_mlme_action action = params->action;
+	u16 tid = params->tid;
+	struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv;
+	int ret = 0;
+
+	/*
+	 * Don't allow aggregation for stations the hardware isn't aware
+	 * of because tx status reports for frames to an unknown station
+	 * always contain wcid=WCID_END+1 and thus we can't distinguish
+	 * between multiple stations which leads to unwanted situations
+	 * when the hw reorders frames due to aggregation.
+	 */
+	if (sta_priv->wcid > WCID_END)
+		return 1;
+
+	switch (action) {
+	case IEEE80211_AMPDU_RX_START:
+	case IEEE80211_AMPDU_RX_STOP:
+		/*
+		 * The hw itself takes care of setting up BlockAck mechanisms.
+		 * So, we only have to allow mac80211 to nagotiate a BlockAck
+		 * agreement. Once that is done, the hw will BlockAck incoming
+		 * AMPDUs without further setup.
+		 */
+		break;
+	case IEEE80211_AMPDU_TX_START:
+		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
+		break;
+	case IEEE80211_AMPDU_TX_STOP_CONT:
+	case IEEE80211_AMPDU_TX_STOP_FLUSH:
+	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
+		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
+		break;
+	case IEEE80211_AMPDU_TX_OPERATIONAL:
+		break;
+	default:
+		rt2x00_warn((struct rt2x00_dev *)hw->priv,
+			    "Unknown AMPDU action\n");
+	}
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
+
+int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
+		      struct survey_info *survey)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct ieee80211_conf *conf = &hw->conf;
+	u32 idle, busy, busy_ext;
+
+	if (idx != 0)
+		return -ENOENT;
+
+	survey->channel = conf->chandef.chan;
+
+	rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
+	rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
+	rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
+
+	if (idle || busy) {
+		survey->filled = SURVEY_INFO_TIME |
+				 SURVEY_INFO_TIME_BUSY |
+				 SURVEY_INFO_TIME_EXT_BUSY;
+
+		survey->time = (idle + busy) / 1000;
+		survey->time_busy = busy / 1000;
+		survey->time_ext_busy = busy_ext / 1000;
+	}
+
+	if (!(hw->conf.flags & IEEE80211_CONF_OFFCHANNEL))
+		survey->filled |= SURVEY_INFO_IN_USE;
+
+	return 0;
+
+}
+EXPORT_SYMBOL_GPL(rt2800_get_survey);
+
+MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2800lib.h b/drivers/net/wireless/rt2x00/rt2800lib.h
new file mode 100644
index 0000000..83f1a44
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800lib.h
@@ -0,0 +1,230 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Bartlomiej Zolnierkiewicz
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef RT2800LIB_H
+#define RT2800LIB_H
+
+struct rt2800_ops {
+	void (*register_read)(struct rt2x00_dev *rt2x00dev,
+			      const unsigned int offset, u32 *value);
+	void (*register_read_lock)(struct rt2x00_dev *rt2x00dev,
+				   const unsigned int offset, u32 *value);
+	void (*register_write)(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int offset, u32 value);
+	void (*register_write_lock)(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int offset, u32 value);
+
+	void (*register_multiread)(struct rt2x00_dev *rt2x00dev,
+				   const unsigned int offset,
+				   void *value, const u32 length);
+	void (*register_multiwrite)(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int offset,
+				    const void *value, const u32 length);
+
+	int (*regbusy_read)(struct rt2x00_dev *rt2x00dev,
+			    const unsigned int offset,
+			    const struct rt2x00_field32 field, u32 *reg);
+
+	int (*read_eeprom)(struct rt2x00_dev *rt2x00dev);
+	bool (*hwcrypt_disabled)(struct rt2x00_dev *rt2x00dev);
+
+	int (*drv_write_firmware)(struct rt2x00_dev *rt2x00dev,
+				  const u8 *data, const size_t len);
+	int (*drv_init_registers)(struct rt2x00_dev *rt2x00dev);
+	__le32 *(*drv_get_txwi)(struct queue_entry *entry);
+};
+
+static inline void rt2800_register_read(struct rt2x00_dev *rt2x00dev,
+					const unsigned int offset,
+					u32 *value)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_read(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_read_lock(struct rt2x00_dev *rt2x00dev,
+					     const unsigned int offset,
+					     u32 *value)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_read_lock(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_write(struct rt2x00_dev *rt2x00dev,
+					 const unsigned int offset,
+					 u32 value)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_write(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_write_lock(struct rt2x00_dev *rt2x00dev,
+					      const unsigned int offset,
+					      u32 value)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_write_lock(rt2x00dev, offset, value);
+}
+
+static inline void rt2800_register_multiread(struct rt2x00_dev *rt2x00dev,
+					     const unsigned int offset,
+					     void *value, const u32 length)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_multiread(rt2x00dev, offset, value, length);
+}
+
+static inline void rt2800_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+					      const unsigned int offset,
+					      const void *value,
+					      const u32 length)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	rt2800ops->register_multiwrite(rt2x00dev, offset, value, length);
+}
+
+static inline int rt2800_regbusy_read(struct rt2x00_dev *rt2x00dev,
+				      const unsigned int offset,
+				      const struct rt2x00_field32 field,
+				      u32 *reg)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	return rt2800ops->regbusy_read(rt2x00dev, offset, field, reg);
+}
+
+static inline int rt2800_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	return rt2800ops->read_eeprom(rt2x00dev);
+}
+
+static inline bool rt2800_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	return rt2800ops->hwcrypt_disabled(rt2x00dev);
+}
+
+static inline int rt2800_drv_write_firmware(struct rt2x00_dev *rt2x00dev,
+					    const u8 *data, const size_t len)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	return rt2800ops->drv_write_firmware(rt2x00dev, data, len);
+}
+
+static inline int rt2800_drv_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	const struct rt2800_ops *rt2800ops = rt2x00dev->ops->drv;
+
+	return rt2800ops->drv_init_registers(rt2x00dev);
+}
+
+static inline __le32 *rt2800_drv_get_txwi(struct queue_entry *entry)
+{
+	const struct rt2800_ops *rt2800ops = entry->queue->rt2x00dev->ops->drv;
+
+	return rt2800ops->drv_get_txwi(entry);
+}
+
+void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
+			const u8 command, const u8 token,
+			const u8 arg0, const u8 arg1);
+
+int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev);
+int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
+			  const u8 *data, const size_t len);
+int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
+			 const u8 *data, const size_t len);
+
+void rt2800_write_tx_data(struct queue_entry *entry,
+			  struct txentry_desc *txdesc);
+void rt2800_process_rxwi(struct queue_entry *entry, struct rxdone_entry_desc *txdesc);
+
+void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32* txwi);
+
+void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc);
+void rt2800_clear_beacon(struct queue_entry *entry);
+
+extern const struct rt2x00debug rt2800_rt2x00debug;
+
+int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev);
+int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_crypto *crypto,
+			     struct ieee80211_key_conf *key);
+int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00lib_crypto *crypto,
+			       struct ieee80211_key_conf *key);
+int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
+		   struct ieee80211_sta *sta);
+int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid);
+void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
+			  const unsigned int filter_flags);
+void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
+			struct rt2x00intf_conf *conf, const unsigned int flags);
+void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
+		       u32 changed);
+void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant);
+void rt2800_config(struct rt2x00_dev *rt2x00dev,
+		   struct rt2x00lib_conf *libconf,
+		   const unsigned int flags);
+void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual);
+void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual);
+void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
+		       const u32 count);
+void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev);
+void rt2800_vco_calibration(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev);
+void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev);
+int rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev);
+
+int rt2800_probe_hw(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_get_key_seq(struct ieee80211_hw *hw,
+			struct ieee80211_key_conf *key,
+			struct ieee80211_key_seq *seq);
+int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value);
+int rt2800_conf_tx(struct ieee80211_hw *hw,
+		   struct ieee80211_vif *vif, u16 queue_idx,
+		   const struct ieee80211_tx_queue_params *params);
+u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
+int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+			struct ieee80211_ampdu_params *params);
+int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
+		      struct survey_info *survey);
+void rt2800_disable_wpdma(struct rt2x00_dev *rt2x00dev);
+
+void rt2800_get_txwi_rxwi_size(struct rt2x00_dev *rt2x00dev,
+			       unsigned short *txwi_size,
+			       unsigned short *rxwi_size);
+
+#endif /* RT2800LIB_H */
diff --git a/drivers/net/wireless/rt2x00/rt2800mmio.c b/drivers/net/wireless/rt2x00/rt2800mmio.c
new file mode 100644
index 0000000..de4790b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800mmio.c
@@ -0,0 +1,871 @@
+/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ *	<http://rt2x00.serialmonkey.com>
+ *
+ *	This program is free software; you can redistribute it and/or modify
+ *	it under the terms of the GNU General Public License as published by
+ *	the Free Software Foundation; either version 2 of the License, or
+ *	(at your option) any later version.
+ *
+ *	This program is distributed in the hope that it will be useful,
+ *	but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ *	GNU General Public License for more details.
+ *
+ *	You should have received a copy of the GNU General Public License
+ *	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*	Module: rt2800mmio
+ *	Abstract: rt2800 MMIO device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/export.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2800.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+
+/*
+ * TX descriptor initialization
+ */
+__le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
+{
+	return (__le32 *) entry->skb->data;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
+
+void rt2800mmio_write_tx_desc(struct queue_entry *entry,
+			      struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *txd = entry_priv->desc;
+	u32 word;
+	const unsigned int txwi_size = entry->queue->winfo_size;
+
+	/*
+	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
+	 * must contains a TXWI structure + 802.11 header + padding + 802.11
+	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
+	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
+	 * data. It means that LAST_SEC0 is always 0.
+	 */
+
+	/*
+	 * Initialize TX descriptor
+	 */
+	word = 0;
+	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
+	rt2x00_desc_write(txd, 0, word);
+
+	word = 0;
+	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
+	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
+			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W1_BURST,
+			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
+	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
+	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
+	rt2x00_desc_write(txd, 1, word);
+
+	word = 0;
+	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
+			   skbdesc->skb_dma + txwi_size);
+	rt2x00_desc_write(txd, 2, word);
+
+	word = 0;
+	rt2x00_set_field32(&word, TXD_W3_WIV,
+			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
+	rt2x00_desc_write(txd, 3, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
+
+/*
+ * RX control handlers
+ */
+void rt2800mmio_fill_rxdone(struct queue_entry *entry,
+			    struct rxdone_entry_desc *rxdesc)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *rxd = entry_priv->desc;
+	u32 word;
+
+	rt2x00_desc_read(rxd, 3, &word);
+
+	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+	/*
+	 * Unfortunately we don't know the cipher type used during
+	 * decryption. This prevents us from correct providing
+	 * correct statistics through debugfs.
+	 */
+	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
+
+	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
+		/*
+		 * Hardware has stripped IV/EIV data from 802.11 frame during
+		 * decryption. Unfortunately the descriptor doesn't contain
+		 * any fields with the EIV/IV data either, so they can't
+		 * be restored by rt2x00lib.
+		 */
+		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+		/*
+		 * The hardware has already checked the Michael Mic and has
+		 * stripped it from the frame. Signal this to mac80211.
+		 */
+		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+			rxdesc->flags |= RX_FLAG_DECRYPTED;
+		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+	}
+
+	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
+		rxdesc->dev_flags |= RXDONE_L2PAD;
+
+	/*
+	 * Process the RXWI structure that is at the start of the buffer.
+	 */
+	rt2800_process_rxwi(entry, rxdesc);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
+
+/*
+ * Interrupt functions.
+ */
+static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
+{
+	struct ieee80211_conf conf = { .flags = 0 };
+	struct rt2x00lib_conf libconf = { .conf = &conf };
+
+	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
+}
+
+static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
+{
+	__le32 *txwi;
+	u32 word;
+	int wcid, tx_wcid;
+
+	wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
+
+	txwi = rt2800_drv_get_txwi(entry);
+	rt2x00_desc_read(txwi, 1, &word);
+	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
+
+	return (tx_wcid == wcid);
+}
+
+static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
+{
+	u32 status = *(u32 *)data;
+
+	/*
+	 * rt2800pci hardware might reorder frames when exchanging traffic
+	 * with multiple BA enabled STAs.
+	 *
+	 * For example, a tx queue
+	 *    [ STA1 | STA2 | STA1 | STA2 ]
+	 * can result in tx status reports
+	 *    [ STA1 | STA1 | STA2 | STA2 ]
+	 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
+	 *
+	 * To mitigate this effect, associate the tx status to the first frame
+	 * in the tx queue with a matching wcid.
+	 */
+	if (rt2800mmio_txdone_entry_check(entry, status) &&
+	    !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
+		/*
+		 * Got a matching frame, associate the tx status with
+		 * the frame
+		 */
+		entry->status = status;
+		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
+		return true;
+	}
+
+	/* Check the next frame */
+	return false;
+}
+
+static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
+{
+	u32 status = *(u32 *)data;
+
+	/*
+	 * Find the first frame without tx status and assign this status to it
+	 * regardless if it matches or not.
+	 */
+	if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
+		/*
+		 * Got a matching frame, associate the tx status with
+		 * the frame
+		 */
+		entry->status = status;
+		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
+		return true;
+	}
+
+	/* Check the next frame */
+	return false;
+}
+static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
+					      void *data)
+{
+	if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
+		rt2800_txdone_entry(entry, entry->status,
+				    rt2800mmio_get_txwi(entry));
+		return false;
+	}
+
+	/* No more frames to release */
+	return true;
+}
+
+static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	u32 status;
+	u8 qid;
+	int max_tx_done = 16;
+
+	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
+		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
+		if (unlikely(qid >= QID_RX)) {
+			/*
+			 * Unknown queue, this shouldn't happen. Just drop
+			 * this tx status.
+			 */
+			rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
+				    qid);
+			break;
+		}
+
+		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
+		if (unlikely(queue == NULL)) {
+			/*
+			 * The queue is NULL, this shouldn't happen. Stop
+			 * processing here and drop the tx status
+			 */
+			rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
+				    qid);
+			break;
+		}
+
+		if (unlikely(rt2x00queue_empty(queue))) {
+			/*
+			 * The queue is empty. Stop processing here
+			 * and drop the tx status.
+			 */
+			rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
+				    qid);
+			break;
+		}
+
+		/*
+		 * Let's associate this tx status with the first
+		 * matching frame.
+		 */
+		if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
+						Q_INDEX, &status,
+						rt2800mmio_txdone_find_entry)) {
+			/*
+			 * We cannot match the tx status to any frame, so just
+			 * use the first one.
+			 */
+			if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
+							Q_INDEX, &status,
+							rt2800mmio_txdone_match_first)) {
+				rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
+					    qid);
+				break;
+			}
+		}
+
+		/*
+		 * Release all frames with a valid tx status.
+		 */
+		rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
+					   Q_INDEX, NULL,
+					   rt2800mmio_txdone_release_entries);
+
+		if (--max_tx_done == 0)
+			break;
+	}
+
+	return !max_tx_done;
+}
+
+static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+					       struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
+	rt2x00_set_field32(&reg, irq_field, 1);
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+void rt2800mmio_txstatus_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2800mmio_txdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+
+	/*
+	 * No need to enable the tx status interrupt here as we always
+	 * leave it enabled to minimize the possibility of a tx status
+	 * register overflow. See comment in interrupt handler.
+	 */
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
+
+void rt2800mmio_pretbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2x00lib_pretbtt(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
+
+void rt2800mmio_tbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
+	u32 reg;
+
+	rt2x00lib_beacondone(rt2x00dev);
+
+	if (rt2x00dev->intf_ap_count) {
+		/*
+		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
+		 * causing beacon skew and as a result causing problems with
+		 * some powersaving clients over time. Shorten the beacon
+		 * interval every 64 beacons by 64us to mitigate this effect.
+		 */
+		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
+			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+					   (rt2x00dev->beacon_int * 16) - 1);
+			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
+			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
+					   (rt2x00dev->beacon_int * 16));
+			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+		}
+		drv_data->tbtt_tick++;
+		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
+	}
+
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
+
+void rt2800mmio_rxdone_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2x00mmio_rxdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
+
+void rt2800mmio_autowake_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2800mmio_wakeup(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2800mmio_enable_interrupt(rt2x00dev,
+					    INT_MASK_CSR_AUTO_WAKEUP);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
+
+static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
+{
+	u32 status;
+	int i;
+
+	/*
+	 * The TX_FIFO_STATUS interrupt needs special care. We should
+	 * read TX_STA_FIFO but we should do it immediately as otherwise
+	 * the register can overflow and we would lose status reports.
+	 *
+	 * Hence, read the TX_STA_FIFO register and copy all tx status
+	 * reports into a kernel FIFO which is handled in the txstatus
+	 * tasklet. We use a tasklet to process the tx status reports
+	 * because we can schedule the tasklet multiple times (when the
+	 * interrupt fires again during tx status processing).
+	 *
+	 * Furthermore we don't disable the TX_FIFO_STATUS
+	 * interrupt here but leave it enabled so that the TX_STA_FIFO
+	 * can also be read while the tx status tasklet gets executed.
+	 *
+	 * Since we have only one producer and one consumer we don't
+	 * need to lock the kfifo.
+	 */
+	for (i = 0; i < rt2x00dev->tx->limit; i++) {
+		rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
+
+		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
+			break;
+
+		if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
+			rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
+			break;
+		}
+	}
+
+	/* Schedule the tasklet for processing the tx status. */
+	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+}
+
+irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
+{
+	struct rt2x00_dev *rt2x00dev = dev_instance;
+	u32 reg, mask;
+
+	/* Read status and ACK all interrupts */
+	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
+	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+	if (!reg)
+		return IRQ_NONE;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return IRQ_HANDLED;
+
+	/*
+	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
+	 * for interrupts and interrupt masks we can just use the value of
+	 * INT_SOURCE_CSR to create the interrupt mask.
+	 */
+	mask = ~reg;
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
+		rt2800mmio_txstatus_interrupt(rt2x00dev);
+		/*
+		 * Never disable the TX_FIFO_STATUS interrupt.
+		 */
+		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
+	}
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
+		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
+		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
+		tasklet_schedule(&rt2x00dev->autowake_tasklet);
+
+	/*
+	 * Disable all interrupts for which a tasklet was scheduled right now,
+	 * the tasklet will reenable the appropriate interrupts.
+	 */
+	spin_lock(&rt2x00dev->irqmask_lock);
+	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
+	reg &= mask;
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+	spin_unlock(&rt2x00dev->irqmask_lock);
+
+	return IRQ_HANDLED;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
+
+void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
+			   enum dev_state state)
+{
+	u32 reg;
+	unsigned long flags;
+
+	/*
+	 * When interrupts are being enabled, the interrupt registers
+	 * should clear the register to assure a clean state.
+	 */
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
+		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+	}
+
+	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+	reg = 0;
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
+		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
+		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
+		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
+		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
+	}
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+	if (state == STATE_RADIO_IRQ_OFF) {
+		/*
+		 * Wait for possibly running tasklets to finish.
+		 */
+		tasklet_kill(&rt2x00dev->txstatus_tasklet);
+		tasklet_kill(&rt2x00dev->rxdone_tasklet);
+		tasklet_kill(&rt2x00dev->autowake_tasklet);
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
+
+/*
+ * Queue handlers.
+ */
+void rt2800mmio_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
+		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
+		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
+		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
+		break;
+	default:
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
+
+void rt2800mmio_kick_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	struct queue_entry *entry;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		entry = rt2x00queue_get_entry(queue, Q_INDEX);
+		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
+					  entry->entry_idx);
+		break;
+	case QID_MGMT:
+		entry = rt2x00queue_get_entry(queue, Q_INDEX);
+		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
+					  entry->entry_idx);
+		break;
+	default:
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
+
+void rt2800mmio_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
+		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
+		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
+
+		/*
+		 * Wait for current invocation to finish. The tasklet
+		 * won't be scheduled anymore afterwards since we disabled
+		 * the TBTT and PRE TBTT timer.
+		 */
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+
+		break;
+	default:
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
+
+void rt2800mmio_queue_init(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	unsigned short txwi_size, rxwi_size;
+
+	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
+
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 128;
+		queue->data_size = AGGREGATION_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->winfo_size = rxwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 64;
+		queue->data_size = AGGREGATION_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->winfo_size = txwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 8;
+		queue->data_size = 0; /* No DMA required for beacons */
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->winfo_size = txwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_ATIM:
+		/* fallthrough */
+	default:
+		BUG();
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
+
+/*
+ * Initialization functions.
+ */
+bool rt2800mmio_get_entry_state(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+
+		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+
+		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
+
+void rt2800mmio_clear_entry(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
+		rt2x00_desc_write(entry_priv->desc, 1, word);
+
+		/*
+		 * Set RX IDX in register to inform hardware that we have
+		 * handled this entry and it is available for reuse again.
+		 */
+		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
+					  entry->entry_idx);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
+		rt2x00_desc_write(entry_priv->desc, 1, word);
+	}
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
+
+int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+
+	/*
+	 * Initialize registers.
+	 */
+	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
+				  entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
+				  rt2x00dev->tx[0].limit);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
+
+	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
+				  entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
+				  rt2x00dev->tx[1].limit);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
+
+	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
+				  entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
+				  rt2x00dev->tx[2].limit);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
+
+	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
+				  entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
+				  rt2x00dev->tx[3].limit);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
+
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
+
+	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
+
+	entry_priv = rt2x00dev->rx->entries[0].priv_data;
+	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
+				  entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
+				  rt2x00dev->rx[0].limit);
+	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
+				  rt2x00dev->rx[0].limit - 1);
+	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
+
+	rt2800_disable_wpdma(rt2x00dev);
+
+	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
+
+int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	/*
+	 * Reset DMA indexes
+	 */
+	rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
+	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
+	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
+	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
+
+	if (rt2x00_is_pcie(rt2x00dev) &&
+	    (rt2x00_rt(rt2x00dev, RT3090) ||
+	     rt2x00_rt(rt2x00dev, RT3390) ||
+	     rt2x00_rt(rt2x00dev, RT3572) ||
+	     rt2x00_rt(rt2x00dev, RT3593) ||
+	     rt2x00_rt(rt2x00dev, RT5390) ||
+	     rt2x00_rt(rt2x00dev, RT5392) ||
+	     rt2x00_rt(rt2x00dev, RT5592))) {
+		rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
+		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
+		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
+		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
+	}
+
+	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
+
+	reg = 0;
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
+
+/*
+ * Device state switch handlers.
+ */
+int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/* Wait for DMA, ignore error until we initialize queues. */
+	rt2800_wait_wpdma_ready(rt2x00dev);
+
+	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
+		return -EIO;
+
+	return rt2800_enable_radio(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2800 MMIO library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2800mmio.h b/drivers/net/wireless/rt2x00/rt2800mmio.h
new file mode 100644
index 0000000..b63312c
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800mmio.h
@@ -0,0 +1,163 @@
+/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ *	<http://rt2x00.serialmonkey.com>
+ *
+ *	This program is free software; you can redistribute it and/or modify
+ *	it under the terms of the GNU General Public License as published by
+ *	the Free Software Foundation; either version 2 of the License, or
+ *	(at your option) any later version.
+ *
+ *	This program is distributed in the hope that it will be useful,
+ *	but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ *	GNU General Public License for more details.
+ *
+ *	You should have received a copy of the GNU General Public License
+ *	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*	Module: rt2800mmio
+ *	Abstract: forward declarations for the rt2800mmio module.
+ */
+
+#ifndef RT2800MMIO_H
+#define RT2800MMIO_H
+
+/*
+ * Queue register offset macros
+ */
+#define TX_QUEUE_REG_OFFSET	0x10
+#define TX_BASE_PTR(__x)	(TX_BASE_PTR0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_MAX_CNT(__x)		(TX_MAX_CNT0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_CTX_IDX(__x)		(TX_CTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET))
+#define TX_DTX_IDX(__x)		(TX_DTX_IDX0 + ((__x) * TX_QUEUE_REG_OFFSET))
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			(4 * sizeof(__le32))
+#define RXD_DESC_SIZE			(4 * sizeof(__le32))
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ */
+#define TXD_W0_SD_PTR0			FIELD32(0xffffffff)
+
+/*
+ * Word1
+ */
+#define TXD_W1_SD_LEN1			FIELD32(0x00003fff)
+#define TXD_W1_LAST_SEC1		FIELD32(0x00004000)
+#define TXD_W1_BURST			FIELD32(0x00008000)
+#define TXD_W1_SD_LEN0			FIELD32(0x3fff0000)
+#define TXD_W1_LAST_SEC0		FIELD32(0x40000000)
+#define TXD_W1_DMA_DONE			FIELD32(0x80000000)
+
+/*
+ * Word2
+ */
+#define TXD_W2_SD_PTR1			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * WIV: Wireless Info Valid. 1: Driver filled WI, 0: DMA needs to copy WI
+ * QSEL: Select on-chip FIFO ID for 2nd-stage output scheduler.
+ *       0:MGMT, 1:HCCA 2:EDCA
+ */
+#define TXD_W3_WIV			FIELD32(0x01000000)
+#define TXD_W3_QSEL			FIELD32(0x06000000)
+#define TXD_W3_TCO			FIELD32(0x20000000)
+#define TXD_W3_UCO			FIELD32(0x40000000)
+#define TXD_W3_ICO			FIELD32(0x80000000)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ */
+#define RXD_W0_SDP0			FIELD32(0xffffffff)
+
+/*
+ * Word1
+ */
+#define RXD_W1_SDL1			FIELD32(0x00003fff)
+#define RXD_W1_SDL0			FIELD32(0x3fff0000)
+#define RXD_W1_LS0			FIELD32(0x40000000)
+#define RXD_W1_DMA_DONE			FIELD32(0x80000000)
+
+/*
+ * Word2
+ */
+#define RXD_W2_SDP1			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * AMSDU: RX with 802.3 header, not 802.11 header.
+ * DECRYPTED: This frame is being decrypted.
+ */
+#define RXD_W3_BA			FIELD32(0x00000001)
+#define RXD_W3_DATA			FIELD32(0x00000002)
+#define RXD_W3_NULLDATA			FIELD32(0x00000004)
+#define RXD_W3_FRAG			FIELD32(0x00000008)
+#define RXD_W3_UNICAST_TO_ME		FIELD32(0x00000010)
+#define RXD_W3_MULTICAST		FIELD32(0x00000020)
+#define RXD_W3_BROADCAST		FIELD32(0x00000040)
+#define RXD_W3_MY_BSS			FIELD32(0x00000080)
+#define RXD_W3_CRC_ERROR		FIELD32(0x00000100)
+#define RXD_W3_CIPHER_ERROR		FIELD32(0x00000600)
+#define RXD_W3_AMSDU			FIELD32(0x00000800)
+#define RXD_W3_HTC			FIELD32(0x00001000)
+#define RXD_W3_RSSI			FIELD32(0x00002000)
+#define RXD_W3_L2PAD			FIELD32(0x00004000)
+#define RXD_W3_AMPDU			FIELD32(0x00008000)
+#define RXD_W3_DECRYPTED		FIELD32(0x00010000)
+#define RXD_W3_PLCP_SIGNAL		FIELD32(0x00020000)
+#define RXD_W3_PLCP_RSSI		FIELD32(0x00040000)
+
+/* TX descriptor initialization */
+__le32 *rt2800mmio_get_txwi(struct queue_entry *entry);
+void rt2800mmio_write_tx_desc(struct queue_entry *entry,
+			      struct txentry_desc *txdesc);
+
+/* RX control handlers */
+void rt2800mmio_fill_rxdone(struct queue_entry *entry,
+			    struct rxdone_entry_desc *rxdesc);
+
+/* Interrupt functions */
+void rt2800mmio_txstatus_tasklet(unsigned long data);
+void rt2800mmio_pretbtt_tasklet(unsigned long data);
+void rt2800mmio_tbtt_tasklet(unsigned long data);
+void rt2800mmio_rxdone_tasklet(unsigned long data);
+void rt2800mmio_autowake_tasklet(unsigned long data);
+irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance);
+void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
+			   enum dev_state state);
+
+/* Queue handlers */
+void rt2800mmio_start_queue(struct data_queue *queue);
+void rt2800mmio_kick_queue(struct data_queue *queue);
+void rt2800mmio_stop_queue(struct data_queue *queue);
+void rt2800mmio_queue_init(struct data_queue *queue);
+
+/* Initialization functions */
+bool rt2800mmio_get_entry_state(struct queue_entry *entry);
+void rt2800mmio_clear_entry(struct queue_entry *entry);
+int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev);
+int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev);
+
+/* Device state switch handlers. */
+int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2800MMIO_H */
diff --git a/drivers/net/wireless/rt2x00/rt2800pci.c b/drivers/net/wireless/rt2x00/rt2800pci.c
new file mode 100644
index 0000000..0af2257
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800pci.c
@@ -0,0 +1,471 @@
+/*
+	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800pci
+	Abstract: rt2800pci device specific routines.
+	Supported chipsets: RT2800E & RT2800ED.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+#include "rt2800.h"
+#include "rt2800pci.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt = false;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+	return modparam_nohwcrypt;
+}
+
+static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
+{
+	unsigned int i;
+	u32 reg;
+
+	/*
+	 * SOC devices don't support MCU requests.
+	 */
+	if (rt2x00_is_soc(rt2x00dev))
+		return;
+
+	for (i = 0; i < 200; i++) {
+		rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
+
+		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
+		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
+		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
+		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
+			break;
+
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	if (i == 200)
+		rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
+
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+}
+
+static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
+
+	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
+	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
+	eeprom->reg_data_clock =
+	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
+	eeprom->reg_chip_select =
+	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
+}
+
+static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg = 0;
+
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
+			   !!eeprom->reg_data_clock);
+	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
+			   !!eeprom->reg_chip_select);
+
+	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
+}
+
+static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
+{
+	struct eeprom_93cx6 eeprom;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
+
+	eeprom.data = rt2x00dev;
+	eeprom.register_read = rt2800pci_eepromregister_read;
+	eeprom.register_write = rt2800pci_eepromregister_write;
+	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
+	{
+	case 0:
+		eeprom.width = PCI_EEPROM_WIDTH_93C46;
+		break;
+	case 1:
+		eeprom.width = PCI_EEPROM_WIDTH_93C66;
+		break;
+	default:
+		eeprom.width = PCI_EEPROM_WIDTH_93C86;
+		break;
+	}
+	eeprom.reg_data_in = 0;
+	eeprom.reg_data_out = 0;
+	eeprom.reg_data_clock = 0;
+	eeprom.reg_chip_select = 0;
+
+	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+			       EEPROM_SIZE / sizeof(u16));
+
+	return 0;
+}
+
+static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2800_efuse_detect(rt2x00dev);
+}
+
+static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2800_read_eeprom_efuse(rt2x00dev);
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
+	 */
+	if (rt2x00_rt(rt2x00dev, RT3290))
+		return FIRMWARE_RT3290;
+	else
+		return FIRMWARE_RT2860;
+}
+
+static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
+				    const u8 *data, const size_t len)
+{
+	u32 reg;
+
+	/*
+	 * enable Host program ram write selection
+	 */
+	reg = 0;
+	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
+	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
+
+	/*
+	 * Write firmware to device.
+	 */
+	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+				       data, len);
+
+	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
+	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
+
+	rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	retval = rt2800mmio_enable_radio(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/* After resume MCU_BOOT_SIGNAL will trash these. */
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+
+	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
+	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
+
+	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
+	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
+
+	return retval;
+}
+
+static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	if (state == STATE_AWAKE) {
+		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
+				   0, 0x02);
+		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
+	} else if (state == STATE_SLEEP) {
+		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
+					  0xffffffff);
+		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
+					  0xffffffff);
+		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
+				   0xff, 0x01);
+	}
+
+	return 0;
+}
+
+static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2800pci_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		/*
+		 * After the radio has been disabled, the device should
+		 * be put to sleep for powersaving.
+		 */
+		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt2800mmio_toggle_irq(rt2x00dev, state);
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2800pci_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	if (rt2800pci_efuse_detect(rt2x00dev))
+		retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
+	else
+		retval = rt2800pci_read_eeprom_pci(rt2x00dev);
+
+	return retval;
+}
+
+static const struct ieee80211_ops rt2800pci_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.get_key_seq		= rt2800_get_key_seq,
+	.set_rts_threshold	= rt2800_set_rts_threshold,
+	.sta_add		= rt2x00mac_sta_add,
+	.sta_remove		= rt2x00mac_sta_remove,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2800_conf_tx,
+	.get_tsf		= rt2800_get_tsf,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.ampdu_action		= rt2800_ampdu_action,
+	.flush			= rt2x00mac_flush,
+	.get_survey		= rt2800_get_survey,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2800_ops rt2800pci_rt2800_ops = {
+	.register_read		= rt2x00mmio_register_read,
+	.register_read_lock	= rt2x00mmio_register_read, /* same for PCI */
+	.register_write		= rt2x00mmio_register_write,
+	.register_write_lock	= rt2x00mmio_register_write, /* same for PCI */
+	.register_multiread	= rt2x00mmio_register_multiread,
+	.register_multiwrite	= rt2x00mmio_register_multiwrite,
+	.regbusy_read		= rt2x00mmio_regbusy_read,
+	.read_eeprom		= rt2800pci_read_eeprom,
+	.hwcrypt_disabled	= rt2800pci_hwcrypt_disabled,
+	.drv_write_firmware	= rt2800pci_write_firmware,
+	.drv_init_registers	= rt2800mmio_init_registers,
+	.drv_get_txwi		= rt2800mmio_get_txwi,
+};
+
+static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
+	.irq_handler		= rt2800mmio_interrupt,
+	.txstatus_tasklet	= rt2800mmio_txstatus_tasklet,
+	.pretbtt_tasklet	= rt2800mmio_pretbtt_tasklet,
+	.tbtt_tasklet		= rt2800mmio_tbtt_tasklet,
+	.rxdone_tasklet		= rt2800mmio_rxdone_tasklet,
+	.autowake_tasklet	= rt2800mmio_autowake_tasklet,
+	.probe_hw		= rt2800_probe_hw,
+	.get_firmware_name	= rt2800pci_get_firmware_name,
+	.check_firmware		= rt2800_check_firmware,
+	.load_firmware		= rt2800_load_firmware,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt2800mmio_get_entry_state,
+	.clear_entry		= rt2800mmio_clear_entry,
+	.set_device_state	= rt2800pci_set_device_state,
+	.rfkill_poll		= rt2800_rfkill_poll,
+	.link_stats		= rt2800_link_stats,
+	.reset_tuner		= rt2800_reset_tuner,
+	.link_tuner		= rt2800_link_tuner,
+	.gain_calibration	= rt2800_gain_calibration,
+	.vco_calibration	= rt2800_vco_calibration,
+	.start_queue		= rt2800mmio_start_queue,
+	.kick_queue		= rt2800mmio_kick_queue,
+	.stop_queue		= rt2800mmio_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt2800mmio_write_tx_desc,
+	.write_tx_data		= rt2800_write_tx_data,
+	.write_beacon		= rt2800_write_beacon,
+	.clear_beacon		= rt2800_clear_beacon,
+	.fill_rxdone		= rt2800mmio_fill_rxdone,
+	.config_shared_key	= rt2800_config_shared_key,
+	.config_pairwise_key	= rt2800_config_pairwise_key,
+	.config_filter		= rt2800_config_filter,
+	.config_intf		= rt2800_config_intf,
+	.config_erp		= rt2800_config_erp,
+	.config_ant		= rt2800_config_ant,
+	.config			= rt2800_config,
+	.sta_add		= rt2800_sta_add,
+	.sta_remove		= rt2800_sta_remove,
+};
+
+static const struct rt2x00_ops rt2800pci_ops = {
+	.name			= KBUILD_MODNAME,
+	.drv_data_size		= sizeof(struct rt2800_drv_data),
+	.max_ap_intf		= 8,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2800mmio_queue_init,
+	.lib			= &rt2800pci_rt2x00_ops,
+	.drv			= &rt2800pci_rt2800_ops,
+	.hw			= &rt2800pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2800pci module information.
+ */
+static const struct pci_device_id rt2800pci_device_table[] = {
+	{ PCI_DEVICE(0x1814, 0x0601) },
+	{ PCI_DEVICE(0x1814, 0x0681) },
+	{ PCI_DEVICE(0x1814, 0x0701) },
+	{ PCI_DEVICE(0x1814, 0x0781) },
+	{ PCI_DEVICE(0x1814, 0x3090) },
+	{ PCI_DEVICE(0x1814, 0x3091) },
+	{ PCI_DEVICE(0x1814, 0x3092) },
+	{ PCI_DEVICE(0x1432, 0x7708) },
+	{ PCI_DEVICE(0x1432, 0x7727) },
+	{ PCI_DEVICE(0x1432, 0x7728) },
+	{ PCI_DEVICE(0x1432, 0x7738) },
+	{ PCI_DEVICE(0x1432, 0x7748) },
+	{ PCI_DEVICE(0x1432, 0x7758) },
+	{ PCI_DEVICE(0x1432, 0x7768) },
+	{ PCI_DEVICE(0x1462, 0x891a) },
+	{ PCI_DEVICE(0x1a3b, 0x1059) },
+#ifdef CONFIG_RT2800PCI_RT3290
+	{ PCI_DEVICE(0x1814, 0x3290) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT33XX
+	{ PCI_DEVICE(0x1814, 0x3390) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT35XX
+	{ PCI_DEVICE(0x1432, 0x7711) },
+	{ PCI_DEVICE(0x1432, 0x7722) },
+	{ PCI_DEVICE(0x1814, 0x3060) },
+	{ PCI_DEVICE(0x1814, 0x3062) },
+	{ PCI_DEVICE(0x1814, 0x3562) },
+	{ PCI_DEVICE(0x1814, 0x3592) },
+	{ PCI_DEVICE(0x1814, 0x3593) },
+	{ PCI_DEVICE(0x1814, 0x359f) },
+#endif
+#ifdef CONFIG_RT2800PCI_RT53XX
+	{ PCI_DEVICE(0x1814, 0x5360) },
+	{ PCI_DEVICE(0x1814, 0x5362) },
+	{ PCI_DEVICE(0x1814, 0x5390) },
+	{ PCI_DEVICE(0x1814, 0x5392) },
+	{ PCI_DEVICE(0x1814, 0x539a) },
+	{ PCI_DEVICE(0x1814, 0x539b) },
+	{ PCI_DEVICE(0x1814, 0x539f) },
+#endif
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
+MODULE_FIRMWARE(FIRMWARE_RT2860);
+MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2800pci_probe(struct pci_dev *pci_dev,
+			   const struct pci_device_id *id)
+{
+	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
+}
+
+static struct pci_driver rt2800pci_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2800pci_device_table,
+	.probe		= rt2800pci_probe,
+	.remove		= rt2x00pci_remove,
+	.suspend	= rt2x00pci_suspend,
+	.resume		= rt2x00pci_resume,
+};
+
+module_pci_driver(rt2800pci_driver);
diff --git a/drivers/net/wireless/rt2x00/rt2800pci.h b/drivers/net/wireless/rt2x00/rt2800pci.h
new file mode 100644
index 0000000..9dfef46
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800pci.h
@@ -0,0 +1,42 @@
+/*
+	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800pci
+	Abstract: Data structures and registers for the rt2800pci module.
+	Supported chipsets: RT2800E & RT2800ED.
+ */
+
+#ifndef RT2800PCI_H
+#define RT2800PCI_H
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2860			"rt2860.bin"
+#define FIRMWARE_RT3290			"rt3290.bin"
+#define FIRMWARE_IMAGE_BASE		0x2000
+
+#endif /* RT2800PCI_H */
diff --git a/drivers/net/wireless/rt2x00/rt2800soc.c b/drivers/net/wireless/rt2x00/rt2800soc.c
new file mode 100644
index 0000000..a985a5a
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800soc.c
@@ -0,0 +1,260 @@
+/*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+ *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
+ *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+ *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
+ *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+ *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
+ *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+ *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
+ *	<http://rt2x00.serialmonkey.com>
+ *
+ *	This program is free software; you can redistribute it and/or modify
+ *	it under the terms of the GNU General Public License as published by
+ *	the Free Software Foundation; either version 2 of the License, or
+ *	(at your option) any later version.
+ *
+ *	This program is distributed in the hope that it will be useful,
+ *	but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ *	GNU General Public License for more details.
+ *
+ *	You should have received a copy of the GNU General Public License
+ *	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*	Module: rt2800soc
+ *	Abstract: rt2800 WiSoC specific routines.
+ */
+
+#include <linux/etherdevice.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00soc.h"
+#include "rt2800.h"
+#include "rt2800lib.h"
+#include "rt2800mmio.h"
+
+/* Allow hardware encryption to be disabled. */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800soc_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+	return modparam_nohwcrypt;
+}
+
+static void rt2800soc_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_disable_radio(rt2x00dev);
+	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
+	rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
+}
+
+static int rt2800soc_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2800mmio_enable_radio(rt2x00dev);
+		break;
+
+	case STATE_RADIO_OFF:
+		rt2800soc_disable_radio(rt2x00dev);
+		break;
+
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt2800mmio_toggle_irq(rt2x00dev, state);
+		break;
+
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		/* These states are not supported, but don't report an error */
+		retval = 0;
+		break;
+
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+static int rt2800soc_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
+
+	if (!base_addr)
+		return -ENOMEM;
+
+	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
+
+	iounmap(base_addr);
+	return 0;
+}
+
+/* Firmware functions */
+static char *rt2800soc_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+	WARN_ON_ONCE(1);
+	return NULL;
+}
+
+static int rt2800soc_load_firmware(struct rt2x00_dev *rt2x00dev,
+				   const u8 *data, const size_t len)
+{
+	WARN_ON_ONCE(1);
+	return 0;
+}
+
+static int rt2800soc_check_firmware(struct rt2x00_dev *rt2x00dev,
+				    const u8 *data, const size_t len)
+{
+	WARN_ON_ONCE(1);
+	return 0;
+}
+
+static int rt2800soc_write_firmware(struct rt2x00_dev *rt2x00dev,
+				    const u8 *data, const size_t len)
+{
+	WARN_ON_ONCE(1);
+	return 0;
+}
+
+static const struct ieee80211_ops rt2800soc_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.get_key_seq		= rt2800_get_key_seq,
+	.set_rts_threshold	= rt2800_set_rts_threshold,
+	.sta_add		= rt2x00mac_sta_add,
+	.sta_remove		= rt2x00mac_sta_remove,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2800_conf_tx,
+	.get_tsf		= rt2800_get_tsf,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.ampdu_action		= rt2800_ampdu_action,
+	.flush			= rt2x00mac_flush,
+	.get_survey		= rt2800_get_survey,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2800_ops rt2800soc_rt2800_ops = {
+	.register_read		= rt2x00mmio_register_read,
+	.register_read_lock	= rt2x00mmio_register_read, /* same for SoCs */
+	.register_write		= rt2x00mmio_register_write,
+	.register_write_lock	= rt2x00mmio_register_write, /* same for SoCs */
+	.register_multiread	= rt2x00mmio_register_multiread,
+	.register_multiwrite	= rt2x00mmio_register_multiwrite,
+	.regbusy_read		= rt2x00mmio_regbusy_read,
+	.read_eeprom		= rt2800soc_read_eeprom,
+	.hwcrypt_disabled	= rt2800soc_hwcrypt_disabled,
+	.drv_write_firmware	= rt2800soc_write_firmware,
+	.drv_init_registers	= rt2800mmio_init_registers,
+	.drv_get_txwi		= rt2800mmio_get_txwi,
+};
+
+static const struct rt2x00lib_ops rt2800soc_rt2x00_ops = {
+	.irq_handler		= rt2800mmio_interrupt,
+	.txstatus_tasklet	= rt2800mmio_txstatus_tasklet,
+	.pretbtt_tasklet	= rt2800mmio_pretbtt_tasklet,
+	.tbtt_tasklet		= rt2800mmio_tbtt_tasklet,
+	.rxdone_tasklet		= rt2800mmio_rxdone_tasklet,
+	.autowake_tasklet	= rt2800mmio_autowake_tasklet,
+	.probe_hw		= rt2800_probe_hw,
+	.get_firmware_name	= rt2800soc_get_firmware_name,
+	.check_firmware		= rt2800soc_check_firmware,
+	.load_firmware		= rt2800soc_load_firmware,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt2800mmio_get_entry_state,
+	.clear_entry		= rt2800mmio_clear_entry,
+	.set_device_state	= rt2800soc_set_device_state,
+	.rfkill_poll		= rt2800_rfkill_poll,
+	.link_stats		= rt2800_link_stats,
+	.reset_tuner		= rt2800_reset_tuner,
+	.link_tuner		= rt2800_link_tuner,
+	.gain_calibration	= rt2800_gain_calibration,
+	.vco_calibration	= rt2800_vco_calibration,
+	.start_queue		= rt2800mmio_start_queue,
+	.kick_queue		= rt2800mmio_kick_queue,
+	.stop_queue		= rt2800mmio_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt2800mmio_write_tx_desc,
+	.write_tx_data		= rt2800_write_tx_data,
+	.write_beacon		= rt2800_write_beacon,
+	.clear_beacon		= rt2800_clear_beacon,
+	.fill_rxdone		= rt2800mmio_fill_rxdone,
+	.config_shared_key	= rt2800_config_shared_key,
+	.config_pairwise_key	= rt2800_config_pairwise_key,
+	.config_filter		= rt2800_config_filter,
+	.config_intf		= rt2800_config_intf,
+	.config_erp		= rt2800_config_erp,
+	.config_ant		= rt2800_config_ant,
+	.config			= rt2800_config,
+	.sta_add		= rt2800_sta_add,
+	.sta_remove		= rt2800_sta_remove,
+};
+
+static const struct rt2x00_ops rt2800soc_ops = {
+	.name			= KBUILD_MODNAME,
+	.drv_data_size		= sizeof(struct rt2800_drv_data),
+	.max_ap_intf		= 8,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2800mmio_queue_init,
+	.lib			= &rt2800soc_rt2x00_ops,
+	.drv			= &rt2800soc_rt2800_ops,
+	.hw			= &rt2800soc_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+static int rt2800soc_probe(struct platform_device *pdev)
+{
+	return rt2x00soc_probe(pdev, &rt2800soc_ops);
+}
+
+static struct platform_driver rt2800soc_driver = {
+	.driver		= {
+		.name		= "rt2800_wmac",
+		.mod_name	= KBUILD_MODNAME,
+	},
+	.probe		= rt2800soc_probe,
+	.remove		= rt2x00soc_remove,
+	.suspend	= rt2x00soc_suspend,
+	.resume		= rt2x00soc_resume,
+};
+
+module_platform_driver(rt2800soc_driver);
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink WiSoC Wireless LAN driver.");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2800usb.c b/drivers/net/wireless/rt2x00/rt2800usb.c
new file mode 100644
index 0000000..bf9afbf
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800usb.c
@@ -0,0 +1,1462 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	Copyright (C) 2009 Axel Kollhofer <rain_maker@root-forum.org>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800usb
+	Abstract: rt2800usb device specific routines.
+	Supported chipsets: RT2800U.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt2800lib.h"
+#include "rt2800.h"
+#include "rt2800usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+static bool rt2800usb_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
+{
+	return modparam_nohwcrypt;
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2800usb_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
+		rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+		break;
+	case QID_BEACON:
+		rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
+		rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2800usb_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00usb_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
+		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
+		rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+		break;
+	case QID_BEACON:
+		rt2x00usb_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
+		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
+		rt2x00usb_register_write(rt2x00dev, BCN_TIME_CFG, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * test if there is an entry in any TX queue for which DMA is done
+ * but the TX status has not been returned yet
+ */
+static bool rt2800usb_txstatus_pending(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		if (rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE) !=
+		    rt2x00queue_get_entry(queue, Q_INDEX_DONE))
+			return true;
+	}
+	return false;
+}
+
+static inline bool rt2800usb_entry_txstatus_timeout(struct queue_entry *entry)
+{
+	bool tout;
+
+	if (!test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+		return false;
+
+	tout = time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
+	if (unlikely(tout))
+		rt2x00_dbg(entry->queue->rt2x00dev,
+			   "TX status timeout for entry %d in queue %d\n",
+			   entry->entry_idx, entry->queue->qid);
+	return tout;
+
+}
+
+static bool rt2800usb_txstatus_timeout(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	struct queue_entry *entry;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		if (rt2800usb_entry_txstatus_timeout(entry))
+			return true;
+	}
+	return false;
+}
+
+#define TXSTATUS_READ_INTERVAL 1000000
+
+static bool rt2800usb_tx_sta_fifo_read_completed(struct rt2x00_dev *rt2x00dev,
+						 int urb_status, u32 tx_status)
+{
+	bool valid;
+
+	if (urb_status) {
+		rt2x00_warn(rt2x00dev, "TX status read failed %d\n",
+			    urb_status);
+
+		goto stop_reading;
+	}
+
+	valid = rt2x00_get_field32(tx_status, TX_STA_FIFO_VALID);
+	if (valid) {
+		if (!kfifo_put(&rt2x00dev->txstatus_fifo, tx_status))
+			rt2x00_warn(rt2x00dev, "TX status FIFO overrun\n");
+
+		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+
+		/* Reschedule urb to read TX status again instantly */
+		return true;
+	}
+
+	/* Check if there is any entry that timedout waiting on TX status */
+	if (rt2800usb_txstatus_timeout(rt2x00dev))
+		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+
+	if (rt2800usb_txstatus_pending(rt2x00dev)) {
+		/* Read register after 1 ms */
+		hrtimer_start(&rt2x00dev->txstatus_timer,
+			      ktime_set(0, TXSTATUS_READ_INTERVAL),
+			      HRTIMER_MODE_REL);
+		return false;
+	}
+
+stop_reading:
+	clear_bit(TX_STATUS_READING, &rt2x00dev->flags);
+	/*
+	 * There is small race window above, between txstatus pending check and
+	 * clear_bit someone could do rt2x00usb_interrupt_txdone, so recheck
+	 * here again if status reading is needed.
+	 */
+	if (rt2800usb_txstatus_pending(rt2x00dev) &&
+	    !test_and_set_bit(TX_STATUS_READING, &rt2x00dev->flags))
+		return true;
+	else
+		return false;
+}
+
+static void rt2800usb_async_read_tx_status(struct rt2x00_dev *rt2x00dev)
+{
+
+	if (test_and_set_bit(TX_STATUS_READING, &rt2x00dev->flags))
+		return;
+
+	/* Read TX_STA_FIFO register after 2 ms */
+	hrtimer_start(&rt2x00dev->txstatus_timer,
+		      ktime_set(0, 2*TXSTATUS_READ_INTERVAL),
+		      HRTIMER_MODE_REL);
+}
+
+static void rt2800usb_tx_dma_done(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+	rt2800usb_async_read_tx_status(rt2x00dev);
+}
+
+static enum hrtimer_restart rt2800usb_tx_sta_fifo_timeout(struct hrtimer *timer)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(timer, struct rt2x00_dev, txstatus_timer);
+
+	rt2x00usb_register_read_async(rt2x00dev, TX_STA_FIFO,
+				      rt2800usb_tx_sta_fifo_read_completed);
+
+	return HRTIMER_NORESTART;
+}
+
+/*
+ * Firmware functions
+ */
+static int rt2800usb_autorun_detect(struct rt2x00_dev *rt2x00dev)
+{
+	__le32 *reg;
+	u32 fw_mode;
+	int ret;
+
+	reg = kmalloc(sizeof(*reg), GFP_KERNEL);
+	if (reg == NULL)
+		return -ENOMEM;
+	/* cannot use rt2x00usb_register_read here as it uses different
+	 * mode (MULTI_READ vs. DEVICE_MODE) and does not pass the
+	 * magic value USB_MODE_AUTORUN (0x11) to the device, thus the
+	 * returned value would be invalid.
+	 */
+	ret = rt2x00usb_vendor_request(rt2x00dev, USB_DEVICE_MODE,
+				       USB_VENDOR_REQUEST_IN, 0,
+				       USB_MODE_AUTORUN, reg, sizeof(*reg),
+				       REGISTER_TIMEOUT_FIRMWARE);
+	fw_mode = le32_to_cpu(*reg);
+	kfree(reg);
+	if (ret < 0)
+		return ret;
+
+	if ((fw_mode & 0x00000003) == 2)
+		return 1;
+
+	return 0;
+}
+
+static char *rt2800usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+	return FIRMWARE_RT2870;
+}
+
+static int rt2800usb_write_firmware(struct rt2x00_dev *rt2x00dev,
+				    const u8 *data, const size_t len)
+{
+	int status;
+	u32 offset;
+	u32 length;
+	int retval;
+
+	/*
+	 * Check which section of the firmware we need.
+	 */
+	if (rt2x00_rt(rt2x00dev, RT2860) ||
+	    rt2x00_rt(rt2x00dev, RT2872) ||
+	    rt2x00_rt(rt2x00dev, RT3070)) {
+		offset = 0;
+		length = 4096;
+	} else {
+		offset = 4096;
+		length = 4096;
+	}
+
+	/*
+	 * Write firmware to device.
+	 */
+	retval = rt2800usb_autorun_detect(rt2x00dev);
+	if (retval < 0)
+		return retval;
+	if (retval) {
+		rt2x00_info(rt2x00dev,
+			    "Firmware loading not required - NIC in AutoRun mode\n");
+		__clear_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+	} else {
+		rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+					      data + offset, length);
+	}
+
+	rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
+	rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
+
+	/*
+	 * Send firmware request to device to load firmware,
+	 * we need to specify a long timeout time.
+	 */
+	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
+					     0, USB_MODE_FIRMWARE,
+					     REGISTER_TIMEOUT_FIRMWARE);
+	if (status < 0) {
+		rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
+		return status;
+	}
+
+	msleep(10);
+	rt2x00usb_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt2800usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	/*
+	 * Wait until BBP and RF are ready.
+	 */
+	if (rt2800_wait_csr_ready(rt2x00dev))
+		return -EBUSY;
+
+	rt2x00usb_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
+	rt2x00usb_register_write(rt2x00dev, PBF_SYS_CTRL, reg & ~0x00002000);
+
+	reg = 0;
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
+	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
+	rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
+
+	rt2x00usb_register_write(rt2x00dev, USB_DMA_CFG, 0x00000000);
+
+	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+				    USB_MODE_RESET, REGISTER_TIMEOUT);
+
+	rt2x00usb_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
+
+	return 0;
+}
+
+static int rt2800usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev)))
+		return -EIO;
+
+	rt2x00usb_register_read(rt2x00dev, USB_DMA_CFG, &reg);
+	rt2x00_set_field32(&reg, USB_DMA_CFG_PHY_CLEAR, 0);
+	rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_EN, 0);
+	rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_TIMEOUT, 128);
+	/*
+	 * Total room for RX frames in kilobytes, PBF might still exceed
+	 * this limit so reduce the number to prevent errors.
+	 */
+	rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_AGG_LIMIT,
+			   ((rt2x00dev->rx->limit * DATA_FRAME_SIZE)
+			    / 1024) - 3);
+	rt2x00_set_field32(&reg, USB_DMA_CFG_RX_BULK_EN, 1);
+	rt2x00_set_field32(&reg, USB_DMA_CFG_TX_BULK_EN, 1);
+	rt2x00usb_register_write(rt2x00dev, USB_DMA_CFG, reg);
+
+	return rt2800_enable_radio(rt2x00dev);
+}
+
+static void rt2800usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	rt2800_disable_radio(rt2x00dev);
+}
+
+static int rt2800usb_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	if (state == STATE_AWAKE)
+		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 2);
+	else
+		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
+
+	return 0;
+}
+
+static int rt2800usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		/*
+		 * Before the radio can be enabled, the device first has
+		 * to be woken up. After that it needs a bit of time
+		 * to be fully awake and then the radio can be enabled.
+		 */
+		rt2800usb_set_state(rt2x00dev, STATE_AWAKE);
+		msleep(1);
+		retval = rt2800usb_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		/*
+		 * After the radio has been disabled, the device should
+		 * be put to sleep for powersaving.
+		 */
+		rt2800usb_disable_radio(rt2x00dev);
+		rt2800usb_set_state(rt2x00dev, STATE_SLEEP);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		/* No support, but no error either */
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2800usb_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * Watchdog handlers
+ */
+static void rt2800usb_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, TXRXQ_PCNT, &reg);
+	if (rt2x00_get_field32(reg, TXRXQ_PCNT_TX0Q)) {
+		rt2x00_warn(rt2x00dev, "TX HW queue 0 timed out, invoke forced kick\n");
+
+		rt2x00usb_register_write(rt2x00dev, PBF_CFG, 0xf40012);
+
+		for (i = 0; i < 10; i++) {
+			udelay(10);
+			if (!rt2x00_get_field32(reg, TXRXQ_PCNT_TX0Q))
+				break;
+		}
+
+		rt2x00usb_register_write(rt2x00dev, PBF_CFG, 0xf40006);
+	}
+
+	rt2x00usb_register_read(rt2x00dev, TXRXQ_PCNT, &reg);
+	if (rt2x00_get_field32(reg, TXRXQ_PCNT_TX1Q)) {
+		rt2x00_warn(rt2x00dev, "TX HW queue 1 timed out, invoke forced kick\n");
+
+		rt2x00usb_register_write(rt2x00dev, PBF_CFG, 0xf4000a);
+
+		for (i = 0; i < 10; i++) {
+			udelay(10);
+			if (!rt2x00_get_field32(reg, TXRXQ_PCNT_TX1Q))
+				break;
+		}
+
+		rt2x00usb_register_write(rt2x00dev, PBF_CFG, 0xf40006);
+	}
+
+	rt2x00usb_watchdog(rt2x00dev);
+}
+
+/*
+ * TX descriptor initialization
+ */
+static __le32 *rt2800usb_get_txwi(struct queue_entry *entry)
+{
+	if (entry->queue->qid == QID_BEACON)
+		return (__le32 *) (entry->skb->data);
+	else
+		return (__le32 *) (entry->skb->data + TXINFO_DESC_SIZE);
+}
+
+static void rt2800usb_write_tx_desc(struct queue_entry *entry,
+				    struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *txi = (__le32 *) entry->skb->data;
+	u32 word;
+
+	/*
+	 * Initialize TXINFO descriptor
+	 */
+	rt2x00_desc_read(txi, 0, &word);
+
+	/*
+	 * The size of TXINFO_W0_USB_DMA_TX_PKT_LEN is
+	 * TXWI + 802.11 header + L2 pad + payload + pad,
+	 * so need to decrease size of TXINFO.
+	 */
+	rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_PKT_LEN,
+			   roundup(entry->skb->len, 4) - TXINFO_DESC_SIZE);
+	rt2x00_set_field32(&word, TXINFO_W0_WIV,
+			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
+	rt2x00_set_field32(&word, TXINFO_W0_QSEL, 2);
+	rt2x00_set_field32(&word, TXINFO_W0_SW_USE_LAST_ROUND, 0);
+	rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_NEXT_VALID, 0);
+	rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_BURST,
+			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+	rt2x00_desc_write(txi, 0, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+	skbdesc->desc = txi;
+	skbdesc->desc_len = TXINFO_DESC_SIZE + entry->queue->winfo_size;
+}
+
+/*
+ * TX data initialization
+ */
+static int rt2800usb_get_tx_data_len(struct queue_entry *entry)
+{
+	/*
+	 * pad(1~3 bytes) is needed after each 802.11 payload.
+	 * USB end pad(4 bytes) is needed at each USB bulk out packet end.
+	 * TX frame format is :
+	 * | TXINFO | TXWI | 802.11 header | L2 pad | payload | pad | USB end pad |
+	 *                 |<------------- tx_pkt_len ------------->|
+	 */
+
+	return roundup(entry->skb->len, 4) + 4;
+}
+
+/*
+ * TX control handlers
+ */
+static enum txdone_entry_desc_flags
+rt2800usb_txdone_entry_check(struct queue_entry *entry, u32 reg)
+{
+	__le32 *txwi;
+	u32 word;
+	int wcid, ack, pid;
+	int tx_wcid, tx_ack, tx_pid, is_agg;
+
+	/*
+	 * This frames has returned with an IO error,
+	 * so the status report is not intended for this
+	 * frame.
+	 */
+	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+		return TXDONE_FAILURE;
+
+	wcid	= rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
+	ack	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
+	pid	= rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
+	is_agg	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_AGGRE);
+
+	/*
+	 * Validate if this TX status report is intended for
+	 * this entry by comparing the WCID/ACK/PID fields.
+	 */
+	txwi = rt2800usb_get_txwi(entry);
+
+	rt2x00_desc_read(txwi, 1, &word);
+	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
+	tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
+	tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
+
+	if (wcid != tx_wcid || ack != tx_ack || (!is_agg && pid != tx_pid)) {
+		rt2x00_dbg(entry->queue->rt2x00dev,
+			   "TX status report missed for queue %d entry %d\n",
+			   entry->queue->qid, entry->entry_idx);
+		return TXDONE_UNKNOWN;
+	}
+
+	return TXDONE_SUCCESS;
+}
+
+static void rt2800usb_txdone(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	struct queue_entry *entry;
+	u32 reg;
+	u8 qid;
+	enum txdone_entry_desc_flags done_status;
+
+	while (kfifo_get(&rt2x00dev->txstatus_fifo, &reg)) {
+		/*
+		 * TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus qid is
+		 * guaranteed to be one of the TX QIDs .
+		 */
+		qid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
+		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
+
+		if (unlikely(rt2x00queue_empty(queue))) {
+			rt2x00_dbg(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
+				   qid);
+			break;
+		}
+
+		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+		if (unlikely(test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+			     !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))) {
+			rt2x00_warn(rt2x00dev, "Data pending for entry %u in queue %u\n",
+				    entry->entry_idx, qid);
+			break;
+		}
+
+		done_status = rt2800usb_txdone_entry_check(entry, reg);
+		if (likely(done_status == TXDONE_SUCCESS))
+			rt2800_txdone_entry(entry, reg, rt2800usb_get_txwi(entry));
+		else
+			rt2x00lib_txdone_noinfo(entry, done_status);
+	}
+}
+
+static void rt2800usb_txdone_nostatus(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	struct queue_entry *entry;
+
+	/*
+	 * Process any trailing TX status reports for IO failures,
+	 * we loop until we find the first non-IO error entry. This
+	 * can either be a frame which is free, is being uploaded,
+	 * or has completed the upload but didn't have an entry
+	 * in the TX_STAT_FIFO register yet.
+	 */
+	tx_queue_for_each(rt2x00dev, queue) {
+		while (!rt2x00queue_empty(queue)) {
+			entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+			if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+			    !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+				break;
+
+			if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+				rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
+			else if (rt2800usb_entry_txstatus_timeout(entry))
+				rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
+			else
+				break;
+		}
+	}
+}
+
+static void rt2800usb_work_txdone(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, txdone_work);
+
+	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
+	       rt2800usb_txstatus_timeout(rt2x00dev)) {
+
+		rt2800usb_txdone(rt2x00dev);
+
+		rt2800usb_txdone_nostatus(rt2x00dev);
+
+		/*
+		 * The hw may delay sending the packet after DMA complete
+		 * if the medium is busy, thus the TX_STA_FIFO entry is
+		 * also delayed -> use a timer to retrieve it.
+		 */
+		if (rt2800usb_txstatus_pending(rt2x00dev))
+			rt2800usb_async_read_tx_status(rt2x00dev);
+	}
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2800usb_fill_rxdone(struct queue_entry *entry,
+				  struct rxdone_entry_desc *rxdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *rxi = (__le32 *)entry->skb->data;
+	__le32 *rxd;
+	u32 word;
+	int rx_pkt_len;
+
+	/*
+	 * Copy descriptor to the skbdesc->desc buffer, making it safe from
+	 * moving of frame data in rt2x00usb.
+	 */
+	memcpy(skbdesc->desc, rxi, skbdesc->desc_len);
+
+	/*
+	 * RX frame format is :
+	 * | RXINFO | RXWI | header | L2 pad | payload | pad | RXD | USB pad |
+	 *          |<------------ rx_pkt_len -------------->|
+	 */
+	rt2x00_desc_read(rxi, 0, &word);
+	rx_pkt_len = rt2x00_get_field32(word, RXINFO_W0_USB_DMA_RX_PKT_LEN);
+
+	/*
+	 * Remove the RXINFO structure from the sbk.
+	 */
+	skb_pull(entry->skb, RXINFO_DESC_SIZE);
+
+	/*
+	 * Check for rx_pkt_len validity. Return if invalid, leaving
+	 * rxdesc->size zeroed out by the upper level.
+	 */
+	if (unlikely(rx_pkt_len == 0 ||
+			rx_pkt_len > entry->queue->data_size)) {
+		rt2x00_err(entry->queue->rt2x00dev,
+			   "Bad frame size %d, forcing to 0\n", rx_pkt_len);
+		return;
+	}
+
+	rxd = (__le32 *)(entry->skb->data + rx_pkt_len);
+
+	/*
+	 * It is now safe to read the descriptor on all architectures.
+	 */
+	rt2x00_desc_read(rxd, 0, &word);
+
+	if (rt2x00_get_field32(word, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W0_CIPHER_ERROR);
+
+	if (rt2x00_get_field32(word, RXD_W0_DECRYPTED)) {
+		/*
+		 * Hardware has stripped IV/EIV data from 802.11 frame during
+		 * decryption. Unfortunately the descriptor doesn't contain
+		 * any fields with the EIV/IV data either, so they can't
+		 * be restored by rt2x00lib.
+		 */
+		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+		/*
+		 * The hardware has already checked the Michael Mic and has
+		 * stripped it from the frame. Signal this to mac80211.
+		 */
+		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+			rxdesc->flags |= RX_FLAG_DECRYPTED;
+		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+	}
+
+	if (rt2x00_get_field32(word, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+	if (rt2x00_get_field32(word, RXD_W0_L2PAD))
+		rxdesc->dev_flags |= RXDONE_L2PAD;
+
+	/*
+	 * Remove RXD descriptor from end of buffer.
+	 */
+	skb_trim(entry->skb, rx_pkt_len);
+
+	/*
+	 * Process the RXWI structure.
+	 */
+	rt2800_process_rxwi(entry, rxdesc);
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2800usb_efuse_detect(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	retval = rt2800usb_autorun_detect(rt2x00dev);
+	if (retval < 0)
+		return retval;
+	if (retval)
+		return 1;
+	return rt2800_efuse_detect(rt2x00dev);
+}
+
+static int rt2800usb_read_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	retval = rt2800usb_efuse_detect(rt2x00dev);
+	if (retval < 0)
+		return retval;
+	if (retval)
+		retval = rt2800_read_eeprom_efuse(rt2x00dev);
+	else
+		retval = rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom,
+					       EEPROM_SIZE);
+
+	return retval;
+}
+
+static int rt2800usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	retval = rt2800_probe_hw(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Set txstatus timer function.
+	 */
+	rt2x00dev->txstatus_timer.function = rt2800usb_tx_sta_fifo_timeout;
+
+	/*
+	 * Overwrite TX done handler
+	 */
+	INIT_WORK(&rt2x00dev->txdone_work, rt2800usb_work_txdone);
+
+	return 0;
+}
+
+static const struct ieee80211_ops rt2800usb_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_tim		= rt2x00mac_set_tim,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.get_key_seq		= rt2800_get_key_seq,
+	.set_rts_threshold	= rt2800_set_rts_threshold,
+	.sta_add		= rt2x00mac_sta_add,
+	.sta_remove		= rt2x00mac_sta_remove,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2800_conf_tx,
+	.get_tsf		= rt2800_get_tsf,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.ampdu_action		= rt2800_ampdu_action,
+	.flush			= rt2x00mac_flush,
+	.get_survey		= rt2800_get_survey,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2800_ops rt2800usb_rt2800_ops = {
+	.register_read		= rt2x00usb_register_read,
+	.register_read_lock	= rt2x00usb_register_read_lock,
+	.register_write		= rt2x00usb_register_write,
+	.register_write_lock	= rt2x00usb_register_write_lock,
+	.register_multiread	= rt2x00usb_register_multiread,
+	.register_multiwrite	= rt2x00usb_register_multiwrite,
+	.regbusy_read		= rt2x00usb_regbusy_read,
+	.read_eeprom		= rt2800usb_read_eeprom,
+	.hwcrypt_disabled	= rt2800usb_hwcrypt_disabled,
+	.drv_write_firmware	= rt2800usb_write_firmware,
+	.drv_init_registers	= rt2800usb_init_registers,
+	.drv_get_txwi		= rt2800usb_get_txwi,
+};
+
+static const struct rt2x00lib_ops rt2800usb_rt2x00_ops = {
+	.probe_hw		= rt2800usb_probe_hw,
+	.get_firmware_name	= rt2800usb_get_firmware_name,
+	.check_firmware		= rt2800_check_firmware,
+	.load_firmware		= rt2800_load_firmware,
+	.initialize		= rt2x00usb_initialize,
+	.uninitialize		= rt2x00usb_uninitialize,
+	.clear_entry		= rt2x00usb_clear_entry,
+	.set_device_state	= rt2800usb_set_device_state,
+	.rfkill_poll		= rt2800_rfkill_poll,
+	.link_stats		= rt2800_link_stats,
+	.reset_tuner		= rt2800_reset_tuner,
+	.link_tuner		= rt2800_link_tuner,
+	.gain_calibration	= rt2800_gain_calibration,
+	.vco_calibration	= rt2800_vco_calibration,
+	.watchdog		= rt2800usb_watchdog,
+	.start_queue		= rt2800usb_start_queue,
+	.kick_queue		= rt2x00usb_kick_queue,
+	.stop_queue		= rt2800usb_stop_queue,
+	.flush_queue		= rt2x00usb_flush_queue,
+	.tx_dma_done		= rt2800usb_tx_dma_done,
+	.write_tx_desc		= rt2800usb_write_tx_desc,
+	.write_tx_data		= rt2800_write_tx_data,
+	.write_beacon		= rt2800_write_beacon,
+	.clear_beacon		= rt2800_clear_beacon,
+	.get_tx_data_len	= rt2800usb_get_tx_data_len,
+	.fill_rxdone		= rt2800usb_fill_rxdone,
+	.config_shared_key	= rt2800_config_shared_key,
+	.config_pairwise_key	= rt2800_config_pairwise_key,
+	.config_filter		= rt2800_config_filter,
+	.config_intf		= rt2800_config_intf,
+	.config_erp		= rt2800_config_erp,
+	.config_ant		= rt2800_config_ant,
+	.config			= rt2800_config,
+	.sta_add		= rt2800_sta_add,
+	.sta_remove		= rt2800_sta_remove,
+};
+
+static void rt2800usb_queue_init(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	unsigned short txwi_size, rxwi_size;
+
+	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
+
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 128;
+		queue->data_size = AGGREGATION_SIZE;
+		queue->desc_size = RXINFO_DESC_SIZE;
+		queue->winfo_size = rxwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 16;
+		queue->data_size = AGGREGATION_SIZE;
+		queue->desc_size = TXINFO_DESC_SIZE;
+		queue->winfo_size = txwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 8;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXINFO_DESC_SIZE;
+		queue->winfo_size = txwi_size;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_ATIM:
+		/* fallthrough */
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt2800usb_ops = {
+	.name			= KBUILD_MODNAME,
+	.drv_data_size		= sizeof(struct rt2800_drv_data),
+	.max_ap_intf		= 8,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2800usb_queue_init,
+	.lib			= &rt2800usb_rt2x00_ops,
+	.drv			= &rt2800usb_rt2800_ops,
+	.hw			= &rt2800usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2800_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2800usb module information.
