File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/drivers/net/wireless/rt2x00/rt2500pci.c b/drivers/net/wireless/rt2x00/rt2500pci.c
new file mode 100644
index 0000000..1a6740b
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500pci.c
@@ -0,0 +1,2148 @@
+/*
+	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
+	<http://rt2x00.serialmonkey.com>
+
+	This program is free software; you can redistribute it and/or modify
+	it under the terms of the GNU General Public License as published by
+	the Free Software Foundation; either version 2 of the License, or
+	(at your option) any later version.
+
+	This program is distributed in the hope that it will be useful,
+	but WITHOUT ANY WARRANTY; without even the implied warranty of
+	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+	GNU General Public License for more details.
+
+	You should have received a copy of the GNU General Public License
+	along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+	Module: rt2500pci
+	Abstract: rt2500pci device specific routines.
+	Supported chipsets: RT2560.
+ */
+
+#include <linux/delay.h>
+#include <linux/etherdevice.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/eeprom_93cx6.h>
+#include <linux/slab.h>
+
+#include "rt2x00.h"
+#include "rt2x00mmio.h"
+#include "rt2x00pci.h"
+#include "rt2500pci.h"
+
+/*
+ * Register access.
+ * All access to the CSR registers will go through the methods
+ * rt2x00mmio_register_read and rt2x00mmio_register_write.
+ * BBP and RF register require indirect register access,
+ * and use the CSR registers BBPCSR and RFCSR to achieve this.
+ * These indirect registers work with busy bits,
+ * and we will try maximal REGISTER_BUSY_COUNT times to access
+ * the register while taking a REGISTER_BUSY_DELAY us delay
+ * between each attampt. When the busy bit is still set at that time,
+ * the access attempt is considered to have failed,
+ * and we will print an error.
+ */
+#define WAIT_FOR_BBP(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
+#define WAIT_FOR_RF(__dev, __reg) \
+	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
+
+static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
+				const unsigned int word, const u8 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, u8 *value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the BBP becomes available, afterwards we
+	 * can safely write the read request into the register.
+	 * After the data has been written, we wait until hardware
+	 * returns the correct value, if at any time the register
+	 * doesn't become available in time, reg will be 0xffffffff
+	 * which means we return 0xff to the caller.
+	 */
+	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
+		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
+		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
+
+		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
+
+		WAIT_FOR_BBP(rt2x00dev, &reg);
+	}
+
+	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
+			       const unsigned int word, const u32 value)
+{
+	u32 reg;
+
+	mutex_lock(&rt2x00dev->csr_mutex);
+
+	/*
+	 * Wait until the RF becomes available, afterwards we
+	 * can safely write the new data into the register.
+	 */
+	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
+		reg = 0;
+		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
+		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
+		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
+		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
+
+		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
+		rt2x00_rf_write(rt2x00dev, word, value);
+	}
+
+	mutex_unlock(&rt2x00dev->csr_mutex);
+}
+
+static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
+	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
+	eeprom->reg_data_clock =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
+	eeprom->reg_chip_select =
+	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
+}
+
+static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
+{
+	struct rt2x00_dev *rt2x00dev = eeprom->data;
+	u32 reg = 0;
+
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
+			   !!eeprom->reg_data_clock);
+	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
+			   !!eeprom->reg_chip_select);
+
+	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
+}
+
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+static const struct rt2x00debug rt2500pci_rt2x00debug = {
+	.owner	= THIS_MODULE,
+	.csr	= {
+		.read		= rt2x00mmio_register_read,
+		.write		= rt2x00mmio_register_write,
+		.flags		= RT2X00DEBUGFS_OFFSET,
+		.word_base	= CSR_REG_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= CSR_REG_SIZE / sizeof(u32),
+	},
+	.eeprom	= {
+		.read		= rt2x00_eeprom_read,
+		.write		= rt2x00_eeprom_write,
+		.word_base	= EEPROM_BASE,
+		.word_size	= sizeof(u16),
+		.word_count	= EEPROM_SIZE / sizeof(u16),
+	},
+	.bbp	= {
+		.read		= rt2500pci_bbp_read,
+		.write		= rt2500pci_bbp_write,
+		.word_base	= BBP_BASE,
+		.word_size	= sizeof(u8),
+		.word_count	= BBP_SIZE / sizeof(u8),
+	},
+	.rf	= {
+		.read		= rt2x00_rf_read,
+		.write		= rt2500pci_rf_write,
+		.word_base	= RF_BASE,
+		.word_size	= sizeof(u32),
+		.word_count	= RF_SIZE / sizeof(u32),
+	},
+};
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+
+static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
+}
+
+#ifdef CONFIG_RT2X00_LIB_LEDS
+static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
+				     enum led_brightness brightness)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	unsigned int enabled = brightness != LED_OFF;
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+
+	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
+		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
+	else if (led->type == LED_TYPE_ACTIVITY)
+		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
+
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+}
+
+static int rt2500pci_blink_set(struct led_classdev *led_cdev,
+			       unsigned long *delay_on,
+			       unsigned long *delay_off)
+{
+	struct rt2x00_led *led =
+	    container_of(led_cdev, struct rt2x00_led, led_dev);
+	u32 reg;
+
+	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
+	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
+	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
+	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
+
+	return 0;
+}
+
+static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
+			       struct rt2x00_led *led,
+			       enum led_type type)
+{
+	led->rt2x00dev = rt2x00dev;
+	led->type = type;
+	led->led_dev.brightness_set = rt2500pci_brightness_set;
+	led->led_dev.blink_set = rt2500pci_blink_set;
+	led->flags = LED_INITIALIZED;
+}
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+/*
+ * Configuration handlers.