+ */
+static struct usb_device_id rt2800usb_device_table[] = {
+	/* Abocom */
+	{ USB_DEVICE(0x07b8, 0x2870) },
+	{ USB_DEVICE(0x07b8, 0x2770) },
+	{ USB_DEVICE(0x07b8, 0x3070) },
+	{ USB_DEVICE(0x07b8, 0x3071) },
+	{ USB_DEVICE(0x07b8, 0x3072) },
+	{ USB_DEVICE(0x1482, 0x3c09) },
+	/* AirTies */
+	{ USB_DEVICE(0x1eda, 0x2012) },
+	{ USB_DEVICE(0x1eda, 0x2210) },
+	{ USB_DEVICE(0x1eda, 0x2310) },
+	/* Allwin */
+	{ USB_DEVICE(0x8516, 0x2070) },
+	{ USB_DEVICE(0x8516, 0x2770) },
+	{ USB_DEVICE(0x8516, 0x2870) },
+	{ USB_DEVICE(0x8516, 0x3070) },
+	{ USB_DEVICE(0x8516, 0x3071) },
+	{ USB_DEVICE(0x8516, 0x3072) },
+	/* Alpha Networks */
+	{ USB_DEVICE(0x14b2, 0x3c06) },
+	{ USB_DEVICE(0x14b2, 0x3c07) },
+	{ USB_DEVICE(0x14b2, 0x3c09) },
+	{ USB_DEVICE(0x14b2, 0x3c12) },
+	{ USB_DEVICE(0x14b2, 0x3c23) },
+	{ USB_DEVICE(0x14b2, 0x3c25) },
+	{ USB_DEVICE(0x14b2, 0x3c27) },
+	{ USB_DEVICE(0x14b2, 0x3c28) },
+	{ USB_DEVICE(0x14b2, 0x3c2c) },
+	/* Amit */
+	{ USB_DEVICE(0x15c5, 0x0008) },
+	/* Askey */
+	{ USB_DEVICE(0x1690, 0x0740) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x1731) },
+	{ USB_DEVICE(0x0b05, 0x1732) },
+	{ USB_DEVICE(0x0b05, 0x1742) },
+	{ USB_DEVICE(0x0b05, 0x1784) },
+	{ USB_DEVICE(0x1761, 0x0b05) },
+	/* AzureWave */
+	{ USB_DEVICE(0x13d3, 0x3247) },
+	{ USB_DEVICE(0x13d3, 0x3273) },
+	{ USB_DEVICE(0x13d3, 0x3305) },
+	{ USB_DEVICE(0x13d3, 0x3307) },
+	{ USB_DEVICE(0x13d3, 0x3321) },
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x8053) },
+	{ USB_DEVICE(0x050d, 0x805c) },
+	{ USB_DEVICE(0x050d, 0x815c) },
+	{ USB_DEVICE(0x050d, 0x825a) },
+	{ USB_DEVICE(0x050d, 0x825b) },
+	{ USB_DEVICE(0x050d, 0x935a) },
+	{ USB_DEVICE(0x050d, 0x935b) },
+	/* Buffalo */
+	{ USB_DEVICE(0x0411, 0x00e8) },
+	{ USB_DEVICE(0x0411, 0x0158) },
+	{ USB_DEVICE(0x0411, 0x015d) },
+	{ USB_DEVICE(0x0411, 0x016f) },
+	{ USB_DEVICE(0x0411, 0x01a2) },
+	{ USB_DEVICE(0x0411, 0x01ee) },
+	{ USB_DEVICE(0x0411, 0x01a8) },
+	/* Corega */
+	{ USB_DEVICE(0x07aa, 0x002f) },
+	{ USB_DEVICE(0x07aa, 0x003c) },
+	{ USB_DEVICE(0x07aa, 0x003f) },
+	{ USB_DEVICE(0x18c5, 0x0012) },
+	/* D-Link */
+	{ USB_DEVICE(0x07d1, 0x3c09) },
+	{ USB_DEVICE(0x07d1, 0x3c0a) },
+	{ USB_DEVICE(0x07d1, 0x3c0d) },
+	{ USB_DEVICE(0x07d1, 0x3c0e) },
+	{ USB_DEVICE(0x07d1, 0x3c0f) },
+	{ USB_DEVICE(0x07d1, 0x3c11) },
+	{ USB_DEVICE(0x07d1, 0x3c13) },
+	{ USB_DEVICE(0x07d1, 0x3c15) },
+	{ USB_DEVICE(0x07d1, 0x3c16) },
+	{ USB_DEVICE(0x07d1, 0x3c17) },
+	{ USB_DEVICE(0x2001, 0x3317) },
+	{ USB_DEVICE(0x2001, 0x3c1b) },
+	{ USB_DEVICE(0x2001, 0x3c25) },
+	/* Draytek */
+	{ USB_DEVICE(0x07fa, 0x7712) },
+	/* DVICO */
+	{ USB_DEVICE(0x0fe9, 0xb307) },
+	/* Edimax */
+	{ USB_DEVICE(0x7392, 0x4085) },
+	{ USB_DEVICE(0x7392, 0x7711) },
+	{ USB_DEVICE(0x7392, 0x7717) },
+	{ USB_DEVICE(0x7392, 0x7718) },
+	{ USB_DEVICE(0x7392, 0x7722) },
+	/* Encore */
+	{ USB_DEVICE(0x203d, 0x1480) },
+	{ USB_DEVICE(0x203d, 0x14a9) },
+	/* EnGenius */
+	{ USB_DEVICE(0x1740, 0x9701) },
+	{ USB_DEVICE(0x1740, 0x9702) },
+	{ USB_DEVICE(0x1740, 0x9703) },
+	{ USB_DEVICE(0x1740, 0x9705) },
+	{ USB_DEVICE(0x1740, 0x9706) },
+	{ USB_DEVICE(0x1740, 0x9707) },
+	{ USB_DEVICE(0x1740, 0x9708) },
+	{ USB_DEVICE(0x1740, 0x9709) },
+	/* Gemtek */
+	{ USB_DEVICE(0x15a9, 0x0012) },
+	/* Gigabyte */
+	{ USB_DEVICE(0x1044, 0x800b) },
+	{ USB_DEVICE(0x1044, 0x800d) },
+	/* Hawking */
+	{ USB_DEVICE(0x0e66, 0x0001) },
+	{ USB_DEVICE(0x0e66, 0x0003) },
+	{ USB_DEVICE(0x0e66, 0x0009) },
+	{ USB_DEVICE(0x0e66, 0x000b) },
+	{ USB_DEVICE(0x0e66, 0x0013) },
+	{ USB_DEVICE(0x0e66, 0x0017) },
+	{ USB_DEVICE(0x0e66, 0x0018) },
+	/* I-O DATA */
+	{ USB_DEVICE(0x04bb, 0x0945) },
+	{ USB_DEVICE(0x04bb, 0x0947) },
+	{ USB_DEVICE(0x04bb, 0x0948) },
+	/* Linksys */
+	{ USB_DEVICE(0x13b1, 0x0031) },
+	{ USB_DEVICE(0x1737, 0x0070) },
+	{ USB_DEVICE(0x1737, 0x0071) },
+	{ USB_DEVICE(0x1737, 0x0077) },
+	{ USB_DEVICE(0x1737, 0x0078) },
+	/* Logitec */
+	{ USB_DEVICE(0x0789, 0x0162) },
+	{ USB_DEVICE(0x0789, 0x0163) },
+	{ USB_DEVICE(0x0789, 0x0164) },
+	{ USB_DEVICE(0x0789, 0x0166) },
+	/* Motorola */
+	{ USB_DEVICE(0x100d, 0x9031) },
+	/* MSI */
+	{ USB_DEVICE(0x0db0, 0x3820) },
+	{ USB_DEVICE(0x0db0, 0x3821) },
+	{ USB_DEVICE(0x0db0, 0x3822) },
+	{ USB_DEVICE(0x0db0, 0x3870) },
+	{ USB_DEVICE(0x0db0, 0x3871) },
+	{ USB_DEVICE(0x0db0, 0x6899) },
+	{ USB_DEVICE(0x0db0, 0x821a) },
+	{ USB_DEVICE(0x0db0, 0x822a) },
+	{ USB_DEVICE(0x0db0, 0x822b) },
+	{ USB_DEVICE(0x0db0, 0x822c) },
+	{ USB_DEVICE(0x0db0, 0x870a) },
+	{ USB_DEVICE(0x0db0, 0x871a) },
+	{ USB_DEVICE(0x0db0, 0x871b) },
+	{ USB_DEVICE(0x0db0, 0x871c) },
+	{ USB_DEVICE(0x0db0, 0x899a) },
+	/* Ovislink */
+	{ USB_DEVICE(0x1b75, 0x3070) },
+	{ USB_DEVICE(0x1b75, 0x3071) },
+	{ USB_DEVICE(0x1b75, 0x3072) },
+	{ USB_DEVICE(0x1b75, 0xa200) },
+	/* Para */
+	{ USB_DEVICE(0x20b8, 0x8888) },
+	/* Pegatron */
+	{ USB_DEVICE(0x1d4d, 0x0002) },
+	{ USB_DEVICE(0x1d4d, 0x000c) },
+	{ USB_DEVICE(0x1d4d, 0x000e) },
+	{ USB_DEVICE(0x1d4d, 0x0011) },
+	/* Philips */
+	{ USB_DEVICE(0x0471, 0x200f) },
+	/* Planex */
+	{ USB_DEVICE(0x2019, 0x5201) },
+	{ USB_DEVICE(0x2019, 0xab25) },
+	{ USB_DEVICE(0x2019, 0xed06) },
+	/* Quanta */
+	{ USB_DEVICE(0x1a32, 0x0304) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x2070) },
+	{ USB_DEVICE(0x148f, 0x2770) },
+	{ USB_DEVICE(0x148f, 0x2870) },
+	{ USB_DEVICE(0x148f, 0x3070) },
+	{ USB_DEVICE(0x148f, 0x3071) },
+	{ USB_DEVICE(0x148f, 0x3072) },
+	/* Samsung */
+	{ USB_DEVICE(0x04e8, 0x2018) },
+	/* Siemens */
+	{ USB_DEVICE(0x129b, 0x1828) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x0017) },
+	{ USB_DEVICE(0x0df6, 0x002b) },
+	{ USB_DEVICE(0x0df6, 0x002c) },
+	{ USB_DEVICE(0x0df6, 0x002d) },
+	{ USB_DEVICE(0x0df6, 0x0039) },
+	{ USB_DEVICE(0x0df6, 0x003b) },
+	{ USB_DEVICE(0x0df6, 0x003d) },
+	{ USB_DEVICE(0x0df6, 0x003e) },
+	{ USB_DEVICE(0x0df6, 0x003f) },
+	{ USB_DEVICE(0x0df6, 0x0040) },
+	{ USB_DEVICE(0x0df6, 0x0042) },
+	{ USB_DEVICE(0x0df6, 0x0047) },
+	{ USB_DEVICE(0x0df6, 0x0048) },
+	{ USB_DEVICE(0x0df6, 0x0051) },
+	{ USB_DEVICE(0x0df6, 0x005f) },
+	{ USB_DEVICE(0x0df6, 0x0060) },
+	/* SMC */
+	{ USB_DEVICE(0x083a, 0x6618) },
+	{ USB_DEVICE(0x083a, 0x7511) },
+	{ USB_DEVICE(0x083a, 0x7512) },
+	{ USB_DEVICE(0x083a, 0x7522) },
+	{ USB_DEVICE(0x083a, 0x8522) },
+	{ USB_DEVICE(0x083a, 0xa618) },
+	{ USB_DEVICE(0x083a, 0xa701) },
+	{ USB_DEVICE(0x083a, 0xa702) },
+	{ USB_DEVICE(0x083a, 0xa703) },
+	{ USB_DEVICE(0x083a, 0xb522) },
+	/* Sparklan */
+	{ USB_DEVICE(0x15a9, 0x0006) },
+	/* Sweex */
+	{ USB_DEVICE(0x177f, 0x0153) },
+	{ USB_DEVICE(0x177f, 0x0164) },
+	{ USB_DEVICE(0x177f, 0x0302) },
+	{ USB_DEVICE(0x177f, 0x0313) },
+	{ USB_DEVICE(0x177f, 0x0323) },
+	{ USB_DEVICE(0x177f, 0x0324) },
+	/* U-Media */
+	{ USB_DEVICE(0x157e, 0x300e) },
+	{ USB_DEVICE(0x157e, 0x3013) },
+	/* ZCOM */
+	{ USB_DEVICE(0x0cde, 0x0022) },
+	{ USB_DEVICE(0x0cde, 0x0025) },
+	/* Zinwell */
+	{ USB_DEVICE(0x5a57, 0x0280) },
+	{ USB_DEVICE(0x5a57, 0x0282) },
+	{ USB_DEVICE(0x5a57, 0x0283) },
+	{ USB_DEVICE(0x5a57, 0x5257) },
+	/* Zyxel */
+	{ USB_DEVICE(0x0586, 0x3416) },
+	{ USB_DEVICE(0x0586, 0x3418) },
+	{ USB_DEVICE(0x0586, 0x341a) },
+	{ USB_DEVICE(0x0586, 0x341e) },
+	{ USB_DEVICE(0x0586, 0x343e) },
+#ifdef CONFIG_RT2800USB_RT33XX
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x945b) },
+	/* D-Link */
+	{ USB_DEVICE(0x2001, 0x3c17) },
+	/* Panasonic */
+	{ USB_DEVICE(0x083a, 0xb511) },
+	/* Philips */
+	{ USB_DEVICE(0x0471, 0x20dd) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x3370) },
+	{ USB_DEVICE(0x148f, 0x8070) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x0050) },
+	/* Sweex */
+	{ USB_DEVICE(0x177f, 0x0163) },
+	{ USB_DEVICE(0x177f, 0x0165) },
+#endif
+#ifdef CONFIG_RT2800USB_RT35XX
+	/* Allwin */
+	{ USB_DEVICE(0x8516, 0x3572) },
+	/* Askey */
+	{ USB_DEVICE(0x1690, 0x0744) },
+	{ USB_DEVICE(0x1690, 0x0761) },
+	{ USB_DEVICE(0x1690, 0x0764) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x179d) },
+	/* Cisco */
+	{ USB_DEVICE(0x167b, 0x4001) },
+	/* EnGenius */
+	{ USB_DEVICE(0x1740, 0x9801) },
+	/* I-O DATA */
+	{ USB_DEVICE(0x04bb, 0x0944) },
+	/* Linksys */
+	{ USB_DEVICE(0x13b1, 0x002f) },
+	{ USB_DEVICE(0x1737, 0x0079) },
+	/* Logitec */
+	{ USB_DEVICE(0x0789, 0x0170) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x3572) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x0041) },
+	{ USB_DEVICE(0x0df6, 0x0062) },
+	{ USB_DEVICE(0x0df6, 0x0065) },
+	{ USB_DEVICE(0x0df6, 0x0066) },
+	{ USB_DEVICE(0x0df6, 0x0068) },
+	/* Toshiba */
+	{ USB_DEVICE(0x0930, 0x0a07) },
+	/* Zinwell */
+	{ USB_DEVICE(0x5a57, 0x0284) },
+#endif
+#ifdef CONFIG_RT2800USB_RT3573
+	/* AirLive */
+	{ USB_DEVICE(0x1b75, 0x7733) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x17bc) },
+	{ USB_DEVICE(0x0b05, 0x17ad) },
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x1103) },
+	/* Cameo */
+	{ USB_DEVICE(0x148f, 0xf301) },
+	/* D-Link */
+	{ USB_DEVICE(0x2001, 0x3c1f) },
+	/* Edimax */
+	{ USB_DEVICE(0x7392, 0x7733) },
+	/* Hawking */
+	{ USB_DEVICE(0x0e66, 0x0020) },
+	{ USB_DEVICE(0x0e66, 0x0021) },
+	/* I-O DATA */
+	{ USB_DEVICE(0x04bb, 0x094e) },
+	/* Linksys */
+	{ USB_DEVICE(0x13b1, 0x003b) },
+	/* Logitec */
+	{ USB_DEVICE(0x0789, 0x016b) },
+	/* NETGEAR */
+	{ USB_DEVICE(0x0846, 0x9012) },
+	{ USB_DEVICE(0x0846, 0x9013) },
+	{ USB_DEVICE(0x0846, 0x9019) },
+	/* Planex */
+	{ USB_DEVICE(0x2019, 0xed19) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x3573) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x0067) },
+	{ USB_DEVICE(0x0df6, 0x006a) },
+	{ USB_DEVICE(0x0df6, 0x006e) },
+	/* ZyXEL */
+	{ USB_DEVICE(0x0586, 0x3421) },
+#endif
+#ifdef CONFIG_RT2800USB_RT53XX
+	/* Arcadyan */
+	{ USB_DEVICE(0x043e, 0x7a12) },
+	{ USB_DEVICE(0x043e, 0x7a32) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x17e8) },
+	/* Azurewave */
+	{ USB_DEVICE(0x13d3, 0x3329) },
+	{ USB_DEVICE(0x13d3, 0x3365) },
+	/* D-Link */
+	{ USB_DEVICE(0x2001, 0x3c15) },
+	{ USB_DEVICE(0x2001, 0x3c19) },
+	{ USB_DEVICE(0x2001, 0x3c1c) },
+	{ USB_DEVICE(0x2001, 0x3c1d) },
+	{ USB_DEVICE(0x2001, 0x3c1e) },
+	{ USB_DEVICE(0x2001, 0x3c20) },
+	{ USB_DEVICE(0x2001, 0x3c22) },
+	{ USB_DEVICE(0x2001, 0x3c23) },
+	/* LG innotek */
+	{ USB_DEVICE(0x043e, 0x7a22) },
+	{ USB_DEVICE(0x043e, 0x7a42) },
+	/* Panasonic */
+	{ USB_DEVICE(0x04da, 0x1801) },
+	{ USB_DEVICE(0x04da, 0x1800) },
+	{ USB_DEVICE(0x04da, 0x23f6) },
+	/* Philips */
+	{ USB_DEVICE(0x0471, 0x2104) },
+	{ USB_DEVICE(0x0471, 0x2126) },
+	{ USB_DEVICE(0x0471, 0x2180) },
+	{ USB_DEVICE(0x0471, 0x2181) },
+	{ USB_DEVICE(0x0471, 0x2182) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x5370) },
+	{ USB_DEVICE(0x148f, 0x5372) },
+#endif
+#ifdef CONFIG_RT2800USB_RT55XX
+	/* Arcadyan */
+	{ USB_DEVICE(0x043e, 0x7a32) },
+	/* AVM GmbH */
+	{ USB_DEVICE(0x057c, 0x8501) },
+	/* Buffalo */
+	{ USB_DEVICE(0x0411, 0x0241) },
+	{ USB_DEVICE(0x0411, 0x0253) },
+	/* D-Link */
+	{ USB_DEVICE(0x2001, 0x3c1a) },
+	{ USB_DEVICE(0x2001, 0x3c21) },
+	/* Proware */
+	{ USB_DEVICE(0x043e, 0x7a13) },
+	/* Ralink */
+	{ USB_DEVICE(0x148f, 0x5572) },
+	/* TRENDnet */
+	{ USB_DEVICE(0x20f4, 0x724a) },
+#endif
+#ifdef CONFIG_RT2800USB_UNKNOWN
+	/*
+	 * Unclear what kind of devices these are (they aren't supported by the
+	 * vendor linux driver).
+	 */
+	/* Abocom */
+	{ USB_DEVICE(0x07b8, 0x3073) },
+	{ USB_DEVICE(0x07b8, 0x3074) },
+	/* Alpha Networks */
+	{ USB_DEVICE(0x14b2, 0x3c08) },
+	{ USB_DEVICE(0x14b2, 0x3c11) },
+	/* Amigo */
+	{ USB_DEVICE(0x0e0b, 0x9031) },
+	{ USB_DEVICE(0x0e0b, 0x9041) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x166a) },
+	{ USB_DEVICE(0x0b05, 0x1760) },
+	{ USB_DEVICE(0x0b05, 0x1761) },
+	{ USB_DEVICE(0x0b05, 0x1790) },
+	{ USB_DEVICE(0x0b05, 0x17a7) },
+	/* AzureWave */
+	{ USB_DEVICE(0x13d3, 0x3262) },
+	{ USB_DEVICE(0x13d3, 0x3284) },
+	{ USB_DEVICE(0x13d3, 0x3322) },
+	{ USB_DEVICE(0x13d3, 0x3340) },
+	{ USB_DEVICE(0x13d3, 0x3399) },
+	{ USB_DEVICE(0x13d3, 0x3400) },
+	{ USB_DEVICE(0x13d3, 0x3401) },
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x1003) },
+	/* Buffalo */
+	{ USB_DEVICE(0x0411, 0x012e) },
+	{ USB_DEVICE(0x0411, 0x0148) },
+	{ USB_DEVICE(0x0411, 0x0150) },
+	/* Corega */
+	{ USB_DEVICE(0x07aa, 0x0041) },
+	{ USB_DEVICE(0x07aa, 0x0042) },
+	{ USB_DEVICE(0x18c5, 0x0008) },
+	/* D-Link */
+	{ USB_DEVICE(0x07d1, 0x3c0b) },
+	/* Encore */
+	{ USB_DEVICE(0x203d, 0x14a1) },
+	/* EnGenius */
+	{ USB_DEVICE(0x1740, 0x0600) },
+	{ USB_DEVICE(0x1740, 0x0602) },
+	/* Gemtek */
+	{ USB_DEVICE(0x15a9, 0x0010) },
+	/* Gigabyte */
+	{ USB_DEVICE(0x1044, 0x800c) },
+	/* Hercules */
+	{ USB_DEVICE(0x06f8, 0xe036) },
+	/* Huawei */
+	{ USB_DEVICE(0x148f, 0xf101) },
+	/* I-O DATA */
+	{ USB_DEVICE(0x04bb, 0x094b) },
+	/* LevelOne */
+	{ USB_DEVICE(0x1740, 0x0605) },
+	{ USB_DEVICE(0x1740, 0x0615) },
+	/* Logitec */
+	{ USB_DEVICE(0x0789, 0x0168) },
+	{ USB_DEVICE(0x0789, 0x0169) },
+	/* Motorola */
+	{ USB_DEVICE(0x100d, 0x9032) },
+	/* Pegatron */
+	{ USB_DEVICE(0x05a6, 0x0101) },
+	{ USB_DEVICE(0x1d4d, 0x0010) },
+	/* Planex */
+	{ USB_DEVICE(0x2019, 0xab24) },
+	{ USB_DEVICE(0x2019, 0xab29) },
+	/* Qcom */
+	{ USB_DEVICE(0x18e8, 0x6259) },
+	/* RadioShack */
+	{ USB_DEVICE(0x08b9, 0x1197) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x003c) },
+	{ USB_DEVICE(0x0df6, 0x004a) },
+	{ USB_DEVICE(0x0df6, 0x004d) },
+	{ USB_DEVICE(0x0df6, 0x0053) },
+	{ USB_DEVICE(0x0df6, 0x0069) },
+	{ USB_DEVICE(0x0df6, 0x006f) },
+	{ USB_DEVICE(0x0df6, 0x0078) },
+	/* SMC */
+	{ USB_DEVICE(0x083a, 0xa512) },
+	{ USB_DEVICE(0x083a, 0xc522) },
+	{ USB_DEVICE(0x083a, 0xd522) },
+	{ USB_DEVICE(0x083a, 0xf511) },
+	/* Sweex */
+	{ USB_DEVICE(0x177f, 0x0254) },
+	/* TP-LINK */
+	{ USB_DEVICE(0xf201, 0x5370) },
+#endif
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2800 USB Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2870 USB chipset based cards");
+MODULE_DEVICE_TABLE(usb, rt2800usb_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2870);
+MODULE_LICENSE("GPL");
+
+static int rt2800usb_probe(struct usb_interface *usb_intf,
+			   const struct usb_device_id *id)
+{
+	return rt2x00usb_probe(usb_intf, &rt2800usb_ops);
+}
+
+static struct usb_driver rt2800usb_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2800usb_device_table,
+	.probe		= rt2800usb_probe,
+	.disconnect	= rt2x00usb_disconnect,
+	.suspend	= rt2x00usb_suspend,
+	.resume		= rt2x00usb_resume,
+	.reset_resume	= rt2x00usb_resume,
+	.disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt2800usb_driver);
diff --git a/drivers/net/wireless/rt2x00/rt2800usb.h b/drivers/net/wireless/rt2x00/rt2800usb.h
new file mode 100644
index 0000000..ea7cac0
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2800usb.h
@@ -0,0 +1,110 @@
+/*
+	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
+	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
+	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
+	Copyright (C) 2009 Axel Kollhofer <rain_maker@root-forum.org>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2800usb
+	Abstract: Data structures and registers for the rt2800usb module.
+	Supported chipsets: RT2800U.
+ */
+
+#ifndef RT2800USB_H
+#define RT2800USB_H
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2870			"rt2870.bin"
+#define FIRMWARE_IMAGE_BASE		0x3000
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXINFO_DESC_SIZE		(1 * sizeof(__le32))
+#define RXINFO_DESC_SIZE		(1 * sizeof(__le32))
+
+/*
+ * TX Info structure
+ */
+
+/*
+ * Word0
+ * WIV: Wireless Info Valid. 1: Driver filled WI,  0: DMA needs to copy WI
+ * QSEL: Select on-chip FIFO ID for 2nd-stage output scheduler.
+ *       0:MGMT, 1:HCCA 2:EDCA
+ * USB_DMA_NEXT_VALID: Used ONLY in USB bulk Aggregation, NextValid
+ * DMA_TX_BURST: used ONLY in USB bulk Aggregation.
+ *               Force USB DMA transmit frame from current selected endpoint
+ */
+#define TXINFO_W0_USB_DMA_TX_PKT_LEN	FIELD32(0x0000ffff)
+#define TXINFO_W0_WIV			FIELD32(0x01000000)
+#define TXINFO_W0_QSEL			FIELD32(0x06000000)
+#define TXINFO_W0_SW_USE_LAST_ROUND	FIELD32(0x08000000)
+#define TXINFO_W0_USB_DMA_NEXT_VALID	FIELD32(0x40000000)
+#define TXINFO_W0_USB_DMA_TX_BURST	FIELD32(0x80000000)
+
+/*
+ * RX Info structure
+ */
+
+/*
+ * Word 0
+ */
+
+#define RXINFO_W0_USB_DMA_RX_PKT_LEN	FIELD32(0x0000ffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * UNICAST_TO_ME: This RX frame is unicast to me.
+ * MULTICAST: This is a multicast frame.
+ * BROADCAST: This is a broadcast frame.
+ * MY_BSS: this frame belongs to the same BSSID.
+ * CRC_ERROR: CRC error.
+ * CIPHER_ERROR: 0: decryption okay, 1:ICV error, 2:MIC error, 3:KEY not valid.
+ * AMSDU: rx with 802.3 header, not 802.11 header.
+ */
+
+#define RXD_W0_BA			FIELD32(0x00000001)
+#define RXD_W0_DATA			FIELD32(0x00000002)
+#define RXD_W0_NULLDATA			FIELD32(0x00000004)
+#define RXD_W0_FRAG			FIELD32(0x00000008)
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000010)
+#define RXD_W0_MULTICAST		FIELD32(0x00000020)
+#define RXD_W0_BROADCAST		FIELD32(0x00000040)
+#define RXD_W0_MY_BSS			FIELD32(0x00000080)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000100)
+#define RXD_W0_CIPHER_ERROR		FIELD32(0x00000600)
+#define RXD_W0_AMSDU			FIELD32(0x00000800)
+#define RXD_W0_HTC			FIELD32(0x00001000)
+#define RXD_W0_RSSI			FIELD32(0x00002000)
+#define RXD_W0_L2PAD			FIELD32(0x00004000)
+#define RXD_W0_AMPDU			FIELD32(0x00008000)
+#define RXD_W0_DECRYPTED		FIELD32(0x00010000)
+#define RXD_W0_PLCP_RSSI		FIELD32(0x00020000)
+#define RXD_W0_CIPHER_ALG		FIELD32(0x00040000)
+#define RXD_W0_LAST_AMSDU		FIELD32(0x00080000)
+#define RXD_W0_PLCP_SIGNAL		FIELD32(0xfff00000)
+
+#endif /* RT2800USB_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00.h b/drivers/net/wireless/rt2x00/rt2x00.h
new file mode 100644
index 0000000..3282ddb
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00.h
@@ -0,0 +1,1478 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00
+	Abstract: rt2x00 global information.
+ */
+
+#ifndef RT2X00_H
+#define RT2X00_H
+
+#include <linux/bitops.h>
+#include <linux/interrupt.h>
+#include <linux/skbuff.h>
+#include <linux/workqueue.h>
+#include <linux/firmware.h>
+#include <linux/leds.h>
+#include <linux/mutex.h>
+#include <linux/etherdevice.h>
+#include <linux/input-polldev.h>
+#include <linux/kfifo.h>
+#include <linux/hrtimer.h>
+#include <linux/average.h>
+
+#include <net/mac80211.h>
+
+#include "rt2x00debug.h"
+#include "rt2x00dump.h"
+#include "rt2x00leds.h"
+#include "rt2x00reg.h"
+#include "rt2x00queue.h"
+
+/*
+ * Module information.
+ */
+#define DRV_VERSION	"2.3.0"
+#define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
+
+/* Debug definitions.
+ * Debug output has to be enabled during compile time.
+ */
+#ifdef CONFIG_RT2X00_DEBUG
+#define DEBUG
+#endif /* CONFIG_RT2X00_DEBUG */
+
+/* Utility printing macros
+ * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
+ */
+#define rt2x00_probe_err(fmt, ...)					\
+	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
+	       __func__, ##__VA_ARGS__)
+#define rt2x00_err(dev, fmt, ...)					\
+	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
+		  __func__, ##__VA_ARGS__)
+#define rt2x00_warn(dev, fmt, ...)					\
+	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
+		   __func__, ##__VA_ARGS__)
+#define rt2x00_info(dev, fmt, ...)					\
+	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
+		   __func__, ##__VA_ARGS__)
+
+/* Various debug levels */
+#define rt2x00_dbg(dev, fmt, ...)					\
+	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
+		  __func__, ##__VA_ARGS__)
+#define rt2x00_eeprom_dbg(dev, fmt, ...)				\
+	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
+		  __func__, ##__VA_ARGS__)
+
+/*
+ * Duration calculations
+ * The rate variable passed is: 100kbs.
+ * To convert from bytes to bits we multiply size with 8,
+ * then the size is multiplied with 10 to make the
+ * real rate -> rate argument correction.
+ */
+#define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
+#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
+
+/*
+ * Determine the number of L2 padding bytes required between the header and
+ * the payload.
+ */
+#define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
+
+/*
+ * Determine the alignment requirement,
+ * to make sure the 802.11 payload is padded to a 4-byte boundrary
+ * we must determine the address of the payload and calculate the
+ * amount of bytes needed to move the data.
+ */
+#define ALIGN_SIZE(__skb, __header) \
+	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
+
+/*
+ * Constants for extra TX headroom for alignment purposes.
+ */
+#define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
+#define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
+
+/*
+ * Standard timing and size defines.
+ * These values should follow the ieee80211 specifications.
+ */
+#define ACK_SIZE		14
+#define IEEE80211_HEADER	24
+#define PLCP			48
+#define BEACON			100
+#define PREAMBLE		144
+#define SHORT_PREAMBLE		72
+#define SLOT_TIME		20
+#define SHORT_SLOT_TIME		9
+#define SIFS			10
+#define PIFS			( SIFS + SLOT_TIME )
+#define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
+#define DIFS			( PIFS + SLOT_TIME )
+#define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
+#define EIFS			( SIFS + DIFS + \
+				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
+#define SHORT_EIFS		( SIFS + SHORT_DIFS + \
+				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
+
+enum rt2x00_chip_intf {
+	RT2X00_CHIP_INTF_PCI,
+	RT2X00_CHIP_INTF_PCIE,
+	RT2X00_CHIP_INTF_USB,
+	RT2X00_CHIP_INTF_SOC,
+};
+
+/*
+ * Chipset identification
+ * The chipset on the device is composed of a RT and RF chip.
+ * The chipset combination is important for determining device capabilities.
+ */
+struct rt2x00_chip {
+	u16 rt;
+#define RT2460		0x2460
+#define RT2560		0x2560
+#define RT2570		0x2570
+#define RT2661		0x2661
+#define RT2573		0x2573
+#define RT2860		0x2860	/* 2.4GHz */
+#define RT2872		0x2872	/* WSOC */
+#define RT2883		0x2883	/* WSOC */
+#define RT3070		0x3070
+#define RT3071		0x3071
+#define RT3090		0x3090	/* 2.4GHz PCIe */
+#define RT3290		0x3290
+#define RT3352		0x3352  /* WSOC */
+#define RT3390		0x3390
+#define RT3572		0x3572
+#define RT3593		0x3593
+#define RT3883		0x3883	/* WSOC */
+#define RT5390		0x5390  /* 2.4GHz */
+#define RT5392		0x5392  /* 2.4GHz */
+#define RT5592		0x5592
+
+	u16 rf;
+	u16 rev;
+
+	enum rt2x00_chip_intf intf;
+};
+
+/*
+ * RF register values that belong to a particular channel.
+ */
+struct rf_channel {
+	int channel;
+	u32 rf1;
+	u32 rf2;
+	u32 rf3;
+	u32 rf4;
+};
+
+/*
+ * Channel information structure
+ */
+struct channel_info {
+	unsigned int flags;
+#define GEOGRAPHY_ALLOWED	0x00000001
+
+	short max_power;
+	short default_power1;
+	short default_power2;
+	short default_power3;
+};
+
+/*
+ * Antenna setup values.
+ */
+struct antenna_setup {
+	enum antenna rx;
+	enum antenna tx;
+	u8 rx_chain_num;
+	u8 tx_chain_num;
+};
+
+/*
+ * Quality statistics about the currently active link.
+ */
+struct link_qual {
+	/*
+	 * Statistics required for Link tuning by driver
+	 * The rssi value is provided by rt2x00lib during the
+	 * link_tuner() callback function.
+	 * The false_cca field is filled during the link_stats()
+	 * callback function and could be used during the
+	 * link_tuner() callback function.
+	 */
+	int rssi;
+	int false_cca;
+
+	/*
+	 * VGC levels
+	 * Hardware driver will tune the VGC level during each call
+	 * to the link_tuner() callback function. This vgc_level is
+	 * is determined based on the link quality statistics like
+	 * average RSSI and the false CCA count.
+	 *
+	 * In some cases the drivers need to differentiate between
+	 * the currently "desired" VGC level and the level configured
+	 * in the hardware. The latter is important to reduce the
+	 * number of BBP register reads to reduce register access
+	 * overhead. For this reason we store both values here.
+	 */
+	u8 vgc_level;
+	u8 vgc_level_reg;
+
+	/*
+	 * Statistics required for Signal quality calculation.
+	 * These fields might be changed during the link_stats()
+	 * callback function.
+	 */
+	int rx_success;
+	int rx_failed;
+	int tx_success;
+	int tx_failed;
+};
+
+DECLARE_EWMA(rssi, 1024, 8)
+
+/*
+ * Antenna settings about the currently active link.
+ */
+struct link_ant {
+	/*
+	 * Antenna flags
+	 */
+	unsigned int flags;
+#define ANTENNA_RX_DIVERSITY	0x00000001
+#define ANTENNA_TX_DIVERSITY	0x00000002
+#define ANTENNA_MODE_SAMPLE	0x00000004
+
+	/*
+	 * Currently active TX/RX antenna setup.
+	 * When software diversity is used, this will indicate
+	 * which antenna is actually used at this time.
+	 */
+	struct antenna_setup active;
+
+	/*
+	 * RSSI history information for the antenna.
+	 * Used to determine when to switch antenna
+	 * when using software diversity.
+	 */
+	int rssi_history;
+
+	/*
+	 * Current RSSI average of the currently active antenna.
+	 * Similar to the avg_rssi in the link_qual structure
+	 * this value is updated by using the walking average.
+	 */
+	struct ewma_rssi rssi_ant;
+};
+
+/*
+ * To optimize the quality of the link we need to store
+ * the quality of received frames and periodically
+ * optimize the link.
+ */
+struct link {
+	/*
+	 * Link tuner counter
+	 * The number of times the link has been tuned
+	 * since the radio has been switched on.
+	 */
+	u32 count;
+
+	/*
+	 * Quality measurement values.
+	 */
+	struct link_qual qual;
+
+	/*
+	 * TX/RX antenna setup.
+	 */
+	struct link_ant ant;
+
+	/*
+	 * Currently active average RSSI value
+	 */
+	struct ewma_rssi avg_rssi;
+
+	/*
+	 * Work structure for scheduling periodic link tuning.
+	 */
+	struct delayed_work work;
+
+	/*
+	 * Work structure for scheduling periodic watchdog monitoring.
+	 * This work must be scheduled on the kernel workqueue, while
+	 * all other work structures must be queued on the mac80211
+	 * workqueue. This guarantees that the watchdog can schedule
+	 * other work structures and wait for their completion in order
+	 * to bring the device/driver back into the desired state.
+	 */
+	struct delayed_work watchdog_work;
+
+	/*
+	 * Work structure for scheduling periodic AGC adjustments.
+	 */
+	struct delayed_work agc_work;
+
+	/*
+	 * Work structure for scheduling periodic VCO calibration.
+	 */
+	struct delayed_work vco_work;
+};
+
+enum rt2x00_delayed_flags {
+	DELAYED_UPDATE_BEACON,
+};
+
+/*
+ * Interface structure
+ * Per interface configuration details, this structure
+ * is allocated as the private data for ieee80211_vif.
+ */
+struct rt2x00_intf {
+	/*
+	 * beacon->skb must be protected with the mutex.
+	 */
+	struct mutex beacon_skb_mutex;
+
+	/*
+	 * Entry in the beacon queue which belongs to
+	 * this interface. Each interface has its own
+	 * dedicated beacon entry.
+	 */
+	struct queue_entry *beacon;
+	bool enable_beacon;
+
+	/*
+	 * Actions that needed rescheduling.
+	 */
+	unsigned long delayed_flags;
+
+	/*
+	 * Software sequence counter, this is only required
+	 * for hardware which doesn't support hardware
+	 * sequence counting.
+	 */
+	atomic_t seqno;
+};
+
+static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
+{
+	return (struct rt2x00_intf *)vif->drv_priv;
+}
+
+/**
+ * struct hw_mode_spec: Hardware specifications structure
+ *
+ * Details about the supported modes, rates and channels
+ * of a particular chipset. This is used by rt2x00lib
+ * to build the ieee80211_hw_mode array for mac80211.
+ *
+ * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
+ * @supported_rates: Rate types which are supported (CCK, OFDM).
+ * @num_channels: Number of supported channels. This is used as array size
+ *	for @tx_power_a, @tx_power_bg and @channels.
+ * @channels: Device/chipset specific channel values (See &struct rf_channel).
+ * @channels_info: Additional information for channels (See &struct channel_info).
+ * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
+ */
+struct hw_mode_spec {
+	unsigned int supported_bands;
+#define SUPPORT_BAND_2GHZ	0x00000001
+#define SUPPORT_BAND_5GHZ	0x00000002
+
+	unsigned int supported_rates;
+#define SUPPORT_RATE_CCK	0x00000001
+#define SUPPORT_RATE_OFDM	0x00000002
+
+	unsigned int num_channels;
+	const struct rf_channel *channels;
+	const struct channel_info *channels_info;
+
+	struct ieee80211_sta_ht_cap ht;
+};
+
+/*
+ * Configuration structure wrapper around the
+ * mac80211 configuration structure.
+ * When mac80211 configures the driver, rt2x00lib
+ * can precalculate values which are equal for all
+ * rt2x00 drivers. Those values can be stored in here.
+ */
+struct rt2x00lib_conf {
+	struct ieee80211_conf *conf;
+
+	struct rf_channel rf;
+	struct channel_info channel;
+};
+
+/*
+ * Configuration structure for erp settings.
+ */
+struct rt2x00lib_erp {
+	int short_preamble;
+	int cts_protection;
+
+	u32 basic_rates;
+
+	int slot_time;
+
+	short sifs;
+	short pifs;
+	short difs;
+	short eifs;
+
+	u16 beacon_int;
+	u16 ht_opmode;
+};
+
+/*
+ * Configuration structure for hardware encryption.
+ */
+struct rt2x00lib_crypto {
+	enum cipher cipher;
+
+	enum set_key_cmd cmd;
+	const u8 *address;
+
+	u32 bssidx;
+
+	u8 key[16];
+	u8 tx_mic[8];
+	u8 rx_mic[8];
+
+	int wcid;
+};
+
+/*
+ * Configuration structure wrapper around the
+ * rt2x00 interface configuration handler.
+ */
+struct rt2x00intf_conf {
+	/*
+	 * Interface type
+	 */
+	enum nl80211_iftype type;
+
+	/*
+	 * TSF sync value, this is dependent on the operation type.
+	 */
+	enum tsf_sync sync;
+
+	/*
+	 * The MAC and BSSID addresses are simple array of bytes,
+	 * these arrays are little endian, so when sending the addresses
+	 * to the drivers, copy the it into a endian-signed variable.
+	 *
+	 * Note that all devices (except rt2500usb) have 32 bits
+	 * register word sizes. This means that whatever variable we
+	 * pass _must_ be a multiple of 32 bits. Otherwise the device
+	 * might not accept what we are sending to it.
+	 * This will also make it easier for the driver to write
+	 * the data to the device.
+	 */
+	__le32 mac[2];
+	__le32 bssid[2];
+};
+
+/*
+ * Private structure for storing STA details
+ * wcid: Wireless Client ID
+ */
+struct rt2x00_sta {
+	int wcid;
+};
+
+static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
+{
+	return (struct rt2x00_sta *)sta->drv_priv;
+}
+
+/*
+ * rt2x00lib callback functions.
+ */
+struct rt2x00lib_ops {
+	/*
+	 * Interrupt handlers.
+	 */
+	irq_handler_t irq_handler;
+
+	/*
+	 * TX status tasklet handler.
+	 */
+	void (*txstatus_tasklet) (unsigned long data);
+	void (*pretbtt_tasklet) (unsigned long data);
+	void (*tbtt_tasklet) (unsigned long data);
+	void (*rxdone_tasklet) (unsigned long data);
+	void (*autowake_tasklet) (unsigned long data);
+
+	/*
+	 * Device init handlers.
+	 */
+	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
+	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
+	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
+			       const u8 *data, const size_t len);
+	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
+			      const u8 *data, const size_t len);
+
+	/*
+	 * Device initialization/deinitialization handlers.
+	 */
+	int (*initialize) (struct rt2x00_dev *rt2x00dev);
+	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
+
+	/*
+	 * queue initialization handlers
+	 */
+	bool (*get_entry_state) (struct queue_entry *entry);
+	void (*clear_entry) (struct queue_entry *entry);
+
+	/*
+	 * Radio control handlers.
+	 */
+	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
+				 enum dev_state state);
+	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
+	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
+			    struct link_qual *qual);
+	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
+			     struct link_qual *qual);
+	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
+			    struct link_qual *qual, const u32 count);
+	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
+	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
+
+	/*
+	 * Data queue handlers.
+	 */
+	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
+	void (*start_queue) (struct data_queue *queue);
+	void (*kick_queue) (struct data_queue *queue);
+	void (*stop_queue) (struct data_queue *queue);
+	void (*flush_queue) (struct data_queue *queue, bool drop);
+	void (*tx_dma_done) (struct queue_entry *entry);
+
+	/*
+	 * TX control handlers
+	 */
+	void (*write_tx_desc) (struct queue_entry *entry,
+			       struct txentry_desc *txdesc);
+	void (*write_tx_data) (struct queue_entry *entry,
+			       struct txentry_desc *txdesc);
+	void (*write_beacon) (struct queue_entry *entry,
+			      struct txentry_desc *txdesc);
+	void (*clear_beacon) (struct queue_entry *entry);
+	int (*get_tx_data_len) (struct queue_entry *entry);
+
+	/*
+	 * RX control handlers
+	 */
+	void (*fill_rxdone) (struct queue_entry *entry,
+			     struct rxdone_entry_desc *rxdesc);
+
+	/*
+	 * Configuration handlers.
+	 */
+	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
+				  struct rt2x00lib_crypto *crypto,
+				  struct ieee80211_key_conf *key);
+	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
+				    struct rt2x00lib_crypto *crypto,
+				    struct ieee80211_key_conf *key);
+	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
+			       const unsigned int filter_flags);
+	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00_intf *intf,
+			     struct rt2x00intf_conf *conf,
+			     const unsigned int flags);
+#define CONFIG_UPDATE_TYPE		( 1 << 1 )
+#define CONFIG_UPDATE_MAC		( 1 << 2 )
+#define CONFIG_UPDATE_BSSID		( 1 << 3 )
+
+	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
+			    struct rt2x00lib_erp *erp,
+			    u32 changed);
+	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
+			    struct antenna_setup *ant);
+	void (*config) (struct rt2x00_dev *rt2x00dev,
+			struct rt2x00lib_conf *libconf,
+			const unsigned int changed_flags);
+	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
+			struct ieee80211_vif *vif,
+			struct ieee80211_sta *sta);
+	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
+			   int wcid);
+};
+
+/*
+ * rt2x00 driver callback operation structure.
+ */
+struct rt2x00_ops {
+	const char *name;
+	const unsigned int drv_data_size;
+	const unsigned int max_ap_intf;
+	const unsigned int eeprom_size;
+	const unsigned int rf_size;
+	const unsigned int tx_queues;
+	void (*queue_init)(struct data_queue *queue);
+	const struct rt2x00lib_ops *lib;
+	const void *drv;
+	const struct ieee80211_ops *hw;
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	const struct rt2x00debug *debugfs;
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt2x00 state flags
+ */
+enum rt2x00_state_flags {
+	/*
+	 * Device flags
+	 */
+	DEVICE_STATE_PRESENT,
+	DEVICE_STATE_REGISTERED_HW,
+	DEVICE_STATE_INITIALIZED,
+	DEVICE_STATE_STARTED,
+	DEVICE_STATE_ENABLED_RADIO,
+	DEVICE_STATE_SCANNING,
+
+	/*
+	 * Driver configuration
+	 */
+	CONFIG_CHANNEL_HT40,
+	CONFIG_POWERSAVING,
+	CONFIG_HT_DISABLED,
+	CONFIG_QOS_DISABLED,
+
+	/*
+	 * Mark we currently are sequentially reading TX_STA_FIFO register
+	 * FIXME: this is for only rt2800usb, should go to private data
+	 */
+	TX_STATUS_READING,
+};
+
+/*
+ * rt2x00 capability flags
+ */
+enum rt2x00_capability_flags {
+	/*
+	 * Requirements
+	 */
+	REQUIRE_FIRMWARE,
+	REQUIRE_BEACON_GUARD,
+	REQUIRE_ATIM_QUEUE,
+	REQUIRE_DMA,
+	REQUIRE_COPY_IV,
+	REQUIRE_L2PAD,
+	REQUIRE_TXSTATUS_FIFO,
+	REQUIRE_TASKLET_CONTEXT,
+	REQUIRE_SW_SEQNO,
+	REQUIRE_HT_TX_DESC,
+	REQUIRE_PS_AUTOWAKE,
+	REQUIRE_DELAYED_RFKILL,
+
+	/*
+	 * Capabilities
+	 */
+	CAPABILITY_HW_BUTTON,
+	CAPABILITY_HW_CRYPTO,
+	CAPABILITY_POWER_LIMIT,
+	CAPABILITY_CONTROL_FILTERS,
+	CAPABILITY_CONTROL_FILTER_PSPOLL,
+	CAPABILITY_PRE_TBTT_INTERRUPT,
+	CAPABILITY_LINK_TUNING,
+	CAPABILITY_FRAME_TYPE,
+	CAPABILITY_RF_SEQUENCE,
+	CAPABILITY_EXTERNAL_LNA_A,
+	CAPABILITY_EXTERNAL_LNA_BG,
+	CAPABILITY_DOUBLE_ANTENNA,
+	CAPABILITY_BT_COEXIST,
+	CAPABILITY_VCO_RECALIBRATION,
+};
+
+/*
+ * Interface combinations
+ */
+enum {
+	IF_COMB_AP = 0,
+	NUM_IF_COMB,
+};
+
+/*
+ * rt2x00 device structure.
+ */
+struct rt2x00_dev {
+	/*
+	 * Device structure.
+	 * The structure stored in here depends on the
+	 * system bus (PCI or USB).
+	 * When accessing this variable, the rt2x00dev_{pci,usb}
+	 * macros should be used for correct typecasting.
+	 */
+	struct device *dev;
+
+	/*
+	 * Callback functions.
+	 */
+	const struct rt2x00_ops *ops;
+
+	/*
+	 * Driver data.
+	 */
+	void *drv_data;
+
+	/*
+	 * IEEE80211 control structure.
+	 */
+	struct ieee80211_hw *hw;
+	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
+	enum ieee80211_band curr_band;
+	int curr_freq;
+
+	/*
+	 * If enabled, the debugfs interface structures
+	 * required for deregistration of debugfs.
+	 */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	struct rt2x00debug_intf *debugfs_intf;
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+	/*
+	 * LED structure for changing the LED status
+	 * by mac8011 or the kernel.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	struct rt2x00_led led_radio;
+	struct rt2x00_led led_assoc;
+	struct rt2x00_led led_qual;
+	u16 led_mcu_reg;
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Device state flags.
+	 * In these flags the current status is stored.
+	 * Access to these flags should occur atomically.
+	 */
+	unsigned long flags;
+
+	/*
+	 * Device capabiltiy flags.
+	 * In these flags the device/driver capabilities are stored.
+	 * Access to these flags should occur non-atomically.
+	 */
+	unsigned long cap_flags;
+
+	/*
+	 * Device information, Bus IRQ and name (PCI, SoC)
+	 */
+	int irq;
+	const char *name;
+
+	/*
+	 * Chipset identification.
+	 */
+	struct rt2x00_chip chip;
+
+	/*
+	 * hw capability specifications.
+	 */
+	struct hw_mode_spec spec;
+
+	/*
+	 * This is the default TX/RX antenna setup as indicated
+	 * by the device's EEPROM.
+	 */
+	struct antenna_setup default_ant;
+
+	/*
+	 * Register pointers
+	 * csr.base: CSR base register address. (PCI)
+	 * csr.cache: CSR cache for usb_control_msg. (USB)
+	 */
+	union csr {
+		void __iomem *base;
+		void *cache;
+	} csr;
+
+	/*
+	 * Mutex to protect register accesses.
+	 * For PCI and USB devices it protects against concurrent indirect
+	 * register access (BBP, RF, MCU) since accessing those
+	 * registers require multiple calls to the CSR registers.
+	 * For USB devices it also protects the csr_cache since that
+	 * field is used for normal CSR access and it cannot support
+	 * multiple callers simultaneously.
+	 */
+	struct mutex csr_mutex;
+
+	/*
+	 * Current packet filter configuration for the device.
+	 * This contains all currently active FIF_* flags send
+	 * to us by mac80211 during configure_filter().
+	 */
+	unsigned int packet_filter;
+
+	/*
+	 * Interface details:
+	 *  - Open ap interface count.
+	 *  - Open sta interface count.
+	 *  - Association count.
+	 *  - Beaconing enabled count.
+	 */
+	unsigned int intf_ap_count;
+	unsigned int intf_sta_count;
+	unsigned int intf_associated;
+	unsigned int intf_beaconing;
+
+	/*
+	 * Interface combinations
+	 */
+	struct ieee80211_iface_limit if_limits_ap;
+	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
+
+	/*
+	 * Link quality
+	 */
+	struct link link;
+
+	/*
+	 * EEPROM data.
+	 */
+	__le16 *eeprom;
+
+	/*
+	 * Active RF register values.
+	 * These are stored here so we don't need
+	 * to read the rf registers and can directly
+	 * use this value instead.
+	 * This field should be accessed by using
+	 * rt2x00_rf_read() and rt2x00_rf_write().
+	 */
+	u32 *rf;
+
+	/*
+	 * LNA gain
+	 */
+	short lna_gain;
+
+	/*
+	 * Current TX power value.
+	 */
+	u16 tx_power;
+
+	/*
+	 * Current retry values.
+	 */
+	u8 short_retry;
+	u8 long_retry;
+
+	/*
+	 * Rssi <-> Dbm offset
+	 */
+	u8 rssi_offset;
+
+	/*
+	 * Frequency offset.
+	 */
+	u8 freq_offset;
+
+	/*
+	 * Association id.
+	 */
+	u16 aid;
+
+	/*
+	 * Beacon interval.
+	 */
+	u16 beacon_int;
+
+	/**
+	 * Timestamp of last received beacon
+	 */
+	unsigned long last_beacon;
+
+	/*
+	 * Low level statistics which will have
+	 * to be kept up to date while device is running.
+	 */
+	struct ieee80211_low_level_stats low_level_stats;
+
+	/**
+	 * Work queue for all work which should not be placed
+	 * on the mac80211 workqueue (because of dependencies
+	 * between various work structures).
+	 */
+	struct workqueue_struct *workqueue;
+
+	/*
+	 * Scheduled work.
+	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
+	 * which means it cannot be placed on the hw->workqueue
+	 * due to RTNL locking requirements.
+	 */
+	struct work_struct intf_work;
+
+	/**
+	 * Scheduled work for TX/RX done handling (USB devices)
+	 */
+	struct work_struct rxdone_work;
+	struct work_struct txdone_work;
+
+	/*
+	 * Powersaving work
+	 */
+	struct delayed_work autowakeup_work;
+	struct work_struct sleep_work;
+
+	/*
+	 * Data queue arrays for RX, TX, Beacon and ATIM.
+	 */
+	unsigned int data_queues;
+	struct data_queue *rx;
+	struct data_queue *tx;
+	struct data_queue *bcn;
+	struct data_queue *atim;
+
+	/*
+	 * Firmware image.
+	 */
+	const struct firmware *fw;
+
+	/*
+	 * FIFO for storing tx status reports between isr and tasklet.
+	 */
+	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
+
+	/*
+	 * Timer to ensure tx status reports are read (rt2800usb).
+	 */
+	struct hrtimer txstatus_timer;
+
+	/*
+	 * Tasklet for processing tx status reports (rt2800pci).
+	 */
+	struct tasklet_struct txstatus_tasklet;
+	struct tasklet_struct pretbtt_tasklet;
+	struct tasklet_struct tbtt_tasklet;
+	struct tasklet_struct rxdone_tasklet;
+	struct tasklet_struct autowake_tasklet;
+
+	/*
+	 * Used for VCO periodic calibration.
+	 */
+	int rf_channel;
+
+	/*
+	 * Protect the interrupt mask register.
+	 */
+	spinlock_t irqmask_lock;
+
+	/*
+	 * List of BlockAckReq TX entries that need driver BlockAck processing.
+	 */
+	struct list_head bar_list;
+	spinlock_t bar_list_lock;
+
+	/* Extra TX headroom required for alignment purposes. */
+	unsigned int extra_tx_headroom;
+};
+
+struct rt2x00_bar_list_entry {
+	struct list_head list;
+	struct rcu_head head;
+
+	struct queue_entry *entry;
+	int block_acked;
+
+	/* Relevant parts of the IEEE80211 BAR header */
+	__u8 ra[6];
+	__u8 ta[6];
+	__le16 control;
+	__le16 start_seq_num;
+};
+
+/*
+ * Register defines.
+ * Some registers require multiple attempts before success,
+ * in those cases REGISTER_BUSY_COUNT attempts should be
+ * taken with a REGISTER_BUSY_DELAY interval. Due to USB
+ * bus delays, we do not have to loop so many times to wait
+ * for valid register value on that bus.
+ */
+#define REGISTER_BUSY_COUNT	100
+#define REGISTER_USB_BUSY_COUNT 20
+#define REGISTER_BUSY_DELAY	100
+
+/*
+ * Generic RF access.
+ * The RF is being accessed by word index.
+ */
+static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
+				  const unsigned int word, u32 *data)
+{
+	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
+	*data = rt2x00dev->rf[word - 1];
+}
+
+static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
+				   const unsigned int word, u32 data)
+{
+	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
+	rt2x00dev->rf[word - 1] = data;
+}
+
+/*
+ * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
+ */
+static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
+				       const unsigned int word)
+{
+	return (void *)&rt2x00dev->eeprom[word];
+}
+
+static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
+				      const unsigned int word, u16 *data)
+{
+	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
+}
+
+static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
+				       const unsigned int word, u16 data)
+{
+	rt2x00dev->eeprom[word] = cpu_to_le16(data);
+}
+
+static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int byte)
+{
+	return *(((u8 *)rt2x00dev->eeprom) + byte);
+}
+
+/*
+ * Chipset handlers
+ */
+static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
+				   const u16 rt, const u16 rf, const u16 rev)
+{
+	rt2x00dev->chip.rt = rt;
+	rt2x00dev->chip.rf = rf;
+	rt2x00dev->chip.rev = rev;
+
+	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
+		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
+		    rt2x00dev->chip.rev);
+}
+
+static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
+				 const u16 rt, const u16 rev)
+{
+	rt2x00dev->chip.rt = rt;
+	rt2x00dev->chip.rev = rev;
+
+	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
+		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
+}
+
+static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
+{
+	rt2x00dev->chip.rf = rf;
+
+	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
+		    rt2x00dev->chip.rf);
+}
+
+static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
+{
+	return (rt2x00dev->chip.rt == rt);
+}
+
+static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
+{
+	return (rt2x00dev->chip.rf == rf);
+}
+
+static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00dev->chip.rev;
+}
+
+static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
+				 const u16 rt, const u16 rev)
+{
+	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
+}
+
+static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
+				    const u16 rt, const u16 rev)
+{
+	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
+}
+
+static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
+				     const u16 rt, const u16 rev)
+{
+	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
+}
+
+static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
+					enum rt2x00_chip_intf intf)
+{
+	rt2x00dev->chip.intf = intf;
+}
+
+static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
+			       enum rt2x00_chip_intf intf)
+{
+	return (rt2x00dev->chip.intf == intf);
+}
+
+static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
+	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+}
+
+static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+}
+
+static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
+}
+
+static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
+}
+
+/* Helpers for capability flags */
+
+static inline bool
+rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
+		    enum rt2x00_capability_flags cap_flag)
+{
+	return test_bit(cap_flag, &rt2x00dev->cap_flags);
+}
+
+static inline bool
+rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
+}
+
+static inline bool
+rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
+}
+
+static inline bool
+rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
+}
+
+static inline bool
+rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
+}
+
+static inline bool
+rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
+}
+
+static inline bool
+rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
+}
+
+static inline bool
+rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
+}
+
+static inline bool
+rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
+}
+
+static inline bool
+rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
+}
+
+static inline bool
+rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
+}
+
+static inline bool
+rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
+}
+
+static inline bool
+rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
+}
+
+static inline bool
+rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
+{
+	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
+}
+
+/**
+ * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
+ * @entry: Pointer to &struct queue_entry
+ *
+ * Returns -ENOMEM if mapping fail, 0 otherwise.
+ */
+int rt2x00queue_map_txskb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_unmap_skb - Unmap a skb from DMA.
+ * @entry: Pointer to &struct queue_entry
+ */
+void rt2x00queue_unmap_skb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @queue: rt2x00 queue index (see &enum data_queue_qid).
+ *
+ * Returns NULL for non tx queues.
+ */
+static inline struct data_queue *
+rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
+			 const enum data_queue_qid queue)
+{
+	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
+		return &rt2x00dev->tx[queue];
+
+	if (queue == QID_ATIM)
+		return rt2x00dev->atim;
+
+	return NULL;
+}
+
+/**
+ * rt2x00queue_get_entry - Get queue entry where the given index points to.
+ * @queue: Pointer to &struct data_queue from where we obtain the entry.
+ * @index: Index identifier for obtaining the correct index.
+ */
+struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
+					  enum queue_index index);
+
+/**
+ * rt2x00queue_pause_queue - Pause a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will pause the data queue locally, preventing
+ * new frames to be added to the queue (while the hardware is
+ * still allowed to run).
+ */
+void rt2x00queue_pause_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_unpause_queue - unpause a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will unpause the data queue locally, allowing
+ * new frames to be added to the queue again.
+ */
+void rt2x00queue_unpause_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_start_queue - Start a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will start handling all pending frames in the queue.
+ */
+void rt2x00queue_start_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_stop_queue - Halt a data queue
+ * @queue: Pointer to &struct data_queue.
+ *
+ * This function will stop all pending frames in the queue.
+ */
+void rt2x00queue_stop_queue(struct data_queue *queue);
+
+/**
+ * rt2x00queue_flush_queue - Flush a data queue
+ * @queue: Pointer to &struct data_queue.
+ * @drop: True to drop all pending frames.
+ *
+ * This function will flush the queue. After this call
+ * the queue is guaranteed to be empty.
+ */
+void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
+
+/**
+ * rt2x00queue_start_queues - Start all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to start them
+ */
+void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00queue_stop_queues - Halt all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to stop
+ * any pending frames.
+ */
+void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00queue_flush_queues - Flush all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @drop: True to drop all pending frames.
+ *
+ * This function will loop through all available queues to flush
+ * any pending frames.
+ */
+void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
+
+/*
+ * Debugfs handlers.
+ */
+/**
+ * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @type: The type of frame that is being dumped.
+ * @skb: The skb containing the frame to be dumped.
+ */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+			    enum rt2x00_dump_type type, struct sk_buff *skb);
+#else
+static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+					  enum rt2x00_dump_type type,
+					  struct sk_buff *skb)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+/*
+ * Utility functions.
+ */
+u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
+			 struct ieee80211_vif *vif);
+
+/*
+ * Interrupt context handlers.
+ */
+void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_dmastart(struct queue_entry *entry);
+void rt2x00lib_dmadone(struct queue_entry *entry);
+void rt2x00lib_txdone(struct queue_entry *entry,
+		      struct txdone_entry_desc *txdesc);
+void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
+void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
+
+/*
+ * mac80211 handlers.
+ */
+void rt2x00mac_tx(struct ieee80211_hw *hw,
+		  struct ieee80211_tx_control *control,
+		  struct sk_buff *skb);
+int rt2x00mac_start(struct ieee80211_hw *hw);
+void rt2x00mac_stop(struct ieee80211_hw *hw);
+int rt2x00mac_add_interface(struct ieee80211_hw *hw,
+			    struct ieee80211_vif *vif);
+void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif);
+int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
+void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
+				unsigned int changed_flags,
+				unsigned int *total_flags,
+				u64 multicast);
+int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
+		      bool set);
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
+		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
+		      struct ieee80211_key_conf *key);
+#else
+#define rt2x00mac_set_key	NULL
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+		      struct ieee80211_sta *sta);
+int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+			 struct ieee80211_sta *sta);
+void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif,
+			     const u8 *mac_addr);
+void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif);
+int rt2x00mac_get_stats(struct ieee80211_hw *hw,
+			struct ieee80211_low_level_stats *stats);
+void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif,
+				struct ieee80211_bss_conf *bss_conf,
+				u32 changes);
+int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
+		      struct ieee80211_vif *vif, u16 queue,
+		      const struct ieee80211_tx_queue_params *params);
+void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
+void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+		     u32 queues, bool drop);
+int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
+int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
+void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
+			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
+bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
+
+/*
+ * Driver allocation handlers.
+ */
+int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
+#ifdef CONFIG_PM
+int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
+int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00config.c b/drivers/net/wireless/rt2x00/rt2x00config.c
new file mode 100644
index 0000000..7e8bb11
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00config.c
@@ -0,0 +1,285 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 generic configuration routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+void rt2x00lib_config_intf(struct rt2x00_dev *rt2x00dev,
+			   struct rt2x00_intf *intf,
+			   enum nl80211_iftype type,
+			   const u8 *mac, const u8 *bssid)
+{
+	struct rt2x00intf_conf conf;
+	unsigned int flags = 0;
+
+	conf.type = type;
+
+	switch (type) {
+	case NL80211_IFTYPE_ADHOC:
+		conf.sync = TSF_SYNC_ADHOC;
+		break;
+	case NL80211_IFTYPE_AP:
+	case NL80211_IFTYPE_MESH_POINT:
+	case NL80211_IFTYPE_WDS:
+		conf.sync = TSF_SYNC_AP_NONE;
+		break;
+	case NL80211_IFTYPE_STATION:
+		conf.sync = TSF_SYNC_INFRA;
+		break;
+	default:
+		conf.sync = TSF_SYNC_NONE;
+		break;
+	}
+
+	/*
+	 * Note that when NULL is passed as address we will send
+	 * 00:00:00:00:00 to the device to clear the address.
+	 * This will prevent the device being confused when it wants
+	 * to ACK frames or considers itself associated.
+	 */
+	memset(conf.mac, 0, sizeof(conf.mac));
+	if (mac)
+		memcpy(conf.mac, mac, ETH_ALEN);
+
+	memset(conf.bssid, 0, sizeof(conf.bssid));
+	if (bssid)
+		memcpy(conf.bssid, bssid, ETH_ALEN);
+
+	flags |= CONFIG_UPDATE_TYPE;
+	if (mac || (!rt2x00dev->intf_ap_count && !rt2x00dev->intf_sta_count))
+		flags |= CONFIG_UPDATE_MAC;
+	if (bssid || (!rt2x00dev->intf_ap_count && !rt2x00dev->intf_sta_count))
+		flags |= CONFIG_UPDATE_BSSID;
+
+	rt2x00dev->ops->lib->config_intf(rt2x00dev, intf, &conf, flags);
+}
+
+void rt2x00lib_config_erp(struct rt2x00_dev *rt2x00dev,
+			  struct rt2x00_intf *intf,
+			  struct ieee80211_bss_conf *bss_conf,
+			  u32 changed)
+{
+	struct rt2x00lib_erp erp;
+
+	memset(&erp, 0, sizeof(erp));
+
+	erp.short_preamble = bss_conf->use_short_preamble;
+	erp.cts_protection = bss_conf->use_cts_prot;
+
+	erp.slot_time = bss_conf->use_short_slot ? SHORT_SLOT_TIME : SLOT_TIME;
+	erp.sifs = SIFS;
+	erp.pifs = bss_conf->use_short_slot ? SHORT_PIFS : PIFS;
+	erp.difs = bss_conf->use_short_slot ? SHORT_DIFS : DIFS;
+	erp.eifs = bss_conf->use_short_slot ? SHORT_EIFS : EIFS;
+
+	erp.basic_rates = bss_conf->basic_rates;
+	erp.beacon_int = bss_conf->beacon_int;
+
+	/* Update the AID, this is needed for dynamic PS support */
+	rt2x00dev->aid = bss_conf->assoc ? bss_conf->aid : 0;
+	rt2x00dev->last_beacon = bss_conf->sync_tsf;
+
+	/* Update global beacon interval time, this is needed for PS support */
+	rt2x00dev->beacon_int = bss_conf->beacon_int;
+
+	if (changed & BSS_CHANGED_HT)
+		erp.ht_opmode = bss_conf->ht_operation_mode;
+
+	rt2x00dev->ops->lib->config_erp(rt2x00dev, &erp, changed);
+}
+
+void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
+			      struct antenna_setup config)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct antenna_setup *def = &rt2x00dev->default_ant;
+	struct antenna_setup *active = &rt2x00dev->link.ant.active;
+
+	/*
+	 * When the caller tries to send the SW diversity,
+	 * we must update the ANTENNA_RX_DIVERSITY flag to
+	 * enable the antenna diversity in the link tuner.
+	 *
+	 * Secondly, we must guarentee we never send the
+	 * software antenna diversity command to the driver.
+	 */
+	if (!(ant->flags & ANTENNA_RX_DIVERSITY)) {
+		if (config.rx == ANTENNA_SW_DIVERSITY) {
+			ant->flags |= ANTENNA_RX_DIVERSITY;
+
+			if (def->rx == ANTENNA_SW_DIVERSITY)
+				config.rx = ANTENNA_B;
+			else
+				config.rx = def->rx;
+		}
+	} else if (config.rx == ANTENNA_SW_DIVERSITY)
+		config.rx = active->rx;
+
+	if (!(ant->flags & ANTENNA_TX_DIVERSITY)) {
+		if (config.tx == ANTENNA_SW_DIVERSITY) {
+			ant->flags |= ANTENNA_TX_DIVERSITY;
+
+			if (def->tx == ANTENNA_SW_DIVERSITY)
+				config.tx = ANTENNA_B;
+			else
+				config.tx = def->tx;
+		}
+	} else if (config.tx == ANTENNA_SW_DIVERSITY)
+		config.tx = active->tx;
+
+	/*
+	 * Antenna setup changes require the RX to be disabled,
+	 * else the changes will be ignored by the device.
+	 */
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2x00queue_stop_queue(rt2x00dev->rx);
+
+	/*
+	 * Write new antenna setup to device and reset the link tuner.
+	 * The latter is required since we need to recalibrate the
+	 * noise-sensitivity ratio for the new setup.
+	 */
+	rt2x00dev->ops->lib->config_ant(rt2x00dev, &config);
+
+	rt2x00link_reset_tuner(rt2x00dev, true);
+
+	memcpy(active, &config, sizeof(config));
+
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2x00queue_start_queue(rt2x00dev->rx);
+}
+
+static u16 rt2x00ht_center_channel(struct rt2x00_dev *rt2x00dev,
+				   struct ieee80211_conf *conf)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	int center_channel;
+	u16 i;
+
+	/*
+	 * Initialize center channel to current channel.
+	 */
+	center_channel = spec->channels[conf->chandef.chan->hw_value].channel;
+
+	/*
+	 * Adjust center channel to HT40+ and HT40- operation.
+	 */
+	if (conf_is_ht40_plus(conf))
+		center_channel += 2;
+	else if (conf_is_ht40_minus(conf))
+		center_channel -= (center_channel == 14) ? 1 : 2;
+
+	for (i = 0; i < spec->num_channels; i++)
+		if (spec->channels[i].channel == center_channel)
+			return i;
+
+	WARN_ON(1);
+	return conf->chandef.chan->hw_value;
+}
+
+void rt2x00lib_config(struct rt2x00_dev *rt2x00dev,
+		      struct ieee80211_conf *conf,
+		      unsigned int ieee80211_flags)
+{
+	struct rt2x00lib_conf libconf;
+	u16 hw_value;
+	u16 autowake_timeout;
+	u16 beacon_int;
+	u16 beacon_diff;
+
+	memset(&libconf, 0, sizeof(libconf));
+
+	libconf.conf = conf;
+
+	if (ieee80211_flags & IEEE80211_CONF_CHANGE_CHANNEL) {
+		if (!conf_is_ht(conf))
+			set_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags);
+		else
+			clear_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags);
+
+		if (conf_is_ht40(conf)) {
+			set_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags);
+			hw_value = rt2x00ht_center_channel(rt2x00dev, conf);
+		} else {
+			clear_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags);
+			hw_value = conf->chandef.chan->hw_value;
+		}
+
+		memcpy(&libconf.rf,
+		       &rt2x00dev->spec.channels[hw_value],
+		       sizeof(libconf.rf));
+
+		memcpy(&libconf.channel,
+		       &rt2x00dev->spec.channels_info[hw_value],
+		       sizeof(libconf.channel));
+
+		/* Used for VCO periodic calibration */
+		rt2x00dev->rf_channel = libconf.rf.channel;
+	}
+
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_PS_AUTOWAKE) &&
+	    (ieee80211_flags & IEEE80211_CONF_CHANGE_PS))
+		cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
+
+	/*
+	 * Start configuration.
+	 */
+	rt2x00dev->ops->lib->config(rt2x00dev, &libconf, ieee80211_flags);
+
+	/*
+	 * Some configuration changes affect the link quality
+	 * which means we need to reset the link tuner.
+	 */
+	if (ieee80211_flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt2x00link_reset_tuner(rt2x00dev, false);
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_PS_AUTOWAKE) &&
+	    (ieee80211_flags & IEEE80211_CONF_CHANGE_PS) &&
+	    (conf->flags & IEEE80211_CONF_PS)) {
+		beacon_diff = (long)jiffies - (long)rt2x00dev->last_beacon;
+		beacon_int = msecs_to_jiffies(rt2x00dev->beacon_int);
+
+		if (beacon_diff > beacon_int)
+			beacon_diff = 0;
+
+		autowake_timeout = (conf->ps_dtim_period * beacon_int) - beacon_diff;
+		queue_delayed_work(rt2x00dev->workqueue,
+				   &rt2x00dev->autowakeup_work,
+				   autowake_timeout - 15);
+	}
+
+	if (conf->flags & IEEE80211_CONF_PS)
+		set_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+	else
+		clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+
+	rt2x00dev->curr_band = conf->chandef.chan->band;
+	rt2x00dev->curr_freq = conf->chandef.chan->center_freq;
+	rt2x00dev->tx_power = conf->power_level;
+	rt2x00dev->short_retry = conf->short_frame_max_tx_count;
+	rt2x00dev->long_retry = conf->long_frame_max_tx_count;
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00crypto.c b/drivers/net/wireless/rt2x00/rt2x00crypto.c
new file mode 100644
index 0000000..a2fd05b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00crypto.c
@@ -0,0 +1,256 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 crypto specific routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key)
+{
+	switch (key->cipher) {
+	case WLAN_CIPHER_SUITE_WEP40:
+		return CIPHER_WEP64;
+	case WLAN_CIPHER_SUITE_WEP104:
+		return CIPHER_WEP128;
+	case WLAN_CIPHER_SUITE_TKIP:
+		return CIPHER_TKIP;
+	case WLAN_CIPHER_SUITE_CCMP:
+		return CIPHER_AES;
+	default:
+		return CIPHER_NONE;
+	}
+}
+
+void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+				       struct sk_buff *skb,
+				       struct txentry_desc *txdesc)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
+
+	if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || !hw_key)
+		return;
+
+	__set_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags);
+
+	txdesc->cipher = rt2x00crypto_key_to_cipher(hw_key);
+
+	if (hw_key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
+		__set_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags);
+
+	txdesc->key_idx = hw_key->hw_key_idx;
+	txdesc->iv_offset = txdesc->header_length;
+	txdesc->iv_len = hw_key->iv_len;
+
+	if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
+		__set_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags);
+
+	if (!(hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
+		__set_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags);
+}
+
+unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+				      struct sk_buff *skb)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_key_conf *key = tx_info->control.hw_key;
+	unsigned int overhead = 0;
+
+	if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || !key)
+		return overhead;
+
+	/*
+	 * Extend frame length to include IV/EIV/ICV/MMIC,
+	 * note that these lengths should only be added when
+	 * mac80211 does not generate it.
+	 */
+	overhead += key->icv_len;
+
+	if (!(key->flags & IEEE80211_KEY_FLAG_GENERATE_IV))
+		overhead += key->iv_len;
+
+	if (!(key->flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)) {
+		if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
+			overhead += 8;
+	}
+
+	return overhead;
+}
+
+void rt2x00crypto_tx_copy_iv(struct sk_buff *skb, struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+
+	if (unlikely(!txdesc->iv_len))
+		return;
+
+	/* Copy IV/EIV data */
+	memcpy(skbdesc->iv, skb->data + txdesc->iv_offset, txdesc->iv_len);
+}
+
+void rt2x00crypto_tx_remove_iv(struct sk_buff *skb, struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+
+	if (unlikely(!txdesc->iv_len))
+		return;
+
+	/* Copy IV/EIV data */
+	memcpy(skbdesc->iv, skb->data + txdesc->iv_offset, txdesc->iv_len);
+
+	/* Move ieee80211 header */
+	memmove(skb->data + txdesc->iv_len, skb->data, txdesc->iv_offset);
+
+	/* Pull buffer to correct size */
+	skb_pull(skb, txdesc->iv_len);
+	txdesc->length -= txdesc->iv_len;
+
+	/* IV/EIV data has officially been stripped */
+	skbdesc->flags |= SKBDESC_IV_STRIPPED;
+}
+
+void rt2x00crypto_tx_insert_iv(struct sk_buff *skb, unsigned int header_length)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+	const unsigned int iv_len =
+	    ((!!(skbdesc->iv[0])) * 4) + ((!!(skbdesc->iv[1])) * 4);
+
+	if (!(skbdesc->flags & SKBDESC_IV_STRIPPED))
+		return;
+
+	skb_push(skb, iv_len);
+
+	/* Move ieee80211 header */
+	memmove(skb->data, skb->data + iv_len, header_length);
+
+	/* Copy IV/EIV data */
+	memcpy(skb->data + header_length, skbdesc->iv, iv_len);
+
+	/* IV/EIV data has returned into the frame */
+	skbdesc->flags &= ~SKBDESC_IV_STRIPPED;
+}
+
+void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+			       unsigned int header_length,
+			       struct rxdone_entry_desc *rxdesc)
+{
+	unsigned int payload_len = rxdesc->size - header_length;
+	unsigned int align = ALIGN_SIZE(skb, header_length);
+	unsigned int iv_len;
+	unsigned int icv_len;
+	unsigned int transfer = 0;
+
+	/*
+	 * WEP64/WEP128: Provides IV & ICV
+	 * TKIP: Provides IV/EIV & ICV
+	 * AES: Provies IV/EIV & ICV
+	 */
+	switch (rxdesc->cipher) {
+	case CIPHER_WEP64:
+	case CIPHER_WEP128:
+		iv_len = 4;
+		icv_len = 4;
+		break;
+	case CIPHER_TKIP:
+		iv_len = 8;
+		icv_len = 4;
+		break;
+	case CIPHER_AES:
+		iv_len = 8;
+		icv_len = 8;
+		break;
+	default:
+		/* Unsupport type */
+		return;
+	}
+
+	/*
+	 * Make room for new data. There are 2 possibilities
+	 * either the alignment is already present between
+	 * the 802.11 header and payload. In that case we
+	 * we have to move the header less then the iv_len
+	 * since we can use the already available l2pad bytes
+	 * for the iv data.
+	 * When the alignment must be added manually we must
+	 * move the header more then iv_len since we must
+	 * make room for the payload move as well.
+	 */
+	if (rxdesc->dev_flags & RXDONE_L2PAD) {
+		skb_push(skb, iv_len - align);
+		skb_put(skb, icv_len);
+
+		/* Move ieee80211 header */
+		memmove(skb->data + transfer,
+			skb->data + transfer + (iv_len - align),
+			header_length);
+		transfer += header_length;
+	} else {
+		skb_push(skb, iv_len + align);
+		if (align < icv_len)
+			skb_put(skb, icv_len - align);
+		else if (align > icv_len)
+			skb_trim(skb, rxdesc->size + iv_len + icv_len);
+
+		/* Move ieee80211 header */
+		memmove(skb->data + transfer,
+			skb->data + transfer + iv_len + align,
+			header_length);
+		transfer += header_length;
+	}
+
+	/* Copy IV/EIV data */
+	memcpy(skb->data + transfer, rxdesc->iv, iv_len);
+	transfer += iv_len;
+
+	/*
+	 * Move payload for alignment purposes. Note that
+	 * this is only needed when no l2 padding is present.
+	 */
+	if (!(rxdesc->dev_flags & RXDONE_L2PAD)) {
+		memmove(skb->data + transfer,
+			skb->data + transfer + align,
+			payload_len);
+	}
+
+	/*
+	 * NOTE: Always count the payload as transferred,
+	 * even when alignment was set to zero. This is required
+	 * for determining the correct offset for the ICV data.
+	 */
+	transfer += payload_len;
+
+	/*
+	 * Copy ICV data
+	 * AES appends 8 bytes, we can't fill the upper
+	 * 4 bytes, but mac80211 doesn't care about what
+	 * we provide here anyway and strips it immediately.
+	 */
+	memcpy(skb->data + transfer, &rxdesc->icv, 4);
+	transfer += icv_len;
+
+	/* IV/EIV/ICV has been inserted into frame */
+	rxdesc->size = transfer;
+	rxdesc->flags &= ~RX_FLAG_IV_STRIPPED;
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00debug.c b/drivers/net/wireless/rt2x00/rt2x00debug.c
new file mode 100644
index 0000000..90fdb02
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00debug.c
@@ -0,0 +1,800 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 debugfs specific routines.
+ */
+
+#include <linux/debugfs.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/poll.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+#include "rt2x00dump.h"
+
+#define MAX_LINE_LENGTH 64
+
+struct rt2x00debug_crypto {
+	unsigned long success;
+	unsigned long icv_error;
+	unsigned long mic_error;
+	unsigned long key_error;
+};
+
+struct rt2x00debug_intf {
+	/*
+	 * Pointer to driver structure where
+	 * this debugfs entry belongs to.
+	 */
+	struct rt2x00_dev *rt2x00dev;
+
+	/*
+	 * Reference to the rt2x00debug structure
+	 * which can be used to communicate with
+	 * the registers.
+	 */
+	const struct rt2x00debug *debug;
+
+	/*
+	 * Debugfs entries for:
+	 * - driver folder
+	 *   - driver file
+	 *   - chipset file
+	 *   - device state flags file
+	 *   - device capability flags file
+	 *   - register folder
+	 *     - csr offset/value files
+	 *     - eeprom offset/value files
+	 *     - bbp offset/value files
+	 *     - rf offset/value files
+	 *     - rfcsr offset/value files
+	 *   - queue folder
+	 *     - frame dump file
+	 *     - queue stats file
+	 *     - crypto stats file
+	 */
+	struct dentry *driver_folder;
+	struct dentry *driver_entry;
+	struct dentry *chipset_entry;
+	struct dentry *dev_flags;
+	struct dentry *cap_flags;
+	struct dentry *register_folder;
+	struct dentry *csr_off_entry;
+	struct dentry *csr_val_entry;
+	struct dentry *eeprom_off_entry;
+	struct dentry *eeprom_val_entry;
+	struct dentry *bbp_off_entry;
+	struct dentry *bbp_val_entry;
+	struct dentry *rf_off_entry;
+	struct dentry *rf_val_entry;
+	struct dentry *rfcsr_off_entry;
+	struct dentry *rfcsr_val_entry;
+	struct dentry *queue_folder;
+	struct dentry *queue_frame_dump_entry;
+	struct dentry *queue_stats_entry;
+	struct dentry *crypto_stats_entry;
+
+	/*
+	 * The frame dump file only allows a single reader,
+	 * so we need to store the current state here.
+	 */
+	unsigned long frame_dump_flags;
+#define FRAME_DUMP_FILE_OPEN	1
+
+	/*
+	 * We queue each frame before dumping it to the user,
+	 * per read command we will pass a single skb structure
+	 * so we should be prepared to queue multiple sk buffers
+	 * before sending it to userspace.
+	 */
+	struct sk_buff_head frame_dump_skbqueue;
+	wait_queue_head_t frame_dump_waitqueue;
+
+	/*
+	 * HW crypto statistics.
+	 * All statistics are stored separately per cipher type.
+	 */
+	struct rt2x00debug_crypto crypto_stats[CIPHER_MAX];
+
+	/*
+	 * Driver and chipset files will use a data buffer
+	 * that has been created in advance. This will simplify
+	 * the code since we can use the debugfs functions.
+	 */
+	struct debugfs_blob_wrapper driver_blob;
+	struct debugfs_blob_wrapper chipset_blob;
+
+	/*
+	 * Requested offset for each register type.
+	 */
+	unsigned int offset_csr;
+	unsigned int offset_eeprom;
+	unsigned int offset_bbp;
+	unsigned int offset_rf;
+	unsigned int offset_rfcsr;
+};
+
+void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+			       struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+	enum cipher cipher = rxdesc->cipher;
+	enum rx_crypto status = rxdesc->cipher_status;
+
+	if (cipher == CIPHER_TKIP_NO_MIC)
+		cipher = CIPHER_TKIP;
+	if (cipher == CIPHER_NONE || cipher >= CIPHER_MAX)
+		return;
+
+	/* Remove CIPHER_NONE index */
+	cipher--;
+
+	intf->crypto_stats[cipher].success += (status == RX_CRYPTO_SUCCESS);
+	intf->crypto_stats[cipher].icv_error += (status == RX_CRYPTO_FAIL_ICV);
+	intf->crypto_stats[cipher].mic_error += (status == RX_CRYPTO_FAIL_MIC);
+	intf->crypto_stats[cipher].key_error += (status == RX_CRYPTO_FAIL_KEY);
+}
+
+void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
+			    enum rt2x00_dump_type type, struct sk_buff *skb)
+{
+	struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
+	struct sk_buff *skbcopy;
+	struct rt2x00dump_hdr *dump_hdr;
+	struct timeval timestamp;
+	u32 data_len;
+
+	if (likely(!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)))
+		return;
+
+	do_gettimeofday(&timestamp);
+
+	if (skb_queue_len(&intf->frame_dump_skbqueue) > 20) {
+		rt2x00_dbg(rt2x00dev, "txrx dump queue length exceeded\n");
+		return;
+	}
+
+	data_len = skb->len;
+	if (skbdesc->flags & SKBDESC_DESC_IN_SKB)
+		data_len -= skbdesc->desc_len;
+
+	skbcopy = alloc_skb(sizeof(*dump_hdr) + skbdesc->desc_len + data_len,
+			    GFP_ATOMIC);
+	if (!skbcopy) {
+		rt2x00_dbg(rt2x00dev, "Failed to copy skb for dump\n");
+		return;
+	}
+
+	dump_hdr = (struct rt2x00dump_hdr *)skb_put(skbcopy, sizeof(*dump_hdr));
+	dump_hdr->version = cpu_to_le32(DUMP_HEADER_VERSION);
+	dump_hdr->header_length = cpu_to_le32(sizeof(*dump_hdr));
+	dump_hdr->desc_length = cpu_to_le32(skbdesc->desc_len);
+	dump_hdr->data_length = cpu_to_le32(data_len);
+	dump_hdr->chip_rt = cpu_to_le16(rt2x00dev->chip.rt);
+	dump_hdr->chip_rf = cpu_to_le16(rt2x00dev->chip.rf);
+	dump_hdr->chip_rev = cpu_to_le16(rt2x00dev->chip.rev);
+	dump_hdr->type = cpu_to_le16(type);
+	dump_hdr->queue_index = skbdesc->entry->queue->qid;
+	dump_hdr->entry_index = skbdesc->entry->entry_idx;
+	dump_hdr->timestamp_sec = cpu_to_le32(timestamp.tv_sec);
+	dump_hdr->timestamp_usec = cpu_to_le32(timestamp.tv_usec);
+
+	if (!(skbdesc->flags & SKBDESC_DESC_IN_SKB))
+		memcpy(skb_put(skbcopy, skbdesc->desc_len), skbdesc->desc,
+		       skbdesc->desc_len);
+	memcpy(skb_put(skbcopy, skb->len), skb->data, skb->len);
+
+	skb_queue_tail(&intf->frame_dump_skbqueue, skbcopy);
+	wake_up_interruptible(&intf->frame_dump_waitqueue);
+
+	/*
+	 * Verify that the file has not been closed while we were working.
+	 */
+	if (!test_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags))
+		skb_queue_purge(&intf->frame_dump_skbqueue);
+}
+EXPORT_SYMBOL_GPL(rt2x00debug_dump_frame);
+
+static int rt2x00debug_file_open(struct inode *inode, struct file *file)
+{
+	struct rt2x00debug_intf *intf = inode->i_private;
+
+	file->private_data = inode->i_private;
+
+	if (!try_module_get(intf->debug->owner))
+		return -EBUSY;
+
+	return 0;
+}
+
+static int rt2x00debug_file_release(struct inode *inode, struct file *file)
+{
+	struct rt2x00debug_intf *intf = file->private_data;
+
+	module_put(intf->debug->owner);
+
+	return 0;
+}
+
+static int rt2x00debug_open_queue_dump(struct inode *inode, struct file *file)
+{
+	struct rt2x00debug_intf *intf = inode->i_private;
+	int retval;
+
+	retval = rt2x00debug_file_open(inode, file);
+	if (retval)
+		return retval;
+
+	if (test_and_set_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags)) {
+		rt2x00debug_file_release(inode, file);
+		return -EBUSY;
+	}
+
+	return 0;
+}
+
+static int rt2x00debug_release_queue_dump(struct inode *inode, struct file *file)
+{
+	struct rt2x00debug_intf *intf = inode->i_private;
+
+	skb_queue_purge(&intf->frame_dump_skbqueue);
+
+	clear_bit(FRAME_DUMP_FILE_OPEN, &intf->frame_dump_flags);
+
+	return rt2x00debug_file_release(inode, file);
+}
+
+static ssize_t rt2x00debug_read_queue_dump(struct file *file,
+					   char __user *buf,
+					   size_t length,
+					   loff_t *offset)
+{
+	struct rt2x00debug_intf *intf = file->private_data;
+	struct sk_buff *skb;
+	size_t status;
+	int retval;
+
+	if (file->f_flags & O_NONBLOCK)
+		return -EAGAIN;
+
+	retval =
+	    wait_event_interruptible(intf->frame_dump_waitqueue,
+				     (skb =
+				     skb_dequeue(&intf->frame_dump_skbqueue)));
+	if (retval)
+		return retval;
+
+	status = min_t(size_t, skb->len, length);
+	if (copy_to_user(buf, skb->data, status)) {
+		status = -EFAULT;
+		goto exit;
+	}
+
+	*offset += status;
+
+exit:
+	kfree_skb(skb);
+
+	return status;
+}
+
+static unsigned int rt2x00debug_poll_queue_dump(struct file *file,
+						poll_table *wait)
+{
+	struct rt2x00debug_intf *intf = file->private_data;
+
+	poll_wait(file, &intf->frame_dump_waitqueue, wait);
+
+	if (!skb_queue_empty(&intf->frame_dump_skbqueue))
+		return POLLOUT | POLLWRNORM;
+
+	return 0;
+}
+
+static const struct file_operations rt2x00debug_fop_queue_dump = {
+	.owner		= THIS_MODULE,
+	.read		= rt2x00debug_read_queue_dump,
+	.poll		= rt2x00debug_poll_queue_dump,
+	.open		= rt2x00debug_open_queue_dump,
+	.release	= rt2x00debug_release_queue_dump,
+	.llseek		= default_llseek,
+};
+
+static ssize_t rt2x00debug_read_queue_stats(struct file *file,
+					    char __user *buf,
+					    size_t length,
+					    loff_t *offset)
+{
+	struct rt2x00debug_intf *intf = file->private_data;
+	struct data_queue *queue;
+	unsigned long irqflags;
+	unsigned int lines = 1 + intf->rt2x00dev->data_queues;
+	size_t size;
+	char *data;
+	char *temp;
+
+	if (*offset)
+		return 0;
+
+	data = kcalloc(lines, MAX_LINE_LENGTH, GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	temp = data +
+	    sprintf(data, "qid\tflags\t\tcount\tlimit\tlength\tindex\tdma done\tdone\n");
+
+	queue_for_each(intf->rt2x00dev, queue) {
+		spin_lock_irqsave(&queue->index_lock, irqflags);
+
+		temp += sprintf(temp, "%d\t0x%.8x\t%d\t%d\t%d\t%d\t%d\t\t%d\n",
+				queue->qid, (unsigned int)queue->flags,
+				queue->count, queue->limit, queue->length,
+				queue->index[Q_INDEX],
+				queue->index[Q_INDEX_DMA_DONE],
+				queue->index[Q_INDEX_DONE]);
+
+		spin_unlock_irqrestore(&queue->index_lock, irqflags);
+	}
+
+	size = strlen(data);
+	size = min(size, length);
+
+	if (copy_to_user(buf, data, size)) {
+		kfree(data);
+		return -EFAULT;
+	}
+
+	kfree(data);
+
+	*offset += size;
+	return size;
+}
+
+static const struct file_operations rt2x00debug_fop_queue_stats = {
+	.owner		= THIS_MODULE,
+	.read		= rt2x00debug_read_queue_stats,
+	.open		= rt2x00debug_file_open,
+	.release	= rt2x00debug_file_release,
+	.llseek		= default_llseek,
+};
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+static ssize_t rt2x00debug_read_crypto_stats(struct file *file,
+					     char __user *buf,
+					     size_t length,
+					     loff_t *offset)
+{
+	struct rt2x00debug_intf *intf = file->private_data;
+	static const char * const name[] = { "WEP64", "WEP128", "TKIP", "AES" };
+	char *data;
+	char *temp;
+	size_t size;
+	unsigned int i;
+
+	if (*offset)
+		return 0;
+
+	data = kzalloc((1 + CIPHER_MAX) * MAX_LINE_LENGTH, GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	temp = data;
+	temp += sprintf(data, "cipher\tsuccess\ticv err\tmic err\tkey err\n");
+
+	for (i = 0; i < CIPHER_MAX; i++) {
+		temp += sprintf(temp, "%s\t%lu\t%lu\t%lu\t%lu\n", name[i],
+				intf->crypto_stats[i].success,
+				intf->crypto_stats[i].icv_error,
+				intf->crypto_stats[i].mic_error,
+				intf->crypto_stats[i].key_error);
+	}
+
+	size = strlen(data);
+	size = min(size, length);
+
+	if (copy_to_user(buf, data, size)) {
+		kfree(data);
+		return -EFAULT;
+	}
+
+	kfree(data);
+
+	*offset += size;
+	return size;
+}
+
+static const struct file_operations rt2x00debug_fop_crypto_stats = {
+	.owner		= THIS_MODULE,
+	.read		= rt2x00debug_read_crypto_stats,
+	.open		= rt2x00debug_file_open,
+	.release	= rt2x00debug_file_release,
+	.llseek		= default_llseek,
+};
+#endif
+
+#define RT2X00DEBUGFS_OPS_READ(__name, __format, __type)	\
+static ssize_t rt2x00debug_read_##__name(struct file *file,	\
+					 char __user *buf,	\
+					 size_t length,		\
+					 loff_t *offset)	\
+{								\
+	struct rt2x00debug_intf *intf = file->private_data;	\
+	const struct rt2x00debug *debug = intf->debug;		\
+	char line[16];						\
+	size_t size;						\
+	unsigned int index = intf->offset_##__name;		\
+	__type value;						\
+								\
+	if (*offset)						\
+		return 0;					\
+								\
+	if (index >= debug->__name.word_count)			\
+		return -EINVAL;					\
+								\
+	index += (debug->__name.word_base /			\
+		  debug->__name.word_size);			\
+								\
+	if (debug->__name.flags & RT2X00DEBUGFS_OFFSET)		\
+		index *= debug->__name.word_size;		\
+								\
+	debug->__name.read(intf->rt2x00dev, index, &value);	\
+								\
+	size = sprintf(line, __format, value);			\
+								\
+	if (copy_to_user(buf, line, size))			\
+		return -EFAULT;					\
+								\
+	*offset += size;					\
+	return size;						\
+}
+
+#define RT2X00DEBUGFS_OPS_WRITE(__name, __type)			\
+static ssize_t rt2x00debug_write_##__name(struct file *file,	\
+					  const char __user *buf,\
+					  size_t length,	\
+					  loff_t *offset)	\
+{								\
+	struct rt2x00debug_intf *intf = file->private_data;	\
+	const struct rt2x00debug *debug = intf->debug;		\
+	char line[16];						\
+	size_t size;						\
+	unsigned int index = intf->offset_##__name;		\
+	__type value;						\
+								\
+	if (*offset)						\
+		return 0;					\
+								\
+	if (index >= debug->__name.word_count)			\
+		return -EINVAL;					\
+								\
+	if (length > sizeof(line))				\
+		return -EINVAL;					\
+								\
+	if (copy_from_user(line, buf, length))			\
+		return -EFAULT;					\
+								\
+	size = strlen(line);					\
+	value = simple_strtoul(line, NULL, 0);			\
+								\
+	index += (debug->__name.word_base /			\
+		  debug->__name.word_size);			\
+								\
+	if (debug->__name.flags & RT2X00DEBUGFS_OFFSET)		\
+		index *= debug->__name.word_size;		\
+								\
+	debug->__name.write(intf->rt2x00dev, index, value);	\
+								\
+	*offset += size;					\
+	return size;						\
+}
+
+#define RT2X00DEBUGFS_OPS(__name, __format, __type)		\
+RT2X00DEBUGFS_OPS_READ(__name, __format, __type);		\
+RT2X00DEBUGFS_OPS_WRITE(__name, __type);			\
+								\
+static const struct file_operations rt2x00debug_fop_##__name = {\
+	.owner		= THIS_MODULE,				\
+	.read		= rt2x00debug_read_##__name,		\
+	.write		= rt2x00debug_write_##__name,		\
+	.open		= rt2x00debug_file_open,		\
+	.release	= rt2x00debug_file_release,		\
+	.llseek		= generic_file_llseek,			\
+};
+
+RT2X00DEBUGFS_OPS(csr, "0x%.8x\n", u32);
+RT2X00DEBUGFS_OPS(eeprom, "0x%.4x\n", u16);
+RT2X00DEBUGFS_OPS(bbp, "0x%.2x\n", u8);
+RT2X00DEBUGFS_OPS(rf, "0x%.8x\n", u32);
+RT2X00DEBUGFS_OPS(rfcsr, "0x%.2x\n", u8);
+
+static ssize_t rt2x00debug_read_dev_flags(struct file *file,
+					  char __user *buf,
+					  size_t length,
+					  loff_t *offset)
+{
+	struct rt2x00debug_intf *intf =	file->private_data;
+	char line[16];
+	size_t size;
+
+	if (*offset)
+		return 0;
+
+	size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->flags);
+
+	if (copy_to_user(buf, line, size))
+		return -EFAULT;
+
+	*offset += size;
+	return size;
+}
+
+static const struct file_operations rt2x00debug_fop_dev_flags = {
+	.owner		= THIS_MODULE,
+	.read		= rt2x00debug_read_dev_flags,
+	.open		= rt2x00debug_file_open,
+	.release	= rt2x00debug_file_release,
+	.llseek		= default_llseek,
+};
+
+static ssize_t rt2x00debug_read_cap_flags(struct file *file,
+					  char __user *buf,
+					  size_t length,
+					  loff_t *offset)
+{
+	struct rt2x00debug_intf *intf =	file->private_data;
+	char line[16];
+	size_t size;
+
+	if (*offset)
+		return 0;
+
+	size = sprintf(line, "0x%.8x\n", (unsigned int)intf->rt2x00dev->cap_flags);
+
+	if (copy_to_user(buf, line, size))
+		return -EFAULT;
+
+	*offset += size;
+	return size;
+}
+
+static const struct file_operations rt2x00debug_fop_cap_flags = {
+	.owner		= THIS_MODULE,
+	.read		= rt2x00debug_read_cap_flags,
+	.open		= rt2x00debug_file_open,
+	.release	= rt2x00debug_file_release,
+	.llseek		= default_llseek,
+};
+
+static struct dentry *rt2x00debug_create_file_driver(const char *name,
+						     struct rt2x00debug_intf
+						     *intf,
+						     struct debugfs_blob_wrapper
+						     *blob)
+{
+	char *data;
+
+	data = kzalloc(3 * MAX_LINE_LENGTH, GFP_KERNEL);
+	if (!data)
+		return NULL;
+
+	blob->data = data;
+	data += sprintf(data, "driver:\t%s\n", intf->rt2x00dev->ops->name);
+	data += sprintf(data, "version:\t%s\n", DRV_VERSION);
+	blob->size = strlen(blob->data);
+
+	return debugfs_create_blob(name, S_IRUSR, intf->driver_folder, blob);
+}
+
+static struct dentry *rt2x00debug_create_file_chipset(const char *name,
+						      struct rt2x00debug_intf
+						      *intf,
+						      struct
+						      debugfs_blob_wrapper
+						      *blob)
+{
+	const struct rt2x00debug *debug = intf->debug;
+	char *data;
+
+	data = kzalloc(9 * MAX_LINE_LENGTH, GFP_KERNEL);
+	if (!data)
+		return NULL;
+
+	blob->data = data;
+	data += sprintf(data, "rt chip:\t%04x\n", intf->rt2x00dev->chip.rt);
+	data += sprintf(data, "rf chip:\t%04x\n", intf->rt2x00dev->chip.rf);
+	data += sprintf(data, "revision:\t%04x\n", intf->rt2x00dev->chip.rev);
+	data += sprintf(data, "\n");
+	data += sprintf(data, "register\tbase\twords\twordsize\n");
+#define RT2X00DEBUGFS_SPRINTF_REGISTER(__name)			\
+{								\
+	if(debug->__name.read)					\
+		data += sprintf(data, __stringify(__name)	\
+				"\t%d\t%d\t%d\n",		\
+				debug->__name.word_base,	\
+				debug->__name.word_count,	\
+				debug->__name.word_size);	\
+}
+	RT2X00DEBUGFS_SPRINTF_REGISTER(csr);
+	RT2X00DEBUGFS_SPRINTF_REGISTER(eeprom);
+	RT2X00DEBUGFS_SPRINTF_REGISTER(bbp);
+	RT2X00DEBUGFS_SPRINTF_REGISTER(rf);
+	RT2X00DEBUGFS_SPRINTF_REGISTER(rfcsr);
+#undef RT2X00DEBUGFS_SPRINTF_REGISTER
+
+	blob->size = strlen(blob->data);
+
+	return debugfs_create_blob(name, S_IRUSR, intf->driver_folder, blob);
+}
+
+void rt2x00debug_register(struct rt2x00_dev *rt2x00dev)
+{
+	const struct rt2x00debug *debug = rt2x00dev->ops->debugfs;
+	struct rt2x00debug_intf *intf;
+
+	intf = kzalloc(sizeof(struct rt2x00debug_intf), GFP_KERNEL);
+	if (!intf) {
+		rt2x00_err(rt2x00dev, "Failed to allocate debug handler\n");
+		return;
+	}
+
+	intf->debug = debug;
+	intf->rt2x00dev = rt2x00dev;
+	rt2x00dev->debugfs_intf = intf;
+
+	intf->driver_folder =
+	    debugfs_create_dir(intf->rt2x00dev->ops->name,
+			       rt2x00dev->hw->wiphy->debugfsdir);
+	if (IS_ERR(intf->driver_folder) || !intf->driver_folder)
+		goto exit;
+
+	intf->driver_entry =
+	    rt2x00debug_create_file_driver("driver", intf, &intf->driver_blob);
+	if (IS_ERR(intf->driver_entry) || !intf->driver_entry)
+		goto exit;
+
+	intf->chipset_entry =
+	    rt2x00debug_create_file_chipset("chipset",
+					    intf, &intf->chipset_blob);
+	if (IS_ERR(intf->chipset_entry) || !intf->chipset_entry)
+		goto exit;
+
+	intf->dev_flags = debugfs_create_file("dev_flags", S_IRUSR,
+					      intf->driver_folder, intf,
+					      &rt2x00debug_fop_dev_flags);
+	if (IS_ERR(intf->dev_flags) || !intf->dev_flags)
+		goto exit;
+
+	intf->cap_flags = debugfs_create_file("cap_flags", S_IRUSR,
+					      intf->driver_folder, intf,
+					      &rt2x00debug_fop_cap_flags);
+	if (IS_ERR(intf->cap_flags) || !intf->cap_flags)
+		goto exit;
+
+	intf->register_folder =
+	    debugfs_create_dir("register", intf->driver_folder);
+	if (IS_ERR(intf->register_folder) || !intf->register_folder)
+		goto exit;
+
+#define RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(__intf, __name)			\
+({										\
+	if(debug->__name.read) {						\
+		(__intf)->__name##_off_entry =					\
+		debugfs_create_u32(__stringify(__name) "_offset",		\
+				       S_IRUSR | S_IWUSR,			\
+				       (__intf)->register_folder,		\
+				       &(__intf)->offset_##__name);		\
+		if (IS_ERR((__intf)->__name##_off_entry)			\
+				|| !(__intf)->__name##_off_entry)		\
+			goto exit;						\
+										\
+		(__intf)->__name##_val_entry =					\
+		debugfs_create_file(__stringify(__name) "_value",		\
+					S_IRUSR | S_IWUSR,			\
+					(__intf)->register_folder,		\
+					(__intf), &rt2x00debug_fop_##__name);	\
+		if (IS_ERR((__intf)->__name##_val_entry)			\
+				|| !(__intf)->__name##_val_entry)		\
+			goto exit;						\
+	}									\
+})
+
+	RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, csr);
+	RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, eeprom);
+	RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, bbp);
+	RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, rf);
+	RT2X00DEBUGFS_CREATE_REGISTER_ENTRY(intf, rfcsr);
+
+#undef RT2X00DEBUGFS_CREATE_REGISTER_ENTRY
+
+	intf->queue_folder =
+	    debugfs_create_dir("queue", intf->driver_folder);
+	if (IS_ERR(intf->queue_folder) || !intf->queue_folder)
+		goto exit;
+
+	intf->queue_frame_dump_entry =
+	    debugfs_create_file("dump", S_IRUSR, intf->queue_folder,
+				intf, &rt2x00debug_fop_queue_dump);
+	if (IS_ERR(intf->queue_frame_dump_entry)
+		|| !intf->queue_frame_dump_entry)
+		goto exit;
+
+	skb_queue_head_init(&intf->frame_dump_skbqueue);
+	init_waitqueue_head(&intf->frame_dump_waitqueue);
+
+	intf->queue_stats_entry =
+	    debugfs_create_file("queue", S_IRUSR, intf->queue_folder,
+				intf, &rt2x00debug_fop_queue_stats);
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
+		intf->crypto_stats_entry =
+		    debugfs_create_file("crypto", S_IRUGO, intf->queue_folder,
+					intf, &rt2x00debug_fop_crypto_stats);
+#endif
+
+	return;
+
+exit:
+	rt2x00debug_deregister(rt2x00dev);
+	rt2x00_err(rt2x00dev, "Failed to register debug handler\n");
+}
+
+void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2x00debug_intf *intf = rt2x00dev->debugfs_intf;
+
+	if (unlikely(!intf))
+		return;
+
+	skb_queue_purge(&intf->frame_dump_skbqueue);
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+	debugfs_remove(intf->crypto_stats_entry);
+#endif
+	debugfs_remove(intf->queue_stats_entry);
+	debugfs_remove(intf->queue_frame_dump_entry);
+	debugfs_remove(intf->queue_folder);
+	debugfs_remove(intf->rfcsr_val_entry);
+	debugfs_remove(intf->rfcsr_off_entry);
+	debugfs_remove(intf->rf_val_entry);
+	debugfs_remove(intf->rf_off_entry);
+	debugfs_remove(intf->bbp_val_entry);
+	debugfs_remove(intf->bbp_off_entry);
+	debugfs_remove(intf->eeprom_val_entry);
+	debugfs_remove(intf->eeprom_off_entry);
+	debugfs_remove(intf->csr_val_entry);
+	debugfs_remove(intf->csr_off_entry);
+	debugfs_remove(intf->register_folder);
+	debugfs_remove(intf->dev_flags);
+	debugfs_remove(intf->cap_flags);
+	debugfs_remove(intf->chipset_entry);
+	debugfs_remove(intf->driver_entry);
+	debugfs_remove(intf->driver_folder);
+	kfree(intf->chipset_blob.data);
+	kfree(intf->driver_blob.data);
+	kfree(intf);
+
+	rt2x00dev->debugfs_intf = NULL;
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00debug.h b/drivers/net/wireless/rt2x00/rt2x00debug.h
new file mode 100644
index 0000000..e65712c
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00debug.h
@@ -0,0 +1,69 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00debug
+	Abstract: Data structures for the rt2x00debug.
+ */
+
+#ifndef RT2X00DEBUG_H
+#define RT2X00DEBUG_H
+
+struct rt2x00_dev;
+
+/**
+ * enum rt2x00debugfs_entry_flags: Flags for debugfs registry entry
+ *
+ * @RT2X00DEBUGFS_OFFSET: rt2x00lib should pass the register offset
+ *	as argument when using the callback function read()/write()
+ */
+enum rt2x00debugfs_entry_flags {
+	RT2X00DEBUGFS_OFFSET	= (1 << 0),
+};
+
+#define RT2X00DEBUGFS_REGISTER_ENTRY(__name, __type)		\
+struct reg##__name {						\
+	void (*read)(struct rt2x00_dev *rt2x00dev,		\
+		     const unsigned int word, __type *data);	\
+	void (*write)(struct rt2x00_dev *rt2x00dev,		\
+		      const unsigned int word, __type data);	\
+								\
+	unsigned int flags;					\
+								\
+	unsigned int word_base;					\
+	unsigned int word_size;					\
+	unsigned int word_count;				\
+} __name
+
+struct rt2x00debug {
+	/*
+	 * Reference to the modules structure.
+	 */
+	struct module *owner;
+
+	/*
+	 * Register access entries.
+	 */
+	RT2X00DEBUGFS_REGISTER_ENTRY(csr, u32);
+	RT2X00DEBUGFS_REGISTER_ENTRY(eeprom, u16);
+	RT2X00DEBUGFS_REGISTER_ENTRY(bbp, u8);
+	RT2X00DEBUGFS_REGISTER_ENTRY(rf, u32);
+	RT2X00DEBUGFS_REGISTER_ENTRY(rfcsr, u8);
+};
+
+#endif /* RT2X00DEBUG_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00dev.c b/drivers/net/wireless/rt2x00/rt2x00dev.c
new file mode 100644
index 0000000..5639ed8
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00dev.c
@@ -0,0 +1,1549 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 generic device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+/*
+ * Utility functions.
+ */
+u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
+			 struct ieee80211_vif *vif)
+{
+	/*
+	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
+	 * contains the bss number, see BSS_ID_MASK comments for details.
+	 */
+	if (rt2x00dev->intf_sta_count)
+		return 0;
+	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
+
+/*
+ * Radio control handlers.
+ */
+int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	int status;
+
+	/*
+	 * Don't enable the radio twice.
+	 * And check if the hardware button has been disabled.
+	 */
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * Initialize all data queues.
+	 */
+	rt2x00queue_init_queues(rt2x00dev);
+
+	/*
+	 * Enable radio.
+	 */
+	status =
+	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
+	if (status)
+		return status;
+
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
+
+	rt2x00leds_led_radio(rt2x00dev, true);
+	rt2x00led_led_activity(rt2x00dev, true);
+
+	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
+
+	/*
+	 * Enable queues.
+	 */
+	rt2x00queue_start_queues(rt2x00dev);
+	rt2x00link_start_tuner(rt2x00dev);
+	rt2x00link_start_agc(rt2x00dev);
+	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
+		rt2x00link_start_vcocal(rt2x00dev);
+
+	/*
+	 * Start watchdog monitoring.
+	 */
+	rt2x00link_start_watchdog(rt2x00dev);
+
+	return 0;
+}
+
+void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Stop watchdog monitoring.
+	 */
+	rt2x00link_stop_watchdog(rt2x00dev);
+
+	/*
+	 * Stop all queues
+	 */
+	rt2x00link_stop_agc(rt2x00dev);
+	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
+		rt2x00link_stop_vcocal(rt2x00dev);
+	rt2x00link_stop_tuner(rt2x00dev);
+	rt2x00queue_stop_queues(rt2x00dev);
+	rt2x00queue_flush_queues(rt2x00dev, true);
+
+	/*
+	 * Disable radio.
+	 */
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
+	rt2x00led_led_activity(rt2x00dev, false);
+	rt2x00leds_led_radio(rt2x00dev, false);
+}
+
+static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
+					  struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = data;
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+
+	/*
+	 * It is possible the radio was disabled while the work had been
+	 * scheduled. If that happens we should return here immediately,
+	 * note that in the spinlock protected area above the delayed_flags
+	 * have been cleared correctly.
+	 */
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
+		mutex_lock(&intf->beacon_skb_mutex);
+		rt2x00queue_update_beacon(rt2x00dev, vif);
+		mutex_unlock(&intf->beacon_skb_mutex);
+	}
+}
+
+static void rt2x00lib_intf_scheduled(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, intf_work);
+
+	/*
+	 * Iterate over each interface and perform the
+	 * requested configurations.
+	 */
+	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
+					    IEEE80211_IFACE_ITER_RESUME_ALL,
+					    rt2x00lib_intf_scheduled_iter,
+					    rt2x00dev);
+}
+
+static void rt2x00lib_autowakeup(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return;
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
+	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
+}
+
+/*
+ * Interrupt context handlers.
+ */
+static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
+				     struct ieee80211_vif *vif)
+{
+	struct ieee80211_tx_control control = {};
+	struct rt2x00_dev *rt2x00dev = data;
+	struct sk_buff *skb;
+
+	/*
+	 * Only AP mode interfaces do broad- and multicast buffering
+	 */
+	if (vif->type != NL80211_IFTYPE_AP)
+		return;
+
+	/*
+	 * Send out buffered broad- and multicast frames
+	 */
+	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
+	while (skb) {
+		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
+		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
+	}
+}
+
+static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
+					struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = data;
+
+	if (vif->type != NL80211_IFTYPE_AP &&
+	    vif->type != NL80211_IFTYPE_ADHOC &&
+	    vif->type != NL80211_IFTYPE_MESH_POINT &&
+	    vif->type != NL80211_IFTYPE_WDS)
+		return;
+
+	/*
+	 * Update the beacon without locking. This is safe on PCI devices
+	 * as they only update the beacon periodically here. This should
+	 * never be called for USB devices.
+	 */
+	WARN_ON(rt2x00_is_usb(rt2x00dev));
+	rt2x00queue_update_beacon(rt2x00dev, vif);
+}
+
+void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
+{
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	/* send buffered bc/mc frames out for every bssid */
+	ieee80211_iterate_active_interfaces_atomic(
+		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+		rt2x00lib_bc_buffer_iter, rt2x00dev);
+	/*
+	 * Devices with pre tbtt interrupt don't need to update the beacon
+	 * here as they will fetch the next beacon directly prior to
+	 * transmission.
+	 */
+	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
+		return;
+
+	/* fetch next beacon */
+	ieee80211_iterate_active_interfaces_atomic(
+		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+		rt2x00lib_beaconupdate_iter, rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
+
+void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
+{
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	/* fetch next beacon */
+	ieee80211_iterate_active_interfaces_atomic(
+		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+		rt2x00lib_beaconupdate_iter, rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
+
+void rt2x00lib_dmastart(struct queue_entry *entry)
+{
+	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+	rt2x00queue_index_inc(entry, Q_INDEX);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
+
+void rt2x00lib_dmadone(struct queue_entry *entry)
+{
+	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
+	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
+
+static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct ieee80211_bar *bar = (void *) entry->skb->data;
+	struct rt2x00_bar_list_entry *bar_entry;
+	int ret;
+
+	if (likely(!ieee80211_is_back_req(bar->frame_control)))
+		return 0;
+
+	/*
+	 * Unlike all other frames, the status report for BARs does
+	 * not directly come from the hardware as it is incapable of
+	 * matching a BA to a previously send BAR. The hardware will
+	 * report all BARs as if they weren't acked at all.
+	 *
+	 * Instead the RX-path will scan for incoming BAs and set the
+	 * block_acked flag if it sees one that was likely caused by
+	 * a BAR from us.
+	 *
+	 * Remove remaining BARs here and return their status for
+	 * TX done processing.
+	 */
+	ret = 0;
+	rcu_read_lock();
+	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
+		if (bar_entry->entry != entry)
+			continue;
+
+		spin_lock_bh(&rt2x00dev->bar_list_lock);
+		/* Return whether this BAR was blockacked or not */
+		ret = bar_entry->block_acked;
+		/* Remove the BAR from our checklist */
+		list_del_rcu(&bar_entry->list);
+		spin_unlock_bh(&rt2x00dev->bar_list_lock);
+		kfree_rcu(bar_entry, head);
+
+		break;
+	}
+	rcu_read_unlock();
+
+	return ret;
+}
+
+void rt2x00lib_txdone(struct queue_entry *entry,
+		      struct txdone_entry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	unsigned int header_length, i;
+	u8 rate_idx, rate_flags, retry_rates;
+	u8 skbdesc_flags = skbdesc->flags;
+	bool success;
+
+	/*
+	 * Unmap the skb.
+	 */
+	rt2x00queue_unmap_skb(entry);
+
+	/*
+	 * Remove the extra tx headroom from the skb.
+	 */
+	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
+
+	/*
+	 * Signal that the TX descriptor is no longer in the skb.
+	 */
+	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
+
+	/*
+	 * Determine the length of 802.11 header.
+	 */
+	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
+
+	/*
+	 * Remove L2 padding which was added during
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
+		rt2x00queue_remove_l2pad(entry->skb, header_length);
+
+	/*
+	 * If the IV/EIV data was stripped from the frame before it was
+	 * passed to the hardware, we should now reinsert it again because
+	 * mac80211 will expect the same data to be present it the
+	 * frame as it was passed to us.
+	 */
+	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
+		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
+
+	/*
+	 * Send frame to debugfs immediately, after this call is completed
+	 * we are going to overwrite the skb->cb array.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
+
+	/*
+	 * Determine if the frame has been successfully transmitted and
+	 * remove BARs from our check list while checking for their
+	 * TX status.
+	 */
+	success =
+	    rt2x00lib_txdone_bar_status(entry) ||
+	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
+	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
+
+	/*
+	 * Update TX statistics.
+	 */
+	rt2x00dev->link.qual.tx_success += success;
+	rt2x00dev->link.qual.tx_failed += !success;
+
+	rate_idx = skbdesc->tx_rate_idx;
+	rate_flags = skbdesc->tx_rate_flags;
+	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
+	    (txdesc->retry + 1) : 1;
+
+	/*
+	 * Initialize TX status
+	 */
+	memset(&tx_info->status, 0, sizeof(tx_info->status));
+	tx_info->status.ack_signal = 0;
+
+	/*
+	 * Frame was send with retries, hardware tried
+	 * different rates to send out the frame, at each
+	 * retry it lowered the rate 1 step except when the
+	 * lowest rate was used.
+	 */
+	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
+		tx_info->status.rates[i].idx = rate_idx - i;
+		tx_info->status.rates[i].flags = rate_flags;
+
+		if (rate_idx - i == 0) {
+			/*
+			 * The lowest rate (index 0) was used until the
+			 * number of max retries was reached.
+			 */
+			tx_info->status.rates[i].count = retry_rates - i;
+			i++;
+			break;
+		}
+		tx_info->status.rates[i].count = 1;
+	}
+	if (i < (IEEE80211_TX_MAX_RATES - 1))
+		tx_info->status.rates[i].idx = -1; /* terminate */
+
+	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
+		if (success)
+			tx_info->flags |= IEEE80211_TX_STAT_ACK;
+		else
+			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
+	}
+
+	/*
+	 * Every single frame has it's own tx status, hence report
+	 * every frame as ampdu of size 1.
+	 *
+	 * TODO: if we can find out how many frames were aggregated
+	 * by the hw we could provide the real ampdu_len to mac80211
+	 * which would allow the rc algorithm to better decide on
+	 * which rates are suitable.
+	 */
+	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
+	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
+		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
+		tx_info->status.ampdu_len = 1;
+		tx_info->status.ampdu_ack_len = success ? 1 : 0;
+
+		if (!success)
+			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
+	}
+
+	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
+		if (success)
+			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
+		else
+			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
+	}
+
+	/*
+	 * Only send the status report to mac80211 when it's a frame
+	 * that originated in mac80211. If this was a extra frame coming
+	 * through a mac80211 library call (RTS/CTS) then we should not
+	 * send the status report back.
+	 */
+	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
+		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
+			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
+		else
+			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
+	} else
+		dev_kfree_skb_any(entry->skb);
+
+	/*
+	 * Make this entry available for reuse.
+	 */
+	entry->skb = NULL;
+	entry->flags = 0;
+
+	rt2x00dev->ops->lib->clear_entry(entry);
+
+	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
+
+	/*
+	 * If the data queue was below the threshold before the txdone
+	 * handler we must make sure the packet queue in the mac80211 stack
+	 * is reenabled when the txdone handler has finished. This has to be
+	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
+	 * before it was stopped.
+	 */
+	spin_lock_bh(&entry->queue->tx_lock);
+	if (!rt2x00queue_threshold(entry->queue))
+		rt2x00queue_unpause_queue(entry->queue);
+	spin_unlock_bh(&entry->queue->tx_lock);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
+
+void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
+{
+	struct txdone_entry_desc txdesc;
+
+	txdesc.flags = 0;
+	__set_bit(status, &txdesc.flags);
+	txdesc.retry = 0;
+
+	rt2x00lib_txdone(entry, &txdesc);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
+
+static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
+{
+	struct ieee80211_mgmt *mgmt = (void *)data;
+	u8 *pos, *end;
+
+	pos = (u8 *)mgmt->u.beacon.variable;
+	end = data + len;
+	while (pos < end) {
+		if (pos + 2 + pos[1] > end)
+			return NULL;
+
+		if (pos[0] == ie)
+			return pos;
+
+		pos += 2 + pos[1];
+	}
+
+	return NULL;
+}
+
+static void rt2x00lib_sleep(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, sleep_work);
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Check again is powersaving is enabled, to prevent races from delayed
+	 * work execution.
+	 */
+	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
+		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
+				 IEEE80211_CONF_CHANGE_PS);
+}
+
+static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
+				      struct sk_buff *skb,
+				      struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00_bar_list_entry *entry;
+	struct ieee80211_bar *ba = (void *)skb->data;
+
+	if (likely(!ieee80211_is_back(ba->frame_control)))
+		return;
+
+	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
+		return;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
+
+		if (ba->start_seq_num != entry->start_seq_num)
+			continue;
+
+#define TID_CHECK(a, b) (						\
+	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
+	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
+
+		if (!TID_CHECK(ba->control, entry->control))
+			continue;
+
+#undef TID_CHECK
+
+		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
+			continue;
+
+		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
+			continue;
+
+		/* Mark BAR since we received the according BA */
+		spin_lock_bh(&rt2x00dev->bar_list_lock);
+		entry->block_acked = 1;
+		spin_unlock_bh(&rt2x00dev->bar_list_lock);
+		break;
+	}
+	rcu_read_unlock();
+
+}
+
+static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
+				      struct sk_buff *skb,
+				      struct rxdone_entry_desc *rxdesc)
+{
+	struct ieee80211_hdr *hdr = (void *) skb->data;
+	struct ieee80211_tim_ie *tim_ie;
+	u8 *tim;
+	u8 tim_len;
+	bool cam;
+
+	/* If this is not a beacon, or if mac80211 has no powersaving
+	 * configured, or if the device is already in powersaving mode
+	 * we can exit now. */
+	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
+		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
+		return;
+
+	/* min. beacon length + FCS_LEN */
+	if (skb->len <= 40 + FCS_LEN)
+		return;
+
+	/* and only beacons from the associated BSSID, please */
+	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
+	    !rt2x00dev->aid)
+		return;
+
+	rt2x00dev->last_beacon = jiffies;
+
+	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
+	if (!tim)
+		return;
+
+	if (tim[1] < sizeof(*tim_ie))
+		return;
+
+	tim_len = tim[1];
+	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
+
+	/* Check whenever the PHY can be turned off again. */
+
+	/* 1. What about buffered unicast traffic for our AID? */
+	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
+
+	/* 2. Maybe the AP wants to send multicast/broadcast data? */
+	cam |= (tim_ie->bitmap_ctrl & 0x01);
+
+	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
+		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
+}
+
+static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
+					struct rxdone_entry_desc *rxdesc)
+{
+	struct ieee80211_supported_band *sband;
+	const struct rt2x00_rate *rate;
+	unsigned int i;
+	int signal = rxdesc->signal;
+	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
+
+	switch (rxdesc->rate_mode) {
+	case RATE_MODE_CCK:
+	case RATE_MODE_OFDM:
+		/*
+		 * For non-HT rates the MCS value needs to contain the
+		 * actually used rate modulation (CCK or OFDM).
+		 */
+		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
+			signal = RATE_MCS(rxdesc->rate_mode, signal);
+
+		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
+		for (i = 0; i < sband->n_bitrates; i++) {
+			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
+			if (((type == RXDONE_SIGNAL_PLCP) &&
+			     (rate->plcp == signal)) ||
+			    ((type == RXDONE_SIGNAL_BITRATE) &&
+			      (rate->bitrate == signal)) ||
+			    ((type == RXDONE_SIGNAL_MCS) &&
+			      (rate->mcs == signal))) {
+				return i;
+			}
+		}
+		break;
+	case RATE_MODE_HT_MIX:
+	case RATE_MODE_HT_GREENFIELD:
+		if (signal >= 0 && signal <= 76)
+			return signal;
+		break;
+	default:
+		break;
+	}
+
+	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
+		    rxdesc->rate_mode, signal, type);
+	return 0;
+}
+
+void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct rxdone_entry_desc rxdesc;
+	struct sk_buff *skb;
+	struct ieee80211_rx_status *rx_status;
+	unsigned int header_length;
+	int rate_idx;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		goto submit_entry;
+
+	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+		goto submit_entry;
+
+	/*
+	 * Allocate a new sk_buffer. If no new buffer available, drop the
+	 * received frame and reuse the existing buffer.
+	 */
+	skb = rt2x00queue_alloc_rxskb(entry, gfp);
+	if (!skb)
+		goto submit_entry;
+
+	/*
+	 * Unmap the skb.
+	 */
+	rt2x00queue_unmap_skb(entry);
+
+	/*
+	 * Extract the RXD details.
+	 */
+	memset(&rxdesc, 0, sizeof(rxdesc));
+	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
+
+	/*
+	 * Check for valid size in case we get corrupted descriptor from
+	 * hardware.
+	 */
+	if (unlikely(rxdesc.size == 0 ||
+		     rxdesc.size > entry->queue->data_size)) {
+		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
+			   rxdesc.size, entry->queue->data_size);
+		dev_kfree_skb(entry->skb);
+		goto renew_skb;
+	}
+
+	/*
+	 * The data behind the ieee80211 header must be
+	 * aligned on a 4 byte boundary.
+	 */
+	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
+
+	/*
+	 * Hardware might have stripped the IV/EIV/ICV data,
+	 * in that case it is possible that the data was
+	 * provided separately (through hardware descriptor)
+	 * in which case we should reinsert the data into the frame.
+	 */
+	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
+	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
+		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
+					  &rxdesc);
+	else if (header_length &&
+		 (rxdesc.size > header_length) &&
+		 (rxdesc.dev_flags & RXDONE_L2PAD))
+		rt2x00queue_remove_l2pad(entry->skb, header_length);
+
+	/* Trim buffer to correct size */
+	skb_trim(entry->skb, rxdesc.size);
+
+	/*
+	 * Translate the signal to the correct bitrate index.
+	 */
+	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
+	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
+	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
+		rxdesc.flags |= RX_FLAG_HT;
+
+	/*
+	 * Check if this is a beacon, and more frames have been
+	 * buffered while we were in powersaving mode.
+	 */
+	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
+
+	/*
+	 * Check for incoming BlockAcks to match to the BlockAckReqs
+	 * we've send out.
+	 */
+	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
+
+	/*
+	 * Update extra components
+	 */
+	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
+	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
+
+	/*
+	 * Initialize RX status information, and send frame
+	 * to mac80211.
+	 */
+	rx_status = IEEE80211_SKB_RXCB(entry->skb);
+
+	/* Ensure that all fields of rx_status are initialized
+	 * properly. The skb->cb array was used for driver
+	 * specific informations, so rx_status might contain
+	 * garbage.
+	 */
+	memset(rx_status, 0, sizeof(*rx_status));
+
+	rx_status->mactime = rxdesc.timestamp;
+	rx_status->band = rt2x00dev->curr_band;
+	rx_status->freq = rt2x00dev->curr_freq;
+	rx_status->rate_idx = rate_idx;
+	rx_status->signal = rxdesc.rssi;
+	rx_status->flag = rxdesc.flags;
+	rx_status->antenna = rt2x00dev->link.ant.active.rx;
+
+	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
+
+renew_skb:
+	/*
+	 * Replace the skb with the freshly allocated one.
+	 */
+	entry->skb = skb;
+
+submit_entry:
+	entry->flags = 0;
+	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2x00dev->ops->lib->clear_entry(entry);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
+
+/*
+ * Driver initialization handlers.
+ */
+const struct rt2x00_rate rt2x00_supported_rates[12] = {
+	{
+		.flags = DEV_RATE_CCK,
+		.bitrate = 10,
+		.ratemask = BIT(0),
+		.plcp = 0x00,
+		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
+	},
+	{
+		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+		.bitrate = 20,
+		.ratemask = BIT(1),
+		.plcp = 0x01,
+		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
+	},
+	{
+		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+		.bitrate = 55,
+		.ratemask = BIT(2),
+		.plcp = 0x02,
+		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
+	},
+	{
+		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
+		.bitrate = 110,
+		.ratemask = BIT(3),
+		.plcp = 0x03,
+		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 60,
+		.ratemask = BIT(4),
+		.plcp = 0x0b,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 90,
+		.ratemask = BIT(5),
+		.plcp = 0x0f,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 120,
+		.ratemask = BIT(6),
+		.plcp = 0x0a,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 180,
+		.ratemask = BIT(7),
+		.plcp = 0x0e,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 240,
+		.ratemask = BIT(8),
+		.plcp = 0x09,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 360,
+		.ratemask = BIT(9),
+		.plcp = 0x0d,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 480,
+		.ratemask = BIT(10),
+		.plcp = 0x08,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
+	},
+	{
+		.flags = DEV_RATE_OFDM,
+		.bitrate = 540,
+		.ratemask = BIT(11),
+		.plcp = 0x0c,
+		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
+	},
+};
+
+static void rt2x00lib_channel(struct ieee80211_channel *entry,
+			      const int channel, const int tx_power,
+			      const int value)
+{
+	/* XXX: this assumption about the band is wrong for 802.11j */
+	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
+	entry->center_freq = ieee80211_channel_to_frequency(channel,
+							    entry->band);
+	entry->hw_value = value;
+	entry->max_power = tx_power;
+	entry->max_antenna_gain = 0xff;
+}
+
+static void rt2x00lib_rate(struct ieee80211_rate *entry,
+			   const u16 index, const struct rt2x00_rate *rate)
+{
+	entry->flags = 0;
+	entry->bitrate = rate->bitrate;
+	entry->hw_value = index;
+	entry->hw_value_short = index;
+
+	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
+		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
+}
+
+static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
+				    struct hw_mode_spec *spec)
+{
+	struct ieee80211_hw *hw = rt2x00dev->hw;
+	struct ieee80211_channel *channels;
+	struct ieee80211_rate *rates;
+	unsigned int num_rates;
+	unsigned int i;
+
+	num_rates = 0;
+	if (spec->supported_rates & SUPPORT_RATE_CCK)
+		num_rates += 4;
+	if (spec->supported_rates & SUPPORT_RATE_OFDM)
+		num_rates += 8;
+
+	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
+	if (!channels)
+		return -ENOMEM;
+
+	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
+	if (!rates)
+		goto exit_free_channels;
+
+	/*
+	 * Initialize Rate list.
+	 */
+	for (i = 0; i < num_rates; i++)
+		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
+
+	/*
+	 * Initialize Channel list.
+	 */
+	for (i = 0; i < spec->num_channels; i++) {
+		rt2x00lib_channel(&channels[i],
+				  spec->channels[i].channel,
+				  spec->channels_info[i].max_power, i);
+	}
+
+	/*
+	 * Intitialize 802.11b, 802.11g
+	 * Rates: CCK, OFDM.
+	 * Channels: 2.4 GHz
+	 */
+	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
+		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
+		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
+		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
+		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
+		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
+		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
+		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
+		       &spec->ht, sizeof(spec->ht));
+	}
+
+	/*
+	 * Intitialize 802.11a
+	 * Rates: OFDM.
+	 * Channels: OFDM, UNII, HiperLAN2.
+	 */
+	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
+		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
+		    spec->num_channels - 14;
+		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
+		    num_rates - 4;
+		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
+		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
+		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
+		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
+		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
+		       &spec->ht, sizeof(spec->ht));
+	}
+
+	return 0;
+
+ exit_free_channels:
+	kfree(channels);
+	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
+	return -ENOMEM;
+}
+
+static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
+{
+	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
+		ieee80211_unregister_hw(rt2x00dev->hw);
+
+	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
+		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
+		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
+		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
+		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
+	}
+
+	kfree(rt2x00dev->spec.channels_info);
+}
+
+static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	int status;
+
+	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * Initialize HW modes.
+	 */
+	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
+	if (status)
+		return status;
+
+	/*
+	 * Initialize HW fields.
+	 */
+	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
+
+	/*
+	 * Initialize extra TX headroom required.
+	 */
+	rt2x00dev->hw->extra_tx_headroom =
+		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
+		      rt2x00dev->extra_tx_headroom);
+
+	/*
+	 * Take TX headroom required for alignment into account.
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
+		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
+	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
+		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
+
+	/*
+	 * Tell mac80211 about the size of our private STA structure.
+	 */
+	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
+
+	/*
+	 * Allocate tx status FIFO for driver use.
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
+		/*
+		 * Allocate the txstatus fifo. In the worst case the tx
+		 * status fifo has to hold the tx status of all entries
+		 * in all tx queues. Hence, calculate the kfifo size as
+		 * tx_queues * entry_num and round up to the nearest
+		 * power of 2.
+		 */
+		int kfifo_size =
+			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
+					   rt2x00dev->tx->limit *
+					   sizeof(u32));
+
+		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
+				     GFP_KERNEL);
+		if (status)
+			return status;
+	}
+
+	/*
+	 * Initialize tasklets if used by the driver. Tasklets are
+	 * disabled until the interrupts are turned on. The driver
+	 * has to handle that.
+	 */
+#define RT2X00_TASKLET_INIT(taskletname) \
+	if (rt2x00dev->ops->lib->taskletname) { \
+		tasklet_init(&rt2x00dev->taskletname, \
+			     rt2x00dev->ops->lib->taskletname, \
+			     (unsigned long)rt2x00dev); \
+	}
+
+	RT2X00_TASKLET_INIT(txstatus_tasklet);
+	RT2X00_TASKLET_INIT(pretbtt_tasklet);
+	RT2X00_TASKLET_INIT(tbtt_tasklet);
+	RT2X00_TASKLET_INIT(rxdone_tasklet);
+	RT2X00_TASKLET_INIT(autowake_tasklet);
+
+#undef RT2X00_TASKLET_INIT
+
+	/*
+	 * Register HW.
+	 */
+	status = ieee80211_register_hw(rt2x00dev->hw);
+	if (status)
+		return status;
+
+	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
+
+	return 0;
+}
+
+/*
+ * Initialization/uninitialization handlers.
+ */
+static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Stop rfkill polling.
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+		rt2x00rfkill_unregister(rt2x00dev);
+
+	/*
+	 * Allow the HW to uninitialize.
+	 */
+	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
+
+	/*
+	 * Free allocated queue entries.
+	 */
+	rt2x00queue_uninitialize(rt2x00dev);
+}
+
+static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
+{
+	int status;
+
+	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * Allocate all queue entries.
+	 */
+	status = rt2x00queue_initialize(rt2x00dev);
+	if (status)
+		return status;
+
+	/*
+	 * Initialize the device.
+	 */
+	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
+	if (status) {
+		rt2x00queue_uninitialize(rt2x00dev);
+		return status;
+	}
+
+	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
+
+	/*
+	 * Start rfkill polling.
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+		rt2x00rfkill_register(rt2x00dev);
+
+	return 0;
+}
+
+int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * If this is the first interface which is added,
+	 * we should load the firmware now.
+	 */
+	retval = rt2x00lib_load_firmware(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Initialize the device.
+	 */
+	retval = rt2x00lib_initialize(rt2x00dev);
+	if (retval)
+		return retval;
+
+	rt2x00dev->intf_ap_count = 0;
+	rt2x00dev->intf_sta_count = 0;
+	rt2x00dev->intf_associated = 0;
+
+	/* Enable the radio */
+	retval = rt2x00lib_enable_radio(rt2x00dev);
+	if (retval)
+		return retval;
+
+	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
+
+	return 0;
+}
+
+void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
+{
+	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Perhaps we can add something smarter here,
+	 * but for now just disabling the radio should do.
+	 */
+	rt2x00lib_disable_radio(rt2x00dev);
+
+	rt2x00dev->intf_ap_count = 0;
+	rt2x00dev->intf_sta_count = 0;
+	rt2x00dev->intf_associated = 0;
+}
+
+static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
+{
+	struct ieee80211_iface_limit *if_limit;
+	struct ieee80211_iface_combination *if_combination;
+
+	if (rt2x00dev->ops->max_ap_intf < 2)
+		return;
+
+	/*
+	 * Build up AP interface limits structure.
+	 */
+	if_limit = &rt2x00dev->if_limits_ap;
+	if_limit->max = rt2x00dev->ops->max_ap_intf;
+	if_limit->types = BIT(NL80211_IFTYPE_AP);
+#ifdef CONFIG_MAC80211_MESH
+	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
+#endif
+
+	/*
+	 * Build up AP interface combinations structure.
+	 */
+	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
+	if_combination->limits = if_limit;
+	if_combination->n_limits = 1;
+	if_combination->max_interfaces = if_limit->max;
+	if_combination->num_different_channels = 1;
+
+	/*
+	 * Finally, specify the possible combinations to mac80211.
+	 */
+	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
+	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
+}
+
+static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
+{
+	if (WARN_ON(!rt2x00dev->tx))
+		return 0;
+
+	if (rt2x00_is_usb(rt2x00dev))
+		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
+
+	return rt2x00dev->tx[0].winfo_size;
+}
+
+/*
+ * driver allocation handlers.
+ */
+int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
+{
+	int retval = -ENOMEM;
+
+	/*
+	 * Set possible interface combinations.
+	 */
+	rt2x00lib_set_if_combinations(rt2x00dev);
+
+	/*
+	 * Allocate the driver data memory, if necessary.
+	 */
+	if (rt2x00dev->ops->drv_data_size > 0) {
+		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
+			                      GFP_KERNEL);
+		if (!rt2x00dev->drv_data) {
+			retval = -ENOMEM;
+			goto exit;
+		}
+	}
+
+	spin_lock_init(&rt2x00dev->irqmask_lock);
+	mutex_init(&rt2x00dev->csr_mutex);
+	INIT_LIST_HEAD(&rt2x00dev->bar_list);
+	spin_lock_init(&rt2x00dev->bar_list_lock);
+
+	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+	/*
+	 * Make room for rt2x00_intf inside the per-interface
+	 * structure ieee80211_vif.
+	 */
+	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
+
+	/*
+	 * rt2x00 devices can only use the last n bits of the MAC address
+	 * for virtual interfaces.
+	 */
+	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
+		(rt2x00dev->ops->max_ap_intf - 1);
+
+	/*
+	 * Initialize work.
+	 */
+	rt2x00dev->workqueue =
+	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
+	if (!rt2x00dev->workqueue) {
+		retval = -ENOMEM;
+		goto exit;
+	}
+
+	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
+	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
+	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
+
+	/*
+	 * Let the driver probe the device to detect the capabilities.
+	 */
+	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
+	if (retval) {
+		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
+		goto exit;
+	}
+
+	/*
+	 * Allocate queue array.
+	 */
+	retval = rt2x00queue_allocate(rt2x00dev);
+	if (retval)
+		goto exit;
+
+	/* Cache TX headroom value */
+	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
+
+	/*
+	 * Determine which operating modes are supported, all modes
+	 * which require beaconing, depend on the availability of
+	 * beacon entries.
+	 */
+	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
+	if (rt2x00dev->bcn->limit > 0)
+		rt2x00dev->hw->wiphy->interface_modes |=
+		    BIT(NL80211_IFTYPE_ADHOC) |
+		    BIT(NL80211_IFTYPE_AP) |
+#ifdef CONFIG_MAC80211_MESH
+		    BIT(NL80211_IFTYPE_MESH_POINT) |
+#endif
+		    BIT(NL80211_IFTYPE_WDS);
+
+	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
+
+	/*
+	 * Initialize ieee80211 structure.
+	 */
+	retval = rt2x00lib_probe_hw(rt2x00dev);
+	if (retval) {
+		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
+		goto exit;
+	}
+
+	/*
+	 * Register extra components.
+	 */
+	rt2x00link_register(rt2x00dev);
+	rt2x00leds_register(rt2x00dev);
+	rt2x00debug_register(rt2x00dev);
+
+	/*
+	 * Start rfkill polling.
+	 */
+	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+		rt2x00rfkill_register(rt2x00dev);
+
+	return 0;
+
+exit:
+	rt2x00lib_remove_dev(rt2x00dev);
+
+	return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
+
+void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
+{
+	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+	/*
+	 * Stop rfkill polling.
+	 */
+	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
+		rt2x00rfkill_unregister(rt2x00dev);
+
+	/*
+	 * Disable radio.
+	 */
+	rt2x00lib_disable_radio(rt2x00dev);
+
+	/*
+	 * Stop all work.
+	 */
+	cancel_work_sync(&rt2x00dev->intf_work);
+	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
+	cancel_work_sync(&rt2x00dev->sleep_work);
+	if (rt2x00_is_usb(rt2x00dev)) {
+		hrtimer_cancel(&rt2x00dev->txstatus_timer);
+		cancel_work_sync(&rt2x00dev->rxdone_work);
+		cancel_work_sync(&rt2x00dev->txdone_work);
+	}
+	if (rt2x00dev->workqueue)
+		destroy_workqueue(rt2x00dev->workqueue);
+
+	/*
+	 * Free the tx status fifo.
+	 */
+	kfifo_free(&rt2x00dev->txstatus_fifo);
+
+	/*
+	 * Kill the tx status tasklet.
+	 */
+	tasklet_kill(&rt2x00dev->txstatus_tasklet);
+	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
+	tasklet_kill(&rt2x00dev->tbtt_tasklet);
+	tasklet_kill(&rt2x00dev->rxdone_tasklet);
+	tasklet_kill(&rt2x00dev->autowake_tasklet);
+
+	/*
+	 * Uninitialize device.
+	 */
+	rt2x00lib_uninitialize(rt2x00dev);
+
+	/*
+	 * Free extra components
+	 */
+	rt2x00debug_deregister(rt2x00dev);
+	rt2x00leds_unregister(rt2x00dev);
+
+	/*
+	 * Free ieee80211_hw memory.
+	 */
+	rt2x00lib_remove_hw(rt2x00dev);
+
+	/*
+	 * Free firmware image.
+	 */
+	rt2x00lib_free_firmware(rt2x00dev);
+
+	/*
+	 * Free queue structures.
+	 */
+	rt2x00queue_free(rt2x00dev);
+
+	/*
+	 * Free the driver data.
+	 */
+	kfree(rt2x00dev->drv_data);
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
+
+/*
+ * Device state handlers
+ */
+#ifdef CONFIG_PM
+int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
+{
+	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
+
+	/*
+	 * Prevent mac80211 from accessing driver while suspended.
+	 */
+	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * Cleanup as much as possible.
+	 */
+	rt2x00lib_uninitialize(rt2x00dev);
+
+	/*
+	 * Suspend/disable extra components.
+	 */
+	rt2x00leds_suspend(rt2x00dev);
+	rt2x00debug_deregister(rt2x00dev);
+
+	/*
+	 * Set device mode to sleep for power management,
+	 * on some hardware this call seems to consistently fail.
+	 * From the specifications it is hard to tell why it fails,
+	 * and if this is a "bad thing".
+	 * Overall it is safe to just ignore the failure and
+	 * continue suspending. The only downside is that the
+	 * device will not be in optimal power save mode, but with
+	 * the radio and the other components already disabled the
+	 * device is as good as disabled.
+	 */
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
+		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
+
+int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
+{
+	rt2x00_dbg(rt2x00dev, "Waking up\n");
+
+	/*
+	 * Restore/enable extra components.
+	 */
+	rt2x00debug_register(rt2x00dev);
+	rt2x00leds_resume(rt2x00dev);
+
+	/*
+	 * We are ready again to receive requests from mac80211.
+	 */
+	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00lib_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00lib module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2x00dump.h b/drivers/net/wireless/rt2x00/rt2x00dump.h
new file mode 100644
index 0000000..4c0e01b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00dump.h
@@ -0,0 +1,127 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00dump
+	Abstract:
+		Data structures for the rt2x00debug & userspace.
+
+		The declarations in this file can be used by both rt2x00
+		and userspace and therefore should be kept together in
+		this file.
+ */
+
+#ifndef RT2X00DUMP_H
+#define RT2X00DUMP_H
+
+/**
+ * DOC: Introduction
+ *
+ * This header is intended to be exported to userspace,
+ * to make the structures and enumerations available to userspace
+ * applications. This means that all data types should be exportable.
+ *
+ * When rt2x00 is compiled with debugfs support enabled,
+ * it is possible to capture all data coming in and out of the device
+ * by reading the frame dump file. This file can have only a single reader.
+ * The following frames will be reported:
+ *   - All incoming frames (rx)
+ *   - All outgoing frames (tx, including beacon and atim)
+ *   - All completed frames (txdone including atim)
+ *
+ * The data is send to the file using the following format:
+ *
+ *   [rt2x00dump header][hardware descriptor][ieee802.11 frame]
+ *
+ * rt2x00dump header: The description of the dumped frame, as well as
+ *	additional information useful for debugging. See &rt2x00dump_hdr.
+ * hardware descriptor: Descriptor that was used to receive or transmit
+ *	the frame.
+ * ieee802.11 frame: The actual frame that was received or transmitted.