+ */
+static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
+				    const unsigned int filter_flags)
+{
+	u32 reg;
+
+	/*
+	 * Start configuration steps.
+	 * Note that the version error will always be dropped
+	 * and broadcast frames will always be accepted since
+	 * there is no filter for it at this time.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
+			   !(filter_flags & FIF_FCSFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
+			   !(filter_flags & FIF_PLCPFAIL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
+			   !(filter_flags & FIF_CONTROL));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
+			   !rt2x00dev->intf_ap_count);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
+	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
+			   !(filter_flags & FIF_ALLMULTI));
+	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+}
+
+static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
+				  struct rt2x00_intf *intf,
+				  struct rt2x00intf_conf *conf,
+				  const unsigned int flags)
+{
+	struct data_queue *queue = rt2x00dev->bcn;
+	unsigned int bcn_preload;
+	u32 reg;
+
+	if (flags & CONFIG_UPDATE_TYPE) {
+		/*
+		 * Enable beacon config
+		 */
+		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
+		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
+		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
+		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
+		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
+
+		/*
+		 * Enable synchronisation.
+		 */
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+	}
+
+	if (flags & CONFIG_UPDATE_MAC)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
+					      conf->mac, sizeof(conf->mac));
+
+	if (flags & CONFIG_UPDATE_BSSID)
+		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
+					      conf->bssid, sizeof(conf->bssid));
+}
+
+static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
+				 struct rt2x00lib_erp *erp,
+				 u32 changed)
+{
+	int preamble_mask;
+	u32 reg;
+
+	/*
+	 * When short preamble is enabled, we should set bit 0x08
+	 */
+	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
+		preamble_mask = erp->short_preamble << 3;
+
+		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
+		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
+		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
+		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
+		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
+		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 10));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
+		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 20));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
+		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 55));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
+		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
+		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
+		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
+				   GET_DURATION(ACK_SIZE, 110));
+		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
+	}
+
+	if (changed & BSS_CHANGED_BASIC_RATES)
+		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
+
+	if (changed & BSS_CHANGED_ERP_SLOT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
+		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
+		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
+		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
+		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
+		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
+		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
+	}
+
+	if (changed & BSS_CHANGED_BEACON_INT) {
+		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
+		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
+				   erp->beacon_int * 16);
+		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
+				   erp->beacon_int * 16);
+		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
+	}
+
+}
+
+static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
+				 struct antenna_setup *ant)
+{
+	u32 reg;
+	u8 r14;
+	u8 r2;
+
+	/*
+	 * We should never come here because rt2x00lib is supposed
+	 * to catch this and send us the correct antenna explicitely.
+	 */
+	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
+	       ant->tx == ANTENNA_SW_DIVERSITY);
+
+	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
+	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
+	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
+
+	/*
+	 * Configure the TX antenna.
+	 */
+	switch (ant->tx) {
+	case ANTENNA_A:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
+		break;
+	}
+
+	/*
+	 * Configure the RX antenna.
+	 */
+	switch (ant->rx) {
+	case ANTENNA_A:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
+		break;
+	case ANTENNA_B:
+	default:
+		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
+		break;
+	}
+
+	/*
+	 * RT2525E and RT5222 need to flip TX I/Q
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
+		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
+
+		/*
+		 * RT2525E does not need RX I/Q Flip.
+		 */
+		if (rt2x00_rf(rt2x00dev, RF2525E))
+			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
+	} else {
+		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
+		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
+	}
+
+	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
+	rt2500pci_bbp_write(rt2x00dev, 14, r14);
+	rt2500pci_bbp_write(rt2x00dev, 2, r2);
+}
+
+static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
+				     struct rf_channel *rf, const int txpower)
+{
+	u8 r70;
+
+	/*
+	 * Set TXpower.
+	 */
+	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+
+	/*
+	 * Switch on tuning bits.
+	 * For RT2523 devices we do not need to update the R1 register.
+	 */
+	if (!rt2x00_rf(rt2x00dev, RF2523))
+		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
+
+	/*
+	 * For RT2525 we should first set the channel to half band higher.
+	 */
+	if (rt2x00_rf(rt2x00dev, RF2525)) {
+		static const u32 vals[] = {
+			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
+			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
+			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
+			0x00080d2e, 0x00080d3a
+		};
+
+		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
+		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+		if (rf->rf4)
+			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+	}
+
+	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
+	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+	if (rf->rf4)
+		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
+
+	/*
+	 * Channel 14 requires the Japan filter bit to be set.
+	 */
+	r70 = 0x46;
+	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
+	rt2500pci_bbp_write(rt2x00dev, 70, r70);
+
+	msleep(1);
+
+	/*
+	 * Switch off tuning bits.
+	 * For RT2523 devices we do not need to update the R1 register.
+	 */
+	if (!rt2x00_rf(rt2x00dev, RF2523)) {
+		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
+		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
+	}
+
+	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
+	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
+
+	/*
+	 * Clear false CRC during channel switch.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
+}
+
+static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
+				     const int txpower)
+{
+	u32 rf3;
+
+	rt2x00_rf_read(rt2x00dev, 3, &rf3);
+	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
+	rt2500pci_rf_write(rt2x00dev, 3, rf3);
+}
+
+static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
+					 struct rt2x00lib_conf *libconf)
+{
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
+			   libconf->conf->long_frame_max_tx_count);
+	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
+			   libconf->conf->short_frame_max_tx_count);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+}
+
+static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
+				struct rt2x00lib_conf *libconf)
+{
+	enum dev_state state =
+	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
+		STATE_SLEEP : STATE_AWAKE;
+	u32 reg;
+
+	if (state == STATE_SLEEP) {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
+				   (rt2x00dev->beacon_int - 20) * 16);
+		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
+				   libconf->conf->listen_interval - 1);
+
+		/* We must first disable autowake before it can be enabled */
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	} else {
+		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
+		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
+	}
+
+	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
+}
+
+static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
+			     struct rt2x00lib_conf *libconf,
+			     const unsigned int flags)
+{
+	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
+		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
+					 libconf->conf->power_level);
+	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
+	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
+		rt2500pci_config_txpower(rt2x00dev,
+					 libconf->conf->power_level);
+	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
+		rt2500pci_config_retry_limit(rt2x00dev, libconf);
+	if (flags & IEEE80211_CONF_CHANGE_PS)
+		rt2500pci_config_ps(rt2x00dev, libconf);
+}
+
+/*
+ * Link tuning
+ */
+static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual)
+{
+	u32 reg;
+
+	/*
+	 * Update FCS error count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
+
+	/*
+	 * Update False CCA count from register.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
+	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
+}
+
+static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
+				     struct link_qual *qual, u8 vgc_level)
+{
+	if (qual->vgc_level_reg != vgc_level) {
+		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
+		qual->vgc_level = vgc_level;
+		qual->vgc_level_reg = vgc_level;
+	}
+}
+
+static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
+				  struct link_qual *qual)
+{
+	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
+}
+
+static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
+				 struct link_qual *qual, const u32 count)
+{
+	/*
+	 * To prevent collisions with MAC ASIC on chipsets
+	 * up to version C the link tuning should halt after 20
+	 * seconds while being associated.
+	 */
+	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
+	    rt2x00dev->intf_associated && count > 20)
+		return;
+
+	/*
+	 * Chipset versions C and lower should directly continue
+	 * to the dynamic CCA tuning. Chipset version D and higher
+	 * should go straight to dynamic CCA tuning when they
+	 * are not associated.
+	 */
+	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
+	    !rt2x00dev->intf_associated)
+		goto dynamic_cca_tune;
+
+	/*
+	 * A too low RSSI will cause too much false CCA which will
+	 * then corrupt the R17 tuning. To remidy this the tuning should
+	 * be stopped (While making sure the R17 value will not exceed limits)
+	 */
+	if (qual->rssi < -80 && count > 20) {
+		if (qual->vgc_level_reg >= 0x41)
+			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+		return;
+	}
+
+	/*
+	 * Special big-R17 for short distance
+	 */
+	if (qual->rssi >= -58) {
+		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
+		return;
+	}
+
+	/*
+	 * Special mid-R17 for middle distance
+	 */
+	if (qual->rssi >= -74) {
+		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
+		return;
+	}
+
+	/*
+	 * Leave short or middle distance condition, restore r17
+	 * to the dynamic tuning range.
+	 */
+	if (qual->vgc_level_reg >= 0x41) {
+		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
+		return;
+	}
+
+dynamic_cca_tune:
+
+	/*
+	 * R17 is inside the dynamic tuning range,
+	 * start tuning the link based on the false cca counter.
+	 */
+	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
+		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
+	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
+		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
+}
+
+/*
+ * Queue handlers.
+ */
+static void rt2500pci_start_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2500pci_kick_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_AC_VI:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	default:
+		break;
+	}
+}
+
+static void rt2500pci_stop_queue(struct data_queue *queue)
+{
+	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
+	u32 reg;
+
+	switch (queue->qid) {
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_ATIM:
+		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
+		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
+		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
+		break;
+	case QID_RX:
+		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
+		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
+		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
+		break;
+	case QID_BEACON:
+		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+		/*
+		 * Wait for possibly running tbtt tasklets.