+ */
+
+/**
+ * enum rt2x00_dump_type - Frame type
+ *
+ * These values are used for the @type member of &rt2x00dump_hdr.
+ * @DUMP_FRAME_RXDONE: This frame has been received by the hardware.
+ * @DUMP_FRAME_TX: This frame is queued for transmission to the hardware.
+ * @DUMP_FRAME_TXDONE: This frame indicates the device has handled
+ *	the tx event which has either succeeded or failed. A frame
+ *	with this type should also have been reported with as a
+ *	%DUMP_FRAME_TX frame.
+ * @DUMP_FRAME_BEACON: This beacon frame is queued for transmission to the
+ *	hardware.
+ */
+enum rt2x00_dump_type {
+	DUMP_FRAME_RXDONE = 1,
+	DUMP_FRAME_TX = 2,
+	DUMP_FRAME_TXDONE = 3,
+	DUMP_FRAME_BEACON = 4,
+};
+
+/**
+ * struct rt2x00dump_hdr - Dump frame header
+ *
+ * Each frame dumped to the debugfs file starts with this header
+ * attached. This header contains the description of the actual
+ * frame which was dumped.
+ *
+ * New fields inside the structure must be appended to the end of
+ * the structure. This way userspace tools compiled for earlier
+ * header versions can still correctly handle the frame dump
+ * (although they will not handle all data passed to them in the dump).
+ *
+ * @version: Header version should always be set to %DUMP_HEADER_VERSION.
+ *	This field must be checked by userspace to determine if it can
+ *	handle this frame.
+ * @header_length: The length of the &rt2x00dump_hdr structure. This is
+ *	used for compatibility reasons so userspace can easily determine
+ *	the location of the next field in the dump.
+ * @desc_length: The length of the device descriptor.
+ * @data_length: The length of the frame data (including the ieee802.11 header.
+ * @chip_rt: RT chipset
+ * @chip_rf: RF chipset
+ * @chip_rev: Chipset revision
+ * @type: The frame type (&rt2x00_dump_type)
+ * @queue_index: The index number of the data queue.
+ * @entry_index: The index number of the entry inside the data queue.
+ * @timestamp_sec: Timestamp - seconds
+ * @timestamp_usec: Timestamp - microseconds
+ */
+struct rt2x00dump_hdr {
+	__le32 version;
+#define DUMP_HEADER_VERSION	2
+
+	__le32 header_length;
+	__le32 desc_length;
+	__le32 data_length;
+
+	__le16 chip_rt;
+	__le16 chip_rf;
+	__le16 chip_rev;
+
+	__le16 type;
+	__u8 queue_index;
+	__u8 entry_index;
+
+	__le32 timestamp_sec;
+	__le32 timestamp_usec;
+};
+
+#endif /* RT2X00DUMP_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00firmware.c b/drivers/net/wireless/rt2x00/rt2x00firmware.c
new file mode 100644
index 0000000..5813300
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00firmware.c
@@ -0,0 +1,129 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 firmware loading routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+static int rt2x00lib_request_firmware(struct rt2x00_dev *rt2x00dev)
+{
+	struct device *device = wiphy_dev(rt2x00dev->hw->wiphy);
+	const struct firmware *fw;
+	char *fw_name;
+	int retval;
+
+	/*
+	 * Read correct firmware from harddisk.
+	 */
+	fw_name = rt2x00dev->ops->lib->get_firmware_name(rt2x00dev);
+	if (!fw_name) {
+		rt2x00_err(rt2x00dev,
+			   "Invalid firmware filename\n"
+			   "Please file bug report to %s\n", DRV_PROJECT);
+		return -EINVAL;
+	}
+
+	rt2x00_info(rt2x00dev, "Loading firmware file '%s'\n", fw_name);
+
+	retval = request_firmware(&fw, fw_name, device);
+	if (retval) {
+		rt2x00_err(rt2x00dev, "Failed to request Firmware\n");
+		return retval;
+	}
+
+	if (!fw || !fw->size || !fw->data) {
+		rt2x00_err(rt2x00dev, "Failed to read Firmware\n");
+		release_firmware(fw);
+		return -ENOENT;
+	}
+
+	rt2x00_info(rt2x00dev, "Firmware detected - version: %d.%d\n",
+		    fw->data[fw->size - 4], fw->data[fw->size - 3]);
+	snprintf(rt2x00dev->hw->wiphy->fw_version,
+			sizeof(rt2x00dev->hw->wiphy->fw_version), "%d.%d",
+			fw->data[fw->size - 4], fw->data[fw->size - 3]);
+
+	retval = rt2x00dev->ops->lib->check_firmware(rt2x00dev, fw->data, fw->size);
+	switch (retval) {
+	case FW_OK:
+		break;
+	case FW_BAD_CRC:
+		rt2x00_err(rt2x00dev, "Firmware checksum error\n");
+		goto exit;
+	case FW_BAD_LENGTH:
+		rt2x00_err(rt2x00dev, "Invalid firmware file length (len=%zu)\n",
+			   fw->size);
+		goto exit;
+	case FW_BAD_VERSION:
+		rt2x00_err(rt2x00dev, "Current firmware does not support detected chipset\n");
+		goto exit;
+	}
+
+	rt2x00dev->fw = fw;
+
+	return 0;
+
+exit:
+	release_firmware(fw);
+
+	return -ENOENT;
+}
+
+int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+
+	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_FIRMWARE))
+		return 0;
+
+	if (!rt2x00dev->fw) {
+		retval = rt2x00lib_request_firmware(rt2x00dev);
+		if (retval)
+			return retval;
+	}
+
+	/*
+	 * Send firmware to the device.
+	 */
+	retval = rt2x00dev->ops->lib->load_firmware(rt2x00dev,
+						    rt2x00dev->fw->data,
+						    rt2x00dev->fw->size);
+
+	/*
+	 * When the firmware is uploaded to the hardware the LED
+	 * association status might have been triggered, for correct
+	 * LED handling it should now be reset.
+	 */
+	rt2x00leds_led_assoc(rt2x00dev, false);
+
+	return retval;
+}
+
+void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev)
+{
+	release_firmware(rt2x00dev->fw);
+	rt2x00dev->fw = NULL;
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00leds.c b/drivers/net/wireless/rt2x00/rt2x00leds.c
new file mode 100644
index 0000000..c681d04
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00leds.c
@@ -0,0 +1,244 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 led specific routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev, int rssi)
+{
+	struct rt2x00_led *led = &rt2x00dev->led_qual;
+	unsigned int brightness;
+
+	if ((led->type != LED_TYPE_QUALITY) || !(led->flags & LED_REGISTERED))
+		return;
+
+	/*
+	 * Led handling requires a positive value for the rssi,
+	 * to do that correctly we need to add the correction.
+	 */
+	rssi += rt2x00dev->rssi_offset;
+
+	/*
+	 * Get the rssi level, this is used to convert the rssi
+	 * to a LED value inside the range LED_OFF - LED_FULL.
+	 */
+	if (rssi <= 30)
+		rssi = 0;
+	else if (rssi <= 39)
+		rssi = 1;
+	else if (rssi <= 49)
+		rssi = 2;
+	else if (rssi <= 53)
+		rssi = 3;
+	else if (rssi <= 63)
+		rssi = 4;
+	else
+		rssi = 5;
+
+	/*
+	 * Note that we must _not_ send LED_OFF since the driver
+	 * is going to calculate the value and might use it in a
+	 * division.
+	 */
+	brightness = ((LED_FULL / 6) * rssi) + 1;
+	if (brightness != led->led_dev.brightness) {
+		led->led_dev.brightness_set(&led->led_dev, brightness);
+		led->led_dev.brightness = brightness;
+	}
+}
+
+static void rt2x00led_led_simple(struct rt2x00_led *led, bool enabled)
+{
+	unsigned int brightness = enabled ? LED_FULL : LED_OFF;
+
+	if (!(led->flags & LED_REGISTERED))
+		return;
+
+	led->led_dev.brightness_set(&led->led_dev, brightness);
+	led->led_dev.brightness = brightness;
+}
+
+void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+	if (rt2x00dev->led_qual.type == LED_TYPE_ACTIVITY)
+		rt2x00led_led_simple(&rt2x00dev->led_qual, enabled);
+}
+
+void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+	if (rt2x00dev->led_assoc.type == LED_TYPE_ASSOC)
+		rt2x00led_led_simple(&rt2x00dev->led_assoc, enabled);
+}
+
+void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev, bool enabled)
+{
+	if (rt2x00dev->led_radio.type == LED_TYPE_RADIO)
+		rt2x00led_led_simple(&rt2x00dev->led_radio, enabled);
+}
+
+static int rt2x00leds_register_led(struct rt2x00_dev *rt2x00dev,
+				   struct rt2x00_led *led,
+				   const char *name)
+{
+	struct device *device = wiphy_dev(rt2x00dev->hw->wiphy);
+	int retval;
+
+	led->led_dev.name = name;
+	led->led_dev.brightness = LED_OFF;
+
+	retval = led_classdev_register(device, &led->led_dev);
+	if (retval) {
+		rt2x00_err(rt2x00dev, "Failed to register led handler\n");
+		return retval;
+	}
+
+	led->flags |= LED_REGISTERED;
+
+	return 0;
+}
+
+void rt2x00leds_register(struct rt2x00_dev *rt2x00dev)
+{
+	char name[36];
+	int retval;
+	unsigned long on_period;
+	unsigned long off_period;
+	const char *phy_name = wiphy_name(rt2x00dev->hw->wiphy);
+
+	if (rt2x00dev->led_radio.flags & LED_INITIALIZED) {
+		snprintf(name, sizeof(name), "%s-%s::radio",
+			 rt2x00dev->ops->name, phy_name);
+
+		retval = rt2x00leds_register_led(rt2x00dev,
+						 &rt2x00dev->led_radio,
+						 name);
+		if (retval)
+			goto exit_fail;
+	}
+
+	if (rt2x00dev->led_assoc.flags & LED_INITIALIZED) {
+		snprintf(name, sizeof(name), "%s-%s::assoc",
+			 rt2x00dev->ops->name, phy_name);
+
+		retval = rt2x00leds_register_led(rt2x00dev,
+						 &rt2x00dev->led_assoc,
+						 name);
+		if (retval)
+			goto exit_fail;
+	}
+
+	if (rt2x00dev->led_qual.flags & LED_INITIALIZED) {
+		snprintf(name, sizeof(name), "%s-%s::quality",
+			 rt2x00dev->ops->name, phy_name);
+
+		retval = rt2x00leds_register_led(rt2x00dev,
+						 &rt2x00dev->led_qual,
+						 name);
+		if (retval)
+			goto exit_fail;
+	}
+
+	/*
+	 * Initialize blink time to default value:
+	 * On period: 70ms
+	 * Off period: 30ms
+	 */
+	if (rt2x00dev->led_radio.led_dev.blink_set) {
+		on_period = 70;
+		off_period = 30;
+		rt2x00dev->led_radio.led_dev.blink_set(
+		    &rt2x00dev->led_radio.led_dev, &on_period, &off_period);
+	}
+
+	return;
+
+exit_fail:
+	rt2x00leds_unregister(rt2x00dev);
+}
+
+static void rt2x00leds_unregister_led(struct rt2x00_led *led)
+{
+	led_classdev_unregister(&led->led_dev);
+
+	/*
+	 * This might look weird, but when we are unregistering while
+	 * suspended the led is already off, and since we haven't
+	 * fully resumed yet, access to the device might not be
+	 * possible yet.
+	 */
+	if (!(led->led_dev.flags & LED_SUSPENDED))
+		led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+
+	led->flags &= ~LED_REGISTERED;
+}
+
+void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev)
+{
+	if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+		rt2x00leds_unregister_led(&rt2x00dev->led_qual);
+	if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+		rt2x00leds_unregister_led(&rt2x00dev->led_assoc);
+	if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+		rt2x00leds_unregister_led(&rt2x00dev->led_radio);
+}
+
+static inline void rt2x00leds_suspend_led(struct rt2x00_led *led)
+{
+	led_classdev_suspend(&led->led_dev);
+
+	/* This shouldn't be needed, but just to be safe */
+	led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+	led->led_dev.brightness = LED_OFF;
+}
+
+void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev)
+{
+	if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+		rt2x00leds_suspend_led(&rt2x00dev->led_qual);
+	if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+		rt2x00leds_suspend_led(&rt2x00dev->led_assoc);
+	if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+		rt2x00leds_suspend_led(&rt2x00dev->led_radio);
+}
+
+static inline void rt2x00leds_resume_led(struct rt2x00_led *led)
+{
+	led_classdev_resume(&led->led_dev);
+
+	/* Device might have enabled the LEDS during resume */
+	led->led_dev.brightness_set(&led->led_dev, LED_OFF);
+	led->led_dev.brightness = LED_OFF;
+}
+
+void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev)
+{
+	if (rt2x00dev->led_radio.flags & LED_REGISTERED)
+		rt2x00leds_resume_led(&rt2x00dev->led_radio);
+	if (rt2x00dev->led_assoc.flags & LED_REGISTERED)
+		rt2x00leds_resume_led(&rt2x00dev->led_assoc);
+	if (rt2x00dev->led_qual.flags & LED_REGISTERED)
+		rt2x00leds_resume_led(&rt2x00dev->led_qual);
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00leds.h b/drivers/net/wireless/rt2x00/rt2x00leds.h
new file mode 100644
index 0000000..b2c5269
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00leds.h
@@ -0,0 +1,44 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 led datastructures and routines
+ */
+
+#ifndef RT2X00LEDS_H
+#define RT2X00LEDS_H
+
+enum led_type {
+	LED_TYPE_RADIO,
+	LED_TYPE_ASSOC,
+	LED_TYPE_ACTIVITY,
+	LED_TYPE_QUALITY,
+};
+
+struct rt2x00_led {
+	struct rt2x00_dev *rt2x00dev;
+	struct led_classdev led_dev;
+
+	enum led_type type;
+	unsigned int flags;
+#define LED_INITIALIZED		( 1 << 0 )
+#define LED_REGISTERED		( 1 << 1 )
+};
+
+#endif /* RT2X00LEDS_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00lib.h b/drivers/net/wireless/rt2x00/rt2x00lib.h
new file mode 100644
index 0000000..fb7c349
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00lib.h
@@ -0,0 +1,468 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: Data structures and definitions for the rt2x00lib module.
+ */
+
+#ifndef RT2X00LIB_H
+#define RT2X00LIB_H
+
+/*
+ * Interval defines
+ */
+#define WATCHDOG_INTERVAL	round_jiffies_relative(HZ)
+#define LINK_TUNE_INTERVAL	round_jiffies_relative(HZ)
+#define AGC_INTERVAL		round_jiffies_relative(4 * HZ)
+#define VCO_INTERVAL		round_jiffies_relative(10 * HZ) /* 10 sec */
+
+/*
+ * rt2x00_rate: Per rate device information
+ */
+struct rt2x00_rate {
+	unsigned short flags;
+#define DEV_RATE_CCK			0x0001
+#define DEV_RATE_OFDM			0x0002
+#define DEV_RATE_SHORT_PREAMBLE		0x0004
+
+	unsigned short bitrate; /* In 100kbit/s */
+	unsigned short ratemask;
+
+	unsigned short plcp;
+	unsigned short mcs;
+};
+
+extern const struct rt2x00_rate rt2x00_supported_rates[12];
+
+static inline const struct rt2x00_rate *rt2x00_get_rate(const u16 hw_value)
+{
+	return &rt2x00_supported_rates[hw_value & 0xff];
+}
+
+#define RATE_MCS(__mode, __mcs) \
+	((((__mode) & 0x00ff) << 8) | ((__mcs) & 0x00ff))
+
+static inline int rt2x00_get_rate_mcs(const u16 mcs_value)
+{
+	return (mcs_value & 0x00ff);
+}
+
+/*
+ * Radio control handlers.
+ */
+int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Initialization handlers.
+ */
+int rt2x00lib_start(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Configuration handlers.
+ */
+void rt2x00lib_config_intf(struct rt2x00_dev *rt2x00dev,
+			   struct rt2x00_intf *intf,
+			   enum nl80211_iftype type,
+			   const u8 *mac, const u8 *bssid);
+void rt2x00lib_config_erp(struct rt2x00_dev *rt2x00dev,
+			  struct rt2x00_intf *intf,
+			  struct ieee80211_bss_conf *conf,
+			  u32 changed);
+void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
+			      struct antenna_setup ant);
+void rt2x00lib_config(struct rt2x00_dev *rt2x00dev,
+		      struct ieee80211_conf *conf,
+		      const unsigned int changed_flags);
+
+/**
+ * DOC: Queue handlers
+ */
+
+/**
+ * rt2x00queue_alloc_rxskb - allocate a skb for RX purposes.
+ * @entry: The entry for which the skb will be applicable.
+ */
+struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp);
+
+/**
+ * rt2x00queue_free_skb - free a skb
+ * @entry: The entry for which the skb will be applicable.
+ */
+void rt2x00queue_free_skb(struct queue_entry *entry);
+
+/**
+ * rt2x00queue_align_frame - Align 802.11 frame to 4-byte boundary
+ * @skb: The skb to align
+ *
+ * Align the start of the 802.11 frame to a 4-byte boundary, this could
+ * mean the payload is not aligned properly though.
+ */
+void rt2x00queue_align_frame(struct sk_buff *skb);
+
+/**
+ * rt2x00queue_insert_l2pad - Align 802.11 header & payload to 4-byte boundary
+ * @skb: The skb to align
+ * @header_length: Length of 802.11 header
+ *
+ * Apply L2 padding to align both header and payload to 4-byte boundary
+ */
+void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length);
+
+/**
+ * rt2x00queue_insert_l2pad - Remove L2 padding from 802.11 frame
+ * @skb: The skb to align
+ * @header_length: Length of 802.11 header
+ *
+ * Remove L2 padding used to align both header and payload to 4-byte boundary,
+ * by removing the L2 padding the header will no longer be 4-byte aligned.
+ */
+void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length);
+
+/**
+ * rt2x00queue_write_tx_frame - Write TX frame to hardware
+ * @queue: Queue over which the frame should be send
+ * @skb: The skb to send
+ * @local: frame is not from mac80211
+ */
+int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
+			       struct ieee80211_sta *sta, bool local);
+
+/**
+ * rt2x00queue_update_beacon - Send new beacon from mac80211
+ *	to hardware. Handles locking by itself (mutex).
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
+			      struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_update_beacon_locked - Send new beacon from mac80211
+ *	to hardware. Caller needs to ensure locking.
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
+				     struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_clear_beacon - Clear beacon in hardware
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @vif: Interface for which the beacon should be updated.
+ */
+int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
+			     struct ieee80211_vif *vif);
+
+/**
+ * rt2x00queue_index_inc - Index incrementation function
+ * @entry: Queue entry (&struct queue_entry) to perform the action on.
+ * @index: Index type (&enum queue_index) to perform the action on.
+ *
+ * This function will increase the requested index on the entry's queue,
+ * it will grab the appropriate locks and handle queue overflow events by
+ * resetting the index to the start of the queue.
+ */
+void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index);
+
+/**
+ * rt2x00queue_init_queues - Initialize all data queues
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This function will loop through all available queues to clear all
+ * index numbers and set the queue entry to the correct initialization
+ * state.
+ */
+void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev);
+
+int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev);
+int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev);
+void rt2x00queue_free(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_update_stats - Update link statistics from RX frame
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @skb: Received frame
+ * @rxdesc: Received frame descriptor
+ *
+ * Update link statistics based on the information from the
+ * received frame descriptor.
+ */
+void rt2x00link_update_stats(struct rt2x00_dev *rt2x00dev,
+			     struct sk_buff *skb,
+			     struct rxdone_entry_desc *rxdesc);
+
+/**
+ * rt2x00link_start_tuner - Start periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This start the link tuner periodic work, this work will
+ * be executed periodically until &rt2x00link_stop_tuner has
+ * been called.
+ */
+void rt2x00link_start_tuner(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_tuner - Stop periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * After this function completed the link tuner will not
+ * be running until &rt2x00link_start_tuner is called.
+ */
+void rt2x00link_stop_tuner(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_reset_tuner - Reset periodic link tuner work
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ * @antenna: Should the antenna tuning also be reset
+ *
+ * The VGC limit configured in the hardware will be reset to 0
+ * which forces the driver to rediscover the correct value for
+ * the current association. This is needed when configuration
+ * options have changed which could drastically change the
+ * SNR level or link quality (i.e. changing the antenna setting).
+ *
+ * Resetting the link tuner will also cause the periodic work counter
+ * to be reset. Any driver which has a fixed limit on the number
+ * of rounds the link tuner is supposed to work will accept the
+ * tuner actions again if this limit was previously reached.
+ *
+ * If @antenna is set to true a the software antenna diversity
+ * tuning will also be reset.
+ */
+void rt2x00link_reset_tuner(struct rt2x00_dev *rt2x00dev, bool antenna);
+
+/**
+ * rt2x00link_start_watchdog - Start periodic watchdog monitoring
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * This start the watchdog periodic work, this work will
+ *be executed periodically until &rt2x00link_stop_watchdog has
+ * been called.
+ */
+void rt2x00link_start_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_watchdog - Stop periodic watchdog monitoring
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * After this function completed the watchdog monitoring will not
+ * be running until &rt2x00link_start_watchdog is called.
+ */
+void rt2x00link_stop_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_start_agc - Start periodic gain calibration
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ */
+void rt2x00link_start_agc(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_start_vcocal - Start periodic VCO calibration
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ */
+void rt2x00link_start_vcocal(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_agc - Stop periodic gain calibration
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ */
+void rt2x00link_stop_agc(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_stop_vcocal - Stop periodic VCO calibration
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ */
+void rt2x00link_stop_vcocal(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00link_register - Initialize link tuning & watchdog functionality
+ * @rt2x00dev: Pointer to &struct rt2x00_dev.
+ *
+ * Initialize work structure and all link tuning and watchdog related
+ * parameters. This will not start the periodic work itself.
+ */
+void rt2x00link_register(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Firmware handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_FIRMWARE
+int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev);
+void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev);
+#else
+static inline int rt2x00lib_load_firmware(struct rt2x00_dev *rt2x00dev)
+{
+	return 0;
+}
+static inline void rt2x00lib_free_firmware(struct rt2x00_dev *rt2x00dev)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_FIRMWARE */
+
+/*
+ * Debugfs handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+void rt2x00debug_register(struct rt2x00_dev *rt2x00dev);
+void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev);
+void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+			       struct rxdone_entry_desc *rxdesc);
+#else
+static inline void rt2x00debug_register(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00debug_deregister(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00debug_update_crypto(struct rt2x00_dev *rt2x00dev,
+					     struct rxdone_entry_desc *rxdesc)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+/*
+ * Crypto handlers.
+ */
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key);
+void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+				       struct sk_buff *skb,
+				       struct txentry_desc *txdesc);
+unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+				      struct sk_buff *skb);
+void rt2x00crypto_tx_copy_iv(struct sk_buff *skb,
+			     struct txentry_desc *txdesc);
+void rt2x00crypto_tx_remove_iv(struct sk_buff *skb,
+			       struct txentry_desc *txdesc);
+void rt2x00crypto_tx_insert_iv(struct sk_buff *skb, unsigned int header_length);
+void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+			       unsigned int header_length,
+			       struct rxdone_entry_desc *rxdesc);
+#else
+static inline enum cipher rt2x00crypto_key_to_cipher(struct ieee80211_key_conf *key)
+{
+	return CIPHER_NONE;
+}
+
+static inline void rt2x00crypto_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+						     struct sk_buff *skb,
+						     struct txentry_desc *txdesc)
+{
+}
+
+static inline unsigned int rt2x00crypto_tx_overhead(struct rt2x00_dev *rt2x00dev,
+						    struct sk_buff *skb)
+{
+	return 0;
+}
+
+static inline void rt2x00crypto_tx_copy_iv(struct sk_buff *skb,
+					   struct txentry_desc *txdesc)
+{
+}
+
+static inline void rt2x00crypto_tx_remove_iv(struct sk_buff *skb,
+					     struct txentry_desc *txdesc)
+{
+}
+
+static inline void rt2x00crypto_tx_insert_iv(struct sk_buff *skb,
+					     unsigned int header_length)
+{
+}
+
+static inline void rt2x00crypto_rx_insert_iv(struct sk_buff *skb,
+					     unsigned int header_length,
+					     struct rxdone_entry_desc *rxdesc)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+
+/*
+ * RFkill handlers.
+ */
+static inline void rt2x00rfkill_register(struct rt2x00_dev *rt2x00dev)
+{
+	if (test_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags))
+		wiphy_rfkill_start_polling(rt2x00dev->hw->wiphy);
+}
+
+static inline void rt2x00rfkill_unregister(struct rt2x00_dev *rt2x00dev)
+{
+	if (test_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags))
+		wiphy_rfkill_stop_polling(rt2x00dev->hw->wiphy);
+}
+
+/*
+ * LED handlers
+ */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev, int rssi);
+void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev, bool enabled);
+void rt2x00leds_register(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev);
+void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev);
+#else
+static inline void rt2x00leds_led_quality(struct rt2x00_dev *rt2x00dev,
+					  int rssi)
+{
+}
+
+static inline void rt2x00led_led_activity(struct rt2x00_dev *rt2x00dev,
+					  bool enabled)
+{
+}
+
+static inline void rt2x00leds_led_assoc(struct rt2x00_dev *rt2x00dev,
+					bool enabled)
+{
+}
+
+static inline void rt2x00leds_led_radio(struct rt2x00_dev *rt2x00dev,
+					bool enabled)
+{
+}
+
+static inline void rt2x00leds_register(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_unregister(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_suspend(struct rt2x00_dev *rt2x00dev)
+{
+}
+
+static inline void rt2x00leds_resume(struct rt2x00_dev *rt2x00dev)
+{
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+#endif /* RT2X00LIB_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00link.c b/drivers/net/wireless/rt2x00/rt2x00link.c
new file mode 100644
index 0000000..017188e
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00link.c
@@ -0,0 +1,492 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 generic link tuning routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+/*
+ * When we lack RSSI information return something less then -80 to
+ * tell the driver to tune the device to maximum sensitivity.
+ */
+#define DEFAULT_RSSI		-128
+
+static inline int rt2x00link_get_avg_rssi(struct ewma_rssi *ewma)
+{
+	unsigned long avg;
+
+	avg = ewma_rssi_read(ewma);
+	if (avg)
+		return -avg;
+
+	return DEFAULT_RSSI;
+}
+
+static int rt2x00link_antenna_get_link_rssi(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+
+	if (rt2x00dev->link.qual.rx_success)
+		return rt2x00link_get_avg_rssi(&ant->rssi_ant);
+
+	return DEFAULT_RSSI;
+}
+
+static int rt2x00link_antenna_get_rssi_history(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+
+	if (ant->rssi_history)
+		return ant->rssi_history;
+	return DEFAULT_RSSI;
+}
+
+static void rt2x00link_antenna_update_rssi_history(struct rt2x00_dev *rt2x00dev,
+						   int rssi)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	ant->rssi_history = rssi;
+}
+
+static void rt2x00link_antenna_reset(struct rt2x00_dev *rt2x00dev)
+{
+	ewma_rssi_init(&rt2x00dev->link.ant.rssi_ant);
+}
+
+static void rt2x00lib_antenna_diversity_sample(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct antenna_setup new_ant;
+	int other_antenna;
+
+	int sample_current = rt2x00link_antenna_get_link_rssi(rt2x00dev);
+	int sample_other = rt2x00link_antenna_get_rssi_history(rt2x00dev);
+
+	memcpy(&new_ant, &ant->active, sizeof(new_ant));
+
+	/*
+	 * We are done sampling. Now we should evaluate the results.
+	 */
+	ant->flags &= ~ANTENNA_MODE_SAMPLE;
+
+	/*
+	 * During the last period we have sampled the RSSI
+	 * from both antennas. It now is time to determine
+	 * which antenna demonstrated the best performance.
+	 * When we are already on the antenna with the best
+	 * performance, just create a good starting point
+	 * for the history and we are done.
+	 */
+	if (sample_current >= sample_other) {
+		rt2x00link_antenna_update_rssi_history(rt2x00dev,
+			sample_current);
+		return;
+	}
+
+	other_antenna = (ant->active.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+	if (ant->flags & ANTENNA_RX_DIVERSITY)
+		new_ant.rx = other_antenna;
+
+	if (ant->flags & ANTENNA_TX_DIVERSITY)
+		new_ant.tx = other_antenna;
+
+	rt2x00lib_config_antenna(rt2x00dev, new_ant);
+}
+
+static void rt2x00lib_antenna_diversity_eval(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct antenna_setup new_ant;
+	int rssi_curr;
+	int rssi_old;
+
+	memcpy(&new_ant, &ant->active, sizeof(new_ant));
+
+	/*
+	 * Get current RSSI value along with the historical value,
+	 * after that update the history with the current value.
+	 */
+	rssi_curr = rt2x00link_antenna_get_link_rssi(rt2x00dev);
+	rssi_old = rt2x00link_antenna_get_rssi_history(rt2x00dev);
+	rt2x00link_antenna_update_rssi_history(rt2x00dev, rssi_curr);
+
+	/*
+	 * Legacy driver indicates that we should swap antenna's
+	 * when the difference in RSSI is greater that 5. This
+	 * also should be done when the RSSI was actually better
+	 * then the previous sample.
+	 * When the difference exceeds the threshold we should
+	 * sample the rssi from the other antenna to make a valid
+	 * comparison between the 2 antennas.
+	 */
+	if (abs(rssi_curr - rssi_old) < 5)
+		return;
+
+	ant->flags |= ANTENNA_MODE_SAMPLE;
+
+	if (ant->flags & ANTENNA_RX_DIVERSITY)
+		new_ant.rx = (new_ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+	if (ant->flags & ANTENNA_TX_DIVERSITY)
+		new_ant.tx = (new_ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
+
+	rt2x00lib_config_antenna(rt2x00dev, new_ant);
+}
+
+static bool rt2x00lib_antenna_diversity(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_ant *ant = &rt2x00dev->link.ant;
+
+	/*
+	 * Determine if software diversity is enabled for
+	 * either the TX or RX antenna (or both).
+	 */
+	if (!(ant->flags & ANTENNA_RX_DIVERSITY) &&
+	    !(ant->flags & ANTENNA_TX_DIVERSITY)) {
+		ant->flags = 0;
+		return true;
+	}
+
+	/*
+	 * If we have only sampled the data over the last period
+	 * we should now harvest the data. Otherwise just evaluate
+	 * the data. The latter should only be performed once
+	 * every 2 seconds.
+	 */
+	if (ant->flags & ANTENNA_MODE_SAMPLE) {
+		rt2x00lib_antenna_diversity_sample(rt2x00dev);
+		return true;
+	} else if (rt2x00dev->link.count & 1) {
+		rt2x00lib_antenna_diversity_eval(rt2x00dev);
+		return true;
+	}
+
+	return false;
+}
+
+void rt2x00link_update_stats(struct rt2x00_dev *rt2x00dev,
+			     struct sk_buff *skb,
+			     struct rxdone_entry_desc *rxdesc)
+{
+	struct link *link = &rt2x00dev->link;
+	struct link_qual *qual = &rt2x00dev->link.qual;
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+
+	/*
+	 * No need to update the stats for !=STA interfaces
+	 */
+	if (!rt2x00dev->intf_sta_count)
+		return;
+
+	/*
+	 * Frame was received successfully since non-succesfull
+	 * frames would have been dropped by the hardware.
+	 */
+	qual->rx_success++;
+
+	/*
+	 * We are only interested in quality statistics from
+	 * beacons which came from the BSS which we are
+	 * associated with.
+	 */
+	if (!ieee80211_is_beacon(hdr->frame_control) ||
+	    !(rxdesc->dev_flags & RXDONE_MY_BSS))
+		return;
+
+	/*
+	 * Update global RSSI
+	 */
+	ewma_rssi_add(&link->avg_rssi, -rxdesc->rssi);
+
+	/*
+	 * Update antenna RSSI
+	 */
+	ewma_rssi_add(&ant->rssi_ant, -rxdesc->rssi);
+}
+
+void rt2x00link_start_tuner(struct rt2x00_dev *rt2x00dev)
+{
+	struct link *link = &rt2x00dev->link;
+
+	/*
+	 * Link tuning should only be performed when
+	 * an active sta interface exists. AP interfaces
+	 * don't need link tuning and monitor mode interfaces
+	 * should never have to work with link tuners.
+	 */
+	if (!rt2x00dev->intf_sta_count)
+		return;
+
+	/**
+	 * While scanning, link tuning is disabled. By default
+	 * the most sensitive settings will be used to make sure
+	 * that all beacons and probe responses will be received
+	 * during the scan.
+	 */
+	if (test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
+		return;
+
+	rt2x00link_reset_tuner(rt2x00dev, false);
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->work, LINK_TUNE_INTERVAL);
+}
+
+void rt2x00link_stop_tuner(struct rt2x00_dev *rt2x00dev)
+{
+	cancel_delayed_work_sync(&rt2x00dev->link.work);
+}
+
+void rt2x00link_reset_tuner(struct rt2x00_dev *rt2x00dev, bool antenna)
+{
+	struct link_qual *qual = &rt2x00dev->link.qual;
+	u8 vgc_level = qual->vgc_level_reg;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Reset link information.
+	 * Both the currently active vgc level as well as
+	 * the link tuner counter should be reset. Resetting
+	 * the counter is important for devices where the
+	 * device should only perform link tuning during the
+	 * first minute after being enabled.
+	 */
+	rt2x00dev->link.count = 0;
+	memset(qual, 0, sizeof(*qual));
+	ewma_rssi_init(&rt2x00dev->link.avg_rssi);
+
+	/*
+	 * Restore the VGC level as stored in the registers,
+	 * the driver can use this to determine if the register
+	 * must be updated during reset or not.
+	 */
+	qual->vgc_level_reg = vgc_level;
+
+	/*
+	 * Reset the link tuner.
+	 */
+	rt2x00dev->ops->lib->reset_tuner(rt2x00dev, qual);
+
+	if (antenna)
+		rt2x00link_antenna_reset(rt2x00dev);
+}
+
+static void rt2x00link_reset_qual(struct rt2x00_dev *rt2x00dev)
+{
+	struct link_qual *qual = &rt2x00dev->link.qual;
+
+	qual->rx_success = 0;
+	qual->rx_failed = 0;
+	qual->tx_success = 0;
+	qual->tx_failed = 0;
+}
+
+static void rt2x00link_tuner(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, link.work.work);
+	struct link *link = &rt2x00dev->link;
+	struct link_qual *qual = &rt2x00dev->link.qual;
+
+	/*
+	 * When the radio is shutting down we should
+	 * immediately cease all link tuning.
+	 */
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
+	    test_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Update statistics.
+	 */
+	rt2x00dev->ops->lib->link_stats(rt2x00dev, qual);
+	rt2x00dev->low_level_stats.dot11FCSErrorCount += qual->rx_failed;
+
+	/*
+	 * Update quality RSSI for link tuning,
+	 * when we have received some frames and we managed to
+	 * collect the RSSI data we could use this. Otherwise we
+	 * must fallback to the default RSSI value.
+	 */
+	if (!qual->rx_success)
+		qual->rssi = DEFAULT_RSSI;
+	else
+		qual->rssi = rt2x00link_get_avg_rssi(&link->avg_rssi);
+
+	/*
+	 * Check if link tuning is supported by the hardware, some hardware
+	 * do not support link tuning at all, while other devices can disable
+	 * the feature from the EEPROM.
+	 */
+	if (rt2x00_has_cap_link_tuning(rt2x00dev))
+		rt2x00dev->ops->lib->link_tuner(rt2x00dev, qual, link->count);
+
+	/*
+	 * Send a signal to the led to update the led signal strength.
+	 */
+	rt2x00leds_led_quality(rt2x00dev, qual->rssi);
+
+	/*
+	 * Evaluate antenna setup, make this the last step when
+	 * rt2x00lib_antenna_diversity made changes the quality
+	 * statistics will be reset.
+	 */
+	if (rt2x00lib_antenna_diversity(rt2x00dev))
+		rt2x00link_reset_qual(rt2x00dev);
+
+	/*
+	 * Increase tuner counter, and reschedule the next link tuner run.
+	 */
+	link->count++;
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->work, LINK_TUNE_INTERVAL);
+}
+
+void rt2x00link_start_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+	struct link *link = &rt2x00dev->link;
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+	    rt2x00dev->ops->lib->watchdog)
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->watchdog_work,
+					     WATCHDOG_INTERVAL);
+}
+
+void rt2x00link_stop_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+	cancel_delayed_work_sync(&rt2x00dev->link.watchdog_work);
+}
+
+static void rt2x00link_watchdog(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, link.watchdog_work.work);
+	struct link *link = &rt2x00dev->link;
+
+	/*
+	 * When the radio is shutting down we should
+	 * immediately cease the watchdog monitoring.
+	 */
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	rt2x00dev->ops->lib->watchdog(rt2x00dev);
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->watchdog_work,
+					     WATCHDOG_INTERVAL);
+}
+
+void rt2x00link_start_agc(struct rt2x00_dev *rt2x00dev)
+{
+	struct link *link = &rt2x00dev->link;
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+	    rt2x00dev->ops->lib->gain_calibration)
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->agc_work,
+					     AGC_INTERVAL);
+}
+
+void rt2x00link_start_vcocal(struct rt2x00_dev *rt2x00dev)
+{
+	struct link *link = &rt2x00dev->link;
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
+	    rt2x00dev->ops->lib->vco_calibration)
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->vco_work,
+					     VCO_INTERVAL);
+}
+
+void rt2x00link_stop_agc(struct rt2x00_dev *rt2x00dev)
+{
+	cancel_delayed_work_sync(&rt2x00dev->link.agc_work);
+}
+
+void rt2x00link_stop_vcocal(struct rt2x00_dev *rt2x00dev)
+{
+	cancel_delayed_work_sync(&rt2x00dev->link.vco_work);
+}
+
+static void rt2x00link_agc(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, link.agc_work.work);
+	struct link *link = &rt2x00dev->link;
+
+	/*
+	 * When the radio is shutting down we should
+	 * immediately cease the watchdog monitoring.
+	 */
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	rt2x00dev->ops->lib->gain_calibration(rt2x00dev);
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->agc_work,
+					     AGC_INTERVAL);
+}
+
+static void rt2x00link_vcocal(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, link.vco_work.work);
+	struct link *link = &rt2x00dev->link;
+
+	/*
+	 * When the radio is shutting down we should
+	 * immediately cease the VCO calibration.
+	 */
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return;
+
+	rt2x00dev->ops->lib->vco_calibration(rt2x00dev);
+
+	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		ieee80211_queue_delayed_work(rt2x00dev->hw,
+					     &link->vco_work,
+					     VCO_INTERVAL);
+}
+
+void rt2x00link_register(struct rt2x00_dev *rt2x00dev)
+{
+	INIT_DELAYED_WORK(&rt2x00dev->link.agc_work, rt2x00link_agc);
+	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
+		INIT_DELAYED_WORK(&rt2x00dev->link.vco_work, rt2x00link_vcocal);
+	INIT_DELAYED_WORK(&rt2x00dev->link.watchdog_work, rt2x00link_watchdog);
+	INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00link_tuner);
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00mac.c b/drivers/net/wireless/rt2x00/rt2x00mac.c
new file mode 100644
index 0000000..3c26ee6
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00mac.c
@@ -0,0 +1,846 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00mac
+	Abstract: rt2x00 generic mac80211 routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+static int rt2x00mac_tx_rts_cts(struct rt2x00_dev *rt2x00dev,
+				struct data_queue *queue,
+				struct sk_buff *frag_skb)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(frag_skb);
+	struct ieee80211_tx_info *rts_info;
+	struct sk_buff *skb;
+	unsigned int data_length;
+	int retval = 0;
+
+	if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+		data_length = sizeof(struct ieee80211_cts);
+	else
+		data_length = sizeof(struct ieee80211_rts);
+
+	skb = dev_alloc_skb(data_length + rt2x00dev->hw->extra_tx_headroom);
+	if (unlikely(!skb)) {
+		rt2x00_warn(rt2x00dev, "Failed to create RTS/CTS frame\n");
+		return -ENOMEM;
+	}
+
+	skb_reserve(skb, rt2x00dev->hw->extra_tx_headroom);
+	skb_put(skb, data_length);
+
+	/*
+	 * Copy TX information over from original frame to
+	 * RTS/CTS frame. Note that we set the no encryption flag
+	 * since we don't want this frame to be encrypted.
+	 * RTS frames should be acked, while CTS-to-self frames
+	 * should not. The ready for TX flag is cleared to prevent
+	 * it being automatically send when the descriptor is
+	 * written to the hardware.
+	 */
+	memcpy(skb->cb, frag_skb->cb, sizeof(skb->cb));
+	rts_info = IEEE80211_SKB_CB(skb);
+	rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_RTS_CTS;
+	rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_CTS_PROTECT;
+
+	if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+		rts_info->flags |= IEEE80211_TX_CTL_NO_ACK;
+	else
+		rts_info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
+
+	/* Disable hardware encryption */
+	rts_info->control.hw_key = NULL;
+
+	/*
+	 * RTS/CTS frame should use the length of the frame plus any
+	 * encryption overhead that will be added by the hardware.
+	 */
+	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
+
+	if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
+		ieee80211_ctstoself_get(rt2x00dev->hw, tx_info->control.vif,
+					frag_skb->data, data_length, tx_info,
+					(struct ieee80211_cts *)(skb->data));
+	else
+		ieee80211_rts_get(rt2x00dev->hw, tx_info->control.vif,
+				  frag_skb->data, data_length, tx_info,
+				  (struct ieee80211_rts *)(skb->data));
+
+	retval = rt2x00queue_write_tx_frame(queue, skb, NULL, true);
+	if (retval) {
+		dev_kfree_skb_any(skb);
+		rt2x00_warn(rt2x00dev, "Failed to send RTS/CTS frame\n");
+	}
+
+	return retval;
+}
+
+void rt2x00mac_tx(struct ieee80211_hw *hw,
+		  struct ieee80211_tx_control *control,
+		  struct sk_buff *skb)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	enum data_queue_qid qid = skb_get_queue_mapping(skb);
+	struct data_queue *queue = NULL;
+
+	/*
+	 * Mac80211 might be calling this function while we are trying
+	 * to remove the device or perhaps suspending it.
+	 * Note that we can only stop the TX queues inside the TX path
+	 * due to possible race conditions in mac80211.
+	 */
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		goto exit_free_skb;
+
+	/*
+	 * Use the ATIM queue if appropriate and present.
+	 */
+	if (tx_info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM &&
+	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE))
+		qid = QID_ATIM;
+
+	queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
+	if (unlikely(!queue)) {
+		rt2x00_err(rt2x00dev,
+			   "Attempt to send packet over invalid queue %d\n"
+			   "Please file bug report to %s\n", qid, DRV_PROJECT);
+		goto exit_free_skb;
+	}
+
+	/*
+	 * If CTS/RTS is required. create and queue that frame first.
+	 * Make sure we have at least enough entries available to send
+	 * this CTS/RTS frame as well as the data frame.
+	 * Note that when the driver has set the set_rts_threshold()
+	 * callback function it doesn't need software generation of
+	 * either RTS or CTS-to-self frame and handles everything
+	 * inside the hardware.
+	 */
+	if (!rt2x00dev->ops->hw->set_rts_threshold &&
+	    (tx_info->control.rates[0].flags & (IEEE80211_TX_RC_USE_RTS_CTS |
+						IEEE80211_TX_RC_USE_CTS_PROTECT))) {
+		if (rt2x00queue_available(queue) <= 1)
+			goto exit_fail;
+
+		if (rt2x00mac_tx_rts_cts(rt2x00dev, queue, skb))
+			goto exit_fail;
+	}
+
+	if (unlikely(rt2x00queue_write_tx_frame(queue, skb, control->sta, false)))
+		goto exit_fail;
+
+	/*
+	 * Pausing queue has to be serialized with rt2x00lib_txdone(). Note
+	 * we should not use spin_lock_bh variant as bottom halve was already
+	 * disabled before ieee80211_xmit() call.
+	 */
+	spin_lock(&queue->tx_lock);
+	if (rt2x00queue_threshold(queue))
+		rt2x00queue_pause_queue(queue);
+	spin_unlock(&queue->tx_lock);
+
+	return;
+
+ exit_fail:
+	spin_lock(&queue->tx_lock);
+	rt2x00queue_pause_queue(queue);
+	spin_unlock(&queue->tx_lock);
+ exit_free_skb:
+	ieee80211_free_txskb(hw, skb);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_tx);
+
+int rt2x00mac_start(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return 0;
+
+	return rt2x00lib_start(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_start);
+
+void rt2x00mac_stop(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return;
+
+	rt2x00lib_stop(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_stop);
+
+int rt2x00mac_add_interface(struct ieee80211_hw *hw,
+			    struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+	struct data_queue *queue = rt2x00dev->bcn;
+	struct queue_entry *entry = NULL;
+	unsigned int i;
+
+	/*
+	 * Don't allow interfaces to be added
+	 * the device has disappeared.
+	 */
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+	    !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
+		return -ENODEV;
+
+	/*
+	 * Loop through all beacon queues to find a free
+	 * entry. Since there are as much beacon entries
+	 * as the maximum interfaces, this search shouldn't
+	 * fail.
+	 */
+	for (i = 0; i < queue->limit; i++) {
+		entry = &queue->entries[i];
+		if (!test_and_set_bit(ENTRY_BCN_ASSIGNED, &entry->flags))
+			break;
+	}
+
+	if (unlikely(i == queue->limit))
+		return -ENOBUFS;
+
+	/*
+	 * We are now absolutely sure the interface can be created,
+	 * increase interface count and start initialization.
+	 */
+
+	if (vif->type == NL80211_IFTYPE_AP)
+		rt2x00dev->intf_ap_count++;
+	else
+		rt2x00dev->intf_sta_count++;
+
+	mutex_init(&intf->beacon_skb_mutex);
+	intf->beacon = entry;
+
+	/*
+	 * The MAC address must be configured after the device
+	 * has been initialized. Otherwise the device can reset
+	 * the MAC registers.
+	 * The BSSID address must only be configured in AP mode,
+	 * however we should not send an empty BSSID address for
+	 * STA interfaces at this time, since this can cause
+	 * invalid behavior in the device.
+	 */
+	rt2x00lib_config_intf(rt2x00dev, intf, vif->type,
+			      vif->addr, NULL);
+
+	/*
+	 * Some filters depend on the current working mode. We can force
+	 * an update during the next configure_filter() run by mac80211 by
+	 * resetting the current packet_filter state.
+	 */
+	rt2x00dev->packet_filter = 0;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_add_interface);
+
+void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+
+	/*
+	 * Don't allow interfaces to be remove while
+	 * either the device has disappeared or when
+	 * no interface is present.
+	 */
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
+	    (vif->type == NL80211_IFTYPE_AP && !rt2x00dev->intf_ap_count) ||
+	    (vif->type != NL80211_IFTYPE_AP && !rt2x00dev->intf_sta_count))
+		return;
+
+	if (vif->type == NL80211_IFTYPE_AP)
+		rt2x00dev->intf_ap_count--;
+	else
+		rt2x00dev->intf_sta_count--;
+
+	/*
+	 * Release beacon entry so it is available for
+	 * new interfaces again.
+	 */
+	clear_bit(ENTRY_BCN_ASSIGNED, &intf->beacon->flags);
+
+	/*
+	 * Make sure the bssid and mac address registers
+	 * are cleared to prevent false ACKing of frames.
+	 */
+	rt2x00lib_config_intf(rt2x00dev, intf,
+			      NL80211_IFTYPE_UNSPECIFIED, NULL, NULL);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_remove_interface);
+
+int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct ieee80211_conf *conf = &hw->conf;
+
+	/*
+	 * mac80211 might be calling this function while we are trying
+	 * to remove the device or perhaps suspending it.
+	 */
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return 0;
+
+	/*
+	 * Some configuration parameters (e.g. channel and antenna values) can
+	 * only be set when the radio is enabled, but do require the RX to
+	 * be off. During this period we should keep link tuning enabled,
+	 * if for any reason the link tuner must be reset, this will be
+	 * handled by rt2x00lib_config().
+	 */
+	rt2x00queue_stop_queue(rt2x00dev->rx);
+
+	/*
+	 * When we've just turned on the radio, we want to reprogram
+	 * everything to ensure a consistent state
+	 */
+	rt2x00lib_config(rt2x00dev, conf, changed);
+
+	/*
+	 * After the radio has been enabled we need to configure
+	 * the antenna to the default settings. rt2x00lib_config_antenna()
+	 * should determine if any action should be taken based on
+	 * checking if diversity has been enabled or no antenna changes
+	 * have been made since the last configuration change.
+	 */
+	rt2x00lib_config_antenna(rt2x00dev, rt2x00dev->default_ant);
+
+	/* Turn RX back on */
+	rt2x00queue_start_queue(rt2x00dev->rx);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_config);
+
+void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
+				unsigned int changed_flags,
+				unsigned int *total_flags,
+				u64 multicast)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * Mask off any flags we are going to ignore
+	 * from the total_flags field.
+	 */
+	*total_flags &=
+	    FIF_ALLMULTI |
+	    FIF_FCSFAIL |
+	    FIF_PLCPFAIL |
+	    FIF_CONTROL |
+	    FIF_PSPOLL |
+	    FIF_OTHER_BSS;
+
+	/*
+	 * Apply some rules to the filters:
+	 * - Some filters imply different filters to be set.
+	 * - Some things we can't filter out at all.
+	 * - Multicast filter seems to kill broadcast traffic so never use it.
+	 */
+	*total_flags |= FIF_ALLMULTI;
+
+	/*
+	 * If the device has a single filter for all control frames,
+	 * FIF_CONTROL and FIF_PSPOLL flags imply each other.
+	 * And if the device has more than one filter for control frames
+	 * of different types, but has no a separate filter for PS Poll frames,
+	 * FIF_CONTROL flag implies FIF_PSPOLL.
+	 */
+	if (!rt2x00_has_cap_control_filters(rt2x00dev)) {
+		if (*total_flags & FIF_CONTROL || *total_flags & FIF_PSPOLL)
+			*total_flags |= FIF_CONTROL | FIF_PSPOLL;
+	}
+	if (!rt2x00_has_cap_control_filter_pspoll(rt2x00dev)) {
+		if (*total_flags & FIF_CONTROL)
+			*total_flags |= FIF_PSPOLL;
+	}
+
+	/*
+	 * Check if there is any work left for us.
+	 */
+	if (rt2x00dev->packet_filter == *total_flags)
+		return;
+	rt2x00dev->packet_filter = *total_flags;
+
+	rt2x00dev->ops->lib->config_filter(rt2x00dev, *total_flags);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_configure_filter);
+
+static void rt2x00mac_set_tim_iter(void *data, u8 *mac,
+				   struct ieee80211_vif *vif)
+{
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+
+	if (vif->type != NL80211_IFTYPE_AP &&
+	    vif->type != NL80211_IFTYPE_ADHOC &&
+	    vif->type != NL80211_IFTYPE_MESH_POINT &&
+	    vif->type != NL80211_IFTYPE_WDS)
+		return;
+
+	set_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags);
+}
+
+int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
+		      bool set)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return 0;
+
+	ieee80211_iterate_active_interfaces_atomic(
+		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
+		rt2x00mac_set_tim_iter, rt2x00dev);
+
+	/* queue work to upodate the beacon template */
+	ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_tim);
+
+#ifdef CONFIG_RT2X00_LIB_CRYPTO
+static void memcpy_tkip(struct rt2x00lib_crypto *crypto, u8 *key, u8 key_len)
+{
+	if (key_len > NL80211_TKIP_DATA_OFFSET_ENCR_KEY)
+		memcpy(crypto->key,
+		       &key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY],
+		       sizeof(crypto->key));
+
+	if (key_len > NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY)
+		memcpy(crypto->tx_mic,
+		       &key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY],
+		       sizeof(crypto->tx_mic));
+
+	if (key_len > NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY)
+		memcpy(crypto->rx_mic,
+		       &key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY],
+		       sizeof(crypto->rx_mic));
+}
+
+int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
+		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
+		      struct ieee80211_key_conf *key)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	int (*set_key) (struct rt2x00_dev *rt2x00dev,
+			struct rt2x00lib_crypto *crypto,
+			struct ieee80211_key_conf *key);
+	struct rt2x00lib_crypto crypto;
+	static const u8 bcast_addr[ETH_ALEN] =
+		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, };
+	struct rt2x00_sta *sta_priv = NULL;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return 0;
+
+	if (!rt2x00_has_cap_hw_crypto(rt2x00dev))
+		return -EOPNOTSUPP;
+
+	/*
+	 * To support IBSS RSN, don't program group keys in IBSS, the
+	 * hardware will then not attempt to decrypt the frames.
+	 */
+	if (vif->type == NL80211_IFTYPE_ADHOC &&
+	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
+		return -EOPNOTSUPP;
+
+	if (key->keylen > 32)
+		return -ENOSPC;
+
+	memset(&crypto, 0, sizeof(crypto));
+
+	crypto.bssidx = rt2x00lib_get_bssidx(rt2x00dev, vif);
+	crypto.cipher = rt2x00crypto_key_to_cipher(key);
+	if (crypto.cipher == CIPHER_NONE)
+		return -EOPNOTSUPP;
+	if (crypto.cipher == CIPHER_TKIP && rt2x00_is_usb(rt2x00dev))
+		return -EOPNOTSUPP;
+
+	crypto.cmd = cmd;
+
+	if (sta) {
+		crypto.address = sta->addr;
+		sta_priv = sta_to_rt2x00_sta(sta);
+		crypto.wcid = sta_priv->wcid;
+	} else
+		crypto.address = bcast_addr;
+
+	if (crypto.cipher == CIPHER_TKIP)
+		memcpy_tkip(&crypto, &key->key[0], key->keylen);
+	else
+		memcpy(crypto.key, &key->key[0], key->keylen);
+	/*
+	 * Each BSS has a maximum of 4 shared keys.
+	 * Shared key index values:
+	 *	0) BSS0 key0
+	 *	1) BSS0 key1
+	 *	...
+	 *	4) BSS1 key0
+	 *	...
+	 *	8) BSS2 key0
+	 *	...
+	 * Both pairwise as shared key indeces are determined by
+	 * driver. This is required because the hardware requires
+	 * keys to be assigned in correct order (When key 1 is
+	 * provided but key 0 is not, then the key is not found
+	 * by the hardware during RX).
+	 */
+	if (cmd == SET_KEY)
+		key->hw_key_idx = 0;
+
+	if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
+		set_key = rt2x00dev->ops->lib->config_pairwise_key;
+	else
+		set_key = rt2x00dev->ops->lib->config_shared_key;
+
+	if (!set_key)
+		return -EOPNOTSUPP;
+
+	return set_key(rt2x00dev, &crypto, key);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_key);
+#endif /* CONFIG_RT2X00_LIB_CRYPTO */
+
+int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+		      struct ieee80211_sta *sta)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	return rt2x00dev->ops->lib->sta_add(rt2x00dev, vif, sta);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sta_add);
+
+int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+			 struct ieee80211_sta *sta)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
+
+	return rt2x00dev->ops->lib->sta_remove(rt2x00dev, sta_priv->wcid);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sta_remove);
+
+void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif,
+			     const u8 *mac_addr)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	set_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags);
+	rt2x00link_stop_tuner(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_start);
+
+void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	clear_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags);
+	rt2x00link_start_tuner(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_complete);
+
+int rt2x00mac_get_stats(struct ieee80211_hw *hw,
+			struct ieee80211_low_level_stats *stats)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * The dot11ACKFailureCount, dot11RTSFailureCount and
+	 * dot11RTSSuccessCount are updated in interrupt time.
+	 * dot11FCSErrorCount is updated in the link tuner.
+	 */
+	memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats));
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_stats);
+
+void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
+				struct ieee80211_vif *vif,
+				struct ieee80211_bss_conf *bss_conf,
+				u32 changes)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+
+	/*
+	 * mac80211 might be calling this function while we are trying
+	 * to remove the device or perhaps suspending it.
+	 */
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return;
+
+	/*
+	 * Update the BSSID.
+	 */
+	if (changes & BSS_CHANGED_BSSID)
+		rt2x00lib_config_intf(rt2x00dev, intf, vif->type, NULL,
+				      bss_conf->bssid);
+
+	/*
+	 * Start/stop beaconing.
+	 */
+	if (changes & BSS_CHANGED_BEACON_ENABLED) {
+		mutex_lock(&intf->beacon_skb_mutex);
+		if (!bss_conf->enable_beacon && intf->enable_beacon) {
+			rt2x00dev->intf_beaconing--;
+			intf->enable_beacon = false;
+
+			if (rt2x00dev->intf_beaconing == 0) {
+				/*
+				 * Last beaconing interface disabled
+				 * -> stop beacon queue.
+				 */
+				rt2x00queue_stop_queue(rt2x00dev->bcn);
+			}
+			/*
+			 * Clear beacon in the H/W for this vif. This is needed
+			 * to disable beaconing on this particular interface
+			 * and keep it running on other interfaces.
+			 */
+			rt2x00queue_clear_beacon(rt2x00dev, vif);
+		} else if (bss_conf->enable_beacon && !intf->enable_beacon) {
+			rt2x00dev->intf_beaconing++;
+			intf->enable_beacon = true;
+			/*
+			 * Upload beacon to the H/W. This is only required on
+			 * USB devices. PCI devices fetch beacons periodically.
+			 */
+			if (rt2x00_is_usb(rt2x00dev))
+				rt2x00queue_update_beacon(rt2x00dev, vif);
+
+			if (rt2x00dev->intf_beaconing == 1) {
+				/*
+				 * First beaconing interface enabled
+				 * -> start beacon queue.
+				 */
+				rt2x00queue_start_queue(rt2x00dev->bcn);
+			}
+		}
+		mutex_unlock(&intf->beacon_skb_mutex);
+	}
+
+	/*
+	 * When the association status has changed we must reset the link
+	 * tuner counter. This is because some drivers determine if they
+	 * should perform link tuning based on the number of seconds
+	 * while associated or not associated.
+	 */
+	if (changes & BSS_CHANGED_ASSOC) {
+		rt2x00dev->link.count = 0;
+
+		if (bss_conf->assoc)
+			rt2x00dev->intf_associated++;
+		else
+			rt2x00dev->intf_associated--;
+
+		rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
+
+		clear_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags);
+	}
+
+	/*
+	 * Check for access point which do not support 802.11e . We have to
+	 * generate data frames sequence number in S/W for such AP, because
+	 * of H/W bug.
+	 */
+	if (changes & BSS_CHANGED_QOS && !bss_conf->qos)
+		set_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags);
+
+	/*
+	 * When the erp information has changed, we should perform
+	 * additional configuration steps. For all other changes we are done.
+	 */
+	if (changes & (BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE |
+		       BSS_CHANGED_ERP_SLOT | BSS_CHANGED_BASIC_RATES |
+		       BSS_CHANGED_BEACON_INT | BSS_CHANGED_HT))
+		rt2x00lib_config_erp(rt2x00dev, intf, bss_conf, changes);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_bss_info_changed);
+
+int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
+		      struct ieee80211_vif *vif, u16 queue_idx,
+		      const struct ieee80211_tx_queue_params *params)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+
+	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+	if (unlikely(!queue))
+		return -EINVAL;
+
+	/*
+	 * The passed variables are stored as real value ((2^n)-1).
+	 * Ralink registers require to know the bit number 'n'.
+	 */
+	if (params->cw_min > 0)
+		queue->cw_min = fls(params->cw_min);
+	else
+		queue->cw_min = 5; /* cw_min: 2^5 = 32. */
+
+	if (params->cw_max > 0)
+		queue->cw_max = fls(params->cw_max);
+	else
+		queue->cw_max = 10; /* cw_min: 2^10 = 1024. */
+
+	queue->aifs = params->aifs;
+	queue->txop = params->txop;
+
+	rt2x00_dbg(rt2x00dev,
+		   "Configured TX queue %d - CWmin: %d, CWmax: %d, Aifs: %d, TXop: %d\n",
+		   queue_idx, queue->cw_min, queue->cw_max, queue->aifs,
+		   queue->txop);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_conf_tx);
+
+void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	bool active = !!rt2x00dev->ops->lib->rfkill_poll(rt2x00dev);
+
+	wiphy_rfkill_set_hw_state(hw->wiphy, !active);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_rfkill_poll);
+
+void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
+		     u32 queues, bool drop)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return;
+
+	tx_queue_for_each(rt2x00dev, queue)
+		rt2x00queue_flush_queue(queue, drop);
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_flush);
+
+int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct antenna_setup *def = &rt2x00dev->default_ant;
+	struct antenna_setup setup;
+
+	// The antenna value is not supposed to be 0,
+	// or exceed the maximum number of antenna's.
+	if (!tx_ant || (tx_ant & ~3) || !rx_ant || (rx_ant & ~3))
+		return -EINVAL;
+
+	// When the client tried to configure the antenna to or from
+	// diversity mode, we must reset the default antenna as well
+	// as that controls the diversity switch.
+	if (ant->flags & ANTENNA_TX_DIVERSITY && tx_ant != 3)
+		ant->flags &= ~ANTENNA_TX_DIVERSITY;
+	if (ant->flags & ANTENNA_RX_DIVERSITY && rx_ant != 3)
+		ant->flags &= ~ANTENNA_RX_DIVERSITY;
+
+	// If diversity is being enabled, check if we need hardware
+	// or software diversity. In the latter case, reset the value,
+	// and make sure we update the antenna flags to have the
+	// link tuner pick up the diversity tuning.
+	if (tx_ant == 3 && def->tx == ANTENNA_SW_DIVERSITY) {
+		tx_ant = ANTENNA_SW_DIVERSITY;
+		ant->flags |= ANTENNA_TX_DIVERSITY;
+	}
+
+	if (rx_ant == 3 && def->rx == ANTENNA_SW_DIVERSITY) {
+		rx_ant = ANTENNA_SW_DIVERSITY;
+		ant->flags |= ANTENNA_RX_DIVERSITY;
+	}
+
+	setup.tx = tx_ant;
+	setup.rx = rx_ant;
+	setup.rx_chain_num = 0;
+	setup.tx_chain_num = 0;
+
+	rt2x00lib_config_antenna(rt2x00dev, setup);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_set_antenna);
+
+int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct link_ant *ant = &rt2x00dev->link.ant;
+	struct antenna_setup *active = &rt2x00dev->link.ant.active;
+
+	// When software diversity is active, we must report this to the
+	// client and not the current active antenna state.
+	if (ant->flags & ANTENNA_TX_DIVERSITY)
+		*tx_ant = ANTENNA_HW_DIVERSITY;
+	else
+		*tx_ant = active->tx;
+
+	if (ant->flags & ANTENNA_RX_DIVERSITY)
+		*rx_ant = ANTENNA_HW_DIVERSITY;
+	else
+		*rx_ant = active->rx;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_antenna);
+
+void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
+			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		*tx += queue->length;
+		*tx_max += queue->limit;
+	}
+
+	*rx = rt2x00dev->rx->length;
+	*rx_max = rt2x00dev->rx->limit;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_get_ringparam);
+
+bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		if (!rt2x00queue_empty(queue))
+			return true;
+	}
+
+	return false;
+}
+EXPORT_SYMBOL_GPL(rt2x00mac_tx_frames_pending);
diff --git a/drivers/net/wireless/rt2x00/rt2x00mmio.c b/drivers/net/wireless/rt2x00/rt2x00mmio.c
new file mode 100644
index 0000000..f0178fd
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00mmio.c
@@ -0,0 +1,212 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00mmio
+	Abstract: rt2x00 generic mmio device routines.
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+
+/*
+ * Register access.
+ */
+int rt2x00mmio_regbusy_read(struct rt2x00_dev *rt2x00dev,
+			    const unsigned int offset,
+			    const struct rt2x00_field32 field,
+			    u32 *reg)
+{
+	unsigned int i;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return 0;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00mmio_register_read(rt2x00dev, offset, reg);
+		if (!rt2x00_get_field32(*reg, field))
+			return 1;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	printk_once(KERN_ERR "%s() Indirect register access failed: "
+	      "offset=0x%.08x, value=0x%.08x\n", __func__, offset, *reg);
+	*reg = ~0;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_regbusy_read);
+
+bool rt2x00mmio_rxdone(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue = rt2x00dev->rx;
+	struct queue_entry *entry;
+	struct queue_entry_priv_mmio *entry_priv;
+	struct skb_frame_desc *skbdesc;
+	int max_rx = 16;
+
+	while (--max_rx) {
+		entry = rt2x00queue_get_entry(queue, Q_INDEX);
+		entry_priv = entry->priv_data;
+
+		if (rt2x00dev->ops->lib->get_entry_state(entry))
+			break;
+
+		/*
+		 * Fill in desc fields of the skb descriptor
+		 */
+		skbdesc = get_skb_frame_desc(entry->skb);
+		skbdesc->desc = entry_priv->desc;
+		skbdesc->desc_len = entry->queue->desc_size;
+
+		/*
+		 * DMA is already done, notify rt2x00lib that
+		 * it finished successfully.
+		 */
+		rt2x00lib_dmastart(entry);
+		rt2x00lib_dmadone(entry);
+
+		/*
+		 * Send the frame to rt2x00lib for further processing.
+		 */
+		rt2x00lib_rxdone(entry, GFP_ATOMIC);
+	}
+
+	return !max_rx;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_rxdone);
+
+void rt2x00mmio_flush_queue(struct data_queue *queue, bool drop)
+{
+	unsigned int i;
+
+	for (i = 0; !rt2x00queue_empty(queue) && i < 10; i++)
+		msleep(10);
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_flush_queue);
+
+/*
+ * Device initialization handlers.
+ */
+static int rt2x00mmio_alloc_queue_dma(struct rt2x00_dev *rt2x00dev,
+				      struct data_queue *queue)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+	void *addr;
+	dma_addr_t dma;
+	unsigned int i;
+
+	/*
+	 * Allocate DMA memory for descriptor and buffer.
+	 */
+	addr = dma_zalloc_coherent(rt2x00dev->dev,
+				   queue->limit * queue->desc_size, &dma,
+				   GFP_KERNEL);
+	if (!addr)
+		return -ENOMEM;
+
+	/*
+	 * Initialize all queue entries to contain valid addresses.
+	 */
+	for (i = 0; i < queue->limit; i++) {
+		entry_priv = queue->entries[i].priv_data;
+		entry_priv->desc = addr + i * queue->desc_size;
+		entry_priv->desc_dma = dma + i * queue->desc_size;
+	}
+
+	return 0;
+}
+
+static void rt2x00mmio_free_queue_dma(struct rt2x00_dev *rt2x00dev,
+				      struct data_queue *queue)
+{
+	struct queue_entry_priv_mmio *entry_priv =
+	    queue->entries[0].priv_data;
+
+	if (entry_priv->desc)
+		dma_free_coherent(rt2x00dev->dev,
+				  queue->limit * queue->desc_size,
+				  entry_priv->desc, entry_priv->desc_dma);
+	entry_priv->desc = NULL;
+}
+
+int rt2x00mmio_initialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	int status;
+
+	/*
+	 * Allocate DMA
+	 */
+	queue_for_each(rt2x00dev, queue) {
+		status = rt2x00mmio_alloc_queue_dma(rt2x00dev, queue);
+		if (status)
+			goto exit;
+	}
+
+	/*
+	 * Register interrupt handler.
+	 */
+	status = request_irq(rt2x00dev->irq,
+			     rt2x00dev->ops->lib->irq_handler,
+			     IRQF_SHARED, rt2x00dev->name, rt2x00dev);
+	if (status) {
+		rt2x00_err(rt2x00dev, "IRQ %d allocation failed (error %d)\n",
+			   rt2x00dev->irq, status);
+		goto exit;
+	}
+
+	return 0;
+
+exit:
+	queue_for_each(rt2x00dev, queue)
+		rt2x00mmio_free_queue_dma(rt2x00dev, queue);
+
+	return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_initialize);
+
+void rt2x00mmio_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	/*
+	 * Free irq line.
+	 */
+	free_irq(rt2x00dev->irq, rt2x00dev);
+
+	/*
+	 * Free DMA
+	 */
+	queue_for_each(rt2x00dev, queue)
+		rt2x00mmio_free_queue_dma(rt2x00dev, queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00mmio_uninitialize);
+
+/*
+ * rt2x00mmio module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 mmio library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2x00mmio.h b/drivers/net/wireless/rt2x00/rt2x00mmio.h
new file mode 100644
index 0000000..701c312
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00mmio.h
@@ -0,0 +1,117 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00mmio
+	Abstract: Data structures for the rt2x00mmio module.
+ */
+
+#ifndef RT2X00MMIO_H
+#define RT2X00MMIO_H
+
+#include <linux/io.h>
+
+/*
+ * Register access.
+ */
+static inline void rt2x00mmio_register_read(struct rt2x00_dev *rt2x00dev,
+					    const unsigned int offset,
+					    u32 *value)
+{
+	*value = readl(rt2x00dev->csr.base + offset);
+}
+
+static inline void rt2x00mmio_register_multiread(struct rt2x00_dev *rt2x00dev,
+						 const unsigned int offset,
+						 void *value, const u32 length)
+{
+	memcpy_fromio(value, rt2x00dev->csr.base + offset, length);
+}
+
+static inline void rt2x00mmio_register_write(struct rt2x00_dev *rt2x00dev,
+					     const unsigned int offset,
+					     u32 value)
+{
+	writel(value, rt2x00dev->csr.base + offset);
+}
+
+static inline void rt2x00mmio_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+						  const unsigned int offset,
+						  const void *value,
+						  const u32 length)
+{
+	__iowrite32_copy(rt2x00dev->csr.base + offset, value, length >> 2);
+}
+
+/**
+ * rt2x00mmio_regbusy_read - Read from register with busy check
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @field: Field to check if register is busy
+ * @reg: Pointer to where register contents should be stored
+ *
+ * This function will read the given register, and checks if the
+ * register is busy. If it is, it will sleep for a couple of
+ * microseconds before reading the register again. If the register
+ * is not read after a certain timeout, this function will return
+ * FALSE.
+ */
+int rt2x00mmio_regbusy_read(struct rt2x00_dev *rt2x00dev,
+			    const unsigned int offset,
+			    const struct rt2x00_field32 field,
+			    u32 *reg);
+
+/**
+ * struct queue_entry_priv_mmio: Per entry PCI specific information
+ *
+ * @desc: Pointer to device descriptor
+ * @desc_dma: DMA pointer to &desc.
+ * @data: Pointer to device's entry memory.
+ * @data_dma: DMA pointer to &data.
+ */
+struct queue_entry_priv_mmio {
+	__le32 *desc;
+	dma_addr_t desc_dma;
+};
+
+/**
+ * rt2x00mmio_rxdone - Handle RX done events
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ *
+ * Returns true if there are still rx frames pending and false if all
+ * pending rx frames were processed.
+ */
+bool rt2x00mmio_rxdone(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * rt2x00mmio_flush_queue - Flush data queue
+ * @queue: Data queue to stop
+ * @drop: True to drop all pending frames.
+ *
+ * This will wait for a maximum of 100ms, waiting for the queues
+ * to become empty.
+ */
+void rt2x00mmio_flush_queue(struct data_queue *queue, bool drop);
+
+/*
+ * Device initialization handlers.
+ */
+int rt2x00mmio_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00mmio_uninitialize(struct rt2x00_dev *rt2x00dev);
+
+#endif /* RT2X00MMIO_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00pci.c b/drivers/net/wireless/rt2x00/rt2x00pci.c
new file mode 100644
index 0000000..d93db4b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00pci.c
@@ -0,0 +1,221 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00pci
+	Abstract: rt2x00 generic pci device routines.
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00pci.h"
+
+/*
+ * PCI driver handlers.