+		 */
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Initialization functions.
+ */
+static bool rt2500pci_get_entry_state(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		        rt2x00_get_field32(word, TXD_W0_VALID));
+	}
+}
+
+static void rt2500pci_clear_entry(struct queue_entry *entry)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	u32 word;
+
+	if (entry->queue->qid == QID_RX) {
+		rt2x00_desc_read(entry_priv->desc, 1, &word);
+		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+		rt2x00_desc_write(entry_priv->desc, 1, word);
+
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	} else {
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
+		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
+		rt2x00_desc_write(entry_priv->desc, 0, word);
+	}
+}
+
+static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
+{
+	struct queue_entry_priv_mmio *entry_priv;
+	u32 reg;
+
+	/*
+	 * Initialize registers.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
+	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
+	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
+
+	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
+	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
+
+	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
+	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
+
+	entry_priv = rt2x00dev->atim->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
+	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
+
+	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
+	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
+	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
+	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
+
+	entry_priv = rt2x00dev->rx->entries[0].priv_data;
+	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
+	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
+			   entry_priv->desc_dma);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
+
+	return 0;
+}
+
+static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+
+	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
+	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
+
+	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
+	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
+	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
+	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
+	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
+			   rt2x00dev->rx->data_size / 128);
+	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
+
+	/*
+	 * Always use CWmin and CWmax set in descriptor.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
+	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
+	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
+	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
+	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
+	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
+
+	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
+	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
+	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
+	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
+	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
+	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
+	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
+	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
+	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
+	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
+	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
+	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
+	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
+	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
+	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
+
+	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
+	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
+
+	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
+		return -EBUSY;
+
+	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
+
+	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
+	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
+	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
+	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
+	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
+
+	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
+
+	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
+	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
+	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
+	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
+
+	/*
+	 * We must clear the FCS and FIFO error count.
+	 * These registers are cleared on read,
+	 * so we may pass a useless variable to store the value.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
+	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
+
+	return 0;
+}
+
+static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u8 value;
+
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2500pci_bbp_read(rt2x00dev, 0, &value);
+		if ((value != 0xff) && (value != 0x00))
+			return 0;
+		udelay(REGISTER_BUSY_DELAY);
+	}
+
+	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
+	return -EACCES;
+}
+
+static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
+{
+	unsigned int i;
+	u16 eeprom;
+	u8 reg_id;
+	u8 value;
+
+	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
+		return -EACCES;
+
+	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
+	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
+	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
+	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
+	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
+	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
+	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
+	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
+	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
+	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
+	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
+	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
+	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
+	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
+	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
+	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
+	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
+	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
+	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
+	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
+	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
+	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
+	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
+
+	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
+		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
+
+		if (eeprom != 0xffff && eeprom != 0x0000) {
+			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
+			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
+			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Device state switch handlers.
+ */
+static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
+				 enum dev_state state)
+{
+	int mask = (state == STATE_RADIO_IRQ_OFF);
+	u32 reg;
+	unsigned long flags;
+
+	/*
+	 * When interrupts are being enabled, the interrupt registers
+	 * should clear the register to assure a clean state.
+	 */
+	if (state == STATE_RADIO_IRQ_ON) {
+		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+	}
+
+	/*
+	 * Only toggle the interrupts bits we are going to use.
+	 * Non-checked interrupt bits are disabled by default.
+	 */
+	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
+	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
+	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
+
+	if (state == STATE_RADIO_IRQ_OFF) {
+		/*
+		 * Ensure that all tasklets are finished.
+		 */
+		tasklet_kill(&rt2x00dev->txstatus_tasklet);
+		tasklet_kill(&rt2x00dev->rxdone_tasklet);
+		tasklet_kill(&rt2x00dev->tbtt_tasklet);
+	}
+}
+
+static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Initialize all registers.
+	 */
+	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
+		     rt2500pci_init_registers(rt2x00dev) ||
+		     rt2500pci_init_bbp(rt2x00dev)))
+		return -EIO;
+
+	return 0;
+}
+
+static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
+{
+	/*
+	 * Disable power
+	 */
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
+}
+
+static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
+			       enum dev_state state)
+{
+	u32 reg, reg2;
+	unsigned int i;
+	char put_to_sleep;
+	char bbp_state;
+	char rf_state;
+
+	put_to_sleep = (state != STATE_AWAKE);
+
+	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
+	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
+	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
+	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
+	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+
+	/*
+	 * Device is not guaranteed to be in the requested state yet.
+	 * We must wait until the register indicates that the
+	 * device has entered the correct state.
+	 */
+	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
+		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
+		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
+		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
+		if (bbp_state == state && rf_state == state)
+			return 0;
+		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
+		msleep(10);
+	}
+
+	return -EBUSY;
+}
+
+static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
+				      enum dev_state state)
+{
+	int retval = 0;
+
+	switch (state) {
+	case STATE_RADIO_ON:
+		retval = rt2500pci_enable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_OFF:
+		rt2500pci_disable_radio(rt2x00dev);
+		break;
+	case STATE_RADIO_IRQ_ON:
+	case STATE_RADIO_IRQ_OFF:
+		rt2500pci_toggle_irq(rt2x00dev, state);
+		break;
+	case STATE_DEEP_SLEEP:
+	case STATE_SLEEP:
+	case STATE_STANDBY:
+	case STATE_AWAKE:
+		retval = rt2500pci_set_state(rt2x00dev, state);
+		break;
+	default:
+		retval = -ENOTSUPP;
+		break;
+	}
+
+	if (unlikely(retval))
+		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
+			   state, retval);
+
+	return retval;
+}
+
+/*
+ * TX descriptor initialization
+ */
+static void rt2500pci_write_tx_desc(struct queue_entry *entry,
+				    struct txentry_desc *txdesc)
+{
+	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	__le32 *txd = entry_priv->desc;
+	u32 word;
+
+	/*
+	 * Start writing the descriptor words.
+	 */
+	rt2x00_desc_read(txd, 1, &word);
+	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
+	rt2x00_desc_write(txd, 1, word);
+
+	rt2x00_desc_read(txd, 2, &word);
+	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
+	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
+	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
+	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
+	rt2x00_desc_write(txd, 2, word);
+
+	rt2x00_desc_read(txd, 3, &word);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
+			   txdesc->u.plcp.length_low);
+	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
+			   txdesc->u.plcp.length_high);
+	rt2x00_desc_write(txd, 3, word);
+
+	rt2x00_desc_read(txd, 10, &word);
+	rt2x00_set_field32(&word, TXD_W10_RTS,
+			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
+	rt2x00_desc_write(txd, 10, word);
+
+	/*
+	 * Writing TXD word 0 must the last to prevent a race condition with
+	 * the device, whereby the device may take hold of the TXD before we
+	 * finished updating it.
+	 */
+	rt2x00_desc_read(txd, 0, &word);
+	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
+	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
+	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
+			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_ACK,
+			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
+			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_OFDM,
+			   (txdesc->rate_mode == RATE_MODE_OFDM));
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
+	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
+	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
+			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
+	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
+	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
+	rt2x00_desc_write(txd, 0, word);
+
+	/*
+	 * Register descriptor details in skb frame descriptor.
+	 */
+	skbdesc->desc = txd;
+	skbdesc->desc_len = TXD_DESC_SIZE;
+}
+
+/*
+ * TX data initialization
+ */
+static void rt2500pci_write_beacon(struct queue_entry *entry,
+				   struct txentry_desc *txdesc)
+{
+	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
+	u32 reg;
+
+	/*
+	 * Disable beaconing while we are reloading the beacon data,
+	 * otherwise we might be sending out invalid data.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+
+	if (rt2x00queue_map_txskb(entry)) {
+		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
+		goto out;
+	}
+
+	/*
+	 * Write the TX descriptor for the beacon.
+	 */
+	rt2500pci_write_tx_desc(entry, txdesc);
+
+	/*
+	 * Dump beacon to userspace through debugfs.
+	 */
+	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
+out:
+	/*
+	 * Enable beaconing again.
+	 */
+	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
+	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
+}
+
+/*
+ * RX control handlers
+ */
+static void rt2500pci_fill_rxdone(struct queue_entry *entry,
+				  struct rxdone_entry_desc *rxdesc)
+{
+	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
+	u32 word0;
+	u32 word2;
+
+	rt2x00_desc_read(entry_priv->desc, 0, &word0);
+	rt2x00_desc_read(entry_priv->desc, 2, &word2);
+
+	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
+	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
+		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
+
+	/*
+	 * Obtain the status about this packet.
+	 * When frame was received with an OFDM bitrate,
+	 * the signal is the PLCP value. If it was received with
+	 * a CCK bitrate the signal is the rate in 100kbit/s.
+	 */
+	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
+	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
+	    entry->queue->rt2x00dev->rssi_offset;
+	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
+
+	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
+		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
+	else
+		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
+	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
+		rxdesc->dev_flags |= RXDONE_MY_BSS;
+}
+
+/*
+ * Interrupt functions.
+ */
+static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
+			     const enum data_queue_qid queue_idx)
+{
+	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
+	struct queue_entry_priv_mmio *entry_priv;
+	struct queue_entry *entry;
+	struct txdone_entry_desc txdesc;
+	u32 word;
+
+	while (!rt2x00queue_empty(queue)) {
+		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
+		entry_priv = entry->priv_data;
+		rt2x00_desc_read(entry_priv->desc, 0, &word);
+
+		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
+		    !rt2x00_get_field32(word, TXD_W0_VALID))
+			break;
+
+		/*
+		 * Obtain the status about this packet.