+ */
+static void rt2x00pci_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+	kfree(rt2x00dev->rf);
+	rt2x00dev->rf = NULL;
+
+	kfree(rt2x00dev->eeprom);
+	rt2x00dev->eeprom = NULL;
+
+	if (rt2x00dev->csr.base) {
+		iounmap(rt2x00dev->csr.base);
+		rt2x00dev->csr.base = NULL;
+	}
+}
+
+static int rt2x00pci_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+	struct pci_dev *pci_dev = to_pci_dev(rt2x00dev->dev);
+
+	rt2x00dev->csr.base = pci_ioremap_bar(pci_dev, 0);
+	if (!rt2x00dev->csr.base)
+		goto exit;
+
+	rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+	if (!rt2x00dev->eeprom)
+		goto exit;
+
+	rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+	if (!rt2x00dev->rf)
+		goto exit;
+
+	return 0;
+
+exit:
+	rt2x00_probe_err("Failed to allocate registers\n");
+
+	rt2x00pci_free_reg(rt2x00dev);
+
+	return -ENOMEM;
+}
+
+int rt2x00pci_probe(struct pci_dev *pci_dev, const struct rt2x00_ops *ops)
+{
+	struct ieee80211_hw *hw;
+	struct rt2x00_dev *rt2x00dev;
+	int retval;
+	u16 chip;
+
+	retval = pci_enable_device(pci_dev);
+	if (retval) {
+		rt2x00_probe_err("Enable device failed\n");
+		return retval;
+	}
+
+	retval = pci_request_regions(pci_dev, pci_name(pci_dev));
+	if (retval) {
+		rt2x00_probe_err("PCI request regions failed\n");
+		goto exit_disable_device;
+	}
+
+	pci_set_master(pci_dev);
+
+	if (pci_set_mwi(pci_dev))
+		rt2x00_probe_err("MWI not available\n");
+
+	if (dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
+		rt2x00_probe_err("PCI DMA not supported\n");
+		retval = -EIO;
+		goto exit_release_regions;
+	}
+
+	hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+	if (!hw) {
+		rt2x00_probe_err("Failed to allocate hardware\n");
+		retval = -ENOMEM;
+		goto exit_release_regions;
+	}
+
+	pci_set_drvdata(pci_dev, hw);
+
+	rt2x00dev = hw->priv;
+	rt2x00dev->dev = &pci_dev->dev;
+	rt2x00dev->ops = ops;
+	rt2x00dev->hw = hw;
+	rt2x00dev->irq = pci_dev->irq;
+	rt2x00dev->name = ops->name;
+
+	if (pci_is_pcie(pci_dev))
+		rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
+	else
+		rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI);
+
+	retval = rt2x00pci_alloc_reg(rt2x00dev);
+	if (retval)
+		goto exit_free_device;
+
+	/*
+	 * Because rt3290 chip use different efuse offset to read efuse data.
+	 * So before read efuse it need to indicate it is the
+	 * rt3290 or not.
+	 */
+	pci_read_config_word(pci_dev, PCI_DEVICE_ID, &chip);
+	rt2x00dev->chip.rt = chip;
+
+	retval = rt2x00lib_probe_dev(rt2x00dev);
+	if (retval)
+		goto exit_free_reg;
+
+	return 0;
+
+exit_free_reg:
+	rt2x00pci_free_reg(rt2x00dev);
+
+exit_free_device:
+	ieee80211_free_hw(hw);
+
+exit_release_regions:
+	pci_release_regions(pci_dev);
+
+exit_disable_device:
+	pci_disable_device(pci_dev);
+
+	return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_probe);
+
+void rt2x00pci_remove(struct pci_dev *pci_dev)
+{
+	struct ieee80211_hw *hw = pci_get_drvdata(pci_dev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * Free all allocated data.
+	 */
+	rt2x00lib_remove_dev(rt2x00dev);
+	rt2x00pci_free_reg(rt2x00dev);
+	ieee80211_free_hw(hw);
+
+	/*
+	 * Free the PCI device data.
+	 */
+	pci_disable_device(pci_dev);
+	pci_release_regions(pci_dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_remove);
+
+#ifdef CONFIG_PM
+int rt2x00pci_suspend(struct pci_dev *pci_dev, pm_message_t state)
+{
+	struct ieee80211_hw *hw = pci_get_drvdata(pci_dev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	int retval;
+
+	retval = rt2x00lib_suspend(rt2x00dev, state);
+	if (retval)
+		return retval;
+
+	pci_save_state(pci_dev);
+	pci_disable_device(pci_dev);
+	return pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_suspend);
+
+int rt2x00pci_resume(struct pci_dev *pci_dev)
+{
+	struct ieee80211_hw *hw = pci_get_drvdata(pci_dev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	if (pci_set_power_state(pci_dev, PCI_D0) ||
+	    pci_enable_device(pci_dev)) {
+		rt2x00_err(rt2x00dev, "Failed to resume device\n");
+		return -EIO;
+	}
+
+	pci_restore_state(pci_dev);
+	return rt2x00lib_resume(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00pci_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00pci module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 pci library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2x00pci.h b/drivers/net/wireless/rt2x00/rt2x00pci.h
new file mode 100644
index 0000000..bc0ca5f
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00pci.h
@@ -0,0 +1,49 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00pci
+	Abstract: Data structures for the rt2x00pci module.
+ */
+
+#ifndef RT2X00PCI_H
+#define RT2X00PCI_H
+
+#include <linux/io.h>
+#include <linux/pci.h>
+
+/*
+ * This variable should be used with the
+ * pci_driver structure initialization.
+ */
+#define PCI_DEVICE_DATA(__ops)	.driver_data = (kernel_ulong_t)(__ops)
+
+/*
+ * PCI driver handlers.
+ */
+int rt2x00pci_probe(struct pci_dev *pci_dev, const struct rt2x00_ops *ops);
+void rt2x00pci_remove(struct pci_dev *pci_dev);
+#ifdef CONFIG_PM
+int rt2x00pci_suspend(struct pci_dev *pci_dev, pm_message_t state);
+int rt2x00pci_resume(struct pci_dev *pci_dev);
+#else
+#define rt2x00pci_suspend	NULL
+#define rt2x00pci_resume	NULL
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00PCI_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00queue.c b/drivers/net/wireless/rt2x00/rt2x00queue.c
new file mode 100644
index 0000000..68b620b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00queue.c
@@ -0,0 +1,1290 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00lib
+	Abstract: rt2x00 queue specific routines.
+ */
+
+#include <linux/slab.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/dma-mapping.h>
+
+#include "rt2x00.h"
+#include "rt2x00lib.h"
+
+struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
+{
+	struct data_queue *queue = entry->queue;
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	struct sk_buff *skb;
+	struct skb_frame_desc *skbdesc;
+	unsigned int frame_size;
+	unsigned int head_size = 0;
+	unsigned int tail_size = 0;
+
+	/*
+	 * The frame size includes descriptor size, because the
+	 * hardware directly receive the frame into the skbuffer.
+	 */
+	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
+
+	/*
+	 * The payload should be aligned to a 4-byte boundary,
+	 * this means we need at least 3 bytes for moving the frame
+	 * into the correct offset.
+	 */
+	head_size = 4;
+
+	/*
+	 * For IV/EIV/ICV assembly we must make sure there is
+	 * at least 8 bytes bytes available in headroom for IV/EIV
+	 * and 8 bytes for ICV data as tailroon.
+	 */
+	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
+		head_size += 8;
+		tail_size += 8;
+	}
+
+	/*
+	 * Allocate skbuffer.
+	 */
+	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
+	if (!skb)
+		return NULL;
+
+	/*
+	 * Make sure we not have a frame with the requested bytes
+	 * available in the head and tail.
+	 */
+	skb_reserve(skb, head_size);
+	skb_put(skb, frame_size);
+
+	/*
+	 * Populate skbdesc.
+	 */
+	skbdesc = get_skb_frame_desc(skb);
+	memset(skbdesc, 0, sizeof(*skbdesc));
+	skbdesc->entry = entry;
+
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
+		dma_addr_t skb_dma;
+
+		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
+					 DMA_FROM_DEVICE);
+		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
+			dev_kfree_skb_any(skb);
+			return NULL;
+		}
+
+		skbdesc->skb_dma = skb_dma;
+		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
+	}
+
+	return skb;
+}
+
+int rt2x00queue_map_txskb(struct queue_entry *entry)
+{
+	struct device *dev = entry->queue->rt2x00dev->dev;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+
+	skbdesc->skb_dma =
+	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
+
+	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
+		return -ENOMEM;
+
+	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
+
+void rt2x00queue_unmap_skb(struct queue_entry *entry)
+{
+	struct device *dev = entry->queue->rt2x00dev->dev;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+
+	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
+		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
+				 DMA_FROM_DEVICE);
+		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
+	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
+		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
+				 DMA_TO_DEVICE);
+		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
+
+void rt2x00queue_free_skb(struct queue_entry *entry)
+{
+	if (!entry->skb)
+		return;
+
+	rt2x00queue_unmap_skb(entry);
+	dev_kfree_skb_any(entry->skb);
+	entry->skb = NULL;
+}
+
+void rt2x00queue_align_frame(struct sk_buff *skb)
+{
+	unsigned int frame_length = skb->len;
+	unsigned int align = ALIGN_SIZE(skb, 0);
+
+	if (!align)
+		return;
+
+	skb_push(skb, align);
+	memmove(skb->data, skb->data + align, frame_length);
+	skb_trim(skb, frame_length);
+}
+
+/*
+ * H/W needs L2 padding between the header and the paylod if header size
+ * is not 4 bytes aligned.
+ */
+void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
+{
+	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
+
+	if (!l2pad)
+		return;
+
+	skb_push(skb, l2pad);
+	memmove(skb->data, skb->data + l2pad, hdr_len);
+}
+
+void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
+{
+	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
+
+	if (!l2pad)
+		return;
+
+	memmove(skb->data + l2pad, skb->data, hdr_len);
+	skb_pull(skb, l2pad);
+}
+
+static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
+						 struct sk_buff *skb,
+						 struct txentry_desc *txdesc)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
+	u16 seqno;
+
+	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
+		return;
+
+	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
+
+	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
+		/*
+		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
+		 * seqno on retransmited data (non-QOS) frames. To workaround
+		 * the problem let's generate seqno in software if QOS is
+		 * disabled.
+		 */
+		if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
+			__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
+		else
+			/* H/W will generate sequence number */
+			return;
+	}
+
+	/*
+	 * The hardware is not able to insert a sequence number. Assign a
+	 * software generated one here.
+	 *
+	 * This is wrong because beacons are not getting sequence
+	 * numbers assigned properly.
+	 *
+	 * A secondary problem exists for drivers that cannot toggle
+	 * sequence counting per-frame, since those will override the
+	 * sequence counter given by mac80211.
+	 */
+	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
+		seqno = atomic_add_return(0x10, &intf->seqno);
+	else
+		seqno = atomic_read(&intf->seqno);
+
+	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
+	hdr->seq_ctrl |= cpu_to_le16(seqno);
+}
+
+static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
+						  struct sk_buff *skb,
+						  struct txentry_desc *txdesc,
+						  const struct rt2x00_rate *hwrate)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+	unsigned int data_length;
+	unsigned int duration;
+	unsigned int residual;
+
+	/*
+	 * Determine with what IFS priority this frame should be send.
+	 * Set ifs to IFS_SIFS when the this is not the first fragment,
+	 * or this fragment came after RTS/CTS.
+	 */
+	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
+		txdesc->u.plcp.ifs = IFS_BACKOFF;
+	else
+		txdesc->u.plcp.ifs = IFS_SIFS;
+
+	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
+	data_length = skb->len + 4;
+	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
+
+	/*
+	 * PLCP setup
+	 * Length calculation depends on OFDM/CCK rate.
+	 */
+	txdesc->u.plcp.signal = hwrate->plcp;
+	txdesc->u.plcp.service = 0x04;
+
+	if (hwrate->flags & DEV_RATE_OFDM) {
+		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
+		txdesc->u.plcp.length_low = data_length & 0x3f;
+	} else {
+		/*
+		 * Convert length to microseconds.
+		 */
+		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
+		duration = GET_DURATION(data_length, hwrate->bitrate);
+
+		if (residual != 0) {
+			duration++;
+
+			/*
+			 * Check if we need to set the Length Extension
+			 */
+			if (hwrate->bitrate == 110 && residual <= 30)
+				txdesc->u.plcp.service |= 0x80;
+		}
+
+		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
+		txdesc->u.plcp.length_low = duration & 0xff;
+
+		/*
+		 * When preamble is enabled we should set the
+		 * preamble bit for the signal.
+		 */
+		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
+			txdesc->u.plcp.signal |= 0x08;
+	}
+}
+
+static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
+						struct sk_buff *skb,
+						struct txentry_desc *txdesc,
+						struct ieee80211_sta *sta,
+						const struct rt2x00_rate *hwrate)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+	struct rt2x00_sta *sta_priv = NULL;
+
+	if (sta) {
+		txdesc->u.ht.mpdu_density =
+		    sta->ht_cap.ampdu_density;
+
+		sta_priv = sta_to_rt2x00_sta(sta);
+		txdesc->u.ht.wcid = sta_priv->wcid;
+	}
+
+	/*
+	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
+	 * mcs rate to be used
+	 */
+	if (txrate->flags & IEEE80211_TX_RC_MCS) {
+		txdesc->u.ht.mcs = txrate->idx;
+
+		/*
+		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
+		 * when using more then one tx stream (>MCS7).
+		 */
+		if (sta && txdesc->u.ht.mcs > 7 &&
+		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
+			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
+	} else {
+		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
+		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
+			txdesc->u.ht.mcs |= 0x08;
+	}
+
+	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
+		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
+			txdesc->u.ht.txop = TXOP_SIFS;
+		else
+			txdesc->u.ht.txop = TXOP_BACKOFF;
+
+		/* Left zero on all other settings. */
+		return;
+	}
+
+	txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */
+
+	/*
+	 * Only one STBC stream is supported for now.
+	 */
+	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
+		txdesc->u.ht.stbc = 1;
+
+	/*
+	 * This frame is eligible for an AMPDU, however, don't aggregate
+	 * frames that are intended to probe a specific tx rate.
+	 */
+	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
+	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
+		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
+
+	/*
+	 * Set 40Mhz mode if necessary (for legacy rates this will
+	 * duplicate the frame to both channels).
+	 */
+	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
+	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
+		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
+	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
+		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
+
+	/*
+	 * Determine IFS values
+	 * - Use TXOP_BACKOFF for management frames except beacons
+	 * - Use TXOP_SIFS for fragment bursts
+	 * - Use TXOP_HTTXOP for everything else
+	 *
+	 * Note: rt2800 devices won't use CTS protection (if used)
+	 * for frames not transmitted with TXOP_HTTXOP
+	 */
+	if (ieee80211_is_mgmt(hdr->frame_control) &&
+	    !ieee80211_is_beacon(hdr->frame_control))
+		txdesc->u.ht.txop = TXOP_BACKOFF;
+	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
+		txdesc->u.ht.txop = TXOP_SIFS;
+	else
+		txdesc->u.ht.txop = TXOP_HTTXOP;
+}
+
+static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
+					     struct sk_buff *skb,
+					     struct txentry_desc *txdesc,
+					     struct ieee80211_sta *sta)
+{
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
+	struct ieee80211_rate *rate;
+	const struct rt2x00_rate *hwrate = NULL;
+
+	memset(txdesc, 0, sizeof(*txdesc));
+
+	/*
+	 * Header and frame information.
+	 */
+	txdesc->length = skb->len;
+	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
+
+	/*
+	 * Check whether this frame is to be acked.
+	 */
+	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
+		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
+
+	/*
+	 * Check if this is a RTS/CTS frame
+	 */
+	if (ieee80211_is_rts(hdr->frame_control) ||
+	    ieee80211_is_cts(hdr->frame_control)) {
+		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+		if (ieee80211_is_rts(hdr->frame_control))
+			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
+		else
+			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
+		if (tx_info->control.rts_cts_rate_idx >= 0)
+			rate =
+			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
+	}
+
+	/*
+	 * Determine retry information.
+	 */
+	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
+	if (txdesc->retry_limit >= rt2x00dev->long_retry)
+		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
+
+	/*
+	 * Check if more fragments are pending
+	 */
+	if (ieee80211_has_morefrags(hdr->frame_control)) {
+		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
+	}
+
+	/*
+	 * Check if more frames (!= fragments) are pending
+	 */
+	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
+		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
+
+	/*
+	 * Beacons and probe responses require the tsf timestamp
+	 * to be inserted into the frame.
+	 */
+	if (ieee80211_is_beacon(hdr->frame_control) ||
+	    ieee80211_is_probe_resp(hdr->frame_control))
+		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
+
+	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
+	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
+		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
+
+	/*
+	 * Determine rate modulation.
+	 */
+	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
+		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
+	else if (txrate->flags & IEEE80211_TX_RC_MCS)
+		txdesc->rate_mode = RATE_MODE_HT_MIX;
+	else {
+		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
+		hwrate = rt2x00_get_rate(rate->hw_value);
+		if (hwrate->flags & DEV_RATE_OFDM)
+			txdesc->rate_mode = RATE_MODE_OFDM;
+		else
+			txdesc->rate_mode = RATE_MODE_CCK;
+	}
+
+	/*
+	 * Apply TX descriptor handling by components
+	 */
+	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
+	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
+
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
+		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
+						   sta, hwrate);
+	else
+		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
+						      hwrate);
+}
+
+static int rt2x00queue_write_tx_data(struct queue_entry *entry,
+				     struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+	/*
+	 * This should not happen, we already checked the entry
+	 * was ours. When the hardware disagrees there has been
+	 * a queue corruption!
+	 */
+	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
+		     rt2x00dev->ops->lib->get_entry_state(entry))) {
+		rt2x00_err(rt2x00dev,
+			   "Corrupt queue %d, accessing entry which is not ours\n"
+			   "Please file bug report to %s\n",
+			   entry->queue->qid, DRV_PROJECT);
+		return -EINVAL;
+	}
+
+	/*
+	 * Add the requested extra tx headroom in front of the skb.
+	 */
+	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
+	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
+
+	/*
+	 * Call the driver's write_tx_data function, if it exists.
+	 */
+	if (rt2x00dev->ops->lib->write_tx_data)
+		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
+
+	/*
+	 * Map the skb to DMA.
+	 */
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
+	    rt2x00queue_map_txskb(entry))
+		return -ENOMEM;
+
+	return 0;
+}
+
+static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
+					    struct txentry_desc *txdesc)
+{
+	struct data_queue *queue = entry->queue;
+
+	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
+
+	/*
+	 * All processing on the frame has been completed, this means
+	 * it is now ready to be dumped to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
+}
+
+static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
+				      struct txentry_desc *txdesc)
+{
+	/*
+	 * Check if we need to kick the queue, there are however a few rules
+	 *	1) Don't kick unless this is the last in frame in a burst.
+	 *	   When the burst flag is set, this frame is always followed
+	 *	   by another frame which in some way are related to eachother.
+	 *	   This is true for fragments, RTS or CTS-to-self frames.
+	 *	2) Rule 1 can be broken when the available entries
+	 *	   in the queue are less then a certain threshold.
+	 */
+	if (rt2x00queue_threshold(queue) ||
+	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
+		queue->rt2x00dev->ops->lib->kick_queue(queue);
+}
+
+static void rt2x00queue_bar_check(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct ieee80211_bar *bar = (void *) (entry->skb->data +
+				    rt2x00dev->extra_tx_headroom);
+	struct rt2x00_bar_list_entry *bar_entry;
+
+	if (likely(!ieee80211_is_back_req(bar->frame_control)))
+		return;
+
+	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
+
+	/*
+	 * If the alloc fails we still send the BAR out but just don't track
+	 * it in our bar list. And as a result we will report it to mac80211
+	 * back as failed.
+	 */
+	if (!bar_entry)
+		return;
+
+	bar_entry->entry = entry;
+	bar_entry->block_acked = 0;
+
+	/*
+	 * Copy the relevant parts of the 802.11 BAR into out check list
+	 * such that we can use RCU for less-overhead in the RX path since
+	 * sending BARs and processing the according BlockAck should be
+	 * the exception.
+	 */
+	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
+	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
+	bar_entry->control = bar->control;
+	bar_entry->start_seq_num = bar->start_seq_num;
+
+	/*
+	 * Insert BAR into our BAR check list.
+	 */
+	spin_lock_bh(&rt2x00dev->bar_list_lock);
+	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
+	spin_unlock_bh(&rt2x00dev->bar_list_lock);
+}
+
+int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
+			       struct ieee80211_sta *sta, bool local)
+{
+	struct ieee80211_tx_info *tx_info;
+	struct queue_entry *entry;
+	struct txentry_desc txdesc;
+	struct skb_frame_desc *skbdesc;
+	u8 rate_idx, rate_flags;
+	int ret = 0;
+
+	/*
+	 * Copy all TX descriptor information into txdesc,
+	 * after that we are free to use the skb->cb array
+	 * for our information.
+	 */
+	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
+
+	/*
+	 * All information is retrieved from the skb->cb array,
+	 * now we should claim ownership of the driver part of that
+	 * array, preserving the bitrate index and flags.
+	 */
+	tx_info = IEEE80211_SKB_CB(skb);
+	rate_idx = tx_info->control.rates[0].idx;
+	rate_flags = tx_info->control.rates[0].flags;
+	skbdesc = get_skb_frame_desc(skb);
+	memset(skbdesc, 0, sizeof(*skbdesc));
+	skbdesc->tx_rate_idx = rate_idx;
+	skbdesc->tx_rate_flags = rate_flags;
+
+	if (local)
+		skbdesc->flags |= SKBDESC_NOT_MAC80211;
+
+	/*
+	 * When hardware encryption is supported, and this frame
+	 * is to be encrypted, we should strip the IV/EIV data from
+	 * the frame so we can provide it to the driver separately.
+	 */
+	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
+	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
+		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
+			rt2x00crypto_tx_copy_iv(skb, &txdesc);
+		else
+			rt2x00crypto_tx_remove_iv(skb, &txdesc);
+	}
+
+	/*
+	 * When DMA allocation is required we should guarantee to the
+	 * driver that the DMA is aligned to a 4-byte boundary.
+	 * However some drivers require L2 padding to pad the payload
+	 * rather then the header. This could be a requirement for
+	 * PCI and USB devices, while header alignment only is valid
+	 * for PCI devices.
+	 */
+	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
+		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
+	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
+		rt2x00queue_align_frame(skb);
+
+	/*
+	 * That function must be called with bh disabled.
+	 */
+	spin_lock(&queue->tx_lock);
+
+	if (unlikely(rt2x00queue_full(queue))) {
+		rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
+			   queue->qid);
+		ret = -ENOBUFS;
+		goto out;
+	}
+
+	entry = rt2x00queue_get_entry(queue, Q_INDEX);
+
+	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
+				      &entry->flags))) {
+		rt2x00_err(queue->rt2x00dev,
+			   "Arrived at non-free entry in the non-full queue %d\n"
+			   "Please file bug report to %s\n",
+			   queue->qid, DRV_PROJECT);
+		ret = -EINVAL;
+		goto out;
+	}
+
+	skbdesc->entry = entry;
+	entry->skb = skb;
+
+	/*
+	 * It could be possible that the queue was corrupted and this
+	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
+	 * this frame will simply be dropped.
+	 */
+	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
+		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
+		entry->skb = NULL;
+		ret = -EIO;
+		goto out;
+	}
+
+	/*
+	 * Put BlockAckReqs into our check list for driver BA processing.
+	 */
+	rt2x00queue_bar_check(entry);
+
+	set_bit(ENTRY_DATA_PENDING, &entry->flags);
+
+	rt2x00queue_index_inc(entry, Q_INDEX);
+	rt2x00queue_write_tx_descriptor(entry, &txdesc);
+	rt2x00queue_kick_tx_queue(queue, &txdesc);
+
+out:
+	spin_unlock(&queue->tx_lock);
+	return ret;
+}
+
+int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
+			     struct ieee80211_vif *vif)
+{
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+
+	if (unlikely(!intf->beacon))
+		return -ENOBUFS;
+
+	/*
+	 * Clean up the beacon skb.
+	 */
+	rt2x00queue_free_skb(intf->beacon);
+
+	/*
+	 * Clear beacon (single bssid devices don't need to clear the beacon
+	 * since the beacon queue will get stopped anyway).
+	 */
+	if (rt2x00dev->ops->lib->clear_beacon)
+		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
+
+	return 0;
+}
+
+int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
+			      struct ieee80211_vif *vif)
+{
+	struct rt2x00_intf *intf = vif_to_intf(vif);
+	struct skb_frame_desc *skbdesc;
+	struct txentry_desc txdesc;
+
+	if (unlikely(!intf->beacon))
+		return -ENOBUFS;
+
+	/*
+	 * Clean up the beacon skb.
+	 */
+	rt2x00queue_free_skb(intf->beacon);
+
+	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
+	if (!intf->beacon->skb)
+		return -ENOMEM;
+
+	/*
+	 * Copy all TX descriptor information into txdesc,
+	 * after that we are free to use the skb->cb array
+	 * for our information.
+	 */
+	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
+
+	/*
+	 * Fill in skb descriptor
+	 */
+	skbdesc = get_skb_frame_desc(intf->beacon->skb);
+	memset(skbdesc, 0, sizeof(*skbdesc));
+	skbdesc->entry = intf->beacon;
+
+	/*
+	 * Send beacon to hardware.
+	 */
+	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
+
+	return 0;
+
+}
+
+bool rt2x00queue_for_each_entry(struct data_queue *queue,
+				enum queue_index start,
+				enum queue_index end,
+				void *data,
+				bool (*fn)(struct queue_entry *entry,
+					   void *data))
+{
+	unsigned long irqflags;
+	unsigned int index_start;
+	unsigned int index_end;
+	unsigned int i;
+
+	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
+		rt2x00_err(queue->rt2x00dev,
+			   "Entry requested from invalid index range (%d - %d)\n",
+			   start, end);
+		return true;
+	}
+
+	/*
+	 * Only protect the range we are going to loop over,
+	 * if during our loop a extra entry is set to pending
+	 * it should not be kicked during this run, since it
+	 * is part of another TX operation.
+	 */
+	spin_lock_irqsave(&queue->index_lock, irqflags);
+	index_start = queue->index[start];
+	index_end = queue->index[end];
+	spin_unlock_irqrestore(&queue->index_lock, irqflags);
+
+	/*
+	 * Start from the TX done pointer, this guarantees that we will
+	 * send out all frames in the correct order.
+	 */
+	if (index_start < index_end) {
+		for (i = index_start; i < index_end; i++) {
+			if (fn(&queue->entries[i], data))
+				return true;
+		}
+	} else {
+		for (i = index_start; i < queue->limit; i++) {
+			if (fn(&queue->entries[i], data))
+				return true;
+		}
+
+		for (i = 0; i < index_end; i++) {
+			if (fn(&queue->entries[i], data))
+				return true;
+		}
+	}
+
+	return false;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
+
+struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
+					  enum queue_index index)
+{
+	struct queue_entry *entry;
+	unsigned long irqflags;
+
+	if (unlikely(index >= Q_INDEX_MAX)) {
+		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
+			   index);
+		return NULL;
+	}
+
+	spin_lock_irqsave(&queue->index_lock, irqflags);
+
+	entry = &queue->entries[queue->index[index]];
+
+	spin_unlock_irqrestore(&queue->index_lock, irqflags);
+
+	return entry;
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
+
+void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
+{
+	struct data_queue *queue = entry->queue;
+	unsigned long irqflags;
+
+	if (unlikely(index >= Q_INDEX_MAX)) {
+		rt2x00_err(queue->rt2x00dev,
+			   "Index change on invalid index type (%d)\n", index);
+		return;
+	}
+
+	spin_lock_irqsave(&queue->index_lock, irqflags);
+
+	queue->index[index]++;
+	if (queue->index[index] >= queue->limit)
+		queue->index[index] = 0;
+
+	entry->last_action = jiffies;
+
+	if (index == Q_INDEX) {
+		queue->length++;
+	} else if (index == Q_INDEX_DONE) {
+		queue->length--;
+		queue->count++;
+	}
+
+	spin_unlock_irqrestore(&queue->index_lock, irqflags);
+}
+
+static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		/*
+		 * For TX queues, we have to disable the queue
+		 * inside mac80211.
+		 */
+		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
+		break;
+	default:
+		break;
+	}
+}
+void rt2x00queue_pause_queue(struct data_queue *queue)
+{
+	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+	    !test_bit(QUEUE_STARTED, &queue->flags) ||
+	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
+		return;
+
+	rt2x00queue_pause_queue_nocheck(queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
+
+void rt2x00queue_unpause_queue(struct data_queue *queue)
+{
+	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+	    !test_bit(QUEUE_STARTED, &queue->flags) ||
+	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
+		return;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		/*
+		 * For TX queues, we have to enable the queue
+		 * inside mac80211.
+		 */
+		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
+		break;
+	case QID_RX:
+		/*
+		 * For RX we need to kick the queue now in order to
+		 * receive frames.
+		 */
+		queue->rt2x00dev->ops->lib->kick_queue(queue);
+	default:
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
+
+void rt2x00queue_start_queue(struct data_queue *queue)
+{
+	mutex_lock(&queue->status_lock);
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
+	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
+		mutex_unlock(&queue->status_lock);
+		return;
+	}
+
+	set_bit(QUEUE_PAUSED, &queue->flags);
+
+	queue->rt2x00dev->ops->lib->start_queue(queue);
+
+	rt2x00queue_unpause_queue(queue);
+
+	mutex_unlock(&queue->status_lock);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
+
+void rt2x00queue_stop_queue(struct data_queue *queue)
+{
+	mutex_lock(&queue->status_lock);
+
+	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
+		mutex_unlock(&queue->status_lock);
+		return;
+	}
+
+	rt2x00queue_pause_queue_nocheck(queue);
+
+	queue->rt2x00dev->ops->lib->stop_queue(queue);
+
+	mutex_unlock(&queue->status_lock);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
+
+void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
+{
+	bool tx_queue =
+		(queue->qid == QID_AC_VO) ||
+		(queue->qid == QID_AC_VI) ||
+		(queue->qid == QID_AC_BE) ||
+		(queue->qid == QID_AC_BK);
+
+
+	/*
+	 * If we are not supposed to drop any pending
+	 * frames, this means we must force a start (=kick)
+	 * to the queue to make sure the hardware will
+	 * start transmitting.
+	 */
+	if (!drop && tx_queue)
+		queue->rt2x00dev->ops->lib->kick_queue(queue);
+
+	/*
+	 * Check if driver supports flushing, if that is the case we can
+	 * defer the flushing to the driver. Otherwise we must use the
+	 * alternative which just waits for the queue to become empty.
+	 */
+	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
+		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
+
+	/*
+	 * The queue flush has failed...
+	 */
+	if (unlikely(!rt2x00queue_empty(queue)))
+		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
+			    queue->qid);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
+
+void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	/*
+	 * rt2x00queue_start_queue will call ieee80211_wake_queue
+	 * for each queue after is has been properly initialized.
+	 */
+	tx_queue_for_each(rt2x00dev, queue)
+		rt2x00queue_start_queue(queue);
+
+	rt2x00queue_start_queue(rt2x00dev->rx);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
+
+void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	/*
+	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
+	 * as well, but we are completely shutting doing everything
+	 * now, so it is much safer to stop all TX queues at once,
+	 * and use rt2x00queue_stop_queue for cleaning up.
+	 */
+	ieee80211_stop_queues(rt2x00dev->hw);
+
+	tx_queue_for_each(rt2x00dev, queue)
+		rt2x00queue_stop_queue(queue);
+
+	rt2x00queue_stop_queue(rt2x00dev->rx);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
+
+void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
+{
+	struct data_queue *queue;
+
+	tx_queue_for_each(rt2x00dev, queue)
+		rt2x00queue_flush_queue(queue, drop);
+
+	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
+}
+EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
+
+static void rt2x00queue_reset(struct data_queue *queue)
+{
+	unsigned long irqflags;
+	unsigned int i;
+
+	spin_lock_irqsave(&queue->index_lock, irqflags);
+
+	queue->count = 0;
+	queue->length = 0;
+
+	for (i = 0; i < Q_INDEX_MAX; i++)
+		queue->index[i] = 0;
+
+	spin_unlock_irqrestore(&queue->index_lock, irqflags);
+}
+
+void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	unsigned int i;
+
+	queue_for_each(rt2x00dev, queue) {
+		rt2x00queue_reset(queue);
+
+		for (i = 0; i < queue->limit; i++)
+			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
+	}
+}
+
+static int rt2x00queue_alloc_entries(struct data_queue *queue)
+{
+	struct queue_entry *entries;
+	unsigned int entry_size;
+	unsigned int i;
+
+	rt2x00queue_reset(queue);
+
+	/*
+	 * Allocate all queue entries.
+	 */
+	entry_size = sizeof(*entries) + queue->priv_size;
+	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
+	if (!entries)
+		return -ENOMEM;
+
+#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
+	(((char *)(__base)) + ((__limit) * (__esize)) + \
+	    ((__index) * (__psize)))
+
+	for (i = 0; i < queue->limit; i++) {
+		entries[i].flags = 0;
+		entries[i].queue = queue;
+		entries[i].skb = NULL;
+		entries[i].entry_idx = i;
+		entries[i].priv_data =
+		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
+					    sizeof(*entries), queue->priv_size);
+	}
+
+#undef QUEUE_ENTRY_PRIV_OFFSET
+
+	queue->entries = entries;
+
+	return 0;
+}
+
+static void rt2x00queue_free_skbs(struct data_queue *queue)
+{
+	unsigned int i;
+
+	if (!queue->entries)
+		return;
+
+	for (i = 0; i < queue->limit; i++) {
+		rt2x00queue_free_skb(&queue->entries[i]);
+	}
+}
+
+static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
+{
+	unsigned int i;
+	struct sk_buff *skb;
+
+	for (i = 0; i < queue->limit; i++) {
+		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
+		if (!skb)
+			return -ENOMEM;
+		queue->entries[i].skb = skb;
+	}
+
+	return 0;
+}
+
+int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	int status;
+
+	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
+	if (status)
+		goto exit;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		status = rt2x00queue_alloc_entries(queue);
+		if (status)
+			goto exit;
+	}
+
+	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
+	if (status)
+		goto exit;
+
+	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
+		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
+		if (status)
+			goto exit;
+	}
+
+	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
+	if (status)
+		goto exit;
+
+	return 0;
+
+exit:
+	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
+
+	rt2x00queue_uninitialize(rt2x00dev);
+
+	return status;
+}
+
+void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	rt2x00queue_free_skbs(rt2x00dev->rx);
+
+	queue_for_each(rt2x00dev, queue) {
+		kfree(queue->entries);
+		queue->entries = NULL;
+	}
+}
+
+static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
+			     struct data_queue *queue, enum data_queue_qid qid)
+{
+	mutex_init(&queue->status_lock);
+	spin_lock_init(&queue->tx_lock);
+	spin_lock_init(&queue->index_lock);
+
+	queue->rt2x00dev = rt2x00dev;
+	queue->qid = qid;
+	queue->txop = 0;
+	queue->aifs = 2;
+	queue->cw_min = 5;
+	queue->cw_max = 10;
+
+	rt2x00dev->ops->queue_init(queue);
+
+	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
+}
+
+int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	enum data_queue_qid qid;
+	unsigned int req_atim =
+	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
+
+	/*
+	 * We need the following queues:
+	 * RX: 1
+	 * TX: ops->tx_queues
+	 * Beacon: 1
+	 * Atim: 1 (if required)
+	 */
+	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
+
+	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
+	if (!queue) {
+		rt2x00_err(rt2x00dev, "Queue allocation failed\n");
+		return -ENOMEM;
+	}
+
+	/*
+	 * Initialize pointers
+	 */
+	rt2x00dev->rx = queue;
+	rt2x00dev->tx = &queue[1];
+	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
+	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
+
+	/*
+	 * Initialize queue parameters.
+	 * RX: qid = QID_RX
+	 * TX: qid = QID_AC_VO + index
+	 * TX: cw_min: 2^5 = 32.
+	 * TX: cw_max: 2^10 = 1024.
+	 * BCN: qid = QID_BEACON
+	 * ATIM: qid = QID_ATIM
+	 */
+	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
+
+	qid = QID_AC_VO;
+	tx_queue_for_each(rt2x00dev, queue)
+		rt2x00queue_init(rt2x00dev, queue, qid++);
+
+	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
+	if (req_atim)
+		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
+
+	return 0;
+}
+
+void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
+{
+	kfree(rt2x00dev->rx);
+	rt2x00dev->rx = NULL;
+	rt2x00dev->tx = NULL;
+	rt2x00dev->bcn = NULL;
+}
diff --git a/drivers/net/wireless/rt2x00/rt2x00queue.h b/drivers/net/wireless/rt2x00/rt2x00queue.h
new file mode 100644
index 0000000..2233b91
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00queue.h
@@ -0,0 +1,686 @@
+/*
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00
+	Abstract: rt2x00 queue datastructures and routines
+ */
+
+#ifndef RT2X00QUEUE_H
+#define RT2X00QUEUE_H
+
+#include <linux/prefetch.h>
+
+/**
+ * DOC: Entry frame size
+ *
+ * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
+ * for USB devices this restriction does not apply, but the value of
+ * 2432 makes sense since it is big enough to contain the maximum fragment
+ * size according to the ieee802.11 specs.
+ * The aggregation size depends on support from the driver, but should
+ * be something around 3840 bytes.
+ */
+#define DATA_FRAME_SIZE		2432
+#define MGMT_FRAME_SIZE		256
+#define AGGREGATION_SIZE	3840
+
+/**
+ * enum data_queue_qid: Queue identification
+ *
+ * @QID_AC_VO: AC VO queue
+ * @QID_AC_VI: AC VI queue
+ * @QID_AC_BE: AC BE queue
+ * @QID_AC_BK: AC BK queue
+ * @QID_HCCA: HCCA queue
+ * @QID_MGMT: MGMT queue (prio queue)
+ * @QID_RX: RX queue
+ * @QID_OTHER: None of the above (don't use, only present for completeness)
+ * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
+ * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
+ */
+enum data_queue_qid {
+	QID_AC_VO = 0,
+	QID_AC_VI = 1,
+	QID_AC_BE = 2,
+	QID_AC_BK = 3,
+	QID_HCCA = 4,
+	QID_MGMT = 13,
+	QID_RX = 14,
+	QID_OTHER = 15,
+	QID_BEACON,
+	QID_ATIM,
+};
+
+/**
+ * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
+ *
+ * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
+ * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
+ * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
+ *	mac80211 but was stripped for processing by the driver.
+ * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
+ *	don't try to pass it back.
+ * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
+ *	skb, instead of in the desc field.
+ */
+enum skb_frame_desc_flags {
+	SKBDESC_DMA_MAPPED_RX = 1 << 0,
+	SKBDESC_DMA_MAPPED_TX = 1 << 1,
+	SKBDESC_IV_STRIPPED = 1 << 2,
+	SKBDESC_NOT_MAC80211 = 1 << 3,
+	SKBDESC_DESC_IN_SKB = 1 << 4,
+};
+
+/**
+ * struct skb_frame_desc: Descriptor information for the skb buffer
+ *
+ * This structure is placed over the driver_data array, this means that
+ * this structure should not exceed the size of that array (40 bytes).
+ *
+ * @flags: Frame flags, see &enum skb_frame_desc_flags.
+ * @desc_len: Length of the frame descriptor.
+ * @tx_rate_idx: the index of the TX rate, used for TX status reporting
+ * @tx_rate_flags: the TX rate flags, used for TX status reporting
+ * @desc: Pointer to descriptor part of the frame.
+ *	Note that this pointer could point to something outside
+ *	of the scope of the skb->data pointer.
+ * @iv: IV/EIV data used during encryption/decryption.
+ * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
+ * @entry: The entry to which this sk buffer belongs.
+ */
+struct skb_frame_desc {
+	u8 flags;
+
+	u8 desc_len;
+	u8 tx_rate_idx;
+	u8 tx_rate_flags;
+
+	void *desc;
+
+	__le32 iv[2];
+
+	dma_addr_t skb_dma;
+
+	struct queue_entry *entry;
+};
+
+/**
+ * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
+ * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
+ */
+static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
+{
+	BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
+		     IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
+	return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
+}
+
+/**
+ * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
+ *
+ * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
+ * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
+ * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
+ * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
+ * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
+ * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
+ * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
+ */
+enum rxdone_entry_desc_flags {
+	RXDONE_SIGNAL_PLCP = BIT(0),
+	RXDONE_SIGNAL_BITRATE = BIT(1),
+	RXDONE_SIGNAL_MCS = BIT(2),
+	RXDONE_MY_BSS = BIT(3),
+	RXDONE_CRYPTO_IV = BIT(4),
+	RXDONE_CRYPTO_ICV = BIT(5),
+	RXDONE_L2PAD = BIT(6),
+};
+
+/**
+ * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
+ * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
+ * from &rxdone_entry_desc to a signal value type.
+ */
+#define RXDONE_SIGNAL_MASK \
+	( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
+
+/**
+ * struct rxdone_entry_desc: RX Entry descriptor
+ *
+ * Summary of information that has been read from the RX frame descriptor.
+ *
+ * @timestamp: RX Timestamp
+ * @signal: Signal of the received frame.
+ * @rssi: RSSI of the received frame.
+ * @size: Data size of the received frame.
+ * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
+ * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
+ * @rate_mode: Rate mode (See @enum rate_modulation).
+ * @cipher: Cipher type used during decryption.
+ * @cipher_status: Decryption status.
+ * @iv: IV/EIV data used during decryption.
+ * @icv: ICV data used during decryption.
+ */
+struct rxdone_entry_desc {
+	u64 timestamp;
+	int signal;
+	int rssi;
+	int size;
+	int flags;
+	int dev_flags;
+	u16 rate_mode;
+	u8 cipher;
+	u8 cipher_status;
+
+	__le32 iv[2];
+	__le32 icv;
+};
+
+/**
+ * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
+ *
+ * Every txdone report has to contain the basic result of the
+ * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
+ * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
+ * conjunction with all of these flags but should only be set
+ * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
+ * in conjunction with &TXDONE_FAILURE.
+ *
+ * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
+ * @TXDONE_SUCCESS: Frame was successfully send
+ * @TXDONE_FALLBACK: Hardware used fallback rates for retries
+ * @TXDONE_FAILURE: Frame was not successfully send
+ * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
+ *	frame transmission failed due to excessive retries.
+ */
+enum txdone_entry_desc_flags {
+	TXDONE_UNKNOWN,
+	TXDONE_SUCCESS,
+	TXDONE_FALLBACK,
+	TXDONE_FAILURE,
+	TXDONE_EXCESSIVE_RETRY,
+	TXDONE_AMPDU,
+};
+
+/**
+ * struct txdone_entry_desc: TX done entry descriptor
+ *
+ * Summary of information that has been read from the TX frame descriptor
+ * after the device is done with transmission.
+ *
+ * @flags: TX done flags (See &enum txdone_entry_desc_flags).
+ * @retry: Retry count.
+ */
+struct txdone_entry_desc {
+	unsigned long flags;
+	int retry;
+};
+
+/**
+ * enum txentry_desc_flags: Status flags for TX entry descriptor
+ *
+ * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
+ * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
+ * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
+ * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
+ * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
+ * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
+ * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
+ * @ENTRY_TXD_ACK: An ACK is required for this frame.
+ * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
+ * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
+ * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
+ * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
+ * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
+ * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
+ * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
+ * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
+ * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
+ */
+enum txentry_desc_flags {
+	ENTRY_TXD_RTS_FRAME,
+	ENTRY_TXD_CTS_FRAME,
+	ENTRY_TXD_GENERATE_SEQ,
+	ENTRY_TXD_FIRST_FRAGMENT,
+	ENTRY_TXD_MORE_FRAG,
+	ENTRY_TXD_REQ_TIMESTAMP,
+	ENTRY_TXD_BURST,
+	ENTRY_TXD_ACK,
+	ENTRY_TXD_RETRY_MODE,
+	ENTRY_TXD_ENCRYPT,
+	ENTRY_TXD_ENCRYPT_PAIRWISE,
+	ENTRY_TXD_ENCRYPT_IV,
+	ENTRY_TXD_ENCRYPT_MMIC,
+	ENTRY_TXD_HT_AMPDU,
+	ENTRY_TXD_HT_BW_40,
+	ENTRY_TXD_HT_SHORT_GI,
+	ENTRY_TXD_HT_MIMO_PS,
+};
+
+/**
+ * struct txentry_desc: TX Entry descriptor
+ *
+ * Summary of information for the frame descriptor before sending a TX frame.
+ *
+ * @flags: Descriptor flags (See &enum queue_entry_flags).
+ * @length: Length of the entire frame.
+ * @header_length: Length of 802.11 header.
+ * @length_high: PLCP length high word.
+ * @length_low: PLCP length low word.
+ * @signal: PLCP signal.
+ * @service: PLCP service.
+ * @msc: MCS.
+ * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
+ * @ba_size: Size of the recepients RX reorder buffer - 1.
+ * @rate_mode: Rate mode (See @enum rate_modulation).
+ * @mpdu_density: MDPU density.
+ * @retry_limit: Max number of retries.
+ * @ifs: IFS value.
+ * @txop: IFS value for 11n capable chips.
+ * @cipher: Cipher type used for encryption.
+ * @key_idx: Key index used for encryption.
+ * @iv_offset: Position where IV should be inserted by hardware.
+ * @iv_len: Length of IV data.
+ */
+struct txentry_desc {
+	unsigned long flags;
+
+	u16 length;
+	u16 header_length;
+
+	union {
+		struct {
+			u16 length_high;
+			u16 length_low;
+			u16 signal;
+			u16 service;
+			enum ifs ifs;
+		} plcp;
+
+		struct {
+			u16 mcs;
+			u8 stbc;
+			u8 ba_size;
+			u8 mpdu_density;
+			enum txop txop;
+			int wcid;
+		} ht;
+	} u;
+
+	enum rate_modulation rate_mode;
+
+	short retry_limit;
+
+	enum cipher cipher;
+	u16 key_idx;
+	u16 iv_offset;
+	u16 iv_len;
+};
+
+/**
+ * enum queue_entry_flags: Status flags for queue entry
+ *
+ * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
+ *	As long as this bit is set, this entry may only be touched
+ *	through the interface structure.
+ * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
+ *	transfer (either TX or RX depending on the queue). The entry should
+ *	only be touched after the device has signaled it is done with it.
+ * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
+ *	for the signal to start sending.
+ * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
+ *	while transferring the data to the hardware. No TX status report will
+ *	be expected from the hardware.
+ * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
+ *	returned. It is now waiting for the status reporting before the
+ *	entry can be reused again.
+ */
+enum queue_entry_flags {
+	ENTRY_BCN_ASSIGNED,
+	ENTRY_BCN_ENABLED,
+	ENTRY_OWNER_DEVICE_DATA,
+	ENTRY_DATA_PENDING,
+	ENTRY_DATA_IO_FAILED,
+	ENTRY_DATA_STATUS_PENDING,
+	ENTRY_DATA_STATUS_SET,
+};
+
+/**
+ * struct queue_entry: Entry inside the &struct data_queue
+ *
+ * @flags: Entry flags, see &enum queue_entry_flags.
+ * @last_action: Timestamp of last change.
+ * @queue: The data queue (&struct data_queue) to which this entry belongs.
+ * @skb: The buffer which is currently being transmitted (for TX queue),
+ *	or used to directly receive data in (for RX queue).
+ * @entry_idx: The entry index number.
+ * @priv_data: Private data belonging to this queue entry. The pointer
+ *	points to data specific to a particular driver and queue type.
+ * @status: Device specific status
+ */
+struct queue_entry {
+	unsigned long flags;
+	unsigned long last_action;
+
+	struct data_queue *queue;
+
+	struct sk_buff *skb;
+
+	unsigned int entry_idx;
+
+	u32 status;
+
+	void *priv_data;
+};
+
+/**
+ * enum queue_index: Queue index type
+ *
+ * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
+ *	owned by the hardware then the queue is considered to be full.
+ * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
+ *	transferred to the hardware.
+ * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
+ *	the hardware and for which we need to run the txdone handler. If this
+ *	entry is not owned by the hardware the queue is considered to be empty.
+ * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
+ *	of the index array.
+ */
+enum queue_index {
+	Q_INDEX,
+	Q_INDEX_DMA_DONE,
+	Q_INDEX_DONE,
+	Q_INDEX_MAX,
+};
+
+/**
+ * enum data_queue_flags: Status flags for data queues
+ *
+ * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
+ *	device might be DMA'ing skbuffers. TX queues will accept skbuffers to
+ *	be transmitted and beacon queues will start beaconing the configured
+ *	beacons.
+ * @QUEUE_PAUSED: The queue has been started but is currently paused.
+ *	When this bit is set, the queue has been stopped in mac80211,
+ *	preventing new frames to be enqueued. However, a few frames
+ *	might still appear shortly after the pausing...
+ */
+enum data_queue_flags {
+	QUEUE_STARTED,
+	QUEUE_PAUSED,
+};
+
+/**
+ * struct data_queue: Data queue
+ *
+ * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
+ * @entries: Base address of the &struct queue_entry which are
+ *	part of this queue.
+ * @qid: The queue identification, see &enum data_queue_qid.
+ * @flags: Entry flags, see &enum queue_entry_flags.
+ * @status_lock: The mutex for protecting the start/stop/flush
+ *	handling on this queue.
+ * @tx_lock: Spinlock to serialize tx operations on this queue.
+ * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
+ *	@index_crypt needs to be changed this lock should be grabbed to prevent
+ *	index corruption due to concurrency.
+ * @count: Number of frames handled in the queue.
+ * @limit: Maximum number of entries in the queue.
+ * @threshold: Minimum number of free entries before queue is kicked by force.
+ * @length: Number of frames in queue.
+ * @index: Index pointers to entry positions in the queue,
+ *	use &enum queue_index to get a specific index field.
+ * @txop: maximum burst time.
+ * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
+ * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
+ * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
+ * @data_size: Maximum data size for the frames in this queue.
+ * @desc_size: Hardware descriptor size for the data in this queue.
+ * @priv_size: Size of per-queue_entry private data.
+ * @usb_endpoint: Device endpoint used for communication (USB only)
+ * @usb_maxpacket: Max packet size for given endpoint (USB only)
+ */
+struct data_queue {
+	struct rt2x00_dev *rt2x00dev;
+	struct queue_entry *entries;
+
+	enum data_queue_qid qid;
+	unsigned long flags;
+
+	struct mutex status_lock;
+	spinlock_t tx_lock;
+	spinlock_t index_lock;
+
+	unsigned int count;
+	unsigned short limit;
+	unsigned short threshold;
+	unsigned short length;
+	unsigned short index[Q_INDEX_MAX];
+
+	unsigned short txop;
+	unsigned short aifs;
+	unsigned short cw_min;
+	unsigned short cw_max;
+
+	unsigned short data_size;
+	unsigned char  desc_size;
+	unsigned char  winfo_size;
+	unsigned short priv_size;
+
+	unsigned short usb_endpoint;
+	unsigned short usb_maxpacket;
+};
+
+/**
+ * queue_end - Return pointer to the last queue (HELPER MACRO).
+ * @__dev: Pointer to &struct rt2x00_dev
+ *
+ * Using the base rx pointer and the maximum number of available queues,
+ * this macro will return the address of 1 position beyond  the end of the
+ * queues array.
+ */
+#define queue_end(__dev) \
+	&(__dev)->rx[(__dev)->data_queues]
+
+/**
+ * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
+ * @__dev: Pointer to &struct rt2x00_dev
+ *
+ * Using the base tx pointer and the maximum number of available TX
+ * queues, this macro will return the address of 1 position beyond
+ * the end of the TX queue array.
+ */
+#define tx_queue_end(__dev) \
+	&(__dev)->tx[(__dev)->ops->tx_queues]
+
+/**
+ * queue_next - Return pointer to next queue in list (HELPER MACRO).
+ * @__queue: Current queue for which we need the next queue
+ *
+ * Using the current queue address we take the address directly
+ * after the queue to take the next queue. Note that this macro
+ * should be used carefully since it does not protect against
+ * moving past the end of the list. (See macros &queue_end and
+ * &tx_queue_end for determining the end of the queue).
+ */
+#define queue_next(__queue) \
+	&(__queue)[1]
+
+/**
+ * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
+ * @__entry: Pointer where the current queue entry will be stored in.
+ * @__start: Start queue pointer.
+ * @__end: End queue pointer.
+ *
+ * This macro will loop through all queues between &__start and &__end.
+ */
+#define queue_loop(__entry, __start, __end)			\
+	for ((__entry) = (__start);				\
+	     prefetch(queue_next(__entry)), (__entry) != (__end);\
+	     (__entry) = queue_next(__entry))
+
+/**
+ * queue_for_each - Loop through all queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all available queues.
+ */
+#define queue_for_each(__dev, __entry) \
+	queue_loop(__entry, (__dev)->rx, queue_end(__dev))
+
+/**
+ * tx_queue_for_each - Loop through the TX queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all TX related queues excluding
+ * the Beacon and Atim queues.
+ */
+#define tx_queue_for_each(__dev, __entry) \
+	queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
+
+/**
+ * txall_queue_for_each - Loop through all TX related queues
+ * @__dev: Pointer to &struct rt2x00_dev
+ * @__entry: Pointer where the current queue entry will be stored in.
+ *
+ * This macro will loop through all TX related queues including
+ * the Beacon and Atim queues.
+ */
+#define txall_queue_for_each(__dev, __entry) \
+	queue_loop(__entry, (__dev)->tx, queue_end(__dev))
+
+/**
+ * rt2x00queue_for_each_entry - Loop through all entries in the queue
+ * @queue: Pointer to @data_queue
+ * @start: &enum queue_index Pointer to start index
+ * @end: &enum queue_index Pointer to end index
+ * @data: Data to pass to the callback function
+ * @fn: The function to call for each &struct queue_entry
+ *
+ * This will walk through all entries in the queue, in chronological
+ * order. This means it will start at the current @start pointer
+ * and will walk through the queue until it reaches the @end pointer.
+ *
+ * If fn returns true for an entry rt2x00queue_for_each_entry will stop
+ * processing and return true as well.
+ */
+bool rt2x00queue_for_each_entry(struct data_queue *queue,
+				enum queue_index start,
+				enum queue_index end,
+				void *data,
+				bool (*fn)(struct queue_entry *entry,
+					   void *data));
+
+/**
+ * rt2x00queue_empty - Check if the queue is empty.
+ * @queue: Queue to check if empty.
+ */
+static inline int rt2x00queue_empty(struct data_queue *queue)
+{
+	return queue->length == 0;
+}
+
+/**
+ * rt2x00queue_full - Check if the queue is full.
+ * @queue: Queue to check if full.
+ */
+static inline int rt2x00queue_full(struct data_queue *queue)
+{
+	return queue->length == queue->limit;
+}
+
+/**
+ * rt2x00queue_free - Check the number of available entries in queue.
+ * @queue: Queue to check.
+ */
+static inline int rt2x00queue_available(struct data_queue *queue)
+{
+	return queue->limit - queue->length;
+}
+
+/**
+ * rt2x00queue_threshold - Check if the queue is below threshold
+ * @queue: Queue to check.
+ */
+static inline int rt2x00queue_threshold(struct data_queue *queue)
+{
+	return rt2x00queue_available(queue) < queue->threshold;
+}
+/**
+ * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
+ * @entry: Queue entry to check.
+ */
+static inline int rt2x00queue_dma_timeout(struct queue_entry *entry)
+{
+	if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+		return false;
+	return time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
+}
+
+/**
+ * _rt2x00_desc_read - Read a word from the hardware descriptor.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be read.
+ * @value: Address where the descriptor value should be written into.
+ */
+static inline void _rt2x00_desc_read(__le32 *desc, const u8 word, __le32 *value)
+{
+	*value = desc[word];
+}
+
+/**
+ * rt2x00_desc_read - Read a word from the hardware descriptor, this
+ * function will take care of the byte ordering.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be read.
+ * @value: Address where the descriptor value should be written into.
+ */
+static inline void rt2x00_desc_read(__le32 *desc, const u8 word, u32 *value)
+{
+	__le32 tmp;
+	_rt2x00_desc_read(desc, word, &tmp);
+	*value = le32_to_cpu(tmp);
+}
+
+/**
+ * rt2x00_desc_write - write a word to the hardware descriptor, this
+ * function will take care of the byte ordering.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be written.
+ * @value: Value that should be written into the descriptor.
+ */
+static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
+{
+	desc[word] = value;
+}
+
+/**
+ * rt2x00_desc_write - write a word to the hardware descriptor.
+ * @desc: Base descriptor address
+ * @word: Word index from where the descriptor should be written.
+ * @value: Value that should be written into the descriptor.
+ */
+static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
+{
+	_rt2x00_desc_write(desc, word, cpu_to_le32(value));
+}
+
+#endif /* RT2X00QUEUE_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00reg.h b/drivers/net/wireless/rt2x00/rt2x00reg.h
new file mode 100644
index 0000000..3cc541d
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00reg.h
@@ -0,0 +1,277 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00
+	Abstract: rt2x00 generic register information.
+ */
+
+#ifndef RT2X00REG_H
+#define RT2X00REG_H
+
+/*
+ * RX crypto status
+ */
+enum rx_crypto {
+	RX_CRYPTO_SUCCESS = 0,
+	RX_CRYPTO_FAIL_ICV = 1,
+	RX_CRYPTO_FAIL_MIC = 2,
+	RX_CRYPTO_FAIL_KEY = 3,
+};
+
+/*
+ * Antenna values
+ */
+enum antenna {
+	ANTENNA_SW_DIVERSITY = 0,
+	ANTENNA_A = 1,
+	ANTENNA_B = 2,
+	ANTENNA_HW_DIVERSITY = 3,
+};
+
+/*
+ * Led mode values.
+ */
+enum led_mode {
+	LED_MODE_DEFAULT = 0,
+	LED_MODE_TXRX_ACTIVITY = 1,
+	LED_MODE_SIGNAL_STRENGTH = 2,
+	LED_MODE_ASUS = 3,
+	LED_MODE_ALPHA = 4,
+};
+
+/*
+ * TSF sync values
+ */
+enum tsf_sync {
+	TSF_SYNC_NONE = 0,
+	TSF_SYNC_INFRA = 1,
+	TSF_SYNC_ADHOC = 2,
+	TSF_SYNC_AP_NONE = 3,
+};
+
+/*
+ * Device states
+ */
+enum dev_state {
+	STATE_DEEP_SLEEP = 0,
+	STATE_SLEEP = 1,
+	STATE_STANDBY = 2,
+	STATE_AWAKE = 3,
+
+/*
+ * Additional device states, these values are
+ * not strict since they are not directly passed
+ * into the device.
+ */
+	STATE_RADIO_ON,
+	STATE_RADIO_OFF,
+	STATE_RADIO_IRQ_ON,
+	STATE_RADIO_IRQ_OFF,
+};
+
+/*
+ * IFS backoff values
+ */
+enum ifs {
+	IFS_BACKOFF = 0,
+	IFS_SIFS = 1,
+	IFS_NEW_BACKOFF = 2,
+	IFS_NONE = 3,
+};
+
+/*
+ * IFS backoff values for HT devices
+ */
+enum txop {
+	TXOP_HTTXOP = 0,
+	TXOP_PIFS = 1,
+	TXOP_SIFS = 2,
+	TXOP_BACKOFF = 3,
+};
+
+/*
+ * Cipher types for hardware encryption
+ */
+enum cipher {
+	CIPHER_NONE = 0,
+	CIPHER_WEP64 = 1,
+	CIPHER_WEP128 = 2,
+	CIPHER_TKIP = 3,
+	CIPHER_AES = 4,
+/*
+ * The following fields were added by rt61pci and rt73usb.
+ */
+	CIPHER_CKIP64 = 5,
+	CIPHER_CKIP128 = 6,
+	CIPHER_TKIP_NO_MIC = 7, /* Don't send to device */
+
+/*
+ * Max cipher type.
+ * Note that CIPHER_NONE isn't counted, and CKIP64 and CKIP128
+ * are excluded due to limitations in mac80211.
+ */
+	CIPHER_MAX = 4,
+};
+
+/*
+ * Rate modulations
+ */
+enum rate_modulation {
+	RATE_MODE_CCK = 0,
+	RATE_MODE_OFDM = 1,
+	RATE_MODE_HT_MIX = 2,
+	RATE_MODE_HT_GREENFIELD = 3,
+};
+
+/*
+ * Firmware validation error codes
+ */
+enum firmware_errors {
+	FW_OK,
+	FW_BAD_CRC,
+	FW_BAD_LENGTH,
+	FW_BAD_VERSION,
+};
+
+/*
+ * Register handlers.
+ * We store the position of a register field inside a field structure,
+ * This will simplify the process of setting and reading a certain field
+ * inside the register while making sure the process remains byte order safe.
+ */
+struct rt2x00_field8 {
+	u8 bit_offset;
+	u8 bit_mask;
+};
+
+struct rt2x00_field16 {
+	u16 bit_offset;
+	u16 bit_mask;
+};
+
+struct rt2x00_field32 {
+	u32 bit_offset;
+	u32 bit_mask;
+};
+
+/*
+ * Power of two check, this will check
+ * if the mask that has been given contains and contiguous set of bits.
+ * Note that we cannot use the is_power_of_2() function since this
+ * check must be done at compile-time.
+ */
+#define is_power_of_two(x)	( !((x) & ((x)-1)) )
+#define low_bit_mask(x)		( ((x)-1) & ~(x) )
+#define is_valid_mask(x)	is_power_of_two(1LU + (x) + low_bit_mask(x))
+
+/*
+ * Macros to find first set bit in a variable.
+ * These macros behave the same as the __ffs() functions but
+ * the most important difference that this is done during
+ * compile-time rather then run-time.
+ */
+#define compile_ffs2(__x) \
+	__builtin_choose_expr(((__x) & 0x1), 0, 1)
+
+#define compile_ffs4(__x) \
+	__builtin_choose_expr(((__x) & 0x3), \
+			      (compile_ffs2((__x))), \
+			      (compile_ffs2((__x) >> 2) + 2))
+
+#define compile_ffs8(__x) \
+	__builtin_choose_expr(((__x) & 0xf), \
+			      (compile_ffs4((__x))), \
+			      (compile_ffs4((__x) >> 4) + 4))
+
+#define compile_ffs16(__x) \
+	__builtin_choose_expr(((__x) & 0xff), \
+			      (compile_ffs8((__x))), \
+			      (compile_ffs8((__x) >> 8) + 8))
+
+#define compile_ffs32(__x) \
+	__builtin_choose_expr(((__x) & 0xffff), \
+			      (compile_ffs16((__x))), \
+			      (compile_ffs16((__x) >> 16) + 16))
+
+/*
+ * This macro will check the requirements for the FIELD{8,16,32} macros
+ * The mask should be a constant non-zero contiguous set of bits which
+ * does not exceed the given typelimit.
+ */
+#define FIELD_CHECK(__mask, __type)			\
+	BUILD_BUG_ON(!(__mask) ||			\
+		     !is_valid_mask(__mask) ||		\
+		     (__mask) != (__type)(__mask))	\
+
+#define FIELD8(__mask)				\
+({						\
+	FIELD_CHECK(__mask, u8);		\
+	(struct rt2x00_field8) {		\
+		compile_ffs8(__mask), (__mask)	\
+	};					\
+})
+
+#define FIELD16(__mask)				\
+({						\
+	FIELD_CHECK(__mask, u16);		\
+	(struct rt2x00_field16) {		\
+		compile_ffs16(__mask), (__mask)	\
+	};					\
+})
+
+#define FIELD32(__mask)				\
+({						\
+	FIELD_CHECK(__mask, u32);		\
+	(struct rt2x00_field32) {		\
+		compile_ffs32(__mask), (__mask)	\
+	};					\
+})
+
+#define SET_FIELD(__reg, __type, __field, __value)\
+({						\
+	typecheck(__type, __field);		\
+	*(__reg) &= ~((__field).bit_mask);	\
+	*(__reg) |= ((__value) <<		\
+	    ((__field).bit_offset)) &		\
+	    ((__field).bit_mask);		\
+})
+
+#define GET_FIELD(__reg, __type, __field)	\
+({						\
+	typecheck(__type, __field);		\
+	((__reg) & ((__field).bit_mask)) >>	\
+	    ((__field).bit_offset);		\
+})
+
+#define rt2x00_set_field32(__reg, __field, __value) \
+	SET_FIELD(__reg, struct rt2x00_field32, __field, __value)
+#define rt2x00_get_field32(__reg, __field) \
+	GET_FIELD(__reg, struct rt2x00_field32, __field)
+
+#define rt2x00_set_field16(__reg, __field, __value) \
+	SET_FIELD(__reg, struct rt2x00_field16, __field, __value)
+#define rt2x00_get_field16(__reg, __field) \
+	GET_FIELD(__reg, struct rt2x00_field16, __field)
+
+#define rt2x00_set_field8(__reg, __field, __value) \
+	SET_FIELD(__reg, struct rt2x00_field8, __field, __value)
+#define rt2x00_get_field8(__reg, __field) \
+	GET_FIELD(__reg, struct rt2x00_field8, __field)
+
+#endif /* RT2X00REG_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00soc.c b/drivers/net/wireless/rt2x00/rt2x00soc.c
new file mode 100644
index 0000000..69a0cda
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00soc.c
@@ -0,0 +1,160 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	Copyright (C) 2004 - 2009 Felix Fietkau <nbd@openwrt.org>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00soc
+	Abstract: rt2x00 generic soc device routines.
+ */
+
+#include <linux/bug.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00soc.h"
+
+static void rt2x00soc_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+	kfree(rt2x00dev->rf);
+	rt2x00dev->rf = NULL;
+
+	kfree(rt2x00dev->eeprom);
+	rt2x00dev->eeprom = NULL;
+
+	iounmap(rt2x00dev->csr.base);
+}
+
+static int rt2x00soc_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+	struct platform_device *pdev = to_platform_device(rt2x00dev->dev);
+	struct resource *res;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res)
+		return -ENODEV;
+
+	rt2x00dev->csr.base = ioremap(res->start, resource_size(res));
+	if (!rt2x00dev->csr.base)
+		return -ENOMEM;
+
+	rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+	if (!rt2x00dev->eeprom)
+		goto exit;
+
+	rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+	if (!rt2x00dev->rf)
+		goto exit;
+
+	return 0;
+
+exit:
+	rt2x00_probe_err("Failed to allocate registers\n");
+	rt2x00soc_free_reg(rt2x00dev);
+
+	return -ENOMEM;
+}
+
+int rt2x00soc_probe(struct platform_device *pdev, const struct rt2x00_ops *ops)
+{
+	struct ieee80211_hw *hw;
+	struct rt2x00_dev *rt2x00dev;
+	int retval;
+
+	hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+	if (!hw) {
+		rt2x00_probe_err("Failed to allocate hardware\n");
+		return -ENOMEM;
+	}
+
+	platform_set_drvdata(pdev, hw);
+
+	rt2x00dev = hw->priv;
+	rt2x00dev->dev = &pdev->dev;
+	rt2x00dev->ops = ops;
+	rt2x00dev->hw = hw;
+	rt2x00dev->irq = platform_get_irq(pdev, 0);
+	rt2x00dev->name = pdev->dev.driver->name;
+
+	rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
+
+	retval = rt2x00soc_alloc_reg(rt2x00dev);
+	if (retval)
+		goto exit_free_device;
+
+	retval = rt2x00lib_probe_dev(rt2x00dev);
+	if (retval)
+		goto exit_free_reg;
+
+	return 0;
+
+exit_free_reg:
+	rt2x00soc_free_reg(rt2x00dev);
+
+exit_free_device:
+	ieee80211_free_hw(hw);
+
+	return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_probe);
+
+int rt2x00soc_remove(struct platform_device *pdev)
+{
+	struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * Free all allocated data.
+	 */
+	rt2x00lib_remove_dev(rt2x00dev);
+	rt2x00soc_free_reg(rt2x00dev);
+	ieee80211_free_hw(hw);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_remove);
+
+#ifdef CONFIG_PM
+int rt2x00soc_suspend(struct platform_device *pdev, pm_message_t state)
+{
+	struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	return rt2x00lib_suspend(rt2x00dev, state);
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_suspend);
+
+int rt2x00soc_resume(struct platform_device *pdev)
+{
+	struct ieee80211_hw *hw = platform_get_drvdata(pdev);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	return rt2x00lib_resume(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00soc_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00soc module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 soc library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2x00soc.h b/drivers/net/wireless/rt2x00/rt2x00soc.h
new file mode 100644
index 0000000..9948d35
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00soc.h
@@ -0,0 +1,40 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00soc
+	Abstract: Data structures for the rt2x00soc module.
+ */
+
+#ifndef RT2X00SOC_H
+#define RT2X00SOC_H
+
+/*
+ * SoC driver handlers.
+ */
+int rt2x00soc_probe(struct platform_device *pdev, const struct rt2x00_ops *ops);
+int rt2x00soc_remove(struct platform_device *pdev);
+#ifdef CONFIG_PM
+int rt2x00soc_suspend(struct platform_device *pdev, pm_message_t state);
+int rt2x00soc_resume(struct platform_device *pdev);
+#else
+#define rt2x00soc_suspend	NULL
+#define rt2x00soc_resume	NULL
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00SOC_H */
diff --git a/drivers/net/wireless/rt2x00/rt2x00usb.c b/drivers/net/wireless/rt2x00/rt2x00usb.c
new file mode 100644
index 0000000..7627af6
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00usb.c
@@ -0,0 +1,884 @@
+/*
+	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
+	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00usb
+	Abstract: rt2x00 generic usb device routines.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+#include <linux/bug.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+
+/*
+ * Interfacing with the HW.
+ */
+int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
+			     const u8 request, const u8 requesttype,
+			     const u16 offset, const u16 value,
+			     void *buffer, const u16 buffer_length,
+			     const int timeout)
+{
+	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+	int status;
+	unsigned int pipe =
+	    (requesttype == USB_VENDOR_REQUEST_IN) ?
+	    usb_rcvctrlpipe(usb_dev, 0) : usb_sndctrlpipe(usb_dev, 0);
+	unsigned long expire = jiffies + msecs_to_jiffies(timeout);
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return -ENODEV;
+
+	do {
+		status = usb_control_msg(usb_dev, pipe, request, requesttype,
+					 value, offset, buffer, buffer_length,
+					 timeout / 2);
+		if (status >= 0)
+			return 0;
+
+		if (status == -ENODEV) {
+			/* Device has disappeared. */
+			clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+			break;
+		}
+	} while (time_before(jiffies, expire));
+
+	rt2x00_err(rt2x00dev,
+		   "Vendor Request 0x%02x failed for offset 0x%04x with error %d\n",
+		   request, offset, status);
+
+	return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request);
+
+int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
+				   const u8 request, const u8 requesttype,
+				   const u16 offset, void *buffer,
+				   const u16 buffer_length, const int timeout)
+{
+	int status;
+
+	BUG_ON(!mutex_is_locked(&rt2x00dev->csr_mutex));
+
+	/*
+	 * Check for Cache availability.