+		 */
+		txdesc.flags = 0;
+		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
+		case 0: /* Success */
+		case 1: /* Success with retry */
+			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
+			break;
+		case 2: /* Failure, excessive retries */
+			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
+			/* Don't break, this is a failed frame! */
+		default: /* Failure */
+			__set_bit(TXDONE_FAILURE, &txdesc.flags);
+		}
+		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
+
+		rt2x00lib_txdone(entry, &txdesc);
+	}
+}
+
+static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
+					      struct rt2x00_field32 irq_field)
+{
+	u32 reg;
+
+	/*
+	 * Enable a single interrupt. The interrupt mask register
+	 * access needs locking.
+	 */
+	spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	rt2x00_set_field32(&reg, irq_field, 0);
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock_irq(&rt2x00dev->irqmask_lock);
+}
+
+static void rt2500pci_txstatus_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	u32 reg;
+
+	/*
+	 * Handle all tx queues.
+	 */
+	rt2500pci_txdone(rt2x00dev, QID_ATIM);
+	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
+	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
+
+	/*
+	 * Enable all TXDONE interrupts again.
+	 */
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
+		spin_lock_irq(&rt2x00dev->irqmask_lock);
+
+		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
+		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
+		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+		spin_unlock_irq(&rt2x00dev->irqmask_lock);
+	}
+}
+
+static void rt2500pci_tbtt_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	rt2x00lib_beacondone(rt2x00dev);
+	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
+}
+
+static void rt2500pci_rxdone_tasklet(unsigned long data)
+{
+	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
+	if (rt2x00mmio_rxdone(rt2x00dev))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
+}
+
+static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
+{
+	struct rt2x00_dev *rt2x00dev = dev_instance;
+	u32 reg, mask;
+
+	/*
+	 * Get the interrupt sources & saved to local variable.
+	 * Write register value back to clear pending interrupts.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
+	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
+
+	if (!reg)
+		return IRQ_NONE;
+
+	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
+		return IRQ_HANDLED;
+
+	mask = reg;
+
+	/*
+	 * Schedule tasklets for interrupt handling.
+	 */
+	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
+		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_RXDONE))
+		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
+
+	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
+	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
+		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
+		/*
+		 * Mask out all txdone interrupts.
+		 */
+		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
+		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
+	}
+
+	/*
+	 * Disable all interrupts for which a tasklet was scheduled right now,
+	 * the tasklet will reenable the appropriate interrupts.
+	 */
+	spin_lock(&rt2x00dev->irqmask_lock);
+
+	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
+	reg |= mask;
+	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
+
+	spin_unlock(&rt2x00dev->irqmask_lock);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * Device probe functions.
+ */
+static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	struct eeprom_93cx6 eeprom;
+	u32 reg;
+	u16 word;
+	u8 *mac;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
+
+	eeprom.data = rt2x00dev;
+	eeprom.register_read = rt2500pci_eepromregister_read;
+	eeprom.register_write = rt2500pci_eepromregister_write;
+	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
+	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
+	eeprom.reg_data_in = 0;
+	eeprom.reg_data_out = 0;
+	eeprom.reg_data_clock = 0;
+	eeprom.reg_chip_select = 0;
+
+	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
+			       EEPROM_SIZE / sizeof(u16));
+
+	/*
+	 * Start validation of the data that has been read.
+	 */
+	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
+	if (!is_valid_ether_addr(mac)) {
+		eth_random_addr(mac);
+		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
+				   ANTENNA_SW_DIVERSITY);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
+				   LED_MODE_DEFAULT);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
+		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
+		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
+	}
+
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
+	if (word == 0xffff) {
+		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
+				   DEFAULT_RSSI_OFFSET);
+		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
+		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
+				  word);
+	}
+
+	return 0;
+}
+
+static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
+{
+	u32 reg;
+	u16 value;
+	u16 eeprom;
+
+	/*
+	 * Read EEPROM word for configuration.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
+
+	/*
+	 * Identify RF chipset.
+	 */
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
+	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
+	rt2x00_set_chip(rt2x00dev, RT2560, value,
+			rt2x00_get_field32(reg, CSR0_REVISION));
+
+	if (!rt2x00_rf(rt2x00dev, RF2522) &&
+	    !rt2x00_rf(rt2x00dev, RF2523) &&
+	    !rt2x00_rf(rt2x00dev, RF2524) &&
+	    !rt2x00_rf(rt2x00dev, RF2525) &&
+	    !rt2x00_rf(rt2x00dev, RF2525E) &&
+	    !rt2x00_rf(rt2x00dev, RF5222)) {
+		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
+		return -ENODEV;
+	}
+
+	/*
+	 * Identify default antenna configuration.
+	 */
+	rt2x00dev->default_ant.tx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
+	rt2x00dev->default_ant.rx =
+	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
+
+	/*
+	 * Store led mode, for correct led behaviour.
+	 */
+#ifdef CONFIG_RT2X00_LIB_LEDS
+	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
+
+	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
+	if (value == LED_MODE_TXRX_ACTIVITY ||
+	    value == LED_MODE_DEFAULT ||
+	    value == LED_MODE_ASUS)
+		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
+				   LED_TYPE_ACTIVITY);
+#endif /* CONFIG_RT2X00_LIB_LEDS */
+
+	/*
+	 * Detect if this device has an hardware controlled radio.
+	 */
+	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
+		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
+		/*
+		 * On this device RFKILL initialized during probe does not work.
+		 */
+		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
+	}
+
+	/*
+	 * Check if the BBP tuning should be enabled.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
+	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
+		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
+
+	/*
+	 * Read the RSSI <-> dBm offset information.
+	 */
+	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
+	rt2x00dev->rssi_offset =
+	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
+
+	return 0;
+}
+
+/*
+ * RF value list for RF2522
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2522[] = {
+	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
+	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
+	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
+	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
+	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
+	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
+	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
+	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
+	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
+	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
+	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
+	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
+	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
+	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
+};
+
+/*
+ * RF value list for RF2523
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2523[] = {
+	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
+	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
+	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
+	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
+	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
+	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
+	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
+	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
+	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
+	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
+	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
+	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
+	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
+	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2524
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2524[] = {
+	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
+	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
+	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
+	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
+	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
+	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
+	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
+	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
+	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
+	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
+	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
+	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
+	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
+	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525[] = {
+	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
+	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
+	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
+	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
+	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
+	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
+	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
+	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
+	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
+	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
+	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
+	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
+	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
+	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
+};
+
+/*
+ * RF value list for RF2525e
+ * Supports: 2.4 GHz
+ */
+static const struct rf_channel rf_vals_bg_2525e[] = {
+	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
+	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
+	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
+	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
+	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
+	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
+	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
+	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
+	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
+	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
+	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
+	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
+	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
+	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
+};
+
+/*
+ * RF value list for RF5222
+ * Supports: 2.4 GHz & 5.2 GHz
+ */
+static const struct rf_channel rf_vals_5222[] = {
+	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
+	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
+	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
+	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
+	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
+	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
+	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
+	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
+	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
+	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
+	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
+	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
+	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
+	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
+
+	/* 802.11 UNI / HyperLan 2 */
+	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
+	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
+	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
+	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
+	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
+	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
+	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
+	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
+
+	/* 802.11 HyperLan 2 */
+	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
+	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
+	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
+	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
+	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
+	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
+	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
+	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
+	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
+	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
+
+	/* 802.11 UNII */
+	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
+	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
+	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
+	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
+	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
+};
+
+static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
+{
+	struct hw_mode_spec *spec = &rt2x00dev->spec;
+	struct channel_info *info;
+	char *tx_power;
+	unsigned int i;
+
+	/*
+	 * Initialize all hw fields.
+	 */
+	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
+	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
+	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
+	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
+
+	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
+	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
+				rt2x00_eeprom_addr(rt2x00dev,
+						   EEPROM_MAC_ADDR_0));
+
+	/*
+	 * Disable powersaving as default.
+	 */
+	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
+
+	/*
+	 * Initialize hw_mode information.
+	 */
+	spec->supported_bands = SUPPORT_BAND_2GHZ;
+	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
+
+	if (rt2x00_rf(rt2x00dev, RF2522)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
+		spec->channels = rf_vals_bg_2522;
+	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
+		spec->channels = rf_vals_bg_2523;
+	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
+		spec->channels = rf_vals_bg_2524;
+	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
+		spec->channels = rf_vals_bg_2525;
+	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
+		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
+		spec->channels = rf_vals_bg_2525e;
+	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
+		spec->supported_bands |= SUPPORT_BAND_5GHZ;
+		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
+		spec->channels = rf_vals_5222;
+	}
+
+	/*
+	 * Create channel information array
+	 */
+	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	spec->channels_info = info;
+
+	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
+	for (i = 0; i < 14; i++) {
+		info[i].max_power = MAX_TXPOWER;
+		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
+	}
+
+	if (spec->num_channels > 14) {
+		for (i = 14; i < spec->num_channels; i++) {
+			info[i].max_power = MAX_TXPOWER;
+			info[i].default_power1 = DEFAULT_TXPOWER;
+		}
+	}
+
+	return 0;
+}
+
+static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
+{
+	int retval;
+	u32 reg;
+
+	/*
+	 * Allocate eeprom data.
+	 */
+	retval = rt2500pci_validate_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	retval = rt2500pci_init_eeprom(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * Enable rfkill polling by setting GPIO direction of the
+	 * rfkill switch GPIO pin correctly.
+	 */
+	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
+	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
+	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
+
+	/*
+	 * Initialize hw specifications.
+	 */
+	retval = rt2500pci_probe_hw_mode(rt2x00dev);
+	if (retval)
+		return retval;
+
+	/*
+	 * This device requires the atim queue and DMA-mapped skbs.
+	 */
+	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
+	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
+
+	/*
+	 * Set the rssi offset.
+	 */
+	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
+
+	return 0;
+}
+
+/*
+ * IEEE80211 stack callback functions.