+	 */
+	if (unlikely(!rt2x00dev->csr.cache || buffer_length > CSR_CACHE_SIZE)) {
+		rt2x00_err(rt2x00dev, "CSR cache not available\n");
+		return -ENOMEM;
+	}
+
+	if (requesttype == USB_VENDOR_REQUEST_OUT)
+		memcpy(rt2x00dev->csr.cache, buffer, buffer_length);
+
+	status = rt2x00usb_vendor_request(rt2x00dev, request, requesttype,
+					  offset, 0, rt2x00dev->csr.cache,
+					  buffer_length, timeout);
+
+	if (!status && requesttype == USB_VENDOR_REQUEST_IN)
+		memcpy(buffer, rt2x00dev->csr.cache, buffer_length);
+
+	return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_req_buff_lock);
+
+int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
+				  const u8 request, const u8 requesttype,
+				  const u16 offset, void *buffer,
+				  const u16 buffer_length)
+{
+	int status = 0;
+	unsigned char *tb;
+	u16 off, len, bsize;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	tb  = (char *)buffer;
+	off = offset;
+	len = buffer_length;
+	while (len && !status) {
+		bsize = min_t(u16, CSR_CACHE_SIZE, len);
+		status = rt2x00usb_vendor_req_buff_lock(rt2x00dev, request,
+							requesttype, off, tb,
+							bsize, REGISTER_TIMEOUT);
+
+		tb  += bsize;
+		len -= bsize;
+		off += bsize;
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+
+	return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request_buff);
+
+int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+			   const unsigned int offset,
+			   const struct rt2x00_field32 field,
+			   u32 *reg)
+{
+	unsigned int i;
+
+	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
+		return -ENODEV;
+
+	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+		rt2x00usb_register_read_lock(rt2x00dev, offset, reg);
+		if (!rt2x00_get_field32(*reg, field))
+			return 1;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
+		   offset, *reg);
+	*reg = ~0;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_regbusy_read);
+
+
+struct rt2x00_async_read_data {
+	__le32 reg;
+	struct usb_ctrlrequest cr;
+	struct rt2x00_dev *rt2x00dev;
+	bool (*callback)(struct rt2x00_dev *, int, u32);
+};
+
+static void rt2x00usb_register_read_async_cb(struct urb *urb)
+{
+	struct rt2x00_async_read_data *rd = urb->context;
+	if (rd->callback(rd->rt2x00dev, urb->status, le32_to_cpu(rd->reg))) {
+		if (usb_submit_urb(urb, GFP_ATOMIC) < 0)
+			kfree(rd);
+	} else
+		kfree(rd);
+}
+
+void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev,
+				   const unsigned int offset,
+				   bool (*callback)(struct rt2x00_dev*, int, u32))
+{
+	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+	struct urb *urb;
+	struct rt2x00_async_read_data *rd;
+
+	rd = kmalloc(sizeof(*rd), GFP_ATOMIC);
+	if (!rd)
+		return;
+
+	urb = usb_alloc_urb(0, GFP_ATOMIC);
+	if (!urb) {
+		kfree(rd);
+		return;
+	}
+
+	rd->rt2x00dev = rt2x00dev;
+	rd->callback = callback;
+	rd->cr.bRequestType = USB_VENDOR_REQUEST_IN;
+	rd->cr.bRequest = USB_MULTI_READ;
+	rd->cr.wValue = 0;
+	rd->cr.wIndex = cpu_to_le16(offset);
+	rd->cr.wLength = cpu_to_le16(sizeof(u32));
+
+	usb_fill_control_urb(urb, usb_dev, usb_rcvctrlpipe(usb_dev, 0),
+			     (unsigned char *)(&rd->cr), &rd->reg, sizeof(rd->reg),
+			     rt2x00usb_register_read_async_cb, rd);
+	if (usb_submit_urb(urb, GFP_ATOMIC) < 0)
+		kfree(rd);
+	usb_free_urb(urb);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_register_read_async);
+
+/*
+ * TX data handlers.
+ */
+static void rt2x00usb_work_txdone_entry(struct queue_entry *entry)
+{
+	/*
+	 * If the transfer to hardware succeeded, it does not mean the
+	 * frame was send out correctly. It only means the frame
+	 * was successfully pushed to the hardware, we have no
+	 * way to determine the transmission status right now.
+	 * (Only indirectly by looking at the failed TX counters
+	 * in the register).
+	 */
+	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
+		rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
+	else
+		rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
+}
+
+static void rt2x00usb_work_txdone(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, txdone_work);
+	struct data_queue *queue;
+	struct queue_entry *entry;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		while (!rt2x00queue_empty(queue)) {
+			entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+
+			if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+			    !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+				break;
+
+			rt2x00usb_work_txdone_entry(entry);
+		}
+	}
+}
+
+static void rt2x00usb_interrupt_txdone(struct urb *urb)
+{
+	struct queue_entry *entry = (struct queue_entry *)urb->context;
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+	if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+		return;
+	/*
+	 * Check if the frame was correctly uploaded
+	 */
+	if (urb->status)
+		set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+	/*
+	 * Report the frame as DMA done
+	 */
+	rt2x00lib_dmadone(entry);
+
+	if (rt2x00dev->ops->lib->tx_dma_done)
+		rt2x00dev->ops->lib->tx_dma_done(entry);
+	/*
+	 * Schedule the delayed work for reading the TX status
+	 * from the device.
+	 */
+	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO) ||
+	    !kfifo_is_empty(&rt2x00dev->txstatus_fifo))
+		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
+}
+
+static bool rt2x00usb_kick_tx_entry(struct queue_entry *entry, void *data)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+	u32 length;
+	int status;
+
+	if (!test_and_clear_bit(ENTRY_DATA_PENDING, &entry->flags) ||
+	    test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+		return false;
+
+	/*
+	 * USB devices require certain padding at the end of each frame
+	 * and urb. Those paddings are not included in skbs. Pass entry
+	 * to the driver to determine what the overall length should be.
+	 */
+	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
+
+	status = skb_padto(entry->skb, length);
+	if (unlikely(status)) {
+		/* TODO: report something more appropriate than IO_FAILED. */
+		rt2x00_warn(rt2x00dev, "TX SKB padding error, out of memory\n");
+		set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+		rt2x00lib_dmadone(entry);
+
+		return false;
+	}
+
+	usb_fill_bulk_urb(entry_priv->urb, usb_dev,
+			  usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint),
+			  entry->skb->data, length,
+			  rt2x00usb_interrupt_txdone, entry);
+
+	status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
+	if (status) {
+		if (status == -ENODEV)
+			clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+		set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+		rt2x00lib_dmadone(entry);
+	}
+
+	return false;
+}
+
+/*
+ * RX data handlers.
+ */
+static void rt2x00usb_work_rxdone(struct work_struct *work)
+{
+	struct rt2x00_dev *rt2x00dev =
+	    container_of(work, struct rt2x00_dev, rxdone_work);
+	struct queue_entry *entry;
+	struct skb_frame_desc *skbdesc;
+	u8 rxd[32];
+
+	while (!rt2x00queue_empty(rt2x00dev->rx)) {
+		entry = rt2x00queue_get_entry(rt2x00dev->rx, Q_INDEX_DONE);
+
+		if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+		    !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+			break;
+
+		/*
+		 * Fill in desc fields of the skb descriptor
+		 */
+		skbdesc = get_skb_frame_desc(entry->skb);
+		skbdesc->desc = rxd;
+		skbdesc->desc_len = entry->queue->desc_size;
+
+		/*
+		 * Send the frame to rt2x00lib for further processing.
+		 */
+		rt2x00lib_rxdone(entry, GFP_KERNEL);
+	}
+}
+
+static void rt2x00usb_interrupt_rxdone(struct urb *urb)
+{
+	struct queue_entry *entry = (struct queue_entry *)urb->context;
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+
+	if (!test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+		return;
+
+	/*
+	 * Report the frame as DMA done
+	 */
+	rt2x00lib_dmadone(entry);
+
+	/*
+	 * Check if the received data is simply too small
+	 * to be actually valid, or if the urb is signaling
+	 * a problem.
+	 */
+	if (urb->actual_length < entry->queue->desc_size || urb->status)
+		set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+
+	/*
+	 * Schedule the delayed work for reading the RX status
+	 * from the device.
+	 */
+	queue_work(rt2x00dev->workqueue, &rt2x00dev->rxdone_work);
+}
+
+static bool rt2x00usb_kick_rx_entry(struct queue_entry *entry, void *data)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
+	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+	int status;
+
+	if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) ||
+	    test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags))
+		return false;
+
+	rt2x00lib_dmastart(entry);
+
+	usb_fill_bulk_urb(entry_priv->urb, usb_dev,
+			  usb_rcvbulkpipe(usb_dev, entry->queue->usb_endpoint),
+			  entry->skb->data, entry->skb->len,
+			  rt2x00usb_interrupt_rxdone, entry);
+
+	status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC);
+	if (status) {
+		if (status == -ENODEV)
+			clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
+		set_bit(ENTRY_DATA_IO_FAILED, &entry->flags);
+		rt2x00lib_dmadone(entry);
+	}
+
+	return false;
+}
+
+void rt2x00usb_kick_queue(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		if (!rt2x00queue_empty(queue))
+			rt2x00queue_for_each_entry(queue,
+						   Q_INDEX_DONE,
+						   Q_INDEX,
+						   NULL,
+						   rt2x00usb_kick_tx_entry);
+		break;
+	case QID_RX:
+		if (!rt2x00queue_full(queue))
+			rt2x00queue_for_each_entry(queue,
+						   Q_INDEX,
+						   Q_INDEX_DONE,
+						   NULL,
+						   rt2x00usb_kick_rx_entry);
+		break;
+	default:
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_kick_queue);
+
+static bool rt2x00usb_flush_entry(struct queue_entry *entry, void *data)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
+	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
+
+	if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
+		return false;
+
+	usb_kill_urb(entry_priv->urb);
+
+	/*
+	 * Kill guardian urb (if required by driver).
+	 */
+	if ((entry->queue->qid == QID_BEACON) &&
+	    (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD)))
+		usb_kill_urb(bcn_priv->guardian_urb);
+
+	return false;
+}
+
+void rt2x00usb_flush_queue(struct data_queue *queue, bool drop)
+{
+	struct work_struct *completion;
+	unsigned int i;
+
+	if (drop)
+		rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL,
+					   rt2x00usb_flush_entry);
+
+	/*
+	 * Obtain the queue completion handler
+	 */
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		completion = &queue->rt2x00dev->txdone_work;
+		break;
+	case QID_RX:
+		completion = &queue->rt2x00dev->rxdone_work;
+		break;
+	default:
+		return;
+	}
+
+	for (i = 0; i < 10; i++) {
+		/*
+		 * Check if the driver is already done, otherwise we
+		 * have to sleep a little while to give the driver/hw
+		 * the oppurtunity to complete interrupt process itself.
+		 */
+		if (rt2x00queue_empty(queue))
+			break;
+
+		/*
+		 * Schedule the completion handler manually, when this
+		 * worker function runs, it should cleanup the queue.
+		 */
+		queue_work(queue->rt2x00dev->workqueue, completion);
+
+		/*
+		 * Wait for a little while to give the driver
+		 * the oppurtunity to recover itself.
+		 */
+		msleep(10);
+	}
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_flush_queue);
+
+static void rt2x00usb_watchdog_tx_dma(struct data_queue *queue)
+{
+	rt2x00_warn(queue->rt2x00dev, "TX queue %d DMA timed out, invoke forced forced reset\n",
+		    queue->qid);
+
+	rt2x00queue_stop_queue(queue);
+	rt2x00queue_flush_queue(queue, true);
+	rt2x00queue_start_queue(queue);
+}
+
+static int rt2x00usb_dma_timeout(struct data_queue *queue)
+{
+	struct queue_entry *entry;
+
+	entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
+	return rt2x00queue_dma_timeout(entry);
+}
+
+void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	tx_queue_for_each(rt2x00dev, queue) {
+		if (!rt2x00queue_empty(queue)) {
+			if (rt2x00usb_dma_timeout(queue))
+				rt2x00usb_watchdog_tx_dma(queue);
+		}
+	}
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_watchdog);
+
+/*
+ * Radio handlers
+ */
+void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	rt2x00usb_vendor_request_sw(rt2x00dev, USB_RX_CONTROL, 0, 0,
+				    REGISTER_TIMEOUT);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_disable_radio);
+
+/*
+ * Device initialization handlers.
+ */
+void rt2x00usb_clear_entry(struct queue_entry *entry)
+{
+	entry->flags = 0;
+
+	if (entry->queue->qid == QID_RX)
+		rt2x00usb_kick_rx_entry(entry, NULL);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_clear_entry);
+
+static void rt2x00usb_assign_endpoint(struct data_queue *queue,
+				      struct usb_endpoint_descriptor *ep_desc)
+{
+	struct usb_device *usb_dev = to_usb_device_intf(queue->rt2x00dev->dev);
+	int pipe;
+
+	queue->usb_endpoint = usb_endpoint_num(ep_desc);
+
+	if (queue->qid == QID_RX) {
+		pipe = usb_rcvbulkpipe(usb_dev, queue->usb_endpoint);
+		queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe, 0);
+	} else {
+		pipe = usb_sndbulkpipe(usb_dev, queue->usb_endpoint);
+		queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe, 1);
+	}
+
+	if (!queue->usb_maxpacket)
+		queue->usb_maxpacket = 1;
+}
+
+static int rt2x00usb_find_endpoints(struct rt2x00_dev *rt2x00dev)
+{
+	struct usb_interface *intf = to_usb_interface(rt2x00dev->dev);
+	struct usb_host_interface *intf_desc = intf->cur_altsetting;
+	struct usb_endpoint_descriptor *ep_desc;
+	struct data_queue *queue = rt2x00dev->tx;
+	struct usb_endpoint_descriptor *tx_ep_desc = NULL;
+	unsigned int i;
+
+	/*
+	 * Walk through all available endpoints to search for "bulk in"
+	 * and "bulk out" endpoints. When we find such endpoints collect
+	 * the information we need from the descriptor and assign it
+	 * to the queue.
+	 */
+	for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) {
+		ep_desc = &intf_desc->endpoint[i].desc;
+
+		if (usb_endpoint_is_bulk_in(ep_desc)) {
+			rt2x00usb_assign_endpoint(rt2x00dev->rx, ep_desc);
+		} else if (usb_endpoint_is_bulk_out(ep_desc) &&
+			   (queue != queue_end(rt2x00dev))) {
+			rt2x00usb_assign_endpoint(queue, ep_desc);
+			queue = queue_next(queue);
+
+			tx_ep_desc = ep_desc;
+		}
+	}
+
+	/*
+	 * At least 1 endpoint for RX and 1 endpoint for TX must be available.
+	 */
+	if (!rt2x00dev->rx->usb_endpoint || !rt2x00dev->tx->usb_endpoint) {
+		rt2x00_err(rt2x00dev, "Bulk-in/Bulk-out endpoints not found\n");
+		return -EPIPE;
+	}
+
+	/*
+	 * It might be possible not all queues have a dedicated endpoint.
+	 * Loop through all TX queues and copy the endpoint information
+	 * which we have gathered from already assigned endpoints.
+	 */
+	txall_queue_for_each(rt2x00dev, queue) {
+		if (!queue->usb_endpoint)
+			rt2x00usb_assign_endpoint(queue, tx_ep_desc);
+	}
+
+	return 0;
+}
+
+static int rt2x00usb_alloc_entries(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	struct queue_entry_priv_usb *entry_priv;
+	struct queue_entry_priv_usb_bcn *bcn_priv;
+	unsigned int i;
+
+	for (i = 0; i < queue->limit; i++) {
+		entry_priv = queue->entries[i].priv_data;
+		entry_priv->urb = usb_alloc_urb(0, GFP_KERNEL);
+		if (!entry_priv->urb)
+			return -ENOMEM;
+	}
+
+	/*
+	 * If this is not the beacon queue or
+	 * no guardian byte was required for the beacon,
+	 * then we are done.
+	 */
+	if (queue->qid != QID_BEACON ||
+	    !rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD))
+		return 0;
+
+	for (i = 0; i < queue->limit; i++) {
+		bcn_priv = queue->entries[i].priv_data;
+		bcn_priv->guardian_urb = usb_alloc_urb(0, GFP_KERNEL);
+		if (!bcn_priv->guardian_urb)
+			return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void rt2x00usb_free_entries(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	struct queue_entry_priv_usb *entry_priv;
+	struct queue_entry_priv_usb_bcn *bcn_priv;
+	unsigned int i;
+
+	if (!queue->entries)
+		return;
+
+	for (i = 0; i < queue->limit; i++) {
+		entry_priv = queue->entries[i].priv_data;
+		usb_kill_urb(entry_priv->urb);
+		usb_free_urb(entry_priv->urb);
+	}
+
+	/*
+	 * If this is not the beacon queue or
+	 * no guardian byte was required for the beacon,
+	 * then we are done.
+	 */
+	if (queue->qid != QID_BEACON ||
+	    !rt2x00_has_cap_flag(rt2x00dev, REQUIRE_BEACON_GUARD))
+		return;
+
+	for (i = 0; i < queue->limit; i++) {
+		bcn_priv = queue->entries[i].priv_data;
+		usb_kill_urb(bcn_priv->guardian_urb);
+		usb_free_urb(bcn_priv->guardian_urb);
+	}
+}
+
+int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	int status;
+
+	/*
+	 * Find endpoints for each queue
+	 */
+	status = rt2x00usb_find_endpoints(rt2x00dev);
+	if (status)
+		goto exit;
+
+	/*
+	 * Allocate DMA
+	 */
+	queue_for_each(rt2x00dev, queue) {
+		status = rt2x00usb_alloc_entries(queue);
+		if (status)
+			goto exit;
+	}
+
+	return 0;
+
+exit:
+	rt2x00usb_uninitialize(rt2x00dev);
+
+	return status;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_initialize);
+
+void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+
+	queue_for_each(rt2x00dev, queue)
+		rt2x00usb_free_entries(queue);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_uninitialize);
+
+/*
+ * USB driver handlers.
+ */
+static void rt2x00usb_free_reg(struct rt2x00_dev *rt2x00dev)
+{
+	kfree(rt2x00dev->rf);
+	rt2x00dev->rf = NULL;
+
+	kfree(rt2x00dev->eeprom);
+	rt2x00dev->eeprom = NULL;
+
+	kfree(rt2x00dev->csr.cache);
+	rt2x00dev->csr.cache = NULL;
+}
+
+static int rt2x00usb_alloc_reg(struct rt2x00_dev *rt2x00dev)
+{
+	rt2x00dev->csr.cache = kzalloc(CSR_CACHE_SIZE, GFP_KERNEL);
+	if (!rt2x00dev->csr.cache)
+		goto exit;
+
+	rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL);
+	if (!rt2x00dev->eeprom)
+		goto exit;
+
+	rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL);
+	if (!rt2x00dev->rf)
+		goto exit;
+
+	return 0;
+
+exit:
+	rt2x00_probe_err("Failed to allocate registers\n");
+
+	rt2x00usb_free_reg(rt2x00dev);
+
+	return -ENOMEM;
+}
+
+int rt2x00usb_probe(struct usb_interface *usb_intf,
+		    const struct rt2x00_ops *ops)
+{
+	struct usb_device *usb_dev = interface_to_usbdev(usb_intf);
+	struct ieee80211_hw *hw;
+	struct rt2x00_dev *rt2x00dev;
+	int retval;
+
+	usb_dev = usb_get_dev(usb_dev);
+	usb_reset_device(usb_dev);
+
+	hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw);
+	if (!hw) {
+		rt2x00_probe_err("Failed to allocate hardware\n");
+		retval = -ENOMEM;
+		goto exit_put_device;
+	}
+
+	usb_set_intfdata(usb_intf, hw);
+
+	rt2x00dev = hw->priv;
+	rt2x00dev->dev = &usb_intf->dev;
+	rt2x00dev->ops = ops;
+	rt2x00dev->hw = hw;
+
+	rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
+
+	INIT_WORK(&rt2x00dev->rxdone_work, rt2x00usb_work_rxdone);
+	INIT_WORK(&rt2x00dev->txdone_work, rt2x00usb_work_txdone);
+	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
+		     HRTIMER_MODE_REL);
+
+	retval = rt2x00usb_alloc_reg(rt2x00dev);
+	if (retval)
+		goto exit_free_device;
+
+	retval = rt2x00lib_probe_dev(rt2x00dev);
+	if (retval)
+		goto exit_free_reg;
+
+	return 0;
+
+exit_free_reg:
+	rt2x00usb_free_reg(rt2x00dev);
+
+exit_free_device:
+	ieee80211_free_hw(hw);
+
+exit_put_device:
+	usb_put_dev(usb_dev);
+
+	usb_set_intfdata(usb_intf, NULL);
+
+	return retval;
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_probe);
+
+void rt2x00usb_disconnect(struct usb_interface *usb_intf)
+{
+	struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	/*
+	 * Free all allocated data.
+	 */
+	rt2x00lib_remove_dev(rt2x00dev);
+	rt2x00usb_free_reg(rt2x00dev);
+	ieee80211_free_hw(hw);
+
+	/*
+	 * Free the USB device data.
+	 */
+	usb_set_intfdata(usb_intf, NULL);
+	usb_put_dev(interface_to_usbdev(usb_intf));
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_disconnect);
+
+#ifdef CONFIG_PM
+int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state)
+{
+	struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	return rt2x00lib_suspend(rt2x00dev, state);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_suspend);
+
+int rt2x00usb_resume(struct usb_interface *usb_intf)
+{
+	struct ieee80211_hw *hw = usb_get_intfdata(usb_intf);
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+
+	return rt2x00lib_resume(rt2x00dev);
+}
+EXPORT_SYMBOL_GPL(rt2x00usb_resume);
+#endif /* CONFIG_PM */
+
+/*
+ * rt2x00usb module information.
+ */
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("rt2x00 usb library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/net/wireless/rt2x00/rt2x00usb.h b/drivers/net/wireless/rt2x00/rt2x00usb.h
new file mode 100644
index 0000000..569363d
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2x00usb.h
@@ -0,0 +1,424 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2x00usb
+	Abstract: Data structures for the rt2x00usb module.
+ */
+
+#ifndef RT2X00USB_H
+#define RT2X00USB_H
+
+#include <linux/usb.h>
+
+#define to_usb_device_intf(d) \
+({ \
+	struct usb_interface *intf = to_usb_interface(d); \
+	interface_to_usbdev(intf); \
+})
+
+/*
+ * For USB vendor requests we need to pass a timeout time in ms, for this we
+ * use the REGISTER_TIMEOUT, however when loading firmware or read EEPROM
+ * a higher value is required. In that case we use the REGISTER_TIMEOUT_FIRMWARE
+ * and EEPROM_TIMEOUT.
+ */
+#define REGISTER_TIMEOUT		100
+#define REGISTER_TIMEOUT_FIRMWARE	1000
+#define EEPROM_TIMEOUT			2000
+
+/*
+ * Cache size
+ */
+#define CSR_CACHE_SIZE			64
+
+/*
+ * USB request types.
+ */
+#define USB_VENDOR_REQUEST	( USB_TYPE_VENDOR | USB_RECIP_DEVICE )
+#define USB_VENDOR_REQUEST_IN	( USB_DIR_IN | USB_VENDOR_REQUEST )
+#define USB_VENDOR_REQUEST_OUT	( USB_DIR_OUT | USB_VENDOR_REQUEST )
+
+/**
+ * enum rt2x00usb_vendor_request: USB vendor commands.
+ */
+enum rt2x00usb_vendor_request {
+	USB_DEVICE_MODE = 1,
+	USB_SINGLE_WRITE = 2,
+	USB_SINGLE_READ = 3,
+	USB_MULTI_WRITE = 6,
+	USB_MULTI_READ = 7,
+	USB_EEPROM_WRITE = 8,
+	USB_EEPROM_READ = 9,
+	USB_LED_CONTROL = 10, /* RT73USB */
+	USB_RX_CONTROL = 12,
+};
+
+/**
+ * enum rt2x00usb_mode_offset: Device modes offset.
+ */
+enum rt2x00usb_mode_offset {
+	USB_MODE_RESET = 1,
+	USB_MODE_UNPLUG = 2,
+	USB_MODE_FUNCTION = 3,
+	USB_MODE_TEST = 4,
+	USB_MODE_SLEEP = 7,	/* RT73USB */
+	USB_MODE_FIRMWARE = 8,	/* RT73USB */
+	USB_MODE_WAKEUP = 9,	/* RT73USB */
+	USB_MODE_AUTORUN = 17, /* RT2800USB */
+};
+
+/**
+ * rt2x00usb_vendor_request - Send register command to device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @value: Value to write to device
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ * @timeout: Operation timeout
+ *
+ * This is the main function to communicate with the device,
+ * the &buffer argument _must_ either be NULL or point to
+ * a buffer allocated by kmalloc. Failure to do so can lead
+ * to unexpected behavior depending on the architecture.
+ */
+int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
+			     const u8 request, const u8 requesttype,
+			     const u16 offset, const u16 value,
+			     void *buffer, const u16 buffer_length,
+			     const int timeout);
+
+/**
+ * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ *
+ * This function will use a previously with kmalloc allocated cache
+ * to communicate with the device. The contents of the buffer pointer
+ * will be copied to this cache when writing, or read from the cache
+ * when reading.
+ * Buffers send to &rt2x00usb_vendor_request _must_ be allocated with
+ * kmalloc. Hence the reason for using a previously allocated cache
+ * which has been allocated properly.
+ */
+int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
+				  const u8 request, const u8 requesttype,
+				  const u16 offset, void *buffer,
+				  const u16 buffer_length);
+
+/**
+ * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @requesttype: Request type &USB_VENDOR_REQUEST_*
+ * @offset: Register offset to perform action on
+ * @buffer: Buffer where information will be read/written to by device
+ * @buffer_length: Size of &buffer
+ * @timeout: Operation timeout
+ *
+ * A version of &rt2x00usb_vendor_request_buff which must be called
+ * if the usb_cache_mutex is already held.
+ */
+int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
+				   const u8 request, const u8 requesttype,
+				   const u16 offset, void *buffer,
+				   const u16 buffer_length, const int timeout);
+
+/**
+ * rt2x00usb_vendor_request_sw - Send single register command to device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
+ * @offset: Register offset to perform action on
+ * @value: Value to write to device
+ * @timeout: Operation timeout
+ *
+ * Simple wrapper around rt2x00usb_vendor_request to write a single
+ * command to the device. Since we don't use the buffer argument we
+ * don't have to worry about kmalloc here.
+ */
+static inline int rt2x00usb_vendor_request_sw(struct rt2x00_dev *rt2x00dev,
+					      const u8 request,
+					      const u16 offset,
+					      const u16 value,
+					      const int timeout)
+{
+	return rt2x00usb_vendor_request(rt2x00dev, request,
+					USB_VENDOR_REQUEST_OUT, offset,
+					value, NULL, 0, timeout);
+}
+
+/**
+ * rt2x00usb_eeprom_read - Read eeprom from device
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ * @eeprom: Pointer to eeprom array to store the information in
+ * @length: Number of bytes to read from the eeprom
+ *
+ * Simple wrapper around rt2x00usb_vendor_request to read the eeprom
+ * from the device. Note that the eeprom argument _must_ be allocated using
+ * kmalloc for correct handling inside the kernel USB layer.
+ */
+static inline int rt2x00usb_eeprom_read(struct rt2x00_dev *rt2x00dev,
+					__le16 *eeprom, const u16 length)
+{
+	return rt2x00usb_vendor_request(rt2x00dev, USB_EEPROM_READ,
+					USB_VENDOR_REQUEST_IN, 0, 0,
+					eeprom, length, EEPROM_TIMEOUT);
+}
+
+/**
+ * rt2x00usb_register_read - Read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Pointer to where register contents should be stored
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_read(struct rt2x00_dev *rt2x00dev,
+					   const unsigned int offset,
+					   u32 *value)
+{
+	__le32 reg = 0;
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+				      USB_VENDOR_REQUEST_IN, offset,
+				      &reg, sizeof(reg));
+	*value = le32_to_cpu(reg);
+}
+
+/**
+ * rt2x00usb_register_read_lock - Read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Pointer to where register contents should be stored
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_req_buff_lock().
+ */
+static inline void rt2x00usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
+						const unsigned int offset,
+						u32 *value)
+{
+	__le32 reg = 0;
+	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
+				       USB_VENDOR_REQUEST_IN, offset,
+				       &reg, sizeof(reg), REGISTER_TIMEOUT);
+	*value = le32_to_cpu(reg);
+}
+
+/**
+ * rt2x00usb_register_multiread - Read 32bit register words
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Pointer to where register contents should be stored
+ * @length: Length of the data
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_multiread(struct rt2x00_dev *rt2x00dev,
+						const unsigned int offset,
+						void *value, const u32 length)
+{
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
+				      USB_VENDOR_REQUEST_IN, offset,
+				      value, length);
+}
+
+/**
+ * rt2x00usb_register_write - Write 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_write(struct rt2x00_dev *rt2x00dev,
+					    const unsigned int offset,
+					    u32 value)
+{
+	__le32 reg = cpu_to_le32(value);
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+				      USB_VENDOR_REQUEST_OUT, offset,
+				      &reg, sizeof(reg));
+}
+
+/**
+ * rt2x00usb_register_write_lock - Write 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_req_buff_lock().
+ */
+static inline void rt2x00usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
+						 const unsigned int offset,
+						 u32 value)
+{
+	__le32 reg = cpu_to_le32(value);
+	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
+				       USB_VENDOR_REQUEST_OUT, offset,
+				       &reg, sizeof(reg), REGISTER_TIMEOUT);
+}
+
+/**
+ * rt2x00usb_register_multiwrite - Write 32bit register words
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @value: Data which should be written
+ * @length: Length of the data
+ *
+ * This function is a simple wrapper for 32bit register access
+ * through rt2x00usb_vendor_request_buff().
+ */
+static inline void rt2x00usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
+						 const unsigned int offset,
+						 const void *value,
+						 const u32 length)
+{
+	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
+				      USB_VENDOR_REQUEST_OUT, offset,
+				      (void *)value, length);
+}
+
+/**
+ * rt2x00usb_regbusy_read - Read from register with busy check
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @field: Field to check if register is busy
+ * @reg: Pointer to where register contents should be stored
+ *
+ * This function will read the given register, and checks if the
+ * register is busy. If it is, it will sleep for a couple of
+ * microseconds before reading the register again. If the register
+ * is not read after a certain timeout, this function will return
+ * FALSE.
+ */
+int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
+			   const unsigned int offset,
+			   const struct rt2x00_field32 field,
+			   u32 *reg);
+
+/**
+ * rt2x00usb_register_read_async - Asynchronously read 32bit register word
+ * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
+ * @offset: Register offset
+ * @callback: Functon to call when read completes.
+ *
+ * Submit a control URB to read a 32bit register. This safe to
+ * be called from atomic context.  The callback will be called
+ * when the URB completes. Otherwise the function is similar
+ * to rt2x00usb_register_read().
+ * When the callback function returns false, the memory will be cleaned up,
+ * when it returns true, the urb will be fired again.
+ */
+void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev,
+				   const unsigned int offset,
+				   bool (*callback)(struct rt2x00_dev*, int, u32));
+
+/*
+ * Radio handlers
+ */
+void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev);
+
+/**
+ * struct queue_entry_priv_usb: Per entry USB specific information
+ *
+ * @urb: Urb structure used for device communication.
+ */
+struct queue_entry_priv_usb {
+	struct urb *urb;
+};
+
+/**
+ * struct queue_entry_priv_usb_bcn: Per TX entry USB specific information
+ *
+ * The first section should match &struct queue_entry_priv_usb exactly.
+ * rt2500usb can use this structure to send a guardian byte when working
+ * with beacons.
+ *
+ * @urb: Urb structure used for device communication.
+ * @guardian_data: Set to 0, used for sending the guardian data.
+ * @guardian_urb: Urb structure used to send the guardian data.
+ */
+struct queue_entry_priv_usb_bcn {
+	struct urb *urb;
+
+	unsigned int guardian_data;
+	struct urb *guardian_urb;
+};
+
+/**
+ * rt2x00usb_kick_queue - Kick data queue
+ * @queue: Data queue to kick
+ *
+ * This will walk through all entries of the queue and push all pending
+ * frames to the hardware as a single burst.
+ */
+void rt2x00usb_kick_queue(struct data_queue *queue);
+
+/**
+ * rt2x00usb_flush_queue - Flush data queue
+ * @queue: Data queue to stop
+ * @drop: True to drop all pending frames.
+ *
+ * This will walk through all entries of the queue and will optionally
+ * kill all URB's which were send to the device, or at least wait until
+ * they have been returned from the device..
+ */
+void rt2x00usb_flush_queue(struct data_queue *queue, bool drop);
+
+/**
+ * rt2x00usb_watchdog - Watchdog for USB communication
+ * @rt2x00dev: Pointer to &struct rt2x00_dev
+ *
+ * Check the health of the USB communication and determine
+ * if timeouts have occurred. If this is the case, this function
+ * will reset all communication to restore functionality again.
+ */
+void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * Device initialization handlers.
+ */
+void rt2x00usb_clear_entry(struct queue_entry *entry);
+int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev);
+void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev);
+
+/*
+ * USB driver handlers.
+ */
+int rt2x00usb_probe(struct usb_interface *usb_intf,
+		    const struct rt2x00_ops *ops);
+void rt2x00usb_disconnect(struct usb_interface *usb_intf);
+#ifdef CONFIG_PM
+int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state);
+int rt2x00usb_resume(struct usb_interface *usb_intf);
+#else
+#define rt2x00usb_suspend	NULL
+#define rt2x00usb_resume	NULL
+#endif /* CONFIG_PM */
+
+#endif /* RT2X00USB_H */
diff --git a/drivers/net/wireless/rt2x00/rt61pci.c b/drivers/net/wireless/rt2x00/rt61pci.c
new file mode 100644
index 0000000..c0e730e
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt61pci.c
@@ -0,0 +1,3111 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt61pci
+	Abstract: rt61pci device specific routines.
+	Supported chipsets: RT2561, RT2561s, RT2661.
+ */
+
+#include <linux/crc-itu-t.h>
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt61pci.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt = false;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attempt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
+#define WAIT_FOR_MCU(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
+				H2M_MAILBOX_CSR_OWNER, (__reg))
+
+static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+			      const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
+		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
+
+		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+			     const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
+			     const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
+		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
+		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
+		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
+				const u8 command, const u8 token,
+				const u8 arg0, const u8 arg1)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the MCU becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
+		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
+		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
+		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
+		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
+		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+
+}
+
+static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
+
+	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
+	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
+	eeprom->reg_data_clock =
+	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
+	eeprom->reg_chip_select =
+	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
+}
+
+static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg = 0;
+
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
+	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
+			   !!eeprom->reg_data_clock);
+	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
+			   !!eeprom->reg_chip_select);
+
+	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt61pci_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2x00mmio_register_read,
+		.write		= rt2x00mmio_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt61pci_bbp_read,
+		.write		= rt61pci_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt61pci_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
+	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt61pci_brightness_set(struct led_classdev *led_cdev,
+				   enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	unsigned int a_mode =
+	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
+	unsigned int bg_mode =
+	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
+
+	if (led->type == LED_TYPE_RADIO) {
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_RADIO_STATUS, enabled);
+
+		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
+				    (led->rt2x00dev->led_mcu_reg & 0xff),
+				    ((led->rt2x00dev->led_mcu_reg >> 8)));
+	} else if (led->type == LED_TYPE_ASSOC) {
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_LINK_A_STATUS, a_mode);
+
+		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
+				    (led->rt2x00dev->led_mcu_reg & 0xff),
+				    ((led->rt2x00dev->led_mcu_reg >> 8)));
+	} else if (led->type == LED_TYPE_QUALITY) {
+		/*
+		 * The brightness is divided into 6 levels (0 - 5),
+		 * this means we need to convert the brightness
+		 * argument into the matching level within that range.
+		 */
+		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
+				    brightness / (LED_FULL / 6), 0);
+	}
+}
+
+static int rt61pci_blink_set(struct led_classdev *led_cdev,
+			     unsigned long *delay_on,
+			     unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
+	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
+	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
+
+	return 0;
+}
+
+static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00_led *led,
+			     enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt61pci_brightness_set;
+	led->led_dev.blink_set = rt61pci_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
+				     struct rt2x00lib_crypto *crypto,
+				     struct ieee80211_key_conf *key)
+{
+	struct hw_key_entry key_entry;
+	struct rt2x00_field32 field;
+	u32 mask;
+	u32 reg;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * rt2x00lib can't determine the correct free
+		 * key_idx for shared keys. We have 1 register
+		 * with key valid bits. The goal is simple, read
+		 * the register, if that is full we have no slots
+		 * left.
+		 * Note that each BSS is allowed to have up to 4
+		 * shared keys, so put a mask over the allowed
+		 * entries.
+		 */
+		mask = (0xf << crypto->bssidx);
+
+		rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
+		reg &= mask;
+
+		if (reg && reg == mask)
+			return -ENOSPC;
+
+		key->hw_key_idx += reg ? ffz(reg) : 0;
+
+		/*
+		 * Upload key to hardware
+		 */
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
+		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
+					       &key_entry, sizeof(key_entry));
+
+		/*
+		 * The cipher types are stored over 2 registers.
+		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
+		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
+		 * Using the correct defines correctly will cause overhead,
+		 * so just calculate the correct offset.
+		 */
+		if (key->hw_key_idx < 8) {
+			field.bit_offset = (3 * key->hw_key_idx);
+			field.bit_mask = 0x7 << field.bit_offset;
+
+			rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
+			rt2x00_set_field32(&reg, field, crypto->cipher);
+			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
+		} else {
+			field.bit_offset = (3 * (key->hw_key_idx - 8));
+			field.bit_mask = 0x7 << field.bit_offset;
+
+			rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
+			rt2x00_set_field32(&reg, field, crypto->cipher);
+			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
+		}
+
+		/*
+		 * The driver does not support the IV/EIV generation
+		 * in hardware. However it doesn't support the IV/EIV
+		 * inside the ieee80211 frame either, but requires it
+		 * to be provided separately for the descriptor.
+		 * rt2x00lib will cut the IV/EIV data out of all frames
+		 * given to us by mac80211, but we must tell mac80211
+		 * to generate the IV/EIV data.
+		 */
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+	}
+
+	/*
+	 * SEC_CSR0 contains only single-bit fields to indicate
+	 * a particular key is valid. Because using the FIELD32()
+	 * defines directly will cause a lot of overhead, we use
+	 * a calculation to determine the correct bit directly.
+	 */
+	mask = 1 << key->hw_key_idx;
+
+	rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
+	if (crypto->cmd == SET_KEY)
+		reg |= mask;
+	else if (crypto->cmd == DISABLE_KEY)
+		reg &= ~mask;
+	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
+
+	return 0;
+}
+
+static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+				       struct rt2x00lib_crypto *crypto,
+				       struct ieee80211_key_conf *key)
+{
+	struct hw_pairwise_ta_entry addr_entry;
+	struct hw_key_entry key_entry;
+	u32 mask;
+	u32 reg;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * rt2x00lib can't determine the correct free
+		 * key_idx for pairwise keys. We have 2 registers
+		 * with key valid bits. The goal is simple: read
+		 * the first register. If that is full, move to
+		 * the next register.
+		 * When both registers are full, we drop the key.
+		 * Otherwise, we use the first invalid entry.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
+		if (reg && reg == ~0) {
+			key->hw_key_idx = 32;
+			rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
+			if (reg && reg == ~0)
+				return -ENOSPC;
+		}
+
+		key->hw_key_idx += reg ? ffz(reg) : 0;
+
+		/*
+		 * Upload key to hardware
+		 */
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		memset(&addr_entry, 0, sizeof(addr_entry));
+		memcpy(&addr_entry, crypto->address, ETH_ALEN);
+		addr_entry.cipher = crypto->cipher;
+
+		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
+					       &key_entry, sizeof(key_entry));
+
+		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
+		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
+					       &addr_entry, sizeof(addr_entry));
+
+		/*
+		 * Enable pairwise lookup table for given BSS idx.
+		 * Without this, received frames will not be decrypted
+		 * by the hardware.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
+		reg |= (1 << crypto->bssidx);
+		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
+
+		/*
+		 * The driver does not support the IV/EIV generation
+		 * in hardware. However it doesn't support the IV/EIV
+		 * inside the ieee80211 frame either, but requires it
+		 * to be provided separately for the descriptor.
+		 * rt2x00lib will cut the IV/EIV data out of all frames
+		 * given to us by mac80211, but we must tell mac80211
+		 * to generate the IV/EIV data.
+		 */
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+	}
+
+	/*
+	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
+	 * a particular key is valid. Because using the FIELD32()
+	 * defines directly will cause a lot of overhead, we use
+	 * a calculation to determine the correct bit directly.
+	 */
+	if (key->hw_key_idx < 32) {
+		mask = 1 << key->hw_key_idx;
+
+		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
+		if (crypto->cmd == SET_KEY)
+			reg |= mask;
+		else if (crypto->cmd == DISABLE_KEY)
+			reg &= ~mask;
+		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
+	} else {
+		mask = 1 << (key->hw_key_idx - 32);
+
+		rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
+		if (crypto->cmd == SET_KEY)
+			reg |= mask;
+		else if (crypto->cmd == DISABLE_KEY)
+			reg &= ~mask;
+		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
+	}
+
+	return 0;
+}
+
+static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
+				  const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
+			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+}
+
+static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00_intf *intf,
+				struct rt2x00intf_conf *conf,
+				const unsigned int flags)
+{
+	u32 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC) {
+		reg = le32_to_cpu(conf->mac[1]);
+		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
+		conf->mac[1] = cpu_to_le32(reg);
+
+		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
+					       conf->mac, sizeof(conf->mac));
+	}
+
+	if (flags & CONFIG_UPDATE_BSSID) {
+		reg = le32_to_cpu(conf->bssid[1]);
+		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
+		conf->bssid[1] = cpu_to_le32(reg);
+
+		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
+					       conf->bssid,
+					       sizeof(conf->bssid));
+	}
+}
+
+static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00lib_erp *erp,
+			       u32 changed)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
+	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
+				   !!erp->short_preamble);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
+					  erp->basic_rates);
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+	}
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
+		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
+		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
+	}
+}
+
+static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
+				      struct antenna_setup *ant)
+{
+	u8 r3;
+	u8 r4;
+	u8 r77;
+
+	rt61pci_bbp_read(rt2x00dev, 3, &r3);
+	rt61pci_bbp_read(rt2x00dev, 4, &r4);
+	rt61pci_bbp_read(rt2x00dev, 77, &r77);
+
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		else
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		else
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		break;
+	}
+
+	rt61pci_bbp_write(rt2x00dev, 77, r77);
+	rt61pci_bbp_write(rt2x00dev, 3, r3);
+	rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
+				      struct antenna_setup *ant)
+{
+	u8 r3;
+	u8 r4;
+	u8 r77;
+
+	rt61pci_bbp_read(rt2x00dev, 3, &r3);
+	rt61pci_bbp_read(rt2x00dev, 4, &r4);
+	rt61pci_bbp_read(rt2x00dev, 77, &r77);
+
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
+	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+			  !rt2x00_has_cap_frame_type(rt2x00dev));
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		break;
+	}
+
+	rt61pci_bbp_write(rt2x00dev, 77, r77);
+	rt61pci_bbp_write(rt2x00dev, 3, r3);
+	rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
+					   const int p1, const int p2)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
+
+	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
+	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
+
+	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
+	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
+
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
+}
+
+static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
+					struct antenna_setup *ant)
+{
+	u8 r3;
+	u8 r4;
+	u8 r77;
+
+	rt61pci_bbp_read(rt2x00dev, 3, &r3);
+	rt61pci_bbp_read(rt2x00dev, 4, &r4);
+	rt61pci_bbp_read(rt2x00dev, 77, &r77);
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_A:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
+		break;
+	case ANTENNA_HW_DIVERSITY:
+		/*
+		 * FIXME: Antenna selection for the rf 2529 is very confusing
+		 * in the legacy driver. Just default to antenna B until the
+		 * legacy code can be properly translated into rt2x00 code.
+		 */
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
+		break;
+	}
+
+	rt61pci_bbp_write(rt2x00dev, 77, r77);
+	rt61pci_bbp_write(rt2x00dev, 3, r3);
+	rt61pci_bbp_write(rt2x00dev, 4, r4);
+}
+
+struct antenna_sel {
+	u8 word;
+	/*
+	 * value[0] -> non-LNA
+	 * value[1] -> LNA
+	 */
+	u8 value[2];
+};
+
+static const struct antenna_sel antenna_sel_a[] = {
+	{ 96,  { 0x58, 0x78 } },
+	{ 104, { 0x38, 0x48 } },
+	{ 75,  { 0xfe, 0x80 } },
+	{ 86,  { 0xfe, 0x80 } },
+	{ 88,  { 0xfe, 0x80 } },
+	{ 35,  { 0x60, 0x60 } },
+	{ 97,  { 0x58, 0x58 } },
+	{ 98,  { 0x58, 0x58 } },
+};
+
+static const struct antenna_sel antenna_sel_bg[] = {
+	{ 96,  { 0x48, 0x68 } },
+	{ 104, { 0x2c, 0x3c } },
+	{ 75,  { 0xfe, 0x80 } },
+	{ 86,  { 0xfe, 0x80 } },
+	{ 88,  { 0xfe, 0x80 } },
+	{ 35,  { 0x50, 0x50 } },
+	{ 97,  { 0x48, 0x48 } },
+	{ 98,  { 0x48, 0x48 } },
+};
+
+static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
+			       struct antenna_setup *ant)
+{
+	const struct antenna_sel *sel;
+	unsigned int lna;
+	unsigned int i;
+	u32 reg;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		sel = antenna_sel_a;
+		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
+	} else {
+		sel = antenna_sel_bg;
+		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
+	}
+
+	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
+		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
+
+	rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
+
+	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
+			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
+	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
+			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
+
+	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
+
+	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
+		rt61pci_config_antenna_5x(rt2x00dev, ant);
+	else if (rt2x00_rf(rt2x00dev, RF2527))
+		rt61pci_config_antenna_2x(rt2x00dev, ant);
+	else if (rt2x00_rf(rt2x00dev, RF2529)) {
+		if (rt2x00_has_cap_double_antenna(rt2x00dev))
+			rt61pci_config_antenna_2x(rt2x00dev, ant);
+		else
+			rt61pci_config_antenna_2529(rt2x00dev, ant);
+	}
+}
+
+static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+				    struct rt2x00lib_conf *libconf)
+{
+	u16 eeprom;
+	short lna_gain = 0;
+
+	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
+		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+			lna_gain += 14;
+
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
+		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
+	} else {
+		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
+			lna_gain += 14;
+
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
+		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
+	}
+
+	rt2x00dev->lna_gain = lna_gain;
+}
+
+static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
+				   struct rf_channel *rf, const int txpower)
+{
+	u8 r3;
+	u8 r94;
+	u8 smart;
+
+	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
+
+	rt61pci_bbp_read(rt2x00dev, 3, &r3);
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
+	rt61pci_bbp_write(rt2x00dev, 3, r3);
+
+	r94 = 6;
+	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
+		r94 += txpower - MAX_TXPOWER;
+	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
+		r94 += txpower;
+	rt61pci_bbp_write(rt2x00dev, 94, r94);
+
+	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+	udelay(200);
+
+	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+	udelay(200);
+
+	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+	msleep(1);
+}
+
+static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+				   const int txpower)
+{
+	struct rf_channel rf;
+
+	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
+	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
+	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
+	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
+
+	rt61pci_config_channel(rt2x00dev, &rf, txpower);
+}
+
+static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+				    struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
+}
+
+static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
+				   rt2x00dev->beacon_int - 10);
+		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
+					  0x00000005);
+		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
+		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
+
+		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
+	} else {
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
+					  0x00000007);
+		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
+		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
+
+		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
+	}
+}
+
+static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
+			   struct rt2x00lib_conf *libconf,
+			   const unsigned int flags)
+{
+	/* Always recalculate LNA gain before changing configuration */
+	rt61pci_config_lna_gain(rt2x00dev, libconf);
+
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt61pci_config_channel(rt2x00dev, &libconf->rf,
+				       libconf->conf->power_level);
+	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt61pci_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt61pci_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
+			       struct link_qual *qual)
+{
+	u32 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
+	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
+}
+
+static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+				   struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level != vgc_level) {
+		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				struct link_qual *qual)
+{
+	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
+}
+
+static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+			       struct link_qual *qual, const u32 count)
+{
+	u8 up_bound;
+	u8 low_bound;
+
+	/*
+	 * Determine r17 bounds.
+	 */
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		low_bound = 0x28;
+		up_bound = 0x48;
+		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+			low_bound += 0x10;
+			up_bound += 0x10;
+		}
+	} else {
+		low_bound = 0x20;
+		up_bound = 0x40;
+		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+			low_bound += 0x10;
+			up_bound += 0x10;
+		}
+	}
+
+	/*
+	 * If we are not associated, we should go straight to the
+	 * dynamic CCA tuning.
+	 */
+	if (!rt2x00dev->intf_associated)
+		goto dynamic_cca_tune;
+
+	/*
+	 * Special big-R17 for very short distance
+	 */
+	if (qual->rssi >= -35) {
+		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for short distance
+	 */
+	if (qual->rssi >= -58) {
+		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for middle-short distance
+	 */
+	if (qual->rssi >= -66) {
+		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
+		return;
+	}
+
+	/*
+	 * Special mid-R17 for middle distance
+	 */
+	if (qual->rssi >= -74) {
+		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
+		return;
+	}
+
+	/*
+	 * Special case: Change up_bound based on the rssi.
+	 * Lower up_bound when rssi is weaker then -74 dBm.
+	 */
+	up_bound -= 2 * (-74 - qual->rssi);
+	if (low_bound > up_bound)
+		up_bound = low_bound;
+
+	if (qual->vgc_level > up_bound) {
+		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
+		return;
+	}
+
+dynamic_cca_tune:
+
+	/*
+	 * r17 does not yet exceed upper limit, continue and base
+	 * the r17 tuning on the false CCA count.
+	 */
+	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
+		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
+	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
+		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt61pci_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt61pci_kick_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_VI:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_BE:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_BK:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt61pci_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_VI:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_BE:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_AC_BK:
+		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
+		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
+		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
+		break;
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+		/*
+		 * Wait for possibly running tbtt tasklets.
+		 */
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+	u16 chip;
+	char *fw_name;
+
+	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
+	switch (chip) {
+	case RT2561_PCI_ID:
+		fw_name = FIRMWARE_RT2561;
+		break;
+	case RT2561s_PCI_ID:
+		fw_name = FIRMWARE_RT2561s;
+		break;
+	case RT2661_PCI_ID:
+		fw_name = FIRMWARE_RT2661;
+		break;
+	default:
+		fw_name = NULL;
+		break;
+	}
+
+	return fw_name;
+}
+
+static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
+				  const u8 *data, const size_t len)
+{
+	u16 fw_crc;
+	u16 crc;
+
+	/*
+	 * Only support 8kb firmware files.
+	 */
+	if (len != 8192)
+		return FW_BAD_LENGTH;
+
+	/*
+	 * The last 2 bytes in the firmware array are the crc checksum itself.
+	 * This means that we should never pass those 2 bytes to the crc
+	 * algorithm.
+	 */
+	fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+	/*
+	 * Use the crc itu-t algorithm.
+	 */
+	crc = crc_itu_t(0, data, len - 2);
+	crc = crc_itu_t_byte(crc, 0);
+	crc = crc_itu_t_byte(crc, 0);
+
+	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
+}
+
+static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
+				 const u8 *data, const size_t len)
+{
+	int i;
+	u32 reg;
+
+	/*
+	 * Wait for stable hardware.
+	 */
+	for (i = 0; i < 100; i++) {
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
+		if (reg)
+			break;
+		msleep(1);
+	}
+
+	if (!reg) {
+		rt2x00_err(rt2x00dev, "Unstable hardware\n");
+		return -EBUSY;
+	}
+
+	/*
+	 * Prepare MCU and mailbox for firmware loading.
+	 */
+	reg = 0;
+	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
+	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
+	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
+	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
+
+	/*
+	 * Write firmware to device.
+	 */
+	reg = 0;
+	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
+	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
+	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
+				       data, len);
+
+	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
+	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
+	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
+
+	for (i = 0; i < 100; i++) {
+		rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
+		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
+			break;
+		msleep(1);
+	}
+
+	if (i == 100) {
+		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
+		return -EBUSY;
+	}
+
+	/*
+	 * Hardware needs another millisecond before it is ready.
+	 */
+	msleep(1);
+
+	/*
+	 * Reset MAC and BBP registers.
+	 */
+	reg = 0;
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	return 0;
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt61pci_get_entry_state(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		        rt2x00_get_field32(word, TXD_W0_VALID));
+	}
+}
+
+static void rt61pci_clear_entry(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 5, &word);
+		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
+				   skbdesc->skb_dma);
+		rt2x00_desc_write(entry_priv->desc, 5, word);
+
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	}
+}
+
+static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+	u32 reg;
+
+	/*
+	 * Initialize registers.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
+	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
+			   rt2x00dev->tx[0].limit);
+	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
+			   rt2x00dev->tx[1].limit);
+	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
+			   rt2x00dev->tx[2].limit);
+	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
+			   rt2x00dev->tx[3].limit);
+	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
+	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
+			   rt2x00dev->tx[0].desc_size / 4);
+	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
+
+	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
+	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
+
+	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
+	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
+
+	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
+	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
+
+	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
+	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
+	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
+	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
+			   rt2x00dev->rx->desc_size / 4);
+	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
+	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
+
+	entry_priv = rt2x00dev->rx->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
+	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
+	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
+	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
+	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
+	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
+	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
+	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
+	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
+	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
+	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
+	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
+	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
+	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
+
+	return 0;
+}
+
+static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+	/*
+	 * CCK TXD BBP registers
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+	/*
+	 * OFDM TXD BBP registers
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
+
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
+
+	/*
+	 * Invalidate all Shared Keys (SEC_CSR0),
+	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
+	 */
+	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
+	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
+	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
+
+	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
+	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
+	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
+	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
+
+	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
+
+	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
+
+	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
+
+	/*
+	 * Clear all beacons
+	 * For the Beacon base registers we only need to clear
+	 * the first byte since that byte contains the VALID and OWNER
+	 * bits which (when set to 0) will invalidate the entire beacon.
+	 */
+	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
+	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
+	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
+	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
+
+	/*
+	 * We must clear the error counters.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
+	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
+	rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
+
+	/*
+	 * Reset MAC and BBP registers.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	return 0;
+}
+
+static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt61pci_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
+	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
+	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
+	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
+	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
+	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
+	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
+	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
+	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
+	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
+	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
+	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
+	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
+	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
+	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
+	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
+	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
+	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
+	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
+	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
+	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
+	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
+	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
+	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt61pci_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	int mask = (state == STATE_RADIO_IRQ_OFF);
+	u32 reg;
+	unsigned long flags;
+
+	/*
+	 * When interrupts are being enabled, the interrupt registers
+	 * should clear the register to assure a clean state.
+	 */
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
+		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
+		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
+	}
+
+	/*
+	 * Only toggle the interrupts bits we are going to use.
+	 * Non-checked interrupt bits are disabled by default.
+	 */
+	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
+	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
+	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
+	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
+	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
+	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
+	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
+	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+	if (state == STATE_RADIO_IRQ_OFF) {
+		/*
+		 * Ensure that all tasklets are finished.
+		 */
+		tasklet_kill(&rt2x00dev->txstatus_tasklet);
+		tasklet_kill(&rt2x00dev->rxdone_tasklet);
+		tasklet_kill(&rt2x00dev->autowake_tasklet);
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+	}
+}
+
+static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
+		     rt61pci_init_registers(rt2x00dev) ||
+		     rt61pci_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	/*
+	 * Enable RX.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
+	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
+	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
+
+	return 0;
+}
+
+static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Disable power
+	 */
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
+}
+
+static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
+{
+	u32 reg, reg2;
+	unsigned int i;
+	char put_to_sleep;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
+	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
+		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
+		if (state == !put_to_sleep)
+			return 0;
+		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
+		msleep(10);
+	}
+
+	return -EBUSY;
+}
+
+static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+				    enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt61pci_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt61pci_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt61pci_toggle_irq(rt2x00dev, state);
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt61pci_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt61pci_write_tx_desc(struct queue_entry *entry,
+				  struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *txd = entry_priv->desc;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
+	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
+	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
+			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_desc_write(txd, 2, word);
+
+	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+	}
+
+	rt2x00_desc_read(txd, 5, &word);
+	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
+	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
+			   skbdesc->entry->entry_idx);
+	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
+			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
+	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
+	rt2x00_desc_write(txd, 5, word);
+
+	if (entry->queue->qid != QID_BEACON) {
+		rt2x00_desc_read(txd, 6, &word);
+		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
+				   skbdesc->skb_dma);
+		rt2x00_desc_write(txd, 6, word);
+
+		rt2x00_desc_read(txd, 11, &word);
+		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
+				   txdesc->length);
+		rt2x00_desc_write(txd, 11, word);
+	}
+
+	/*
+	 * Writing TXD word 0 must the last to prevent a race condition with
+	 * the device, whereby the device may take hold of the TXD before we
+	 * finished updating it.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_OFDM,
+			   (txdesc->rate_mode == RATE_MODE_OFDM));
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
+			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
+			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
+	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W0_BURST,
+			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
+	rt2x00_desc_write(txd, 0, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->desc = txd;
+	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
+			    TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt61pci_write_beacon(struct queue_entry *entry,
+				 struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	unsigned int beacon_base;
+	unsigned int padding_len;
+	u32 orig_reg, reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
+	orig_reg = reg;
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt61pci_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+
+	/*
+	 * Write entire beacon with descriptor and padding to register.
+	 */
+	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+	if (padding_len && skb_pad(entry->skb, padding_len)) {
+		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+		/* skb freed by skb_pad() on failure */
+		entry->skb = NULL;
+		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+		return;
+	}
+
+	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
+				       entry_priv->desc, TXINFO_SIZE);
+	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
+				       entry->skb->data,
+				       entry->skb->len + padding_len);
+
+	/*
+	 * Enable beaconing again.
+	 *
+	 * For Wi-Fi faily generated beacons between participating
+	 * stations. Set TBTT phase adaptive adjustment step to 8us.
+	 */
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
+
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Clean up beacon skb.
+	 */
+	dev_kfree_skb_any(entry->skb);
+	entry->skb = NULL;
+}
+
+static void rt61pci_clear_beacon(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 orig_reg, reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
+	reg = orig_reg;
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Clear beacon.
+	 */
+	rt2x00mmio_register_write(rt2x00dev,
+				  HW_BEACON_OFFSET(entry->entry_idx), 0);
+
+	/*
+	 * Restore global beaconing state.
+	 */
+	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+}
+
+/*
+ * RX control handlers
+ */
+static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
+{
+	u8 offset = rt2x00dev->lna_gain;
+	u8 lna;
+
+	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
+	switch (lna) {
+	case 3:
+		offset += 90;
+		break;
+	case 2:
+		offset += 74;
+		break;
+	case 1:
+		offset += 64;
+		break;
+	default:
+		return 0;
+	}
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		if (lna == 3 || lna == 2)
+			offset += 10;
+	}
+
+	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
+}
+
+static void rt61pci_fill_rxdone(struct queue_entry *entry,
+				struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word0;
+	u32 word1;
+
+	rt2x00_desc_read(entry_priv->desc, 0, &word0);
+	rt2x00_desc_read(entry_priv->desc, 1, &word1);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
+	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
+
+	if (rxdesc->cipher != CIPHER_NONE) {
+		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
+		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
+		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
+		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
+
+		/*
+		 * Hardware has stripped IV/EIV data from 802.11 frame during
+		 * decryption. It has provided the data separately but rt2x00lib
+		 * should decide if it should be reinserted.
+		 */
+		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+		/*
+		 * The hardware has already checked the Michael Mic and has
+		 * stripped it from the frame. Signal this to mac80211.
+		 */
+		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+			rxdesc->flags |= RX_FLAG_DECRYPTED;
+		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+	}
+
+	/*
+	 * Obtain the status about this packet.
+	 * When frame was received with an OFDM bitrate,
+	 * the signal is the PLCP value. If it was received with
+	 * a CCK bitrate the signal is the rate in 100kbit/s.
+	 */
+	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	else
+		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
+{
+	struct data_queue *queue;
+	struct queue_entry *entry;
+	struct queue_entry *entry_done;
+	struct queue_entry_priv_mmio *entry_priv;
+	struct txdone_entry_desc txdesc;
+	u32 word;
+	u32 reg;
+	int type;
+	int index;
+	int i;
+
+	/*
+	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
+	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
+	 * flag is not set anymore.
+	 *
+	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
+	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
+	 * tx ring size for now.
+	 */
+	for (i = 0; i < rt2x00dev->tx->limit; i++) {
+		rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
+		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
+			break;
+
+		/*
+		 * Skip this entry when it contains an invalid
+		 * queue identication number.
+		 */
+		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
+		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
+		if (unlikely(!queue))
+			continue;
+
+		/*
+		 * Skip this entry when it contains an invalid
+		 * index number.
+		 */
+		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
+		if (unlikely(index >= queue->limit))
+			continue;
+
+		entry = &queue->entries[index];
+		entry_priv = entry->priv_data;
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		    !rt2x00_get_field32(word, TXD_W0_VALID))
+			return;
+
+		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		while (entry != entry_done) {
+			/* Catch up.
+			 * Just report any entries we missed as failed.
+			 */
+			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
+				    entry_done->entry_idx);
+
+			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
+			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		}
+
+		/*
+		 * Obtain the status about this packet.
+		 */
+		txdesc.flags = 0;
+		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
+		case 0: /* Success, maybe with retry */
+			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
+			break;
+		case 6: /* Failure, excessive retries */
+			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+			/* Don't break, this is a failed frame! */
+		default: /* Failure */
+			__set_bit(TXDONE_FAILURE, &txdesc.flags);
+		}
+		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
+
+		/*
+		 * the frame was retried at least once
+		 * -> hw used fallback rates
+		 */
+		if (txdesc.retry)
+			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
+
+		rt2x00lib_txdone(entry, &txdesc);
+	}
+}
+
+static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
+{
+	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
+
+	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
+}
+
+static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+					    struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
+	rt2x00_set_field32(&reg, irq_field, 0);
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
+					 struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single MCU interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
+	rt2x00_set_field32(&reg, irq_field, 0);
+	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt61pci_txstatus_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt61pci_txdone(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
+}
+
+static void rt61pci_tbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2x00lib_beacondone(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
+}
+
+static void rt61pci_rxdone_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2x00mmio_rxdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
+}
+
+static void rt61pci_autowake_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt61pci_wakeup(rt2x00dev);
+	rt2x00mmio_register_write(rt2x00dev,
+				  M2H_CMD_DONE_CSR, 0xffffffff);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
+}
+
+static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
+{
+	struct rt2x00_dev *rt2x00dev = dev_instance;
+	u32 reg_mcu, mask_mcu;
+	u32 reg, mask;
+
+	/*
+	 * Get the interrupt sources & saved to local variable.
+	 * Write register value back to clear pending interrupts.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
+	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
+
+	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
+	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
+
+	if (!reg && !reg_mcu)
+		return IRQ_NONE;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return IRQ_HANDLED;
+
+	/*
+	 * Schedule tasklets for interrupt handling.
+	 */
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
+		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+
+	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
+		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
+		tasklet_schedule(&rt2x00dev->autowake_tasklet);
+
+	/*
+	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
+	 * for interrupts and interrupt masks we can just use the value of
+	 * INT_SOURCE_CSR to create the interrupt mask.
+	 */
+	mask = reg;
+	mask_mcu = reg_mcu;
+
+	/*
+	 * Disable all interrupts for which a tasklet was scheduled right now,
+	 * the tasklet will reenable the appropriate interrupts.
+	 */
+	spin_lock(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
+	reg |= mask;
+	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
+	reg |= mask_mcu;
+	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
+
+	spin_unlock(&rt2x00dev->irqmask_lock);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	struct eeprom_93cx6 eeprom;
+	u32 reg;
+	u16 word;
+	u8 *mac;
+	s8 value;
+
+	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
+
+	eeprom.data = rt2x00dev;
+	eeprom.register_read = rt61pci_eepromregister_read;
+	eeprom.register_write = rt61pci_eepromregister_write;
+	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
+	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+	eeprom.reg_data_in = 0;
+	eeprom.reg_data_out = 0;
+	eeprom.reg_data_clock = 0;
+	eeprom.reg_chip_select = 0;
+
+	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+			       EEPROM_SIZE / sizeof(u16));
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+				   ANTENNA_B);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+				   ANTENNA_B);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
+				   LED_MODE_DEFAULT);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
+	} else {
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
+	} else {
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+	}
+
+	return 0;
+}
+
+static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
+			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
+
+	if (!rt2x00_rf(rt2x00dev, RF5225) &&
+	    !rt2x00_rf(rt2x00dev, RF5325) &&
+	    !rt2x00_rf(rt2x00dev, RF2527) &&
+	    !rt2x00_rf(rt2x00dev, RF2529)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Determine number of antennas.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
+		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * Read the Frame type.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
+		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
+
+	/*
+	 * Detect if this device has a hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read frequency offset and RF programming sequence.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
+	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
+		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
+
+	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+	/*
+	 * Read external LNA informations.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
+
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
+		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
+		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+
+	/*
+	 * When working with a RF2529 chip without double antenna,
+	 * the antenna settings should be gathered from the NIC
+	 * eeprom word.
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2529) &&
+	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
+		rt2x00dev->default_ant.rx =
+		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
+		rt2x00dev->default_ant.tx =
+		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
+
+		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
+			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
+		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
+			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
+	}
+
+	/*
+	 * Store led settings, for correct led behaviour.
+	 * If the eeprom value is invalid,
+	 * switch to default led mode.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
+	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
+
+	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+	if (value == LED_MODE_SIGNAL_STRENGTH)
+		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				 LED_TYPE_QUALITY);
+
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_0));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_1));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_2));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_3));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_4));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
+			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_RDY_G));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_RDY_A));
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	return 0;
+}
+
+/*
+ * RF value list for RF5225 & RF5325
+ * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
+ */
+static const struct rf_channel rf_vals_noseq[] = {
+	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
+	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
+	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
+	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
+	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
+	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
+	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
+	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
+	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
+	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
+	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
+	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
+	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
+	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
+	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
+	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
+	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
+
+	/* 802.11 UNII */
+	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
+	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
+	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
+	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
+	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
+	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
+
+	/* MMAC(Japan)J52 ch 34,38,42,46 */
+	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
+	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
+	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
+	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
+};
+
+/*
+ * RF value list for RF5225 & RF5325
+ * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
+ */
+static const struct rf_channel rf_vals_seq[] = {
+	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
+	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
+	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
+	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
+	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
+	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
+	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
+	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
+	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
+	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
+	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
+	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
+	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
+	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
+	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
+	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
+	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
+
+	/* 802.11 UNII */
+	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
+	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
+	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
+	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
+	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
+	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
+
+	/* MMAC(Japan)J52 ch 34,38,42,46 */
+	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
+	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
+	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
+	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
+};
+
+static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Disable powersaving as default.
+	 */
+	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+	/*
+	 * Initialize all hw fields.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * As rt61 has a global fallback table we cannot specify
+	 * more then one tx rate per frame but since the hw will
+	 * try several rates (based on the fallback table) we should
+	 * initialize max_report_rates to the maximum number of rates
+	 * we are going to try. Otherwise mac80211 will truncate our
+	 * reported tx rates and the rc algortihm will end up with
+	 * incorrect data.
+	 */
+	rt2x00dev->hw->max_rates = 1;
+	rt2x00dev->hw->max_report_rates = 7;
+	rt2x00dev->hw->max_rate_tries = 1;
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
+		spec->num_channels = 14;
+		spec->channels = rf_vals_noseq;
+	} else {
+		spec->num_channels = 14;
+		spec->channels = rf_vals_seq;
+	}
+
+	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = MAX_TXPOWER;
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	if (spec->num_channels > 14) {
+		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].max_power = MAX_TXPOWER;
+			info[i].default_power1 =
+					TXPOWER_FROM_DEV(tx_power[i - 14]);
+		}
+	}
+
+	return 0;
+}
+
+static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	/*
+	 * Disable power saving.
+	 */
+	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt61pci_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt61pci_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
+	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt61pci_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device has multiple filters for control frames,
+	 * but has no a separate filter for PS Poll frames.
+	 */
+	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+
+	/*
+	 * This device requires firmware and DMA mapped skbs.
+	 */
+	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+	if (!modparam_nohwcrypt)
+		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt61pci_conf_tx(struct ieee80211_hw *hw,
+			   struct ieee80211_vif *vif, u16 queue_idx,
+			   const struct ieee80211_tx_queue_params *params)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+	struct rt2x00_field32 field;
+	int retval;
+	u32 reg;
+	u32 offset;
+
+	/*
+	 * First pass the configuration through rt2x00lib, that will
+	 * update the queue settings and validate the input. After that
+	 * we are free to update the registers based on the value
+	 * in the queue parameter.
+	 */
+	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
+	if (retval)
+		return retval;
+
+	/*
+	 * We only need to perform additional register initialization
+	 * for WMM queues.
+	 */
+	if (queue_idx >= 4)
+		return 0;
+
+	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+	/* Update WMM TXOP register */
+	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
+	field.bit_offset = (queue_idx & 1) * 16;
+	field.bit_mask = 0xffff << field.bit_offset;
+
+	rt2x00mmio_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, field, queue->txop);
+	rt2x00mmio_register_write(rt2x00dev, offset, reg);
+
+	/* Update WMM registers */
+	field.bit_offset = queue_idx * 4;
+	field.bit_mask = 0xf << field.bit_offset;
+
+	rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->aifs);
+	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_min);
+	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_max);
+	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
+
+	return 0;
+}
+
+static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
+	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
+	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
+
+	return tsf;
+}
+
+static const struct ieee80211_ops rt61pci_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt61pci_conf_tx,
+	.get_tsf		= rt61pci_get_tsf,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
+	.irq_handler		= rt61pci_interrupt,
+	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
+	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
+	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
+	.autowake_tasklet	= rt61pci_autowake_tasklet,
+	.probe_hw		= rt61pci_probe_hw,
+	.get_firmware_name	= rt61pci_get_firmware_name,
+	.check_firmware		= rt61pci_check_firmware,
+	.load_firmware		= rt61pci_load_firmware,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt61pci_get_entry_state,
+	.clear_entry		= rt61pci_clear_entry,
+	.set_device_state	= rt61pci_set_device_state,
+	.rfkill_poll		= rt61pci_rfkill_poll,
+	.link_stats		= rt61pci_link_stats,
+	.reset_tuner		= rt61pci_reset_tuner,
+	.link_tuner		= rt61pci_link_tuner,
+	.start_queue		= rt61pci_start_queue,
+	.kick_queue		= rt61pci_kick_queue,
+	.stop_queue		= rt61pci_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt61pci_write_tx_desc,
+	.write_beacon		= rt61pci_write_beacon,
+	.clear_beacon		= rt61pci_clear_beacon,
+	.fill_rxdone		= rt61pci_fill_rxdone,
+	.config_shared_key	= rt61pci_config_shared_key,
+	.config_pairwise_key	= rt61pci_config_pairwise_key,
+	.config_filter		= rt61pci_config_filter,
+	.config_intf		= rt61pci_config_intf,
+	.config_erp		= rt61pci_config_erp,
+	.config_ant		= rt61pci_config_ant,
+	.config			= rt61pci_config,
+};
+
+static void rt61pci_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 4;
+		queue->data_size = 0; /* No DMA required for beacons */
+		queue->desc_size = TXINFO_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_ATIM:
+		/* fallthrough */
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt61pci_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 4,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt61pci_queue_init,
+	.lib			= &rt61pci_rt2x00_ops,
+	.hw			= &rt61pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt61pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT61pci module information.
+ */
+static const struct pci_device_id rt61pci_device_table[] = {
+	/* RT2561s */
+	{ PCI_DEVICE(0x1814, 0x0301) },
+	/* RT2561 v2 */
+	{ PCI_DEVICE(0x1814, 0x0302) },
+	/* RT2661 */
+	{ PCI_DEVICE(0x1814, 0x0401) },
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
+			"PCI & PCMCIA chipset based cards");
+MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2561);
+MODULE_FIRMWARE(FIRMWARE_RT2561s);
+MODULE_FIRMWARE(FIRMWARE_RT2661);
+MODULE_LICENSE("GPL");
+
+static int rt61pci_probe(struct pci_dev *pci_dev,
+			 const struct pci_device_id *id)
+{
+	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
+}
+
+static struct pci_driver rt61pci_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt61pci_device_table,
+	.probe		= rt61pci_probe,
+	.remove		= rt2x00pci_remove,
+	.suspend	= rt2x00pci_suspend,
+	.resume		= rt2x00pci_resume,
+};
+
+module_pci_driver(rt61pci_driver);
diff --git a/drivers/net/wireless/rt2x00/rt61pci.h b/drivers/net/wireless/rt2x00/rt61pci.h
new file mode 100644
index 0000000..1442075
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt61pci.h
@@ -0,0 +1,1500 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt61pci
+	Abstract: Data structures and registers for the rt61pci module.
+	Supported chipsets: RT2561, RT2561s, RT2661.
+ */
+
+#ifndef RT61PCI_H
+#define RT61PCI_H
+
+/*
+ * RT chip PCI IDs.
+ */
+#define RT2561s_PCI_ID			0x0301
+#define RT2561_PCI_ID			0x0302
+#define RT2661_PCI_ID			0x0401
+
+/*
+ * RF chip defines.