+ */
+static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
+			     struct ieee80211_vif *vif)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u64 tsf;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
+	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
+	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
+	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
+
+	return tsf;
+}
+
+static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
+{
+	struct rt2x00_dev *rt2x00dev = hw->priv;
+	u32 reg;
+
+	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
+	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
+}
+
+static const struct ieee80211_ops rt2500pci_mac80211_ops = {
+	.tx			= rt2x00mac_tx,
+	.start			= rt2x00mac_start,
+	.stop			= rt2x00mac_stop,
+	.add_interface		= rt2x00mac_add_interface,
+	.remove_interface	= rt2x00mac_remove_interface,
+	.config			= rt2x00mac_config,
+	.configure_filter	= rt2x00mac_configure_filter,
+	.sw_scan_start		= rt2x00mac_sw_scan_start,
+	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
+	.get_stats		= rt2x00mac_get_stats,
+	.bss_info_changed	= rt2x00mac_bss_info_changed,
+	.conf_tx		= rt2x00mac_conf_tx,
+	.get_tsf		= rt2500pci_get_tsf,
+	.tx_last_beacon		= rt2500pci_tx_last_beacon,
+	.rfkill_poll		= rt2x00mac_rfkill_poll,
+	.flush			= rt2x00mac_flush,
+	.set_antenna		= rt2x00mac_set_antenna,
+	.get_antenna		= rt2x00mac_get_antenna,
+	.get_ringparam		= rt2x00mac_get_ringparam,
+	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
+};
+
+static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
+	.irq_handler		= rt2500pci_interrupt,
+	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
+	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
+	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
+	.probe_hw		= rt2500pci_probe_hw,
+	.initialize		= rt2x00mmio_initialize,
+	.uninitialize		= rt2x00mmio_uninitialize,
+	.get_entry_state	= rt2500pci_get_entry_state,
+	.clear_entry		= rt2500pci_clear_entry,
+	.set_device_state	= rt2500pci_set_device_state,
+	.rfkill_poll		= rt2500pci_rfkill_poll,
+	.link_stats		= rt2500pci_link_stats,
+	.reset_tuner		= rt2500pci_reset_tuner,
+	.link_tuner		= rt2500pci_link_tuner,
+	.start_queue		= rt2500pci_start_queue,
+	.kick_queue		= rt2500pci_kick_queue,
+	.stop_queue		= rt2500pci_stop_queue,
+	.flush_queue		= rt2x00mmio_flush_queue,
+	.write_tx_desc		= rt2500pci_write_tx_desc,
+	.write_beacon		= rt2500pci_write_beacon,
+	.fill_rxdone		= rt2500pci_fill_rxdone,
+	.config_filter		= rt2500pci_config_filter,
+	.config_intf		= rt2500pci_config_intf,
+	.config_erp		= rt2500pci_config_erp,
+	.config_ant		= rt2500pci_config_ant,
+	.config			= rt2500pci_config,
+};
+
+static void rt2500pci_queue_init(struct data_queue *queue)
+{
+	switch (queue->qid) {
+	case QID_RX:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = RXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_AC_VO:
+	case QID_AC_VI:
+	case QID_AC_BE:
+	case QID_AC_BK:
+		queue->limit = 32;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_BEACON:
+		queue->limit = 1;
+		queue->data_size = MGMT_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	case QID_ATIM:
+		queue->limit = 8;
+		queue->data_size = DATA_FRAME_SIZE;
+		queue->desc_size = TXD_DESC_SIZE;
+		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
+		break;
+
+	default:
+		BUG();
+		break;
+	}
+}
+
+static const struct rt2x00_ops rt2500pci_ops = {
+	.name			= KBUILD_MODNAME,
+	.max_ap_intf		= 1,
+	.eeprom_size		= EEPROM_SIZE,
+	.rf_size		= RF_SIZE,
+	.tx_queues		= NUM_TX_QUEUES,
+	.queue_init		= rt2500pci_queue_init,
+	.lib			= &rt2500pci_rt2x00_ops,
+	.hw			= &rt2500pci_mac80211_ops,
+#ifdef CONFIG_RT2X00_LIB_DEBUGFS
+	.debugfs		= &rt2500pci_rt2x00debug,
+#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
+};
+
+/*
+ * RT2500pci module information.
+ */
+static const struct pci_device_id rt2500pci_device_table[] = {
+	{ PCI_DEVICE(0x1814, 0x0201) },
+	{ 0, }
+};
+
+MODULE_AUTHOR(DRV_PROJECT);
+MODULE_VERSION(DRV_VERSION);
+MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
+MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
+MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
+MODULE_LICENSE("GPL");
+
+static int rt2500pci_probe(struct pci_dev *pci_dev,
+			   const struct pci_device_id *id)
+{
+	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
+}
+
+static struct pci_driver rt2500pci_driver = {
+	.name		= KBUILD_MODNAME,
+	.id_table	= rt2500pci_device_table,
+	.probe		= rt2500pci_probe,
+	.remove		= rt2x00pci_remove,
+	.suspend	= rt2x00pci_suspend,
+	.resume		= rt2x00pci_resume,
+};
+
+module_pci_driver(rt2500pci_driver);