+ */
+#define RF5225				0x0001
+#define RF5325				0x0002
+#define RF2527				0x0003
+#define RF2529				0x0004
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET		120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x3000
+#define CSR_REG_SIZE			0x04b0
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x0100
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x0080
+#define RF_BASE				0x0004
+#define RF_SIZE				0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			4
+
+/*
+ * PCI registers.
+ */
+
+/*
+ * HOST_CMD_CSR: For HOST to interrupt embedded processor
+ */
+#define HOST_CMD_CSR			0x0008
+#define HOST_CMD_CSR_HOST_COMMAND	FIELD32(0x0000007f)
+#define HOST_CMD_CSR_INTERRUPT_MCU	FIELD32(0x00000080)
+
+/*
+ * MCU_CNTL_CSR
+ * SELECT_BANK: Select 8051 program bank.
+ * RESET: Enable 8051 reset state.
+ * READY: Ready state for 8051.
+ */
+#define MCU_CNTL_CSR			0x000c
+#define MCU_CNTL_CSR_SELECT_BANK	FIELD32(0x00000001)
+#define MCU_CNTL_CSR_RESET		FIELD32(0x00000002)
+#define MCU_CNTL_CSR_READY		FIELD32(0x00000004)
+
+/*
+ * SOFT_RESET_CSR
+ * FORCE_CLOCK_ON: Host force MAC clock ON
+ */
+#define SOFT_RESET_CSR			0x0010
+#define SOFT_RESET_CSR_FORCE_CLOCK_ON	FIELD32(0x00000002)
+
+/*
+ * MCU_INT_SOURCE_CSR: MCU interrupt source/mask register.
+ */
+#define MCU_INT_SOURCE_CSR		0x0014
+#define MCU_INT_SOURCE_CSR_0		FIELD32(0x00000001)
+#define MCU_INT_SOURCE_CSR_1		FIELD32(0x00000002)
+#define MCU_INT_SOURCE_CSR_2		FIELD32(0x00000004)
+#define MCU_INT_SOURCE_CSR_3		FIELD32(0x00000008)
+#define MCU_INT_SOURCE_CSR_4		FIELD32(0x00000010)
+#define MCU_INT_SOURCE_CSR_5		FIELD32(0x00000020)
+#define MCU_INT_SOURCE_CSR_6		FIELD32(0x00000040)
+#define MCU_INT_SOURCE_CSR_7		FIELD32(0x00000080)
+#define MCU_INT_SOURCE_CSR_TWAKEUP	FIELD32(0x00000100)
+#define MCU_INT_SOURCE_CSR_TBTT_EXPIRE	FIELD32(0x00000200)
+
+/*
+ * MCU_INT_MASK_CSR: MCU interrupt source/mask register.
+ */
+#define MCU_INT_MASK_CSR		0x0018
+#define MCU_INT_MASK_CSR_0		FIELD32(0x00000001)
+#define MCU_INT_MASK_CSR_1		FIELD32(0x00000002)
+#define MCU_INT_MASK_CSR_2		FIELD32(0x00000004)
+#define MCU_INT_MASK_CSR_3		FIELD32(0x00000008)
+#define MCU_INT_MASK_CSR_4		FIELD32(0x00000010)
+#define MCU_INT_MASK_CSR_5		FIELD32(0x00000020)
+#define MCU_INT_MASK_CSR_6		FIELD32(0x00000040)
+#define MCU_INT_MASK_CSR_7		FIELD32(0x00000080)
+#define MCU_INT_MASK_CSR_TWAKEUP	FIELD32(0x00000100)
+#define MCU_INT_MASK_CSR_TBTT_EXPIRE	FIELD32(0x00000200)
+
+/*
+ * PCI_USEC_CSR
+ */
+#define PCI_USEC_CSR			0x001c
+
+/*
+ * Security key table memory.
+ * 16 entries 32-byte for shared key table
+ * 64 entries 32-byte for pairwise key table
+ * 64 entries 8-byte for pairwise ta key table
+ */
+#define SHARED_KEY_TABLE_BASE		0x1000
+#define PAIRWISE_KEY_TABLE_BASE		0x1200
+#define PAIRWISE_TA_TABLE_BASE		0x1a00
+
+#define SHARED_KEY_ENTRY(__idx) \
+	( SHARED_KEY_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_KEY_ENTRY(__idx) \
+	( PAIRWISE_KEY_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_TA_ENTRY(__idx) \
+	( PAIRWISE_TA_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_pairwise_ta_entry)) )
+
+struct hw_key_entry {
+	u8 key[16];
+	u8 tx_mic[8];
+	u8 rx_mic[8];
+} __packed;
+
+struct hw_pairwise_ta_entry {
+	u8 address[6];
+	u8 cipher;
+	u8 reserved;
+} __packed;
+
+/*
+ * Other on-chip shared memory space.
+ */
+#define HW_CIS_BASE			0x2000
+#define HW_NULL_BASE			0x2b00
+
+/*
+ * Since NULL frame won't be that long (256 byte),
+ * We steal 16 tail bytes to save debugging settings.
+ */
+#define HW_DEBUG_SETTING_BASE		0x2bf0
+
+/*
+ * On-chip BEACON frame space.
+ */
+#define HW_BEACON_BASE0			0x2c00
+#define HW_BEACON_BASE1			0x2d00
+#define HW_BEACON_BASE2			0x2e00
+#define HW_BEACON_BASE3			0x2f00
+
+#define HW_BEACON_OFFSET(__index) \
+	( HW_BEACON_BASE0 + (__index * 0x0100) )
+
+/*
+ * HOST-MCU shared memory.
+ */
+
+/*
+ * H2M_MAILBOX_CSR: Host-to-MCU Mailbox.
+ */
+#define H2M_MAILBOX_CSR			0x2100
+#define H2M_MAILBOX_CSR_ARG0		FIELD32(0x000000ff)
+#define H2M_MAILBOX_CSR_ARG1		FIELD32(0x0000ff00)
+#define H2M_MAILBOX_CSR_CMD_TOKEN	FIELD32(0x00ff0000)
+#define H2M_MAILBOX_CSR_OWNER		FIELD32(0xff000000)
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE		FIELD16(0x001f)
+#define MCU_LEDCS_RADIO_STATUS		FIELD16(0x0020)
+#define MCU_LEDCS_LINK_BG_STATUS	FIELD16(0x0040)
+#define MCU_LEDCS_LINK_A_STATUS		FIELD16(0x0080)
+#define MCU_LEDCS_POLARITY_GPIO_0	FIELD16(0x0100)
+#define MCU_LEDCS_POLARITY_GPIO_1	FIELD16(0x0200)
+#define MCU_LEDCS_POLARITY_GPIO_2	FIELD16(0x0400)
+#define MCU_LEDCS_POLARITY_GPIO_3	FIELD16(0x0800)
+#define MCU_LEDCS_POLARITY_GPIO_4	FIELD16(0x1000)
+#define MCU_LEDCS_POLARITY_ACT		FIELD16(0x2000)
+#define MCU_LEDCS_POLARITY_READY_BG	FIELD16(0x4000)
+#define MCU_LEDCS_POLARITY_READY_A	FIELD16(0x8000)
+
+/*
+ * M2H_CMD_DONE_CSR.
+ */
+#define M2H_CMD_DONE_CSR		0x2104
+
+/*
+ * MCU_TXOP_ARRAY_BASE.
+ */
+#define MCU_TXOP_ARRAY_BASE		0x2110
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0			0x3000
+#define MAC_CSR0_REVISION		FIELD32(0x0000000f)
+#define MAC_CSR0_CHIPSET		FIELD32(0x000ffff0)
+
+/*
+ * MAC_CSR1: System control register.
+ * SOFT_RESET: Software reset bit, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset BBP.
+ * HOST_READY: Host is ready after initialization, 1: ready.
+ */
+#define MAC_CSR1			0x3004
+#define MAC_CSR1_SOFT_RESET		FIELD32(0x00000001)
+#define MAC_CSR1_BBP_RESET		FIELD32(0x00000002)
+#define MAC_CSR1_HOST_READY		FIELD32(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2			0x3008
+#define MAC_CSR2_BYTE0			FIELD32(0x000000ff)
+#define MAC_CSR2_BYTE1			FIELD32(0x0000ff00)
+#define MAC_CSR2_BYTE2			FIELD32(0x00ff0000)
+#define MAC_CSR2_BYTE3			FIELD32(0xff000000)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ * UNICAST_TO_ME_MASK:
+ *	Used to mask off bits from byte 5 of the MAC address
+ *	to determine the UNICAST_TO_ME bit for RX frames.
+ *	The full mask is complemented by BSS_ID_MASK:
+ *		MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_CSR3			0x300c
+#define MAC_CSR3_BYTE4			FIELD32(0x000000ff)
+#define MAC_CSR3_BYTE5			FIELD32(0x0000ff00)
+#define MAC_CSR3_UNICAST_TO_ME_MASK	FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR4: BSSID register 0.
+ */
+#define MAC_CSR4			0x3010
+#define MAC_CSR4_BYTE0			FIELD32(0x000000ff)
+#define MAC_CSR4_BYTE1			FIELD32(0x0000ff00)
+#define MAC_CSR4_BYTE2			FIELD32(0x00ff0000)
+#define MAC_CSR4_BYTE3			FIELD32(0xff000000)
+
+/*
+ * MAC_CSR5: BSSID register 1.
+ * BSS_ID_MASK:
+ *	This mask is used to mask off bits 0 and 1 of byte 5 of the
+ *	BSSID. This will make sure that those bits will be ignored
+ *	when determining the MY_BSS of RX frames.
+ *		0: 1-BSSID mode (BSS index = 0)
+ *		1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ *		2: 2-BSSID mode (BSS index: byte5, bit 1)
+ *		3: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ */
+#define MAC_CSR5			0x3014
+#define MAC_CSR5_BYTE4			FIELD32(0x000000ff)
+#define MAC_CSR5_BYTE5			FIELD32(0x0000ff00)
+#define MAC_CSR5_BSS_ID_MASK		FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR6: Maximum frame length register.
+ */
+#define MAC_CSR6			0x3018
+#define MAC_CSR6_MAX_FRAME_UNIT		FIELD32(0x00000fff)
+
+/*
+ * MAC_CSR7: Reserved
+ */
+#define MAC_CSR7			0x301c
+
+/*
+ * MAC_CSR8: SIFS/EIFS register.
+ * All units are in US.
+ */
+#define MAC_CSR8			0x3020
+#define MAC_CSR8_SIFS			FIELD32(0x000000ff)
+#define MAC_CSR8_SIFS_AFTER_RX_OFDM	FIELD32(0x0000ff00)
+#define MAC_CSR8_EIFS			FIELD32(0xffff0000)
+
+/*
+ * MAC_CSR9: Back-Off control register.
+ * SLOT_TIME: Slot time, default is 20us for 802.11BG.
+ * CWMIN: Bit for Cwmin. default Cwmin is 31 (2^5 - 1).
+ * CWMAX: Bit for Cwmax, default Cwmax is 1023 (2^10 - 1).
+ * CW_SELECT: 1: CWmin/Cwmax select from register, 0:select from TxD.
+ */
+#define MAC_CSR9			0x3024
+#define MAC_CSR9_SLOT_TIME		FIELD32(0x000000ff)
+#define MAC_CSR9_CWMIN			FIELD32(0x00000f00)
+#define MAC_CSR9_CWMAX			FIELD32(0x0000f000)
+#define MAC_CSR9_CW_SELECT		FIELD32(0x00010000)
+
+/*
+ * MAC_CSR10: Power state configuration.
+ */
+#define MAC_CSR10			0x3028
+
+/*
+ * MAC_CSR11: Power saving transition time register.
+ * DELAY_AFTER_TBCN: Delay after Tbcn expired in units of TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * WAKEUP_LATENCY: In unit of TU.
+ */
+#define MAC_CSR11			0x302c
+#define MAC_CSR11_DELAY_AFTER_TBCN	FIELD32(0x000000ff)
+#define MAC_CSR11_TBCN_BEFORE_WAKEUP	FIELD32(0x00007f00)
+#define MAC_CSR11_AUTOWAKE		FIELD32(0x00008000)
+#define MAC_CSR11_WAKEUP_LATENCY	FIELD32(0x000f0000)
+
+/*
+ * MAC_CSR12: Manual power control / status register (merge CSR20 & PWRCSR1).
+ * CURRENT_STATE: 0:sleep, 1:awake.
+ * FORCE_WAKEUP: This has higher priority than PUT_TO_SLEEP.
+ * BBP_CURRENT_STATE: 0: BBP sleep, 1: BBP awake.
+ */
+#define MAC_CSR12			0x3030
+#define MAC_CSR12_CURRENT_STATE		FIELD32(0x00000001)
+#define MAC_CSR12_PUT_TO_SLEEP		FIELD32(0x00000002)
+#define MAC_CSR12_FORCE_WAKEUP		FIELD32(0x00000004)
+#define MAC_CSR12_BBP_CURRENT_STATE	FIELD32(0x00000008)
+
+/*
+ * MAC_CSR13: GPIO.
+ *	MAC_CSR13_VALx: GPIO value
+ *	MAC_CSR13_DIRx: GPIO direction: 0 = output; 1 = input
+ */
+#define MAC_CSR13			0x3034
+#define MAC_CSR13_VAL0			FIELD32(0x00000001)
+#define MAC_CSR13_VAL1			FIELD32(0x00000002)
+#define MAC_CSR13_VAL2			FIELD32(0x00000004)
+#define MAC_CSR13_VAL3			FIELD32(0x00000008)
+#define MAC_CSR13_VAL4			FIELD32(0x00000010)
+#define MAC_CSR13_VAL5			FIELD32(0x00000020)
+#define MAC_CSR13_DIR0			FIELD32(0x00000100)
+#define MAC_CSR13_DIR1			FIELD32(0x00000200)
+#define MAC_CSR13_DIR2			FIELD32(0x00000400)
+#define MAC_CSR13_DIR3			FIELD32(0x00000800)
+#define MAC_CSR13_DIR4			FIELD32(0x00001000)
+#define MAC_CSR13_DIR5			FIELD32(0x00002000)
+
+/*
+ * MAC_CSR14: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * HW_LED: HW TX activity, 1: normal OFF, 0: normal ON.
+ * SW_LED: s/w LED, 1: ON, 0: OFF.
+ * HW_LED_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR14			0x3038
+#define MAC_CSR14_ON_PERIOD		FIELD32(0x000000ff)
+#define MAC_CSR14_OFF_PERIOD		FIELD32(0x0000ff00)
+#define MAC_CSR14_HW_LED		FIELD32(0x00010000)
+#define MAC_CSR14_SW_LED		FIELD32(0x00020000)
+#define MAC_CSR14_HW_LED_POLARITY	FIELD32(0x00040000)
+#define MAC_CSR14_SW_LED2		FIELD32(0x00080000)
+
+/*
+ * MAC_CSR15: NAV control.
+ */
+#define MAC_CSR15			0x303c
+
+/*
+ * TXRX control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: TX/RX configuration register.
+ * TSF_OFFSET: Default is 24.
+ * AUTO_TX_SEQ: 1: ASIC auto replace sequence nr in outgoing frame.
+ * DISABLE_RX: Disable Rx engine.
+ * DROP_CRC: Drop CRC error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TO_DS: Drop fram ToDs bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MULTICAST: Drop multicast frames.
+ * DROP_BORADCAST: Drop broadcast frames.
+ * DROP_ACK_CTS: Drop received ACK and CTS.
+ */
+#define TXRX_CSR0			0x3040
+#define TXRX_CSR0_RX_ACK_TIMEOUT	FIELD32(0x000001ff)
+#define TXRX_CSR0_TSF_OFFSET		FIELD32(0x00007e00)
+#define TXRX_CSR0_AUTO_TX_SEQ		FIELD32(0x00008000)
+#define TXRX_CSR0_DISABLE_RX		FIELD32(0x00010000)
+#define TXRX_CSR0_DROP_CRC		FIELD32(0x00020000)
+#define TXRX_CSR0_DROP_PHYSICAL		FIELD32(0x00040000)
+#define TXRX_CSR0_DROP_CONTROL		FIELD32(0x00080000)
+#define TXRX_CSR0_DROP_NOT_TO_ME	FIELD32(0x00100000)
+#define TXRX_CSR0_DROP_TO_DS		FIELD32(0x00200000)
+#define TXRX_CSR0_DROP_VERSION_ERROR	FIELD32(0x00400000)
+#define TXRX_CSR0_DROP_MULTICAST	FIELD32(0x00800000)
+#define TXRX_CSR0_DROP_BROADCAST	FIELD32(0x01000000)
+#define TXRX_CSR0_DROP_ACK_CTS		FIELD32(0x02000000)
+#define TXRX_CSR0_TX_WITHOUT_WAITING	FIELD32(0x04000000)
+
+/*
+ * TXRX_CSR1
+ */
+#define TXRX_CSR1			0x3044
+#define TXRX_CSR1_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR1_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR1_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR1_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR1_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR1_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR1_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR1_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR2
+ */
+#define TXRX_CSR2			0x3048
+#define TXRX_CSR2_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR2_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR2_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR2_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR2_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR2_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR2_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR2_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR3
+ */
+#define TXRX_CSR3			0x304c
+#define TXRX_CSR3_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR3_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR3_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR3_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR3_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR3_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR3_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR3_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR4: Auto-Responder/Tx-retry register.
+ * AUTORESPOND_PREAMBLE: 0:long, 1:short preamble.
+ * OFDM_TX_RATE_DOWN: 1:enable.
+ * OFDM_TX_RATE_STEP: 0:1-step, 1: 2-step, 2:3-step, 3:4-step.
+ * OFDM_TX_FALLBACK_CCK: 0: Fallback to OFDM 6M only, 1: Fallback to CCK 1M,2M.
+ */
+#define TXRX_CSR4			0x3050
+#define TXRX_CSR4_TX_ACK_TIMEOUT	FIELD32(0x000000ff)
+#define TXRX_CSR4_CNTL_ACK_POLICY	FIELD32(0x00000700)
+#define TXRX_CSR4_ACK_CTS_PSM		FIELD32(0x00010000)
+#define TXRX_CSR4_AUTORESPOND_ENABLE	FIELD32(0x00020000)
+#define TXRX_CSR4_AUTORESPOND_PREAMBLE	FIELD32(0x00040000)
+#define TXRX_CSR4_OFDM_TX_RATE_DOWN	FIELD32(0x00080000)
+#define TXRX_CSR4_OFDM_TX_RATE_STEP	FIELD32(0x00300000)
+#define TXRX_CSR4_OFDM_TX_FALLBACK_CCK	FIELD32(0x00400000)
+#define TXRX_CSR4_LONG_RETRY_LIMIT	FIELD32(0x0f000000)
+#define TXRX_CSR4_SHORT_RETRY_LIMIT	FIELD32(0xf0000000)
+
+/*
+ * TXRX_CSR5
+ */
+#define TXRX_CSR5			0x3054
+
+/*
+ * TXRX_CSR6: ACK/CTS payload consumed time
+ */
+#define TXRX_CSR6			0x3058
+
+/*
+ * TXRX_CSR7: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define TXRX_CSR7			0x305c
+#define TXRX_CSR7_ACK_CTS_6MBS		FIELD32(0x000000ff)
+#define TXRX_CSR7_ACK_CTS_9MBS		FIELD32(0x0000ff00)
+#define TXRX_CSR7_ACK_CTS_12MBS		FIELD32(0x00ff0000)
+#define TXRX_CSR7_ACK_CTS_18MBS		FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR8: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define TXRX_CSR8			0x3060
+#define TXRX_CSR8_ACK_CTS_24MBS		FIELD32(0x000000ff)
+#define TXRX_CSR8_ACK_CTS_36MBS		FIELD32(0x0000ff00)
+#define TXRX_CSR8_ACK_CTS_48MBS		FIELD32(0x00ff0000)
+#define TXRX_CSR8_ACK_CTS_54MBS		FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR9: Synchronization control register.
+ * BEACON_INTERVAL: In unit of 1/16 TU.
+ * TSF_TICKING: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR9			0x3064
+#define TXRX_CSR9_BEACON_INTERVAL	FIELD32(0x0000ffff)
+#define TXRX_CSR9_TSF_TICKING		FIELD32(0x00010000)
+#define TXRX_CSR9_TSF_SYNC		FIELD32(0x00060000)
+#define TXRX_CSR9_TBTT_ENABLE		FIELD32(0x00080000)
+#define TXRX_CSR9_BEACON_GEN		FIELD32(0x00100000)
+#define TXRX_CSR9_TIMESTAMP_COMPENSATE	FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR10: BEACON alignment.
+ */
+#define TXRX_CSR10			0x3068
+
+/*
+ * TXRX_CSR11: AES mask.
+ */
+#define TXRX_CSR11			0x306c
+
+/*
+ * TXRX_CSR12: TSF low 32.
+ */
+#define TXRX_CSR12			0x3070
+#define TXRX_CSR12_LOW_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR13: TSF high 32.
+ */
+#define TXRX_CSR13			0x3074
+#define TXRX_CSR13_HIGH_TSFTIMER	FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR14: TBTT timer.
+ */
+#define TXRX_CSR14			0x3078
+
+/*
+ * TXRX_CSR15: TKIP MIC priority byte "AND" mask.
+ */
+#define TXRX_CSR15			0x307c
+
+/*
+ * PHY control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PHY_CSR0: RF/PS control.
+ */
+#define PHY_CSR0			0x3080
+#define PHY_CSR0_PA_PE_BG		FIELD32(0x00010000)
+#define PHY_CSR0_PA_PE_A		FIELD32(0x00020000)
+
+/*
+ * PHY_CSR1
+ */
+#define PHY_CSR1			0x3084
+
+/*
+ * PHY_CSR2: Pre-TX BBP control.
+ */
+#define PHY_CSR2			0x3088
+
+/*
+ * PHY_CSR3: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REG_NUM: Selected BBP register.
+ * READ_CONTROL: 0: Write BBP, 1: Read BBP.
+ * BUSY: 1: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR3			0x308c
+#define PHY_CSR3_VALUE			FIELD32(0x000000ff)
+#define PHY_CSR3_REGNUM			FIELD32(0x00007f00)
+#define PHY_CSR3_READ_CONTROL		FIELD32(0x00008000)
+#define PHY_CSR3_BUSY			FIELD32(0x00010000)
+
+/*
+ * PHY_CSR4: RF serial control register
+ * VALUE: Register value (include register id) serial out to RF/IF chip.
+ * NUMBER_OF_BITS: Number of bits used in RFRegValue (I:20, RFMD:22).
+ * IF_SELECT: 1: select IF to program, 0: select RF to program.
+ * PLL_LD: RF PLL_LD status.
+ * BUSY: 1: ASIC is busy execute RF programming.
+ */
+#define PHY_CSR4			0x3090
+#define PHY_CSR4_VALUE			FIELD32(0x00ffffff)
+#define PHY_CSR4_NUMBER_OF_BITS		FIELD32(0x1f000000)
+#define PHY_CSR4_IF_SELECT		FIELD32(0x20000000)
+#define PHY_CSR4_PLL_LD			FIELD32(0x40000000)
+#define PHY_CSR4_BUSY			FIELD32(0x80000000)
+
+/*
+ * PHY_CSR5: RX to TX signal switch timing control.
+ */
+#define PHY_CSR5			0x3094
+#define PHY_CSR5_IQ_FLIP		FIELD32(0x00000004)
+
+/*
+ * PHY_CSR6: TX to RX signal timing control.
+ */
+#define PHY_CSR6			0x3098
+#define PHY_CSR6_IQ_FLIP		FIELD32(0x00000004)
+
+/*
+ * PHY_CSR7: TX DAC switching timing control.
+ */
+#define PHY_CSR7			0x309c
+
+/*
+ * Security control register.
+ */
+
+/*
+ * SEC_CSR0: Shared key table control.
+ */
+#define SEC_CSR0			0x30a0
+#define SEC_CSR0_BSS0_KEY0_VALID	FIELD32(0x00000001)
+#define SEC_CSR0_BSS0_KEY1_VALID	FIELD32(0x00000002)
+#define SEC_CSR0_BSS0_KEY2_VALID	FIELD32(0x00000004)
+#define SEC_CSR0_BSS0_KEY3_VALID	FIELD32(0x00000008)
+#define SEC_CSR0_BSS1_KEY0_VALID	FIELD32(0x00000010)
+#define SEC_CSR0_BSS1_KEY1_VALID	FIELD32(0x00000020)
+#define SEC_CSR0_BSS1_KEY2_VALID	FIELD32(0x00000040)
+#define SEC_CSR0_BSS1_KEY3_VALID	FIELD32(0x00000080)
+#define SEC_CSR0_BSS2_KEY0_VALID	FIELD32(0x00000100)
+#define SEC_CSR0_BSS2_KEY1_VALID	FIELD32(0x00000200)
+#define SEC_CSR0_BSS2_KEY2_VALID	FIELD32(0x00000400)
+#define SEC_CSR0_BSS2_KEY3_VALID	FIELD32(0x00000800)
+#define SEC_CSR0_BSS3_KEY0_VALID	FIELD32(0x00001000)
+#define SEC_CSR0_BSS3_KEY1_VALID	FIELD32(0x00002000)
+#define SEC_CSR0_BSS3_KEY2_VALID	FIELD32(0x00004000)
+#define SEC_CSR0_BSS3_KEY3_VALID	FIELD32(0x00008000)
+
+/*
+ * SEC_CSR1: Shared key table security mode register.
+ */
+#define SEC_CSR1			0x30a4
+#define SEC_CSR1_BSS0_KEY0_CIPHER_ALG	FIELD32(0x00000007)
+#define SEC_CSR1_BSS0_KEY1_CIPHER_ALG	FIELD32(0x00000070)
+#define SEC_CSR1_BSS0_KEY2_CIPHER_ALG	FIELD32(0x00000700)
+#define SEC_CSR1_BSS0_KEY3_CIPHER_ALG	FIELD32(0x00007000)
+#define SEC_CSR1_BSS1_KEY0_CIPHER_ALG	FIELD32(0x00070000)
+#define SEC_CSR1_BSS1_KEY1_CIPHER_ALG	FIELD32(0x00700000)
+#define SEC_CSR1_BSS1_KEY2_CIPHER_ALG	FIELD32(0x07000000)
+#define SEC_CSR1_BSS1_KEY3_CIPHER_ALG	FIELD32(0x70000000)
+
+/*
+ * Pairwise key table valid bitmap registers.
+ * SEC_CSR2: pairwise key table valid bitmap 0.
+ * SEC_CSR3: pairwise key table valid bitmap 1.
+ */
+#define SEC_CSR2			0x30a8
+#define SEC_CSR3			0x30ac
+
+/*
+ * SEC_CSR4: Pairwise key table lookup control.
+ */
+#define SEC_CSR4			0x30b0
+#define SEC_CSR4_ENABLE_BSS0		FIELD32(0x00000001)
+#define SEC_CSR4_ENABLE_BSS1		FIELD32(0x00000002)
+#define SEC_CSR4_ENABLE_BSS2		FIELD32(0x00000004)
+#define SEC_CSR4_ENABLE_BSS3		FIELD32(0x00000008)
+
+/*
+ * SEC_CSR5: shared key table security mode register.
+ */
+#define SEC_CSR5			0x30b4
+#define SEC_CSR5_BSS2_KEY0_CIPHER_ALG	FIELD32(0x00000007)
+#define SEC_CSR5_BSS2_KEY1_CIPHER_ALG	FIELD32(0x00000070)
+#define SEC_CSR5_BSS2_KEY2_CIPHER_ALG	FIELD32(0x00000700)
+#define SEC_CSR5_BSS2_KEY3_CIPHER_ALG	FIELD32(0x00007000)
+#define SEC_CSR5_BSS3_KEY0_CIPHER_ALG	FIELD32(0x00070000)
+#define SEC_CSR5_BSS3_KEY1_CIPHER_ALG	FIELD32(0x00700000)
+#define SEC_CSR5_BSS3_KEY2_CIPHER_ALG	FIELD32(0x07000000)
+#define SEC_CSR5_BSS3_KEY3_CIPHER_ALG	FIELD32(0x70000000)
+
+/*
+ * STA control registers.
+ */
+
+/*
+ * STA_CSR0: RX PLCP error count & RX FCS error count.
+ */
+#define STA_CSR0			0x30c0
+#define STA_CSR0_FCS_ERROR		FIELD32(0x0000ffff)
+#define STA_CSR0_PLCP_ERROR		FIELD32(0xffff0000)
+
+/*
+ * STA_CSR1: RX False CCA count & RX LONG frame count.
+ */
+#define STA_CSR1			0x30c4
+#define STA_CSR1_PHYSICAL_ERROR		FIELD32(0x0000ffff)
+#define STA_CSR1_FALSE_CCA_ERROR	FIELD32(0xffff0000)
+
+/*
+ * STA_CSR2: TX Beacon count and RX FIFO overflow count.
+ */
+#define STA_CSR2			0x30c8
+#define STA_CSR2_RX_FIFO_OVERFLOW_COUNT	FIELD32(0x0000ffff)
+#define STA_CSR2_RX_OVERFLOW_COUNT	FIELD32(0xffff0000)
+
+/*
+ * STA_CSR3: TX Beacon count.
+ */
+#define STA_CSR3			0x30cc
+#define STA_CSR3_TX_BEACON_COUNT	FIELD32(0x0000ffff)
+
+/*
+ * STA_CSR4: TX Result status register.
+ * VALID: 1:This register contains a valid TX result.
+ */
+#define STA_CSR4			0x30d0
+#define STA_CSR4_VALID			FIELD32(0x00000001)
+#define STA_CSR4_TX_RESULT		FIELD32(0x0000000e)
+#define STA_CSR4_RETRY_COUNT		FIELD32(0x000000f0)
+#define STA_CSR4_PID_SUBTYPE		FIELD32(0x00001f00)
+#define STA_CSR4_PID_TYPE		FIELD32(0x0000e000)
+#define STA_CSR4_TXRATE			FIELD32(0x000f0000)
+
+/*
+ * QOS control registers.
+ */
+
+/*
+ * QOS_CSR0: TXOP holder MAC address register.
+ */
+#define QOS_CSR0			0x30e0
+#define QOS_CSR0_BYTE0			FIELD32(0x000000ff)
+#define QOS_CSR0_BYTE1			FIELD32(0x0000ff00)
+#define QOS_CSR0_BYTE2			FIELD32(0x00ff0000)
+#define QOS_CSR0_BYTE3			FIELD32(0xff000000)
+
+/*
+ * QOS_CSR1: TXOP holder MAC address register.
+ */
+#define QOS_CSR1			0x30e4
+#define QOS_CSR1_BYTE4			FIELD32(0x000000ff)
+#define QOS_CSR1_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * QOS_CSR2: TXOP holder timeout register.
+ */
+#define QOS_CSR2			0x30e8
+
+/*
+ * RX QOS-CFPOLL MAC address register.
+ * QOS_CSR3: RX QOS-CFPOLL MAC address 0.
+ * QOS_CSR4: RX QOS-CFPOLL MAC address 1.
+ */
+#define QOS_CSR3			0x30ec
+#define QOS_CSR4			0x30f0
+
+/*
+ * QOS_CSR5: "QosControl" field of the RX QOS-CFPOLL.
+ */
+#define QOS_CSR5			0x30f4
+
+/*
+ * Host DMA registers.
+ */
+
+/*
+ * AC0_BASE_CSR: AC_VO base address.
+ */
+#define AC0_BASE_CSR			0x3400
+#define AC0_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * AC1_BASE_CSR: AC_VI base address.
+ */
+#define AC1_BASE_CSR			0x3404
+#define AC1_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * AC2_BASE_CSR: AC_BE base address.
+ */
+#define AC2_BASE_CSR			0x3408
+#define AC2_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * AC3_BASE_CSR: AC_BK base address.
+ */
+#define AC3_BASE_CSR			0x340c
+#define AC3_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * MGMT_BASE_CSR: MGMT ring base address.
+ */
+#define MGMT_BASE_CSR			0x3410
+#define MGMT_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * TX_RING_CSR0: TX Ring size for AC_VO, AC_VI, AC_BE, AC_BK.
+ */
+#define TX_RING_CSR0			0x3418
+#define TX_RING_CSR0_AC0_RING_SIZE	FIELD32(0x000000ff)
+#define TX_RING_CSR0_AC1_RING_SIZE	FIELD32(0x0000ff00)
+#define TX_RING_CSR0_AC2_RING_SIZE	FIELD32(0x00ff0000)
+#define TX_RING_CSR0_AC3_RING_SIZE	FIELD32(0xff000000)
+
+/*
+ * TX_RING_CSR1: TX Ring size for MGMT Ring, HCCA Ring
+ * TXD_SIZE: In unit of 32-bit.
+ */
+#define TX_RING_CSR1			0x341c
+#define TX_RING_CSR1_MGMT_RING_SIZE	FIELD32(0x000000ff)
+#define TX_RING_CSR1_HCCA_RING_SIZE	FIELD32(0x0000ff00)
+#define TX_RING_CSR1_TXD_SIZE		FIELD32(0x003f0000)
+
+/*
+ * AIFSN_CSR: AIFSN for each EDCA AC.
+ * AIFSN0: For AC_VO.
+ * AIFSN1: For AC_VI.
+ * AIFSN2: For AC_BE.
+ * AIFSN3: For AC_BK.
+ */
+#define AIFSN_CSR			0x3420
+#define AIFSN_CSR_AIFSN0		FIELD32(0x0000000f)
+#define AIFSN_CSR_AIFSN1		FIELD32(0x000000f0)
+#define AIFSN_CSR_AIFSN2		FIELD32(0x00000f00)
+#define AIFSN_CSR_AIFSN3		FIELD32(0x0000f000)
+
+/*
+ * CWMIN_CSR: CWmin for each EDCA AC.
+ * CWMIN0: For AC_VO.
+ * CWMIN1: For AC_VI.
+ * CWMIN2: For AC_BE.
+ * CWMIN3: For AC_BK.
+ */
+#define CWMIN_CSR			0x3424
+#define CWMIN_CSR_CWMIN0		FIELD32(0x0000000f)
+#define CWMIN_CSR_CWMIN1		FIELD32(0x000000f0)
+#define CWMIN_CSR_CWMIN2		FIELD32(0x00000f00)
+#define CWMIN_CSR_CWMIN3		FIELD32(0x0000f000)
+
+/*
+ * CWMAX_CSR: CWmax for each EDCA AC.
+ * CWMAX0: For AC_VO.
+ * CWMAX1: For AC_VI.
+ * CWMAX2: For AC_BE.
+ * CWMAX3: For AC_BK.
+ */
+#define CWMAX_CSR			0x3428
+#define CWMAX_CSR_CWMAX0		FIELD32(0x0000000f)
+#define CWMAX_CSR_CWMAX1		FIELD32(0x000000f0)
+#define CWMAX_CSR_CWMAX2		FIELD32(0x00000f00)
+#define CWMAX_CSR_CWMAX3		FIELD32(0x0000f000)
+
+/*
+ * TX_DMA_DST_CSR: TX DMA destination
+ * 0: TX ring0, 1: TX ring1, 2: TX ring2 3: invalid
+ */
+#define TX_DMA_DST_CSR			0x342c
+#define TX_DMA_DST_CSR_DEST_AC0		FIELD32(0x00000003)
+#define TX_DMA_DST_CSR_DEST_AC1		FIELD32(0x0000000c)
+#define TX_DMA_DST_CSR_DEST_AC2		FIELD32(0x00000030)
+#define TX_DMA_DST_CSR_DEST_AC3		FIELD32(0x000000c0)
+#define TX_DMA_DST_CSR_DEST_MGMT	FIELD32(0x00000300)
+
+/*
+ * TX_CNTL_CSR: KICK/Abort TX.
+ * KICK_TX_AC0: For AC_VO.
+ * KICK_TX_AC1: For AC_VI.
+ * KICK_TX_AC2: For AC_BE.
+ * KICK_TX_AC3: For AC_BK.
+ * ABORT_TX_AC0: For AC_VO.
+ * ABORT_TX_AC1: For AC_VI.
+ * ABORT_TX_AC2: For AC_BE.
+ * ABORT_TX_AC3: For AC_BK.
+ */
+#define TX_CNTL_CSR			0x3430
+#define TX_CNTL_CSR_KICK_TX_AC0		FIELD32(0x00000001)
+#define TX_CNTL_CSR_KICK_TX_AC1		FIELD32(0x00000002)
+#define TX_CNTL_CSR_KICK_TX_AC2		FIELD32(0x00000004)
+#define TX_CNTL_CSR_KICK_TX_AC3		FIELD32(0x00000008)
+#define TX_CNTL_CSR_KICK_TX_MGMT	FIELD32(0x00000010)
+#define TX_CNTL_CSR_ABORT_TX_AC0	FIELD32(0x00010000)
+#define TX_CNTL_CSR_ABORT_TX_AC1	FIELD32(0x00020000)
+#define TX_CNTL_CSR_ABORT_TX_AC2	FIELD32(0x00040000)
+#define TX_CNTL_CSR_ABORT_TX_AC3	FIELD32(0x00080000)
+#define TX_CNTL_CSR_ABORT_TX_MGMT	FIELD32(0x00100000)
+
+/*
+ * LOAD_TX_RING_CSR: Load RX desriptor
+ */
+#define LOAD_TX_RING_CSR		0x3434
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC0	FIELD32(0x00000001)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC1	FIELD32(0x00000002)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC2	FIELD32(0x00000004)
+#define LOAD_TX_RING_CSR_LOAD_TXD_AC3	FIELD32(0x00000008)
+#define LOAD_TX_RING_CSR_LOAD_TXD_MGMT	FIELD32(0x00000010)
+
+/*
+ * Several read-only registers, for debugging.
+ */
+#define AC0_TXPTR_CSR			0x3438
+#define AC1_TXPTR_CSR			0x343c
+#define AC2_TXPTR_CSR			0x3440
+#define AC3_TXPTR_CSR			0x3444
+#define MGMT_TXPTR_CSR			0x3448
+
+/*
+ * RX_BASE_CSR
+ */
+#define RX_BASE_CSR			0x3450
+#define RX_BASE_CSR_RING_REGISTER	FIELD32(0xffffffff)
+
+/*
+ * RX_RING_CSR.
+ * RXD_SIZE: In unit of 32-bit.
+ */
+#define RX_RING_CSR			0x3454
+#define RX_RING_CSR_RING_SIZE		FIELD32(0x000000ff)
+#define RX_RING_CSR_RXD_SIZE		FIELD32(0x00003f00)
+#define RX_RING_CSR_RXD_WRITEBACK_SIZE	FIELD32(0x00070000)
+
+/*
+ * RX_CNTL_CSR
+ */
+#define RX_CNTL_CSR			0x3458
+#define RX_CNTL_CSR_ENABLE_RX_DMA	FIELD32(0x00000001)
+#define RX_CNTL_CSR_LOAD_RXD		FIELD32(0x00000002)
+
+/*
+ * RXPTR_CSR: Read-only, for debugging.
+ */
+#define RXPTR_CSR			0x345c
+
+/*
+ * PCI_CFG_CSR
+ */
+#define PCI_CFG_CSR			0x3460
+
+/*
+ * BUF_FORMAT_CSR
+ */
+#define BUF_FORMAT_CSR			0x3464
+
+/*
+ * INT_SOURCE_CSR: Interrupt source register.
+ * Write one to clear corresponding bit.
+ */
+#define INT_SOURCE_CSR			0x3468
+#define INT_SOURCE_CSR_TXDONE		FIELD32(0x00000001)
+#define INT_SOURCE_CSR_RXDONE		FIELD32(0x00000002)
+#define INT_SOURCE_CSR_BEACON_DONE	FIELD32(0x00000004)
+#define INT_SOURCE_CSR_TX_ABORT_DONE	FIELD32(0x00000010)
+#define INT_SOURCE_CSR_AC0_DMA_DONE	FIELD32(0x00010000)
+#define INT_SOURCE_CSR_AC1_DMA_DONE	FIELD32(0x00020000)
+#define INT_SOURCE_CSR_AC2_DMA_DONE	FIELD32(0x00040000)
+#define INT_SOURCE_CSR_AC3_DMA_DONE	FIELD32(0x00080000)
+#define INT_SOURCE_CSR_MGMT_DMA_DONE	FIELD32(0x00100000)
+#define INT_SOURCE_CSR_HCCA_DMA_DONE	FIELD32(0x00200000)
+
+/*
+ * INT_MASK_CSR: Interrupt MASK register. 1: the interrupt is mask OFF.
+ * MITIGATION_PERIOD: Interrupt mitigation in unit of 32 PCI clock.
+ */
+#define INT_MASK_CSR			0x346c
+#define INT_MASK_CSR_TXDONE		FIELD32(0x00000001)
+#define INT_MASK_CSR_RXDONE		FIELD32(0x00000002)
+#define INT_MASK_CSR_BEACON_DONE	FIELD32(0x00000004)
+#define INT_MASK_CSR_TX_ABORT_DONE	FIELD32(0x00000010)
+#define INT_MASK_CSR_ENABLE_MITIGATION	FIELD32(0x00000080)
+#define INT_MASK_CSR_MITIGATION_PERIOD	FIELD32(0x0000ff00)
+#define INT_MASK_CSR_AC0_DMA_DONE	FIELD32(0x00010000)
+#define INT_MASK_CSR_AC1_DMA_DONE	FIELD32(0x00020000)
+#define INT_MASK_CSR_AC2_DMA_DONE	FIELD32(0x00040000)
+#define INT_MASK_CSR_AC3_DMA_DONE	FIELD32(0x00080000)
+#define INT_MASK_CSR_MGMT_DMA_DONE	FIELD32(0x00100000)
+#define INT_MASK_CSR_HCCA_DMA_DONE	FIELD32(0x00200000)
+
+/*
+ * E2PROM_CSR: EEPROM control register.
+ * RELOAD: Write 1 to reload eeprom content.
+ * TYPE_93C46: 1: 93c46, 0:93c66.
+ * LOAD_STATUS: 1:loading, 0:done.
+ */
+#define E2PROM_CSR			0x3470
+#define E2PROM_CSR_RELOAD		FIELD32(0x00000001)
+#define E2PROM_CSR_DATA_CLOCK		FIELD32(0x00000002)
+#define E2PROM_CSR_CHIP_SELECT		FIELD32(0x00000004)
+#define E2PROM_CSR_DATA_IN		FIELD32(0x00000008)
+#define E2PROM_CSR_DATA_OUT		FIELD32(0x00000010)
+#define E2PROM_CSR_TYPE_93C46		FIELD32(0x00000020)
+#define E2PROM_CSR_LOAD_STATUS		FIELD32(0x00000040)
+
+/*
+ * AC_TXOP_CSR0: AC_VO/AC_VI TXOP register.
+ * AC0_TX_OP: For AC_VO, in unit of 32us.
+ * AC1_TX_OP: For AC_VI, in unit of 32us.
+ */
+#define AC_TXOP_CSR0			0x3474
+#define AC_TXOP_CSR0_AC0_TX_OP		FIELD32(0x0000ffff)
+#define AC_TXOP_CSR0_AC1_TX_OP		FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP_CSR1: AC_BE/AC_BK TXOP register.
+ * AC2_TX_OP: For AC_BE, in unit of 32us.
+ * AC3_TX_OP: For AC_BK, in unit of 32us.
+ */
+#define AC_TXOP_CSR1			0x3478
+#define AC_TXOP_CSR1_AC2_TX_OP		FIELD32(0x0000ffff)
+#define AC_TXOP_CSR1_AC3_TX_OP		FIELD32(0xffff0000)
+
+/*
+ * DMA_STATUS_CSR
+ */
+#define DMA_STATUS_CSR			0x3480
+
+/*
+ * TEST_MODE_CSR
+ */
+#define TEST_MODE_CSR			0x3484
+
+/*
+ * UART0_TX_CSR
+ */
+#define UART0_TX_CSR			0x3488
+
+/*
+ * UART0_RX_CSR
+ */
+#define UART0_RX_CSR			0x348c
+
+/*
+ * UART0_FRAME_CSR
+ */
+#define UART0_FRAME_CSR			0x3490
+
+/*
+ * UART0_BUFFER_CSR
+ */
+#define UART0_BUFFER_CSR		0x3494
+
+/*
+ * IO_CNTL_CSR
+ * RF_PS: Set RF interface value to power save
+ */
+#define IO_CNTL_CSR			0x3498
+#define IO_CNTL_CSR_RF_PS		FIELD32(0x00000004)
+
+/*
+ * UART_INT_SOURCE_CSR
+ */
+#define UART_INT_SOURCE_CSR		0x34a8
+
+/*
+ * UART_INT_MASK_CSR
+ */
+#define UART_INT_MASK_CSR		0x34ac
+
+/*
+ * PBF_QUEUE_CSR
+ */
+#define PBF_QUEUE_CSR			0x34b0
+
+/*
+ * Firmware DMA registers.
+ * Firmware DMA registers are dedicated for MCU usage
+ * and should not be touched by host driver.
+ * Therefore we skip the definition of these registers.
+ */
+#define FW_TX_BASE_CSR			0x34c0
+#define FW_TX_START_CSR			0x34c4
+#define FW_TX_LAST_CSR			0x34c8
+#define FW_MODE_CNTL_CSR		0x34cc
+#define FW_TXPTR_CSR			0x34d0
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2561			"rt2561.bin"
+#define FIRMWARE_RT2561s		"rt2561s.bin"
+#define FIRMWARE_RT2661			"rt2661.bin"
+#define FIRMWARE_IMAGE_BASE		0x4000
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2
+ */
+#define BBP_R2_BG_MODE			FIELD8(0x20)
+
+/*
+ * R3
+ */
+#define BBP_R3_SMART_MODE		FIELD8(0x01)
+
+/*
+ * R4: RX antenna control
+ * FRAME_END: 1 - DPDT, 0 - SPDT (Only valid for 802.11G, RF2527 & RF2529)
+ */
+
+/*
+ * ANTENNA_CONTROL semantics (guessed):
+ * 0x1: Software controlled antenna switching (fixed or SW diversity)
+ * 0x2: Hardware diversity.
+ */
+#define BBP_R4_RX_ANTENNA_CONTROL	FIELD8(0x03)
+#define BBP_R4_RX_FRAME_END		FIELD8(0x20)
+
+/*
+ * R77
+ */
+#define BBP_R77_RX_ANTENNA		FIELD8(0x03)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER			FIELD32(0x00003e00)
+
+/*
+ * RF 4
+ */
+#define RF4_FREQ_OFFSET			FIELD32(0x0003f000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0		0x0002
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1		0x0003
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2		0x0004
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antenna's.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * FRAME_TYPE: 0: DPDT , 1: SPDT , noted this bit is valid for g only.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA			0x0010
+#define EEPROM_ANTENNA_NUM		FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT	FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT	FIELD16(0x0030)
+#define EEPROM_ANTENNA_FRAME_TYPE	FIELD16(0x0040)
+#define EEPROM_ANTENNA_DYN_TXAGC	FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO	FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * ENABLE_DIVERSITY: 1:enable, 0:disable.
+ * EXTERNAL_LNA_BG: External LNA enable for 2.4G.
+ * CARDBUS_ACCEL: 0:enable, 1:disable.
+ * EXTERNAL_LNA_A: External LNA enable for 5G.
+ */
+#define EEPROM_NIC			0x0011
+#define EEPROM_NIC_ENABLE_DIVERSITY	FIELD16(0x0001)
+#define EEPROM_NIC_TX_DIVERSITY		FIELD16(0x0002)
+#define EEPROM_NIC_RX_FIXED		FIELD16(0x0004)
+#define EEPROM_NIC_TX_FIXED		FIELD16(0x0008)
+#define EEPROM_NIC_EXTERNAL_LNA_BG	FIELD16(0x0010)
+#define EEPROM_NIC_CARDBUS_ACCEL	FIELD16(0x0020)
+#define EEPROM_NIC_EXTERNAL_LNA_A	FIELD16(0x0040)
+
+/*
+ * EEPROM geography.
+ * GEO_A: Default geographical setting for 5GHz band
+ * GEO: Default geographical setting.
+ */
+#define EEPROM_GEOGRAPHY		0x0012
+#define EEPROM_GEOGRAPHY_GEO_A		FIELD16(0x00ff)
+#define EEPROM_GEOGRAPHY_GEO		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START		0x0013
+#define EEPROM_BBP_SIZE			16
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11G
+ */
+#define EEPROM_TXPOWER_G_START		0x0023
+#define EEPROM_TXPOWER_G_SIZE		7
+#define EEPROM_TXPOWER_G_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_G_2		FIELD16(0xff00)
+
+/*
+ * EEPROM Frequency
+ */
+#define EEPROM_FREQ			0x002f
+#define EEPROM_FREQ_OFFSET		FIELD16(0x00ff)
+#define EEPROM_FREQ_SEQ_MASK		FIELD16(0xff00)
+#define EEPROM_FREQ_SEQ			FIELD16(0x0300)
+
+/*
+ * EEPROM LED.
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED			0x0030
+#define EEPROM_LED_POLARITY_RDY_G	FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A	FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT		FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0	FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1	FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2	FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3	FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4	FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE		FIELD16(0x1f00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_START		0x0031
+#define EEPROM_TXPOWER_A_SIZE		12
+#define EEPROM_TXPOWER_A_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11BG
+ */
+#define EEPROM_RSSI_OFFSET_BG		0x004d
+#define EEPROM_RSSI_OFFSET_BG_1		FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_BG_2		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11A
+ */
+#define EEPROM_RSSI_OFFSET_A		0x004e
+#define EEPROM_RSSI_OFFSET_A_1		FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_A_2		FIELD16(0xff00)
+
+/*
+ * MCU mailbox commands.
+ */
+#define MCU_SLEEP			0x30
+#define MCU_WAKEUP			0x31
+#define MCU_LED				0x50
+#define MCU_LED_STRENGTH		0x52
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			( 16 * sizeof(__le32) )
+#define TXINFO_SIZE			( 6 * sizeof(__le32) )
+#define RXD_DESC_SIZE			( 16 * sizeof(__le32) )
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ * TKIP_MIC: ASIC appends TKIP MIC if TKIP is used.
+ * KEY_TABLE: Use per-client pairwise KEY table.
+ * KEY_INDEX:
+ * Key index (0~31) to the pairwise KEY table.
+ * 0~3 to shared KEY table 0 (BSS0).
+ * 4~7 to shared KEY table 1 (BSS1).
+ * 8~11 to shared KEY table 2 (BSS2).
+ * 12~15 to shared KEY table 3 (BSS3).
+ * BURST: Next frame belongs to same "burst" event.
+ */
+#define TXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define TXD_W0_VALID			FIELD32(0x00000002)
+#define TXD_W0_MORE_FRAG		FIELD32(0x00000004)
+#define TXD_W0_ACK			FIELD32(0x00000008)
+#define TXD_W0_TIMESTAMP		FIELD32(0x00000010)
+#define TXD_W0_OFDM			FIELD32(0x00000020)
+#define TXD_W0_IFS			FIELD32(0x00000040)
+#define TXD_W0_RETRY_MODE		FIELD32(0x00000080)
+#define TXD_W0_TKIP_MIC			FIELD32(0x00000100)
+#define TXD_W0_KEY_TABLE		FIELD32(0x00000200)
+#define TXD_W0_KEY_INDEX		FIELD32(0x0000fc00)
+#define TXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define TXD_W0_BURST			FIELD32(0x10000000)
+#define TXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * HOST_Q_ID: EDCA/HCCA queue ID.
+ * HW_SEQUENCE: MAC overwrites the frame sequence number.
+ * BUFFER_COUNT: Number of buffers in this TXD.
+ */
+#define TXD_W1_HOST_Q_ID		FIELD32(0x0000000f)
+#define TXD_W1_AIFSN			FIELD32(0x000000f0)
+#define TXD_W1_CWMIN			FIELD32(0x00000f00)
+#define TXD_W1_CWMAX			FIELD32(0x0000f000)
+#define TXD_W1_IV_OFFSET		FIELD32(0x003f0000)
+#define TXD_W1_PIGGY_BACK		FIELD32(0x01000000)
+#define TXD_W1_HW_SEQUENCE		FIELD32(0x10000000)
+#define TXD_W1_BUFFER_COUNT		FIELD32(0xe0000000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL		FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE		FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW		FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH		FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word5
+ * FRAME_OFFSET: Frame start offset inside ASIC TXFIFO (after TXINFO field).
+ * TXD_W5_PID_SUBTYPE: Driver assigned packet ID index for txdone handler.
+ * TXD_W5_PID_TYPE: Driver assigned packet ID type for txdone handler.
+ * WAITING_DMA_DONE_INT: TXD been filled with data
+ * and waiting for TxDoneISR housekeeping.
+ */
+#define TXD_W5_FRAME_OFFSET		FIELD32(0x000000ff)
+#define TXD_W5_PID_SUBTYPE		FIELD32(0x00001f00)
+#define TXD_W5_PID_TYPE			FIELD32(0x0000e000)
+#define TXD_W5_TX_POWER			FIELD32(0x00ff0000)
+#define TXD_W5_WAITING_DMA_DONE_INT	FIELD32(0x01000000)
+
+/*
+ * the above 24-byte is called TXINFO and will be DMAed to MAC block
+ * through TXFIFO. MAC block use this TXINFO to control the transmission
+ * behavior of this frame.
+ * The following fields are not used by MAC block.
+ * They are used by DMA block and HOST driver only.
+ * Once a frame has been DMA to ASIC, all the following fields are useless
+ * to ASIC.
+ */
+
+/*
+ * Word6-10: Buffer physical address
+ */
+#define TXD_W6_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+#define TXD_W7_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+#define TXD_W8_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+#define TXD_W9_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+#define TXD_W10_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+
+/*
+ * Word11-13: Buffer length
+ */
+#define TXD_W11_BUFFER_LENGTH0		FIELD32(0x00000fff)
+#define TXD_W11_BUFFER_LENGTH1		FIELD32(0x0fff0000)
+#define TXD_W12_BUFFER_LENGTH2		FIELD32(0x00000fff)
+#define TXD_W12_BUFFER_LENGTH3		FIELD32(0x0fff0000)
+#define TXD_W13_BUFFER_LENGTH4		FIELD32(0x00000fff)
+
+/*
+ * Word14
+ */
+#define TXD_W14_SK_BUFFER		FIELD32(0xffffffff)
+
+/*
+ * Word15
+ */
+#define TXD_W15_NEXT_SK_BUFFER		FIELD32(0xffffffff)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * CIPHER_ERROR: 1:ICV error, 2:MIC error, 3:invalid key.
+ * KEY_INDEX: Decryption key actually used.
+ */
+#define RXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define RXD_W0_DROP			FIELD32(0x00000002)
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000004)
+#define RXD_W0_MULTICAST		FIELD32(0x00000008)
+#define RXD_W0_BROADCAST		FIELD32(0x00000010)
+#define RXD_W0_MY_BSS			FIELD32(0x00000020)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000040)
+#define RXD_W0_OFDM			FIELD32(0x00000080)
+#define RXD_W0_CIPHER_ERROR		FIELD32(0x00000300)
+#define RXD_W0_KEY_INDEX		FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * SIGNAL: RX raw data rate reported by BBP.
+ */
+#define RXD_W1_SIGNAL			FIELD32(0x000000ff)
+#define RXD_W1_RSSI_AGC			FIELD32(0x00001f00)
+#define RXD_W1_RSSI_LNA			FIELD32(0x00006000)
+#define RXD_W1_FRAME_OFFSET		FIELD32(0x7f000000)
+
+/*
+ * Word2
+ * IV: Received IV of originally encrypted.
+ */
+#define RXD_W2_IV			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * EIV: Received EIV of originally encrypted.
+ */
+#define RXD_W3_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ * ICV: Received ICV of originally encrypted.
+ * NOTE: This is a guess, the official definition is "reserved"
+ */
+#define RXD_W4_ICV			FIELD32(0xffffffff)
+
+/*
+ * the above 20-byte is called RXINFO and will be DMAed to MAC RX block
+ * and passed to the HOST driver.
+ * The following fields are for DMA block and HOST usage only.
+ * Can't be touched by ASIC MAC block.
+ */
+
+/*
+ * Word5
+ */
+#define RXD_W5_BUFFER_PHYSICAL_ADDRESS	FIELD32(0xffffffff)
+
+/*
+ * Word6-15: Reserved
+ */
+#define RXD_W6_RESERVED			FIELD32(0xffffffff)
+#define RXD_W7_RESERVED			FIELD32(0xffffffff)
+#define RXD_W8_RESERVED			FIELD32(0xffffffff)
+#define RXD_W9_RESERVED			FIELD32(0xffffffff)
+#define RXD_W10_RESERVED		FIELD32(0xffffffff)
+#define RXD_W11_RESERVED		FIELD32(0xffffffff)
+#define RXD_W12_RESERVED		FIELD32(0xffffffff)
+#define RXD_W13_RESERVED		FIELD32(0xffffffff)
+#define RXD_W14_RESERVED		FIELD32(0xffffffff)
+#define RXD_W15_RESERVED		FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER	0
+#define MAX_TXPOWER	31
+#define DEFAULT_TXPOWER	24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+	(((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+	clamp_t(char, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT61PCI_H */
diff --git a/drivers/net/wireless/rt2x00/rt73usb.c b/drivers/net/wireless/rt2x00/rt73usb.c
new file mode 100644
index 0000000..7081e13
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt73usb.c
@@ -0,0 +1,2548 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt73usb
+	Abstract: rt73usb device specific routines.
+	Supported chipsets: rt2571W & rt2671.
+ */
+
+#include <linux/crc-itu-t.h>
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/usb.h>
+
+#include "rt2x00.h"
+#include "rt2x00usb.h"
+#include "rt73usb.h"
+
+/*
+ * Allow hardware encryption to be disabled.
+ */
+static bool modparam_nohwcrypt;
+module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
+MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00usb_register_read and rt2x00usb_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ * The _lock versions must be used if you already hold the csr_mutex
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
+
+static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
+			      const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
+		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
+
+		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
+			     const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
+		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
+		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
+
+		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
+			     const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
+		/*
+		 * RF5225 and RF2527 contain 21 bits per RF register value,
+		 * all others contain 20 bits.
+		 */
+		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
+				   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
+					 rt2x00_rf(rt2x00dev, RF2527)));
+		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
+		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
+
+		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt73usb_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2x00usb_register_read,
+		.write		= rt2x00usb_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt73usb_bbp_read,
+		.write		= rt73usb_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt73usb_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
+	return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt73usb_brightness_set(struct led_classdev *led_cdev,
+				   enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	   container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	unsigned int a_mode =
+	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
+	unsigned int bg_mode =
+	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
+
+	if (led->type == LED_TYPE_RADIO) {
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_RADIO_STATUS, enabled);
+
+		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+					    0, led->rt2x00dev->led_mcu_reg,
+					    REGISTER_TIMEOUT);
+	} else if (led->type == LED_TYPE_ASSOC) {
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
+		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
+				   MCU_LEDCS_LINK_A_STATUS, a_mode);
+
+		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+					    0, led->rt2x00dev->led_mcu_reg,
+					    REGISTER_TIMEOUT);
+	} else if (led->type == LED_TYPE_QUALITY) {
+		/*
+		 * The brightness is divided into 6 levels (0 - 5),
+		 * this means we need to convert the brightness
+		 * argument into the matching level within that range.
+		 */
+		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
+					    brightness / (LED_FULL / 6),
+					    led->rt2x00dev->led_mcu_reg,
+					    REGISTER_TIMEOUT);
+	}
+}
+
+static int rt73usb_blink_set(struct led_classdev *led_cdev,
+			     unsigned long *delay_on,
+			     unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u32 reg;
+
+	rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
+	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
+	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
+
+	return 0;
+}
+
+static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00_led *led,
+			     enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt73usb_brightness_set;
+	led->led_dev.blink_set = rt73usb_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
+				     struct rt2x00lib_crypto *crypto,
+				     struct ieee80211_key_conf *key)
+{
+	struct hw_key_entry key_entry;
+	struct rt2x00_field32 field;
+	u32 mask;
+	u32 reg;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * rt2x00lib can't determine the correct free
+		 * key_idx for shared keys. We have 1 register
+		 * with key valid bits. The goal is simple, read
+		 * the register, if that is full we have no slots
+		 * left.
+		 * Note that each BSS is allowed to have up to 4
+		 * shared keys, so put a mask over the allowed
+		 * entries.
+		 */
+		mask = (0xf << crypto->bssidx);
+
+		rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
+		reg &= mask;
+
+		if (reg && reg == mask)
+			return -ENOSPC;
+
+		key->hw_key_idx += reg ? ffz(reg) : 0;
+
+		/*
+		 * Upload key to hardware
+		 */
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
+		rt2x00usb_register_multiwrite(rt2x00dev, reg,
+					      &key_entry, sizeof(key_entry));
+
+		/*
+		 * The cipher types are stored over 2 registers.
+		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
+		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
+		 * Using the correct defines correctly will cause overhead,
+		 * so just calculate the correct offset.
+		 */
+		if (key->hw_key_idx < 8) {
+			field.bit_offset = (3 * key->hw_key_idx);
+			field.bit_mask = 0x7 << field.bit_offset;
+
+			rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
+			rt2x00_set_field32(&reg, field, crypto->cipher);
+			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
+		} else {
+			field.bit_offset = (3 * (key->hw_key_idx - 8));
+			field.bit_mask = 0x7 << field.bit_offset;
+
+			rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
+			rt2x00_set_field32(&reg, field, crypto->cipher);
+			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
+		}
+
+		/*
+		 * The driver does not support the IV/EIV generation
+		 * in hardware. However it doesn't support the IV/EIV
+		 * inside the ieee80211 frame either, but requires it
+		 * to be provided separately for the descriptor.
+		 * rt2x00lib will cut the IV/EIV data out of all frames
+		 * given to us by mac80211, but we must tell mac80211
+		 * to generate the IV/EIV data.
+		 */
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+	}
+
+	/*
+	 * SEC_CSR0 contains only single-bit fields to indicate
+	 * a particular key is valid. Because using the FIELD32()
+	 * defines directly will cause a lot of overhead we use
+	 * a calculation to determine the correct bit directly.
+	 */
+	mask = 1 << key->hw_key_idx;
+
+	rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
+	if (crypto->cmd == SET_KEY)
+		reg |= mask;
+	else if (crypto->cmd == DISABLE_KEY)
+		reg &= ~mask;
+	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
+
+	return 0;
+}
+
+static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
+				       struct rt2x00lib_crypto *crypto,
+				       struct ieee80211_key_conf *key)
+{
+	struct hw_pairwise_ta_entry addr_entry;
+	struct hw_key_entry key_entry;
+	u32 mask;
+	u32 reg;
+
+	if (crypto->cmd == SET_KEY) {
+		/*
+		 * rt2x00lib can't determine the correct free
+		 * key_idx for pairwise keys. We have 2 registers
+		 * with key valid bits. The goal is simple, read
+		 * the first register, if that is full move to
+		 * the next register.
+		 * When both registers are full, we drop the key,
+		 * otherwise we use the first invalid entry.
+		 */
+		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
+		if (reg && reg == ~0) {
+			key->hw_key_idx = 32;
+			rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
+			if (reg && reg == ~0)
+				return -ENOSPC;
+		}
+
+		key->hw_key_idx += reg ? ffz(reg) : 0;
+
+		/*
+		 * Upload key to hardware
+		 */
+		memcpy(key_entry.key, crypto->key,
+		       sizeof(key_entry.key));
+		memcpy(key_entry.tx_mic, crypto->tx_mic,
+		       sizeof(key_entry.tx_mic));
+		memcpy(key_entry.rx_mic, crypto->rx_mic,
+		       sizeof(key_entry.rx_mic));
+
+		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
+		rt2x00usb_register_multiwrite(rt2x00dev, reg,
+					      &key_entry, sizeof(key_entry));
+
+		/*
+		 * Send the address and cipher type to the hardware register.
+		 */
+		memset(&addr_entry, 0, sizeof(addr_entry));
+		memcpy(&addr_entry, crypto->address, ETH_ALEN);
+		addr_entry.cipher = crypto->cipher;
+
+		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
+		rt2x00usb_register_multiwrite(rt2x00dev, reg,
+					    &addr_entry, sizeof(addr_entry));
+
+		/*
+		 * Enable pairwise lookup table for given BSS idx,
+		 * without this received frames will not be decrypted
+		 * by the hardware.
+		 */
+		rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
+		reg |= (1 << crypto->bssidx);
+		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
+
+		/*
+		 * The driver does not support the IV/EIV generation
+		 * in hardware. However it doesn't support the IV/EIV
+		 * inside the ieee80211 frame either, but requires it
+		 * to be provided separately for the descriptor.
+		 * rt2x00lib will cut the IV/EIV data out of all frames
+		 * given to us by mac80211, but we must tell mac80211
+		 * to generate the IV/EIV data.
+		 */
+		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
+	}
+
+	/*
+	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
+	 * a particular key is valid. Because using the FIELD32()
+	 * defines directly will cause a lot of overhead we use
+	 * a calculation to determine the correct bit directly.
+	 */
+	if (key->hw_key_idx < 32) {
+		mask = 1 << key->hw_key_idx;
+
+		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
+		if (crypto->cmd == SET_KEY)
+			reg |= mask;
+		else if (crypto->cmd == DISABLE_KEY)
+			reg &= ~mask;
+		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
+	} else {
+		mask = 1 << (key->hw_key_idx - 32);
+
+		rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
+		if (crypto->cmd == SET_KEY)
+			reg |= mask;
+		else if (crypto->cmd == DISABLE_KEY)
+			reg &= ~mask;
+		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
+	}
+
+	return 0;
+}
+
+static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
+				  const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
+			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+}
+
+static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00_intf *intf,
+				struct rt2x00intf_conf *conf,
+				const unsigned int flags)
+{
+	u32 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC) {
+		reg = le32_to_cpu(conf->mac[1]);
+		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
+		conf->mac[1] = cpu_to_le32(reg);
+
+		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
+					    conf->mac, sizeof(conf->mac));
+	}
+
+	if (flags & CONFIG_UPDATE_BSSID) {
+		reg = le32_to_cpu(conf->bssid[1]);
+		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
+		conf->bssid[1] = cpu_to_le32(reg);
+
+		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
+					    conf->bssid, sizeof(conf->bssid));
+	}
+}
+
+static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00lib_erp *erp,
+			       u32 changed)
+{
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
+	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
+				   !!erp->short_preamble);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
+					 erp->basic_rates);
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+	}
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
+
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
+		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
+		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
+	}
+}
+
+static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
+				      struct antenna_setup *ant)
+{
+	u8 r3;
+	u8 r4;
+	u8 r77;
+	u8 temp;
+
+	rt73usb_bbp_read(rt2x00dev, 3, &r3);
+	rt73usb_bbp_read(rt2x00dev, 4, &r4);
+	rt73usb_bbp_read(rt2x00dev, 77, &r77);
+
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+		temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
+		       (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		else
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
+		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		else
+			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		break;
+	}
+
+	rt73usb_bbp_write(rt2x00dev, 77, r77);
+	rt73usb_bbp_write(rt2x00dev, 3, r3);
+	rt73usb_bbp_write(rt2x00dev, 4, r4);
+}
+
+static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
+				      struct antenna_setup *ant)
+{
+	u8 r3;
+	u8 r4;
+	u8 r77;
+
+	rt73usb_bbp_read(rt2x00dev, 3, &r3);
+	rt73usb_bbp_read(rt2x00dev, 4, &r4);
+	rt73usb_bbp_read(rt2x00dev, 77, &r77);
+
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
+	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
+			  !rt2x00_has_cap_frame_type(rt2x00dev));
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_HW_DIVERSITY:
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
+		break;
+	case ANTENNA_A:
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
+		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
+		break;
+	}
+
+	rt73usb_bbp_write(rt2x00dev, 77, r77);
+	rt73usb_bbp_write(rt2x00dev, 3, r3);
+	rt73usb_bbp_write(rt2x00dev, 4, r4);
+}
+
+struct antenna_sel {
+	u8 word;
+	/*
+	 * value[0] -> non-LNA
+	 * value[1] -> LNA
+	 */
+	u8 value[2];
+};
+
+static const struct antenna_sel antenna_sel_a[] = {
+	{ 96,  { 0x58, 0x78 } },
+	{ 104, { 0x38, 0x48 } },
+	{ 75,  { 0xfe, 0x80 } },
+	{ 86,  { 0xfe, 0x80 } },
+	{ 88,  { 0xfe, 0x80 } },
+	{ 35,  { 0x60, 0x60 } },
+	{ 97,  { 0x58, 0x58 } },
+	{ 98,  { 0x58, 0x58 } },
+};
+
+static const struct antenna_sel antenna_sel_bg[] = {
+	{ 96,  { 0x48, 0x68 } },
+	{ 104, { 0x2c, 0x3c } },
+	{ 75,  { 0xfe, 0x80 } },
+	{ 86,  { 0xfe, 0x80 } },
+	{ 88,  { 0xfe, 0x80 } },
+	{ 35,  { 0x50, 0x50 } },
+	{ 97,  { 0x48, 0x48 } },
+	{ 98,  { 0x48, 0x48 } },
+};
+
+static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
+			       struct antenna_setup *ant)
+{
+	const struct antenna_sel *sel;
+	unsigned int lna;
+	unsigned int i;
+	u32 reg;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		sel = antenna_sel_a;
+		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
+	} else {
+		sel = antenna_sel_bg;
+		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
+	}
+
+	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
+		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
+
+	rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
+
+	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
+			   (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
+	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
+			   (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
+
+	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
+
+	if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
+		rt73usb_config_antenna_5x(rt2x00dev, ant);
+	else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
+		rt73usb_config_antenna_2x(rt2x00dev, ant);
+}
+
+static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
+				    struct rt2x00lib_conf *libconf)
+{
+	u16 eeprom;
+	short lna_gain = 0;
+
+	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
+		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
+			lna_gain += 14;
+
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
+		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
+	} else {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
+		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
+	}
+
+	rt2x00dev->lna_gain = lna_gain;
+}
+
+static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
+				   struct rf_channel *rf, const int txpower)
+{
+	u8 r3;
+	u8 r94;
+	u8 smart;
+
+	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
+
+	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
+
+	rt73usb_bbp_read(rt2x00dev, 3, &r3);
+	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
+	rt73usb_bbp_write(rt2x00dev, 3, r3);
+
+	r94 = 6;
+	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
+		r94 += txpower - MAX_TXPOWER;
+	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
+		r94 += txpower;
+	rt73usb_bbp_write(rt2x00dev, 94, r94);
+
+	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
+	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
+	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
+	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
+	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
+
+	udelay(10);
+}
+
+static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
+				   const int txpower)
+{
+	struct rf_channel rf;
+
+	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
+	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
+	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
+	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
+
+	rt73usb_config_channel(rt2x00dev, &rf, txpower);
+}
+
+static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+				       struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
+}
+
+static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
+				   rt2x00dev->beacon_int - 10);
+		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+					    USB_MODE_SLEEP, REGISTER_TIMEOUT);
+	} else {
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
+		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
+		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
+
+		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
+					    USB_MODE_WAKEUP, REGISTER_TIMEOUT);
+	}
+}
+
+static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
+			   struct rt2x00lib_conf *libconf,
+			   const unsigned int flags)
+{
+	/* Always recalculate LNA gain before changing configuration */
+	rt73usb_config_lna_gain(rt2x00dev, libconf);
+
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt73usb_config_channel(rt2x00dev, &libconf->rf,
+				       libconf->conf->power_level);
+	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt73usb_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt73usb_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
+			       struct link_qual *qual)
+{
+	u32 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
+	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
+}
+
+static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
+				   struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level != vgc_level) {
+		rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				struct link_qual *qual)
+{
+	rt73usb_set_vgc(rt2x00dev, qual, 0x20);
+}
+
+static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
+			       struct link_qual *qual, const u32 count)
+{
+	u8 up_bound;
+	u8 low_bound;
+
+	/*
+	 * Determine r17 bounds.
+	 */
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		low_bound = 0x28;
+		up_bound = 0x48;
+
+		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+			low_bound += 0x10;
+			up_bound += 0x10;
+		}
+	} else {
+		if (qual->rssi > -82) {
+			low_bound = 0x1c;
+			up_bound = 0x40;
+		} else if (qual->rssi > -84) {
+			low_bound = 0x1c;
+			up_bound = 0x20;
+		} else {
+			low_bound = 0x1c;
+			up_bound = 0x1c;
+		}
+
+		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
+			low_bound += 0x14;
+			up_bound += 0x10;
+		}
+	}
+
+	/*
+	 * If we are not associated, we should go straight to the
+	 * dynamic CCA tuning.
+	 */
+	if (!rt2x00dev->intf_associated)
+		goto dynamic_cca_tune;
+
+	/*
+	 * Special big-R17 for very short distance
+	 */
+	if (qual->rssi > -35) {
+		rt73usb_set_vgc(rt2x00dev, qual, 0x60);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for short distance
+	 */
+	if (qual->rssi >= -58) {
+		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for middle-short distance
+	 */
+	if (qual->rssi >= -66) {
+		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
+		return;
+	}
+
+	/*
+	 * Special mid-R17 for middle distance
+	 */
+	if (qual->rssi >= -74) {
+		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
+		return;
+	}
+
+	/*
+	 * Special case: Change up_bound based on the rssi.
+	 * Lower up_bound when rssi is weaker then -74 dBm.
+	 */
+	up_bound -= 2 * (-74 - qual->rssi);
+	if (low_bound > up_bound)
+		up_bound = low_bound;
+
+	if (qual->vgc_level > up_bound) {
+		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
+		return;
+	}
+
+dynamic_cca_tune:
+
+	/*
+	 * r17 does not yet exceed upper limit, continue and base
+	 * the r17 tuning on the false CCA count.
+	 */
+	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
+		rt73usb_set_vgc(rt2x00dev, qual,
+				min_t(u8, qual->vgc_level + 4, up_bound));
+	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
+		rt73usb_set_vgc(rt2x00dev, qual,
+				max_t(u8, qual->vgc_level - 4, low_bound));
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt73usb_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt73usb_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Firmware functions
+ */
+static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
+{
+	return FIRMWARE_RT2571;
+}
+
+static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
+				  const u8 *data, const size_t len)
+{
+	u16 fw_crc;
+	u16 crc;
+
+	/*
+	 * Only support 2kb firmware files.
+	 */
+	if (len != 2048)
+		return FW_BAD_LENGTH;
+
+	/*
+	 * The last 2 bytes in the firmware array are the crc checksum itself,
+	 * this means that we should never pass those 2 bytes to the crc
+	 * algorithm.
+	 */
+	fw_crc = (data[len - 2] << 8 | data[len - 1]);
+
+	/*
+	 * Use the crc itu-t algorithm.
+	 */
+	crc = crc_itu_t(0, data, len - 2);
+	crc = crc_itu_t_byte(crc, 0);
+	crc = crc_itu_t_byte(crc, 0);
+
+	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
+}
+
+static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
+				 const u8 *data, const size_t len)
+{
+	unsigned int i;
+	int status;
+	u32 reg;
+
+	/*
+	 * Wait for stable hardware.
+	 */
+	for (i = 0; i < 100; i++) {
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
+		if (reg)
+			break;
+		msleep(1);
+	}
+
+	if (!reg) {
+		rt2x00_err(rt2x00dev, "Unstable hardware\n");
+		return -EBUSY;
+	}
+
+	/*
+	 * Write firmware to device.
+	 */
+	rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
+
+	/*
+	 * Send firmware request to device to load firmware,
+	 * we need to specify a long timeout time.
+	 */
+	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
+					     0, USB_MODE_FIRMWARE,
+					     REGISTER_TIMEOUT_FIRMWARE);
+	if (status < 0) {
+		rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
+		return status;
+	}
+
+	return 0;
+}
+
+/*
+ * Initialization functions.
+ */
+static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
+	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
+
+	/*
+	 * CCK TXD BBP registers
+	 */
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
+	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
+
+	/*
+	 * OFDM TXD BBP registers
+	 */
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
+	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
+	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
+	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
+
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
+
+	/*
+	 * Invalidate all Shared Keys (SEC_CSR0),
+	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
+	 */
+	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
+	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
+	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
+
+	reg = 0x000023b0;
+	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
+		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
+	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
+
+	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
+	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
+	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
+
+	/*
+	 * Clear all beacons
+	 * For the Beacon base registers we only need to clear
+	 * the first byte since that byte contains the VALID and OWNER
+	 * bits which (when set to 0) will invalidate the entire beacon.
+	 */
+	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
+	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
+	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
+	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
+
+	/*
+	 * We must clear the error counters.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
+	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
+	rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
+
+	/*
+	 * Reset MAC and BBP registers.
+	 */
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
+
+	return 0;
+}
+
+static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
+		rt73usb_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
+	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
+	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
+	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
+	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
+	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
+	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
+	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
+	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
+	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
+	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
+	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
+	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
+	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
+	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
+	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
+	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
+	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
+	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
+	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
+	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
+	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
+	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
+	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
+	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt73usb_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
+		     rt73usb_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	return 0;
+}
+
+static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
+
+	/*
+	 * Disable synchronisation.
+	 */
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
+
+	rt2x00usb_disable_radio(rt2x00dev);
+}
+
+static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
+{
+	u32 reg, reg2;
+	unsigned int i;
+	char put_to_sleep;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
+	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
+		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
+		if (state == !put_to_sleep)
+			return 0;
+		rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
+		msleep(10);
+	}
+
+	return -EBUSY;
+}
+
+static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
+				    enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt73usb_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt73usb_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		/* No support, but no error either */
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt73usb_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt73usb_write_tx_desc(struct queue_entry *entry,
+				  struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *txd = (__le32 *) entry->skb->data;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_BURST,
+			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_OFDM,
+			   (txdesc->rate_mode == RATE_MODE_OFDM));
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
+			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
+			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
+	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W0_BURST2,
+			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
+	rt2x00_desc_write(txd, 0, word);
+
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
+	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
+	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
+	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
+	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
+	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
+			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_desc_write(txd, 2, word);
+
+	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
+		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
+		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
+	}
+
+	rt2x00_desc_read(txd, 5, &word);
+	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
+			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
+	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
+	rt2x00_desc_write(txd, 5, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt73usb_write_beacon(struct queue_entry *entry,
+				 struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	unsigned int beacon_base;
+	unsigned int padding_len;
+	u32 orig_reg, reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
+	orig_reg = reg;
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Add space for the descriptor in front of the skb.
+	 */
+	skb_push(entry->skb, TXD_DESC_SIZE);
+	memset(entry->skb->data, 0, TXD_DESC_SIZE);
+
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt73usb_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+
+	/*
+	 * Write entire beacon with descriptor and padding to register.
+	 */
+	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
+	if (padding_len && skb_pad(entry->skb, padding_len)) {
+		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
+		/* skb freed by skb_pad() on failure */
+		entry->skb = NULL;
+		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+		return;
+	}
+
+	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+	rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
+				      entry->skb->len + padding_len);
+
+	/*
+	 * Enable beaconing again.
+	 *
+	 * For Wi-Fi faily generated beacons between participating stations.
+	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
+	 */
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
+
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Clean up the beacon skb.
+	 */
+	dev_kfree_skb(entry->skb);
+	entry->skb = NULL;
+}
+
+static void rt73usb_clear_beacon(struct queue_entry *entry)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	unsigned int beacon_base;
+	u32 orig_reg, reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
+	reg = orig_reg;
+	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
+
+	/*
+	 * Clear beacon.
+	 */
+	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
+	rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
+
+	/*
+	 * Restore beaconing state.
+	 */
+	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
+}
+
+static int rt73usb_get_tx_data_len(struct queue_entry *entry)
+{
+	int length;
+
+	/*
+	 * The length _must_ be a multiple of 4,
+	 * but it must _not_ be a multiple of the USB packet size.
+	 */
+	length = roundup(entry->skb->len, 4);
+	length += (4 * !(length % entry->queue->usb_maxpacket));
+
+	return length;
+}
+
+/*
+ * RX control handlers
+ */
+static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
+{
+	u8 offset = rt2x00dev->lna_gain;
+	u8 lna;
+
+	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
+	switch (lna) {
+	case 3:
+		offset += 90;
+		break;
+	case 2:
+		offset += 74;
+		break;
+	case 1:
+		offset += 64;
+		break;
+	default:
+		return 0;
+	}
+
+	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
+		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
+			if (lna == 3 || lna == 2)
+				offset += 10;
+		} else {
+			if (lna == 3)
+				offset += 6;
+			else if (lna == 2)
+				offset += 8;
+		}
+	}
+
+	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
+}
+
+static void rt73usb_fill_rxdone(struct queue_entry *entry,
+				struct rxdone_entry_desc *rxdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	__le32 *rxd = (__le32 *)entry->skb->data;
+	u32 word0;
+	u32 word1;
+
+	/*
+	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
+	 * frame data in rt2x00usb.
+	 */
+	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
+	rxd = (__le32 *)skbdesc->desc;
+
+	/*
+	 * It is now safe to read the descriptor on all architectures.
+	 */
+	rt2x00_desc_read(rxd, 0, &word0);
+	rt2x00_desc_read(rxd, 1, &word1);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+
+	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
+	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
+
+	if (rxdesc->cipher != CIPHER_NONE) {
+		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
+		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
+		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
+
+		_rt2x00_desc_read(rxd, 4, &rxdesc->icv);
+		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
+
+		/*
+		 * Hardware has stripped IV/EIV data from 802.11 frame during
+		 * decryption. It has provided the data separately but rt2x00lib
+		 * should decide if it should be reinserted.
+		 */
+		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
+
+		/*
+		 * The hardware has already checked the Michael Mic and has
+		 * stripped it from the frame. Signal this to mac80211.
+		 */
+		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
+
+		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
+			rxdesc->flags |= RX_FLAG_DECRYPTED;
+		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
+			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
+	}
+
+	/*
+	 * Obtain the status about this packet.
+	 * When frame was received with an OFDM bitrate,
+	 * the signal is the PLCP value. If it was received with
+	 * a CCK bitrate the signal is the rate in 100kbit/s.
+	 */
+	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
+	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	else
+		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+
+	/*
+	 * Set skb pointers, and update frame information.
+	 */
+	skb_pull(entry->skb, entry->queue->desc_size);
+	skb_trim(entry->skb, rxdesc->size);
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u16 word;
+	u8 *mac;
+	s8 value;
+
+	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+				   ANTENNA_B);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+				   ANTENNA_B);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
+		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
+				   LED_MODE_DEFAULT);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
+		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
+	} else {
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
+	} else {
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
+		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
+		if (value < -10 || value > 10)
+			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
+	}
+
+	return 0;
+}
+
+static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
+			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
+
+	if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
+		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
+		return -ENODEV;
+	}
+
+	if (!rt2x00_rf(rt2x00dev, RF5226) &&
+	    !rt2x00_rf(rt2x00dev, RF2528) &&
+	    !rt2x00_rf(rt2x00dev, RF5225) &&
+	    !rt2x00_rf(rt2x00dev, RF2527)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * Read the Frame type.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
+		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read frequency offset.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
+	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
+
+	/*
+	 * Read external LNA informations.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
+
+	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
+		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
+		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
+	}
+
+	/*
+	 * Store led settings, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
+
+	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
+	if (value == LED_MODE_SIGNAL_STRENGTH)
+		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				 LED_TYPE_QUALITY);
+
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_0));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_1));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_2));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_3));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_GPIO_4));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
+			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_RDY_G));
+	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
+			   rt2x00_get_field16(eeprom,
+					      EEPROM_LED_POLARITY_RDY_A));
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	return 0;
+}
+
+/*
+ * RF value list for RF2528
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2528[] = {
+	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
+	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
+	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
+	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
+	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
+	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
+	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
+	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
+	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
+	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
+	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
+	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
+	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
+	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
+};
+
+/*
+ * RF value list for RF5226
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5226[] = {
+	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
+	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
+	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
+	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
+	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
+	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
+	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
+	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
+	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
+	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
+	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
+	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
+	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
+	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
+	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
+	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
+	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
+	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
+	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
+	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
+	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
+	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
+	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
+	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
+	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
+	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
+	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
+	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
+	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
+	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
+
+	/* 802.11 UNII */
+	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
+	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
+	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
+	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
+	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
+	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
+
+	/* MMAC(Japan)J52 ch 34,38,42,46 */
+	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
+	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
+	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
+	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
+};
+
+/*
+ * RF value list for RF5225 & RF2527
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5225_2527[] = {
+	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
+	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
+	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
+	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
+	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
+	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
+	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
+	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
+	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
+	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
+	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
+	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
+	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
+	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
+	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
+	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
+	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
+	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
+	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
+	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
+	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
+	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
+	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
+	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
+	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
+	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
+	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
+	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
+	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
+	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
+
+	/* 802.11 UNII */
+	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
+	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
+	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
+	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
+	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
+	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
+
+	/* MMAC(Japan)J52 ch 34,38,42,46 */
+	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
+	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
+	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
+	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
+};
+
+
+static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Initialize all hw fields.
+	 *
+	 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
+	 * capable of sending the buffered frames out after the DTIM
+	 * transmission using rt2x00lib_beacondone. This will send out
+	 * multicast and broadcast traffic immediately instead of buffering it
+	 * infinitly and thus dropping it after some time.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	if (rt2x00_rf(rt2x00dev, RF2528)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
+		spec->channels = rf_vals_bg_2528;
+	} else if (rt2x00_rf(rt2x00dev, RF5226)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
+		spec->channels = rf_vals_5226;
+	} else if (rt2x00_rf(rt2x00dev, RF2527)) {
+		spec->num_channels = 14;
+		spec->channels = rf_vals_5225_2527;
+	} else if (rt2x00_rf(rt2x00dev, RF5225)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
+		spec->channels = rf_vals_5225_2527;
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = MAX_TXPOWER;
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	if (spec->num_channels > 14) {
+		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].max_power = MAX_TXPOWER;
+			info[i].default_power1 =
+					TXPOWER_FROM_DEV(tx_power[i - 14]);
+		}
+	}
+
+	return 0;
+}
+
+static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt73usb_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt73usb_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
+	rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
+	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt73usb_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device has multiple filters for control frames,
+	 * but has no a separate filter for PS Poll frames.
+	 */
+	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
+
+	/*
+	 * This device requires firmware.
+	 */
+	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
+	if (!modparam_nohwcrypt)
+		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
+	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static int rt73usb_conf_tx(struct ieee80211_hw *hw,
+			   struct ieee80211_vif *vif, u16 queue_idx,
+			   const struct ieee80211_tx_queue_params *params)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	struct data_queue *queue;
+	struct rt2x00_field32 field;
+	int retval;
+	u32 reg;
+	u32 offset;
+
+	/*
+	 * First pass the configuration through rt2x00lib, that will
+	 * update the queue settings and validate the input. After that
+	 * we are free to update the registers based on the value
+	 * in the queue parameter.
+	 */
+	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
+	if (retval)
+		return retval;
+
+	/*
+	 * We only need to perform additional register initialization
+	 * for WMM queues/
+	 */
+	if (queue_idx >= 4)
+		return 0;
+
+	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+
+	/* Update WMM TXOP register */
+	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
+	field.bit_offset = (queue_idx & 1) * 16;
+	field.bit_mask = 0xffff << field.bit_offset;
+
+	rt2x00usb_register_read(rt2x00dev, offset, &reg);
+	rt2x00_set_field32(&reg, field, queue->txop);
+	rt2x00usb_register_write(rt2x00dev, offset, reg);
+
+	/* Update WMM registers */
+	field.bit_offset = queue_idx * 4;
+	field.bit_mask = 0xf << field.bit_offset;
+
+	rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->aifs);
+	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
+
+	rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_min);
+	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
+
+	rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
+	rt2x00_set_field32(&reg, field, queue->cw_max);
+	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
+
+	return 0;
+}
+
+static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
+	rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
+	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
+
+	return tsf;
+}
+
+static const struct ieee80211_ops rt73usb_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.set_tim		= rt2x00mac_set_tim,
+	.set_key		= rt2x00mac_set_key,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt73usb_conf_tx,
+	.get_tsf		= rt73usb_get_tsf,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
+	.probe_hw		= rt73usb_probe_hw,
+	.get_firmware_name	= rt73usb_get_firmware_name,
+	.check_firmware		= rt73usb_check_firmware,
+	.load_firmware		= rt73usb_load_firmware,
+	.initialize		= rt2x00usb_initialize,
+	.uninitialize		= rt2x00usb_uninitialize,
+	.clear_entry		= rt2x00usb_clear_entry,
+	.set_device_state	= rt73usb_set_device_state,
+	.rfkill_poll		= rt73usb_rfkill_poll,
+	.link_stats		= rt73usb_link_stats,
+	.reset_tuner		= rt73usb_reset_tuner,
+	.link_tuner		= rt73usb_link_tuner,
+	.watchdog		= rt2x00usb_watchdog,
+	.start_queue		= rt73usb_start_queue,
+	.kick_queue		= rt2x00usb_kick_queue,
+	.stop_queue		= rt73usb_stop_queue,
+	.flush_queue		= rt2x00usb_flush_queue,
+	.write_tx_desc		= rt73usb_write_tx_desc,
+	.write_beacon		= rt73usb_write_beacon,
+	.clear_beacon		= rt73usb_clear_beacon,
+	.get_tx_data_len	= rt73usb_get_tx_data_len,
+	.fill_rxdone		= rt73usb_fill_rxdone,
+	.config_shared_key	= rt73usb_config_shared_key,
+	.config_pairwise_key	= rt73usb_config_pairwise_key,
+	.config_filter		= rt73usb_config_filter,
+	.config_intf		= rt73usb_config_intf,
+	.config_erp		= rt73usb_config_erp,
+	.config_ant		= rt73usb_config_ant,
+	.config			= rt73usb_config,
+};
+
+static void rt73usb_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 4;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXINFO_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_usb);
+		break;
+
+	case QID_ATIM:
+		/* fallthrough */
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt73usb_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 4,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt73usb_queue_init,
+	.lib			= &rt73usb_rt2x00_ops,
+	.hw			= &rt73usb_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt73usb_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * rt73usb module information.
+ */
+static struct usb_device_id rt73usb_device_table[] = {
+	/* AboCom */
+	{ USB_DEVICE(0x07b8, 0xb21b) },
+	{ USB_DEVICE(0x07b8, 0xb21c) },
+	{ USB_DEVICE(0x07b8, 0xb21d) },
+	{ USB_DEVICE(0x07b8, 0xb21e) },
+	{ USB_DEVICE(0x07b8, 0xb21f) },
+	/* AL */
+	{ USB_DEVICE(0x14b2, 0x3c10) },
+	/* Amigo */
+	{ USB_DEVICE(0x148f, 0x9021) },
+	{ USB_DEVICE(0x0eb0, 0x9021) },
+	/* AMIT  */
+	{ USB_DEVICE(0x18c5, 0x0002) },
+	/* Askey */
+	{ USB_DEVICE(0x1690, 0x0722) },
+	/* ASUS */
+	{ USB_DEVICE(0x0b05, 0x1723) },
+	{ USB_DEVICE(0x0b05, 0x1724) },
+	/* Belkin */
+	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050B ver. 3.x */
+	{ USB_DEVICE(0x050d, 0x705a) },
+	{ USB_DEVICE(0x050d, 0x905b) },
+	{ USB_DEVICE(0x050d, 0x905c) },
+	/* Billionton */
+	{ USB_DEVICE(0x1631, 0xc019) },
+	{ USB_DEVICE(0x08dd, 0x0120) },
+	/* Buffalo */
+	{ USB_DEVICE(0x0411, 0x00d8) },
+	{ USB_DEVICE(0x0411, 0x00d9) },
+	{ USB_DEVICE(0x0411, 0x00e6) },
+	{ USB_DEVICE(0x0411, 0x00f4) },
+	{ USB_DEVICE(0x0411, 0x0116) },
+	{ USB_DEVICE(0x0411, 0x0119) },
+	{ USB_DEVICE(0x0411, 0x0137) },
+	/* CEIVA */
+	{ USB_DEVICE(0x178d, 0x02be) },
+	/* CNet */
+	{ USB_DEVICE(0x1371, 0x9022) },
+	{ USB_DEVICE(0x1371, 0x9032) },
+	/* Conceptronic */
+	{ USB_DEVICE(0x14b2, 0x3c22) },
+	/* Corega */
+	{ USB_DEVICE(0x07aa, 0x002e) },
+	/* D-Link */
+	{ USB_DEVICE(0x07d1, 0x3c03) },
+	{ USB_DEVICE(0x07d1, 0x3c04) },
+	{ USB_DEVICE(0x07d1, 0x3c06) },
+	{ USB_DEVICE(0x07d1, 0x3c07) },
+	/* Edimax */
+	{ USB_DEVICE(0x7392, 0x7318) },
+	{ USB_DEVICE(0x7392, 0x7618) },
+	/* EnGenius */
+	{ USB_DEVICE(0x1740, 0x3701) },
+	/* Gemtek */
+	{ USB_DEVICE(0x15a9, 0x0004) },
+	/* Gigabyte */
+	{ USB_DEVICE(0x1044, 0x8008) },
+	{ USB_DEVICE(0x1044, 0x800a) },
+	/* Huawei-3Com */
+	{ USB_DEVICE(0x1472, 0x0009) },
+	/* Hercules */
+	{ USB_DEVICE(0x06f8, 0xe002) },
+	{ USB_DEVICE(0x06f8, 0xe010) },
+	{ USB_DEVICE(0x06f8, 0xe020) },
+	/* Linksys */
+	{ USB_DEVICE(0x13b1, 0x0020) },
+	{ USB_DEVICE(0x13b1, 0x0023) },
+	{ USB_DEVICE(0x13b1, 0x0028) },
+	/* MSI */
+	{ USB_DEVICE(0x0db0, 0x4600) },
+	{ USB_DEVICE(0x0db0, 0x6877) },
+	{ USB_DEVICE(0x0db0, 0x6874) },
+	{ USB_DEVICE(0x0db0, 0xa861) },
+	{ USB_DEVICE(0x0db0, 0xa874) },
+	/* Ovislink */
+	{ USB_DEVICE(0x1b75, 0x7318) },
+	/* Ralink */
+	{ USB_DEVICE(0x04bb, 0x093d) },
+	{ USB_DEVICE(0x148f, 0x2573) },
+	{ USB_DEVICE(0x148f, 0x2671) },
+	{ USB_DEVICE(0x0812, 0x3101) },
+	/* Qcom */
+	{ USB_DEVICE(0x18e8, 0x6196) },
+	{ USB_DEVICE(0x18e8, 0x6229) },
+	{ USB_DEVICE(0x18e8, 0x6238) },
+	/* Samsung */
+	{ USB_DEVICE(0x04e8, 0x4471) },
+	/* Senao */
+	{ USB_DEVICE(0x1740, 0x7100) },
+	/* Sitecom */
+	{ USB_DEVICE(0x0df6, 0x0024) },
+	{ USB_DEVICE(0x0df6, 0x0027) },
+	{ USB_DEVICE(0x0df6, 0x002f) },
+	{ USB_DEVICE(0x0df6, 0x90ac) },
+	{ USB_DEVICE(0x0df6, 0x9712) },
+	/* Surecom */
+	{ USB_DEVICE(0x0769, 0x31f3) },
+	/* Tilgin */
+	{ USB_DEVICE(0x6933, 0x5001) },
+	/* Philips */
+	{ USB_DEVICE(0x0471, 0x200a) },
+	/* Planex */
+	{ USB_DEVICE(0x2019, 0xab01) },
+	{ USB_DEVICE(0x2019, 0xab50) },
+	/* WideTell */
+	{ USB_DEVICE(0x7167, 0x3840) },
+	/* Zcom */
+	{ USB_DEVICE(0x0cde, 0x001c) },
+	/* ZyXEL */
+	{ USB_DEVICE(0x0586, 0x3415) },
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
+MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
+MODULE_FIRMWARE(FIRMWARE_RT2571);
+MODULE_LICENSE("GPL");
+
+static int rt73usb_probe(struct usb_interface *usb_intf,
+			 const struct usb_device_id *id)
+{
+	return rt2x00usb_probe(usb_intf, &rt73usb_ops);
+}
+
+static struct usb_driver rt73usb_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt73usb_device_table,
+	.probe		= rt73usb_probe,
+	.disconnect	= rt2x00usb_disconnect,
+	.suspend	= rt2x00usb_suspend,
+	.resume		= rt2x00usb_resume,
+	.reset_resume	= rt2x00usb_resume,
+	.disable_hub_initiated_lpm = 1,
+};
+
+module_usb_driver(rt73usb_driver);
diff --git a/drivers/net/wireless/rt2x00/rt73usb.h b/drivers/net/wireless/rt2x00/rt73usb.h
new file mode 100644
index 0000000..4a4f235
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt73usb.h
@@ -0,0 +1,1079 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt73usb
+	Abstract: Data structures and registers for the rt73usb module.
+	Supported chipsets: rt2571W & rt2671.
+ */
+
+#ifndef RT73USB_H
+#define RT73USB_H
+
+/*
+ * RF chip defines.
+ */
+#define RF5226				0x0001
+#define RF2528				0x0002
+#define RF5225				0x0003
+#define RF2527				0x0004
+
+/*
+ * Signal information.
+ * Default offset is required for RSSI <-> dBm conversion.
+ */
+#define DEFAULT_RSSI_OFFSET		120
+
+/*
+ * Register layout information.
+ */
+#define CSR_REG_BASE			0x3000
+#define CSR_REG_SIZE			0x04b0
+#define EEPROM_BASE			0x0000
+#define EEPROM_SIZE			0x0100
+#define BBP_BASE			0x0000
+#define BBP_SIZE			0x0080
+#define RF_BASE				0x0004
+#define RF_SIZE				0x0010
+
+/*
+ * Number of TX queues.
+ */
+#define NUM_TX_QUEUES			4
+
+/*
+ * USB registers.
+ */
+
+/*
+ * MCU_LEDCS: LED control for MCU Mailbox.
+ */
+#define MCU_LEDCS_LED_MODE		FIELD16(0x001f)
+#define MCU_LEDCS_RADIO_STATUS		FIELD16(0x0020)
+#define MCU_LEDCS_LINK_BG_STATUS	FIELD16(0x0040)
+#define MCU_LEDCS_LINK_A_STATUS		FIELD16(0x0080)
+#define MCU_LEDCS_POLARITY_GPIO_0	FIELD16(0x0100)
+#define MCU_LEDCS_POLARITY_GPIO_1	FIELD16(0x0200)
+#define MCU_LEDCS_POLARITY_GPIO_2	FIELD16(0x0400)
+#define MCU_LEDCS_POLARITY_GPIO_3	FIELD16(0x0800)
+#define MCU_LEDCS_POLARITY_GPIO_4	FIELD16(0x1000)
+#define MCU_LEDCS_POLARITY_ACT		FIELD16(0x2000)
+#define MCU_LEDCS_POLARITY_READY_BG	FIELD16(0x4000)
+#define MCU_LEDCS_POLARITY_READY_A	FIELD16(0x8000)
+
+/*
+ * 8051 firmware image.
+ */
+#define FIRMWARE_RT2571			"rt73.bin"
+#define FIRMWARE_IMAGE_BASE		0x0800
+
+/*
+ * Security key table memory.
+ * 16 entries 32-byte for shared key table
+ * 64 entries 32-byte for pairwise key table
+ * 64 entries 8-byte for pairwise ta key table
+ */
+#define SHARED_KEY_TABLE_BASE		0x1000
+#define PAIRWISE_KEY_TABLE_BASE		0x1200
+#define PAIRWISE_TA_TABLE_BASE		0x1a00
+
+#define SHARED_KEY_ENTRY(__idx) \
+	( SHARED_KEY_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_KEY_ENTRY(__idx) \
+	( PAIRWISE_KEY_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_key_entry)) )
+#define PAIRWISE_TA_ENTRY(__idx) \
+	( PAIRWISE_TA_TABLE_BASE + \
+		((__idx) * sizeof(struct hw_pairwise_ta_entry)) )
+
+struct hw_key_entry {
+	u8 key[16];
+	u8 tx_mic[8];
+	u8 rx_mic[8];
+} __packed;
+
+struct hw_pairwise_ta_entry {
+	u8 address[6];
+	u8 cipher;
+	u8 reserved;
+} __packed;
+
+/*
+ * Since NULL frame won't be that long (256 byte),
+ * We steal 16 tail bytes to save debugging settings.
+ */
+#define HW_DEBUG_SETTING_BASE		0x2bf0
+
+/*
+ * On-chip BEACON frame space.
+ */
+#define HW_BEACON_BASE0			0x2400
+#define HW_BEACON_BASE1			0x2500
+#define HW_BEACON_BASE2			0x2600
+#define HW_BEACON_BASE3			0x2700
+
+#define HW_BEACON_OFFSET(__index) \
+	( HW_BEACON_BASE0 + (__index * 0x0100) )
+
+/*
+ * MAC Control/Status Registers(CSR).
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * MAC_CSR0: ASIC revision number.
+ */
+#define MAC_CSR0			0x3000
+#define MAC_CSR0_REVISION		FIELD32(0x0000000f)
+#define MAC_CSR0_CHIPSET		FIELD32(0x000ffff0)
+
+/*
+ * MAC_CSR1: System control register.
+ * SOFT_RESET: Software reset bit, 1: reset, 0: normal.
+ * BBP_RESET: Hardware reset BBP.
+ * HOST_READY: Host is ready after initialization, 1: ready.
+ */
+#define MAC_CSR1			0x3004
+#define MAC_CSR1_SOFT_RESET		FIELD32(0x00000001)
+#define MAC_CSR1_BBP_RESET		FIELD32(0x00000002)
+#define MAC_CSR1_HOST_READY		FIELD32(0x00000004)
+
+/*
+ * MAC_CSR2: STA MAC register 0.
+ */
+#define MAC_CSR2			0x3008
+#define MAC_CSR2_BYTE0			FIELD32(0x000000ff)
+#define MAC_CSR2_BYTE1			FIELD32(0x0000ff00)
+#define MAC_CSR2_BYTE2			FIELD32(0x00ff0000)
+#define MAC_CSR2_BYTE3			FIELD32(0xff000000)
+
+/*
+ * MAC_CSR3: STA MAC register 1.
+ * UNICAST_TO_ME_MASK:
+ *	Used to mask off bits from byte 5 of the MAC address
+ *	to determine the UNICAST_TO_ME bit for RX frames.
+ *	The full mask is complemented by BSS_ID_MASK:
+ *		MASK = BSS_ID_MASK & UNICAST_TO_ME_MASK
+ */
+#define MAC_CSR3			0x300c
+#define MAC_CSR3_BYTE4			FIELD32(0x000000ff)
+#define MAC_CSR3_BYTE5			FIELD32(0x0000ff00)
+#define MAC_CSR3_UNICAST_TO_ME_MASK	FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR4: BSSID register 0.
+ */
+#define MAC_CSR4			0x3010
+#define MAC_CSR4_BYTE0			FIELD32(0x000000ff)
+#define MAC_CSR4_BYTE1			FIELD32(0x0000ff00)
+#define MAC_CSR4_BYTE2			FIELD32(0x00ff0000)
+#define MAC_CSR4_BYTE3			FIELD32(0xff000000)
+
+/*
+ * MAC_CSR5: BSSID register 1.
+ * BSS_ID_MASK:
+ *	This mask is used to mask off bits 0 and 1 of byte 5 of the
+ *	BSSID. This will make sure that those bits will be ignored
+ *	when determining the MY_BSS of RX frames.
+ *		0: 1-BSSID mode (BSS index = 0)
+ *		1: 2-BSSID mode (BSS index: Byte5, bit 0)
+ *		2: 2-BSSID mode (BSS index: byte5, bit 1)
+ *		3: 4-BSSID mode (BSS index: byte5, bit 0 - 1)
+ */
+#define MAC_CSR5			0x3014
+#define MAC_CSR5_BYTE4			FIELD32(0x000000ff)
+#define MAC_CSR5_BYTE5			FIELD32(0x0000ff00)
+#define MAC_CSR5_BSS_ID_MASK		FIELD32(0x00ff0000)
+
+/*
+ * MAC_CSR6: Maximum frame length register.
+ */
+#define MAC_CSR6			0x3018
+#define MAC_CSR6_MAX_FRAME_UNIT		FIELD32(0x00000fff)
+
+/*
+ * MAC_CSR7: Reserved
+ */
+#define MAC_CSR7			0x301c
+
+/*
+ * MAC_CSR8: SIFS/EIFS register.
+ * All units are in US.
+ */
+#define MAC_CSR8			0x3020
+#define MAC_CSR8_SIFS			FIELD32(0x000000ff)
+#define MAC_CSR8_SIFS_AFTER_RX_OFDM	FIELD32(0x0000ff00)
+#define MAC_CSR8_EIFS			FIELD32(0xffff0000)
+
+/*
+ * MAC_CSR9: Back-Off control register.
+ * SLOT_TIME: Slot time, default is 20us for 802.11BG.
+ * CWMIN: Bit for Cwmin. default Cwmin is 31 (2^5 - 1).
+ * CWMAX: Bit for Cwmax, default Cwmax is 1023 (2^10 - 1).
+ * CW_SELECT: 1: CWmin/Cwmax select from register, 0:select from TxD.
+ */
+#define MAC_CSR9			0x3024
+#define MAC_CSR9_SLOT_TIME		FIELD32(0x000000ff)
+#define MAC_CSR9_CWMIN			FIELD32(0x00000f00)
+#define MAC_CSR9_CWMAX			FIELD32(0x0000f000)
+#define MAC_CSR9_CW_SELECT		FIELD32(0x00010000)
+
+/*
+ * MAC_CSR10: Power state configuration.
+ */
+#define MAC_CSR10			0x3028
+
+/*
+ * MAC_CSR11: Power saving transition time register.
+ * DELAY_AFTER_TBCN: Delay after Tbcn expired in units of TU.
+ * TBCN_BEFORE_WAKEUP: Number of beacon before wakeup.
+ * WAKEUP_LATENCY: In unit of TU.
+ */
+#define MAC_CSR11			0x302c
+#define MAC_CSR11_DELAY_AFTER_TBCN	FIELD32(0x000000ff)
+#define MAC_CSR11_TBCN_BEFORE_WAKEUP	FIELD32(0x00007f00)
+#define MAC_CSR11_AUTOWAKE		FIELD32(0x00008000)
+#define MAC_CSR11_WAKEUP_LATENCY	FIELD32(0x000f0000)
+
+/*
+ * MAC_CSR12: Manual power control / status register (merge CSR20 & PWRCSR1).
+ * CURRENT_STATE: 0:sleep, 1:awake.
+ * FORCE_WAKEUP: This has higher priority than PUT_TO_SLEEP.
+ * BBP_CURRENT_STATE: 0: BBP sleep, 1: BBP awake.
+ */
+#define MAC_CSR12			0x3030
+#define MAC_CSR12_CURRENT_STATE		FIELD32(0x00000001)
+#define MAC_CSR12_PUT_TO_SLEEP		FIELD32(0x00000002)
+#define MAC_CSR12_FORCE_WAKEUP		FIELD32(0x00000004)
+#define MAC_CSR12_BBP_CURRENT_STATE	FIELD32(0x00000008)
+
+/*
+ * MAC_CSR13: GPIO.
+ *	MAC_CSR13_VALx: GPIO value
+ *	MAC_CSR13_DIRx: GPIO direction: 0 = input; 1 = output
+ */
+#define MAC_CSR13			0x3034
+#define MAC_CSR13_VAL0			FIELD32(0x00000001)
+#define MAC_CSR13_VAL1			FIELD32(0x00000002)
+#define MAC_CSR13_VAL2			FIELD32(0x00000004)
+#define MAC_CSR13_VAL3			FIELD32(0x00000008)
+#define MAC_CSR13_VAL4			FIELD32(0x00000010)
+#define MAC_CSR13_VAL5			FIELD32(0x00000020)
+#define MAC_CSR13_VAL6			FIELD32(0x00000040)
+#define MAC_CSR13_VAL7			FIELD32(0x00000080)
+#define MAC_CSR13_DIR0			FIELD32(0x00000100)
+#define MAC_CSR13_DIR1			FIELD32(0x00000200)
+#define MAC_CSR13_DIR2			FIELD32(0x00000400)
+#define MAC_CSR13_DIR3			FIELD32(0x00000800)
+#define MAC_CSR13_DIR4			FIELD32(0x00001000)
+#define MAC_CSR13_DIR5			FIELD32(0x00002000)
+#define MAC_CSR13_DIR6			FIELD32(0x00004000)
+#define MAC_CSR13_DIR7			FIELD32(0x00008000)
+
+/*
+ * MAC_CSR14: LED control register.
+ * ON_PERIOD: On period, default 70ms.
+ * OFF_PERIOD: Off period, default 30ms.
+ * HW_LED: HW TX activity, 1: normal OFF, 0: normal ON.
+ * SW_LED: s/w LED, 1: ON, 0: OFF.
+ * HW_LED_POLARITY: 0: active low, 1: active high.
+ */
+#define MAC_CSR14			0x3038
+#define MAC_CSR14_ON_PERIOD		FIELD32(0x000000ff)
+#define MAC_CSR14_OFF_PERIOD		FIELD32(0x0000ff00)
+#define MAC_CSR14_HW_LED		FIELD32(0x00010000)
+#define MAC_CSR14_SW_LED		FIELD32(0x00020000)
+#define MAC_CSR14_HW_LED_POLARITY	FIELD32(0x00040000)
+#define MAC_CSR14_SW_LED2		FIELD32(0x00080000)
+
+/*
+ * MAC_CSR15: NAV control.
+ */
+#define MAC_CSR15			0x303c
+
+/*
+ * TXRX control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * TXRX_CSR0: TX/RX configuration register.
+ * TSF_OFFSET: Default is 24.
+ * AUTO_TX_SEQ: 1: ASIC auto replace sequence nr in outgoing frame.
+ * DISABLE_RX: Disable Rx engine.
+ * DROP_CRC: Drop CRC error.
+ * DROP_PHYSICAL: Drop physical error.
+ * DROP_CONTROL: Drop control frame.
+ * DROP_NOT_TO_ME: Drop not to me unicast frame.
+ * DROP_TO_DS: Drop fram ToDs bit is true.
+ * DROP_VERSION_ERROR: Drop version error frame.
+ * DROP_MULTICAST: Drop multicast frames.
+ * DROP_BORADCAST: Drop broadcast frames.
+ * DROP_ACK_CTS: Drop received ACK and CTS.
+ */
+#define TXRX_CSR0			0x3040
+#define TXRX_CSR0_RX_ACK_TIMEOUT	FIELD32(0x000001ff)
+#define TXRX_CSR0_TSF_OFFSET		FIELD32(0x00007e00)
+#define TXRX_CSR0_AUTO_TX_SEQ		FIELD32(0x00008000)
+#define TXRX_CSR0_DISABLE_RX		FIELD32(0x00010000)
+#define TXRX_CSR0_DROP_CRC		FIELD32(0x00020000)
+#define TXRX_CSR0_DROP_PHYSICAL		FIELD32(0x00040000)
+#define TXRX_CSR0_DROP_CONTROL		FIELD32(0x00080000)
+#define TXRX_CSR0_DROP_NOT_TO_ME	FIELD32(0x00100000)
+#define TXRX_CSR0_DROP_TO_DS		FIELD32(0x00200000)
+#define TXRX_CSR0_DROP_VERSION_ERROR	FIELD32(0x00400000)
+#define TXRX_CSR0_DROP_MULTICAST	FIELD32(0x00800000)
+#define TXRX_CSR0_DROP_BROADCAST	FIELD32(0x01000000)
+#define TXRX_CSR0_DROP_ACK_CTS		FIELD32(0x02000000)
+#define TXRX_CSR0_TX_WITHOUT_WAITING	FIELD32(0x04000000)
+
+/*
+ * TXRX_CSR1
+ */
+#define TXRX_CSR1			0x3044
+#define TXRX_CSR1_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR1_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR1_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR1_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR1_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR1_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR1_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR1_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR2
+ */
+#define TXRX_CSR2			0x3048
+#define TXRX_CSR2_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR2_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR2_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR2_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR2_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR2_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR2_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR2_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR3
+ */
+#define TXRX_CSR3			0x304c
+#define TXRX_CSR3_BBP_ID0		FIELD32(0x0000007f)
+#define TXRX_CSR3_BBP_ID0_VALID		FIELD32(0x00000080)
+#define TXRX_CSR3_BBP_ID1		FIELD32(0x00007f00)
+#define TXRX_CSR3_BBP_ID1_VALID		FIELD32(0x00008000)
+#define TXRX_CSR3_BBP_ID2		FIELD32(0x007f0000)
+#define TXRX_CSR3_BBP_ID2_VALID		FIELD32(0x00800000)
+#define TXRX_CSR3_BBP_ID3		FIELD32(0x7f000000)
+#define TXRX_CSR3_BBP_ID3_VALID		FIELD32(0x80000000)
+
+/*
+ * TXRX_CSR4: Auto-Responder/Tx-retry register.
+ * AUTORESPOND_PREAMBLE: 0:long, 1:short preamble.
+ * OFDM_TX_RATE_DOWN: 1:enable.
+ * OFDM_TX_RATE_STEP: 0:1-step, 1: 2-step, 2:3-step, 3:4-step.
+ * OFDM_TX_FALLBACK_CCK: 0: Fallback to OFDM 6M only, 1: Fallback to CCK 1M,2M.
+ */
+#define TXRX_CSR4			0x3050
+#define TXRX_CSR4_TX_ACK_TIMEOUT	FIELD32(0x000000ff)
+#define TXRX_CSR4_CNTL_ACK_POLICY	FIELD32(0x00000700)
+#define TXRX_CSR4_ACK_CTS_PSM		FIELD32(0x00010000)
+#define TXRX_CSR4_AUTORESPOND_ENABLE	FIELD32(0x00020000)
+#define TXRX_CSR4_AUTORESPOND_PREAMBLE	FIELD32(0x00040000)
+#define TXRX_CSR4_OFDM_TX_RATE_DOWN	FIELD32(0x00080000)
+#define TXRX_CSR4_OFDM_TX_RATE_STEP	FIELD32(0x00300000)
+#define TXRX_CSR4_OFDM_TX_FALLBACK_CCK	FIELD32(0x00400000)
+#define TXRX_CSR4_LONG_RETRY_LIMIT	FIELD32(0x0f000000)
+#define TXRX_CSR4_SHORT_RETRY_LIMIT	FIELD32(0xf0000000)
+
+/*
+ * TXRX_CSR5
+ */
+#define TXRX_CSR5			0x3054
+
+/*
+ * TXRX_CSR6: ACK/CTS payload consumed time
+ */
+#define TXRX_CSR6			0x3058
+
+/*
+ * TXRX_CSR7: OFDM ACK/CTS payload consumed time for 6/9/12/18 mbps.
+ */
+#define TXRX_CSR7			0x305c
+#define TXRX_CSR7_ACK_CTS_6MBS		FIELD32(0x000000ff)
+#define TXRX_CSR7_ACK_CTS_9MBS		FIELD32(0x0000ff00)
+#define TXRX_CSR7_ACK_CTS_12MBS		FIELD32(0x00ff0000)
+#define TXRX_CSR7_ACK_CTS_18MBS		FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR8: OFDM ACK/CTS payload consumed time for 24/36/48/54 mbps.
+ */
+#define TXRX_CSR8			0x3060
+#define TXRX_CSR8_ACK_CTS_24MBS		FIELD32(0x000000ff)
+#define TXRX_CSR8_ACK_CTS_36MBS		FIELD32(0x0000ff00)
+#define TXRX_CSR8_ACK_CTS_48MBS		FIELD32(0x00ff0000)
+#define TXRX_CSR8_ACK_CTS_54MBS		FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR9: Synchronization control register.
+ * BEACON_INTERVAL: In unit of 1/16 TU.
+ * TSF_TICKING: Enable TSF auto counting.
+ * TSF_SYNC: Tsf sync, 0: disable, 1: infra, 2: ad-hoc/master mode.
+ * BEACON_GEN: Enable beacon generator.
+ */
+#define TXRX_CSR9			0x3064
+#define TXRX_CSR9_BEACON_INTERVAL	FIELD32(0x0000ffff)
+#define TXRX_CSR9_TSF_TICKING		FIELD32(0x00010000)
+#define TXRX_CSR9_TSF_SYNC		FIELD32(0x00060000)
+#define TXRX_CSR9_TBTT_ENABLE		FIELD32(0x00080000)
+#define TXRX_CSR9_BEACON_GEN		FIELD32(0x00100000)
+#define TXRX_CSR9_TIMESTAMP_COMPENSATE	FIELD32(0xff000000)
+
+/*
+ * TXRX_CSR10: BEACON alignment.
+ */
+#define TXRX_CSR10			0x3068
+
+/*
+ * TXRX_CSR11: AES mask.
+ */
+#define TXRX_CSR11			0x306c
+
+/*
+ * TXRX_CSR12: TSF low 32.
+ */
+#define TXRX_CSR12			0x3070
+#define TXRX_CSR12_LOW_TSFTIMER		FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR13: TSF high 32.
+ */
+#define TXRX_CSR13			0x3074
+#define TXRX_CSR13_HIGH_TSFTIMER	FIELD32(0xffffffff)
+
+/*
+ * TXRX_CSR14: TBTT timer.
+ */
+#define TXRX_CSR14			0x3078
+
+/*
+ * TXRX_CSR15: TKIP MIC priority byte "AND" mask.
+ */
+#define TXRX_CSR15			0x307c
+
+/*
+ * PHY control registers.
+ * Some values are set in TU, whereas 1 TU == 1024 us.
+ */
+
+/*
+ * PHY_CSR0: RF/PS control.
+ */
+#define PHY_CSR0			0x3080
+#define PHY_CSR0_PA_PE_BG		FIELD32(0x00010000)
+#define PHY_CSR0_PA_PE_A		FIELD32(0x00020000)
+
+/*
+ * PHY_CSR1
+ */
+#define PHY_CSR1			0x3084
+#define PHY_CSR1_RF_RPI			FIELD32(0x00010000)
+
+/*
+ * PHY_CSR2: Pre-TX BBP control.
+ */
+#define PHY_CSR2			0x3088
+
+/*
+ * PHY_CSR3: BBP serial control register.
+ * VALUE: Register value to program into BBP.
+ * REG_NUM: Selected BBP register.
+ * READ_CONTROL: 0: Write BBP, 1: Read BBP.
+ * BUSY: 1: ASIC is busy execute BBP programming.
+ */
+#define PHY_CSR3			0x308c
+#define PHY_CSR3_VALUE			FIELD32(0x000000ff)
+#define PHY_CSR3_REGNUM			FIELD32(0x00007f00)
+#define PHY_CSR3_READ_CONTROL		FIELD32(0x00008000)
+#define PHY_CSR3_BUSY			FIELD32(0x00010000)
+
+/*
+ * PHY_CSR4: RF serial control register
+ * VALUE: Register value (include register id) serial out to RF/IF chip.
+ * NUMBER_OF_BITS: Number of bits used in RFRegValue (I:20, RFMD:22).
+ * IF_SELECT: 1: select IF to program, 0: select RF to program.
+ * PLL_LD: RF PLL_LD status.
+ * BUSY: 1: ASIC is busy execute RF programming.
+ */
+#define PHY_CSR4			0x3090
+#define PHY_CSR4_VALUE			FIELD32(0x00ffffff)
+#define PHY_CSR4_NUMBER_OF_BITS		FIELD32(0x1f000000)
+#define PHY_CSR4_IF_SELECT		FIELD32(0x20000000)
+#define PHY_CSR4_PLL_LD			FIELD32(0x40000000)
+#define PHY_CSR4_BUSY			FIELD32(0x80000000)
+
+/*
+ * PHY_CSR5: RX to TX signal switch timing control.
+ */
+#define PHY_CSR5			0x3094
+#define PHY_CSR5_IQ_FLIP		FIELD32(0x00000004)
+
+/*
+ * PHY_CSR6: TX to RX signal timing control.
+ */
+#define PHY_CSR6			0x3098
+#define PHY_CSR6_IQ_FLIP		FIELD32(0x00000004)
+
+/*
+ * PHY_CSR7: TX DAC switching timing control.
+ */
+#define PHY_CSR7			0x309c
+
+/*
+ * Security control register.
+ */
+
+/*
+ * SEC_CSR0: Shared key table control.
+ */
+#define SEC_CSR0			0x30a0
+#define SEC_CSR0_BSS0_KEY0_VALID	FIELD32(0x00000001)
+#define SEC_CSR0_BSS0_KEY1_VALID	FIELD32(0x00000002)
+#define SEC_CSR0_BSS0_KEY2_VALID	FIELD32(0x00000004)
+#define SEC_CSR0_BSS0_KEY3_VALID	FIELD32(0x00000008)
+#define SEC_CSR0_BSS1_KEY0_VALID	FIELD32(0x00000010)
+#define SEC_CSR0_BSS1_KEY1_VALID	FIELD32(0x00000020)
+#define SEC_CSR0_BSS1_KEY2_VALID	FIELD32(0x00000040)
+#define SEC_CSR0_BSS1_KEY3_VALID	FIELD32(0x00000080)
+#define SEC_CSR0_BSS2_KEY0_VALID	FIELD32(0x00000100)
+#define SEC_CSR0_BSS2_KEY1_VALID	FIELD32(0x00000200)
+#define SEC_CSR0_BSS2_KEY2_VALID	FIELD32(0x00000400)
+#define SEC_CSR0_BSS2_KEY3_VALID	FIELD32(0x00000800)
+#define SEC_CSR0_BSS3_KEY0_VALID	FIELD32(0x00001000)
+#define SEC_CSR0_BSS3_KEY1_VALID	FIELD32(0x00002000)
+#define SEC_CSR0_BSS3_KEY2_VALID	FIELD32(0x00004000)
+#define SEC_CSR0_BSS3_KEY3_VALID	FIELD32(0x00008000)
+
+/*
+ * SEC_CSR1: Shared key table security mode register.
+ */
+#define SEC_CSR1			0x30a4
+#define SEC_CSR1_BSS0_KEY0_CIPHER_ALG	FIELD32(0x00000007)
+#define SEC_CSR1_BSS0_KEY1_CIPHER_ALG	FIELD32(0x00000070)
+#define SEC_CSR1_BSS0_KEY2_CIPHER_ALG	FIELD32(0x00000700)
+#define SEC_CSR1_BSS0_KEY3_CIPHER_ALG	FIELD32(0x00007000)
+#define SEC_CSR1_BSS1_KEY0_CIPHER_ALG	FIELD32(0x00070000)
+#define SEC_CSR1_BSS1_KEY1_CIPHER_ALG	FIELD32(0x00700000)
+#define SEC_CSR1_BSS1_KEY2_CIPHER_ALG	FIELD32(0x07000000)
+#define SEC_CSR1_BSS1_KEY3_CIPHER_ALG	FIELD32(0x70000000)
+
+/*
+ * Pairwise key table valid bitmap registers.
+ * SEC_CSR2: pairwise key table valid bitmap 0.
+ * SEC_CSR3: pairwise key table valid bitmap 1.
+ */
+#define SEC_CSR2			0x30a8
+#define SEC_CSR3			0x30ac
+
+/*
+ * SEC_CSR4: Pairwise key table lookup control.
+ */
+#define SEC_CSR4			0x30b0
+#define SEC_CSR4_ENABLE_BSS0		FIELD32(0x00000001)
+#define SEC_CSR4_ENABLE_BSS1		FIELD32(0x00000002)
+#define SEC_CSR4_ENABLE_BSS2		FIELD32(0x00000004)
+#define SEC_CSR4_ENABLE_BSS3		FIELD32(0x00000008)
+
+/*
+ * SEC_CSR5: shared key table security mode register.
+ */
+#define SEC_CSR5			0x30b4
+#define SEC_CSR5_BSS2_KEY0_CIPHER_ALG	FIELD32(0x00000007)
+#define SEC_CSR5_BSS2_KEY1_CIPHER_ALG	FIELD32(0x00000070)
+#define SEC_CSR5_BSS2_KEY2_CIPHER_ALG	FIELD32(0x00000700)
+#define SEC_CSR5_BSS2_KEY3_CIPHER_ALG	FIELD32(0x00007000)
+#define SEC_CSR5_BSS3_KEY0_CIPHER_ALG	FIELD32(0x00070000)
+#define SEC_CSR5_BSS3_KEY1_CIPHER_ALG	FIELD32(0x00700000)
+#define SEC_CSR5_BSS3_KEY2_CIPHER_ALG	FIELD32(0x07000000)
+#define SEC_CSR5_BSS3_KEY3_CIPHER_ALG	FIELD32(0x70000000)
+
+/*
+ * STA control registers.
+ */
+
+/*
+ * STA_CSR0: RX PLCP error count & RX FCS error count.
+ */
+#define STA_CSR0			0x30c0
+#define STA_CSR0_FCS_ERROR		FIELD32(0x0000ffff)
+#define STA_CSR0_PLCP_ERROR		FIELD32(0xffff0000)
+
+/*
+ * STA_CSR1: RX False CCA count & RX LONG frame count.
+ */
+#define STA_CSR1			0x30c4
+#define STA_CSR1_PHYSICAL_ERROR		FIELD32(0x0000ffff)
+#define STA_CSR1_FALSE_CCA_ERROR	FIELD32(0xffff0000)
+
+/*
+ * STA_CSR2: TX Beacon count and RX FIFO overflow count.
+ */
+#define STA_CSR2			0x30c8
+#define STA_CSR2_RX_FIFO_OVERFLOW_COUNT	FIELD32(0x0000ffff)
+#define STA_CSR2_RX_OVERFLOW_COUNT	FIELD32(0xffff0000)
+
+/*
+ * STA_CSR3: TX Beacon count.
+ */
+#define STA_CSR3			0x30cc
+#define STA_CSR3_TX_BEACON_COUNT	FIELD32(0x0000ffff)
+
+/*
+ * STA_CSR4: TX Retry count.
+ */
+#define STA_CSR4			0x30d0
+#define STA_CSR4_TX_NO_RETRY_COUNT	FIELD32(0x0000ffff)
+#define STA_CSR4_TX_ONE_RETRY_COUNT	FIELD32(0xffff0000)
+
+/*
+ * STA_CSR5: TX Retry count.
+ */
+#define STA_CSR5			0x30d4
+#define STA_CSR4_TX_MULTI_RETRY_COUNT	FIELD32(0x0000ffff)
+#define STA_CSR4_TX_RETRY_FAIL_COUNT	FIELD32(0xffff0000)
+
+/*
+ * QOS control registers.
+ */
+
+/*
+ * QOS_CSR1: TXOP holder MAC address register.
+ */
+#define QOS_CSR1			0x30e4
+#define QOS_CSR1_BYTE4			FIELD32(0x000000ff)
+#define QOS_CSR1_BYTE5			FIELD32(0x0000ff00)
+
+/*
+ * QOS_CSR2: TXOP holder timeout register.
+ */
+#define QOS_CSR2			0x30e8
+
+/*
+ * RX QOS-CFPOLL MAC address register.
+ * QOS_CSR3: RX QOS-CFPOLL MAC address 0.
+ * QOS_CSR4: RX QOS-CFPOLL MAC address 1.
+ */
+#define QOS_CSR3			0x30ec
+#define QOS_CSR4			0x30f0
+
+/*
+ * QOS_CSR5: "QosControl" field of the RX QOS-CFPOLL.
+ */
+#define QOS_CSR5			0x30f4
+
+/*
+ * WMM Scheduler Register
+ */
+
+/*
+ * AIFSN_CSR: AIFSN for each EDCA AC.
+ * AIFSN0: For AC_VO.
+ * AIFSN1: For AC_VI.
+ * AIFSN2: For AC_BE.
+ * AIFSN3: For AC_BK.
+ */
+#define AIFSN_CSR			0x0400
+#define AIFSN_CSR_AIFSN0		FIELD32(0x0000000f)
+#define AIFSN_CSR_AIFSN1		FIELD32(0x000000f0)
+#define AIFSN_CSR_AIFSN2		FIELD32(0x00000f00)
+#define AIFSN_CSR_AIFSN3		FIELD32(0x0000f000)
+
+/*
+ * CWMIN_CSR: CWmin for each EDCA AC.
+ * CWMIN0: For AC_VO.
+ * CWMIN1: For AC_VI.
+ * CWMIN2: For AC_BE.
+ * CWMIN3: For AC_BK.
+ */
+#define CWMIN_CSR			0x0404
+#define CWMIN_CSR_CWMIN0		FIELD32(0x0000000f)
+#define CWMIN_CSR_CWMIN1		FIELD32(0x000000f0)
+#define CWMIN_CSR_CWMIN2		FIELD32(0x00000f00)
+#define CWMIN_CSR_CWMIN3		FIELD32(0x0000f000)
+
+/*
+ * CWMAX_CSR: CWmax for each EDCA AC.
+ * CWMAX0: For AC_VO.
+ * CWMAX1: For AC_VI.
+ * CWMAX2: For AC_BE.
+ * CWMAX3: For AC_BK.
+ */
+#define CWMAX_CSR			0x0408
+#define CWMAX_CSR_CWMAX0		FIELD32(0x0000000f)
+#define CWMAX_CSR_CWMAX1		FIELD32(0x000000f0)
+#define CWMAX_CSR_CWMAX2		FIELD32(0x00000f00)
+#define CWMAX_CSR_CWMAX3		FIELD32(0x0000f000)
+
+/*
+ * AC_TXOP_CSR0: AC_VO/AC_VI TXOP register.
+ * AC0_TX_OP: For AC_VO, in unit of 32us.
+ * AC1_TX_OP: For AC_VI, in unit of 32us.
+ */
+#define AC_TXOP_CSR0			0x040c
+#define AC_TXOP_CSR0_AC0_TX_OP		FIELD32(0x0000ffff)
+#define AC_TXOP_CSR0_AC1_TX_OP		FIELD32(0xffff0000)
+
+/*
+ * AC_TXOP_CSR1: AC_BE/AC_BK TXOP register.
+ * AC2_TX_OP: For AC_BE, in unit of 32us.
+ * AC3_TX_OP: For AC_BK, in unit of 32us.
+ */
+#define AC_TXOP_CSR1			0x0410
+#define AC_TXOP_CSR1_AC2_TX_OP		FIELD32(0x0000ffff)
+#define AC_TXOP_CSR1_AC3_TX_OP		FIELD32(0xffff0000)
+
+/*
+ * BBP registers.
+ * The wordsize of the BBP is 8 bits.
+ */
+
+/*
+ * R2
+ */
+#define BBP_R2_BG_MODE			FIELD8(0x20)
+
+/*
+ * R3
+ */
+#define BBP_R3_SMART_MODE		FIELD8(0x01)
+
+/*
+ * R4: RX antenna control
+ * FRAME_END: 1 - DPDT, 0 - SPDT (Only valid for 802.11G, RF2527 & RF2529)
+ */
+
+/*
+ * ANTENNA_CONTROL semantics (guessed):
+ * 0x1: Software controlled antenna switching (fixed or SW diversity)
+ * 0x2: Hardware diversity.
+ */
+#define BBP_R4_RX_ANTENNA_CONTROL	FIELD8(0x03)
+#define BBP_R4_RX_FRAME_END		FIELD8(0x20)
+
+/*
+ * R77
+ */
+#define BBP_R77_RX_ANTENNA		FIELD8(0x03)
+
+/*
+ * RF registers
+ */
+
+/*
+ * RF 3
+ */
+#define RF3_TXPOWER			FIELD32(0x00003e00)
+
+/*
+ * RF 4
+ */
+#define RF4_FREQ_OFFSET			FIELD32(0x0003f000)
+
+/*
+ * EEPROM content.
+ * The wordsize of the EEPROM is 16 bits.
+ */
+
+/*
+ * HW MAC address.
+ */
+#define EEPROM_MAC_ADDR_0		0x0002
+#define EEPROM_MAC_ADDR_BYTE0		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE1		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR1		0x0003
+#define EEPROM_MAC_ADDR_BYTE2		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE3		FIELD16(0xff00)
+#define EEPROM_MAC_ADDR_2		0x0004
+#define EEPROM_MAC_ADDR_BYTE4		FIELD16(0x00ff)
+#define EEPROM_MAC_ADDR_BYTE5		FIELD16(0xff00)
+
+/*
+ * EEPROM antenna.
+ * ANTENNA_NUM: Number of antennas.
+ * TX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * RX_DEFAULT: Default antenna 0: diversity, 1: A, 2: B.
+ * FRAME_TYPE: 0: DPDT , 1: SPDT , noted this bit is valid for g only.
+ * DYN_TXAGC: Dynamic TX AGC control.
+ * HARDWARE_RADIO: 1: Hardware controlled radio. Read GPIO0.
+ * RF_TYPE: Rf_type of this adapter.
+ */
+#define EEPROM_ANTENNA			0x0010
+#define EEPROM_ANTENNA_NUM		FIELD16(0x0003)
+#define EEPROM_ANTENNA_TX_DEFAULT	FIELD16(0x000c)
+#define EEPROM_ANTENNA_RX_DEFAULT	FIELD16(0x0030)
+#define EEPROM_ANTENNA_FRAME_TYPE	FIELD16(0x0040)
+#define EEPROM_ANTENNA_DYN_TXAGC	FIELD16(0x0200)
+#define EEPROM_ANTENNA_HARDWARE_RADIO	FIELD16(0x0400)
+#define EEPROM_ANTENNA_RF_TYPE		FIELD16(0xf800)
+
+/*
+ * EEPROM NIC config.
+ * EXTERNAL_LNA: External LNA.
+ */
+#define EEPROM_NIC			0x0011
+#define EEPROM_NIC_EXTERNAL_LNA		FIELD16(0x0010)
+
+/*
+ * EEPROM geography.
+ * GEO_A: Default geographical setting for 5GHz band
+ * GEO: Default geographical setting.
+ */
+#define EEPROM_GEOGRAPHY		0x0012
+#define EEPROM_GEOGRAPHY_GEO_A		FIELD16(0x00ff)
+#define EEPROM_GEOGRAPHY_GEO		FIELD16(0xff00)
+
+/*
+ * EEPROM BBP.
+ */
+#define EEPROM_BBP_START		0x0013
+#define EEPROM_BBP_SIZE			16
+#define EEPROM_BBP_VALUE		FIELD16(0x00ff)
+#define EEPROM_BBP_REG_ID		FIELD16(0xff00)
+
+/*
+ * EEPROM TXPOWER 802.11G
+ */
+#define EEPROM_TXPOWER_G_START		0x0023
+#define EEPROM_TXPOWER_G_SIZE		7
+#define EEPROM_TXPOWER_G_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_G_2		FIELD16(0xff00)
+
+/*
+ * EEPROM Frequency
+ */
+#define EEPROM_FREQ			0x002f
+#define EEPROM_FREQ_OFFSET		FIELD16(0x00ff)
+#define EEPROM_FREQ_SEQ_MASK		FIELD16(0xff00)
+#define EEPROM_FREQ_SEQ			FIELD16(0x0300)
+
+/*
+ * EEPROM LED.
+ * POLARITY_RDY_G: Polarity RDY_G setting.
+ * POLARITY_RDY_A: Polarity RDY_A setting.
+ * POLARITY_ACT: Polarity ACT setting.
+ * POLARITY_GPIO_0: Polarity GPIO0 setting.
+ * POLARITY_GPIO_1: Polarity GPIO1 setting.
+ * POLARITY_GPIO_2: Polarity GPIO2 setting.
+ * POLARITY_GPIO_3: Polarity GPIO3 setting.
+ * POLARITY_GPIO_4: Polarity GPIO4 setting.
+ * LED_MODE: Led mode.
+ */
+#define EEPROM_LED			0x0030
+#define EEPROM_LED_POLARITY_RDY_G	FIELD16(0x0001)
+#define EEPROM_LED_POLARITY_RDY_A	FIELD16(0x0002)
+#define EEPROM_LED_POLARITY_ACT		FIELD16(0x0004)
+#define EEPROM_LED_POLARITY_GPIO_0	FIELD16(0x0008)
+#define EEPROM_LED_POLARITY_GPIO_1	FIELD16(0x0010)
+#define EEPROM_LED_POLARITY_GPIO_2	FIELD16(0x0020)
+#define EEPROM_LED_POLARITY_GPIO_3	FIELD16(0x0040)
+#define EEPROM_LED_POLARITY_GPIO_4	FIELD16(0x0080)
+#define EEPROM_LED_LED_MODE		FIELD16(0x1f00)
+
+/*
+ * EEPROM TXPOWER 802.11A
+ */
+#define EEPROM_TXPOWER_A_START		0x0031
+#define EEPROM_TXPOWER_A_SIZE		12
+#define EEPROM_TXPOWER_A_1		FIELD16(0x00ff)
+#define EEPROM_TXPOWER_A_2		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11BG
+ */
+#define EEPROM_RSSI_OFFSET_BG		0x004d
+#define EEPROM_RSSI_OFFSET_BG_1		FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_BG_2		FIELD16(0xff00)
+
+/*
+ * EEPROM RSSI offset 802.11A
+ */
+#define EEPROM_RSSI_OFFSET_A		0x004e
+#define EEPROM_RSSI_OFFSET_A_1		FIELD16(0x00ff)
+#define EEPROM_RSSI_OFFSET_A_2		FIELD16(0xff00)
+
+/*
+ * DMA descriptor defines.
+ */
+#define TXD_DESC_SIZE			( 6 * sizeof(__le32) )
+#define TXINFO_SIZE			( 6 * sizeof(__le32) )
+#define RXD_DESC_SIZE			( 6 * sizeof(__le32) )
+
+/*
+ * TX descriptor format for TX, PRIO and Beacon Ring.
+ */
+
+/*
+ * Word0
+ * BURST: Next frame belongs to same "burst" event.
+ * TKIP_MIC: ASIC appends TKIP MIC if TKIP is used.
+ * KEY_TABLE: Use per-client pairwise KEY table.
+ * KEY_INDEX:
+ * Key index (0~31) to the pairwise KEY table.
+ * 0~3 to shared KEY table 0 (BSS0).
+ * 4~7 to shared KEY table 1 (BSS1).
+ * 8~11 to shared KEY table 2 (BSS2).
+ * 12~15 to shared KEY table 3 (BSS3).
+ * BURST2: For backward compatibility, set to same value as BURST.
+ */
+#define TXD_W0_BURST			FIELD32(0x00000001)
+#define TXD_W0_VALID			FIELD32(0x00000002)
+#define TXD_W0_MORE_FRAG		FIELD32(0x00000004)
+#define TXD_W0_ACK			FIELD32(0x00000008)
+#define TXD_W0_TIMESTAMP		FIELD32(0x00000010)
+#define TXD_W0_OFDM			FIELD32(0x00000020)
+#define TXD_W0_IFS			FIELD32(0x00000040)
+#define TXD_W0_RETRY_MODE		FIELD32(0x00000080)
+#define TXD_W0_TKIP_MIC			FIELD32(0x00000100)
+#define TXD_W0_KEY_TABLE		FIELD32(0x00000200)
+#define TXD_W0_KEY_INDEX		FIELD32(0x0000fc00)
+#define TXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define TXD_W0_BURST2			FIELD32(0x10000000)
+#define TXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * Word1
+ * HOST_Q_ID: EDCA/HCCA queue ID.
+ * HW_SEQUENCE: MAC overwrites the frame sequence number.
+ * BUFFER_COUNT: Number of buffers in this TXD.
+ */
+#define TXD_W1_HOST_Q_ID		FIELD32(0x0000000f)
+#define TXD_W1_AIFSN			FIELD32(0x000000f0)
+#define TXD_W1_CWMIN			FIELD32(0x00000f00)
+#define TXD_W1_CWMAX			FIELD32(0x0000f000)
+#define TXD_W1_IV_OFFSET		FIELD32(0x003f0000)
+#define TXD_W1_HW_SEQUENCE		FIELD32(0x10000000)
+#define TXD_W1_BUFFER_COUNT		FIELD32(0xe0000000)
+
+/*
+ * Word2: PLCP information
+ */
+#define TXD_W2_PLCP_SIGNAL		FIELD32(0x000000ff)
+#define TXD_W2_PLCP_SERVICE		FIELD32(0x0000ff00)
+#define TXD_W2_PLCP_LENGTH_LOW		FIELD32(0x00ff0000)
+#define TXD_W2_PLCP_LENGTH_HIGH		FIELD32(0xff000000)
+
+/*
+ * Word3
+ */
+#define TXD_W3_IV			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ */
+#define TXD_W4_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word5
+ * FRAME_OFFSET: Frame start offset inside ASIC TXFIFO (after TXINFO field).
+ * PACKET_ID: Driver assigned packet ID to categorize TXResult in interrupt.
+ * WAITING_DMA_DONE_INT: TXD been filled with data
+ * and waiting for TxDoneISR housekeeping.
+ */
+#define TXD_W5_FRAME_OFFSET		FIELD32(0x000000ff)
+#define TXD_W5_PACKET_ID		FIELD32(0x0000ff00)
+#define TXD_W5_TX_POWER			FIELD32(0x00ff0000)
+#define TXD_W5_WAITING_DMA_DONE_INT	FIELD32(0x01000000)
+
+/*
+ * RX descriptor format for RX Ring.
+ */
+
+/*
+ * Word0
+ * CIPHER_ERROR: 1:ICV error, 2:MIC error, 3:invalid key.
+ * KEY_INDEX: Decryption key actually used.
+ */
+#define RXD_W0_OWNER_NIC		FIELD32(0x00000001)
+#define RXD_W0_DROP			FIELD32(0x00000002)
+#define RXD_W0_UNICAST_TO_ME		FIELD32(0x00000004)
+#define RXD_W0_MULTICAST		FIELD32(0x00000008)
+#define RXD_W0_BROADCAST		FIELD32(0x00000010)
+#define RXD_W0_MY_BSS			FIELD32(0x00000020)
+#define RXD_W0_CRC_ERROR		FIELD32(0x00000040)
+#define RXD_W0_OFDM			FIELD32(0x00000080)
+#define RXD_W0_CIPHER_ERROR		FIELD32(0x00000300)
+#define RXD_W0_KEY_INDEX		FIELD32(0x0000fc00)
+#define RXD_W0_DATABYTE_COUNT		FIELD32(0x0fff0000)
+#define RXD_W0_CIPHER_ALG		FIELD32(0xe0000000)
+
+/*
+ * WORD1
+ * SIGNAL: RX raw data rate reported by BBP.
+ * RSSI: RSSI reported by BBP.
+ */
+#define RXD_W1_SIGNAL			FIELD32(0x000000ff)
+#define RXD_W1_RSSI_AGC			FIELD32(0x00001f00)
+#define RXD_W1_RSSI_LNA			FIELD32(0x00006000)
+#define RXD_W1_FRAME_OFFSET		FIELD32(0x7f000000)
+
+/*
+ * Word2
+ * IV: Received IV of originally encrypted.
+ */
+#define RXD_W2_IV			FIELD32(0xffffffff)
+
+/*
+ * Word3
+ * EIV: Received EIV of originally encrypted.
+ */
+#define RXD_W3_EIV			FIELD32(0xffffffff)
+
+/*
+ * Word4
+ * ICV: Received ICV of originally encrypted.
+ * NOTE: This is a guess, the official definition is "reserved"
+ */
+#define RXD_W4_ICV			FIELD32(0xffffffff)
+
+/*
+ * the above 20-byte is called RXINFO and will be DMAed to MAC RX block
+ * and passed to the HOST driver.
+ * The following fields are for DMA block and HOST usage only.
+ * Can't be touched by ASIC MAC block.
+ */
+
+/*
+ * Word5
+ */
+#define RXD_W5_RESERVED			FIELD32(0xffffffff)
+
+/*
+ * Macros for converting txpower from EEPROM to mac80211 value
+ * and from mac80211 value to register value.
+ */
+#define MIN_TXPOWER	0
+#define MAX_TXPOWER	31
+#define DEFAULT_TXPOWER	24
+
+#define TXPOWER_FROM_DEV(__txpower) \
+	(((u8)(__txpower)) > MAX_TXPOWER) ? DEFAULT_TXPOWER : (__txpower)
+
+#define TXPOWER_TO_DEV(__txpower) \
+	clamp_t(char, __txpower, MIN_TXPOWER, MAX_TXPOWER)
+
+#endif /* RT73USB_H */