File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/fs/xfs/xfs_log_cil.c b/fs/xfs/xfs_log_cil.c
new file mode 100644
index 0000000..4e76493
--- /dev/null
+++ b/fs/xfs/xfs_log_cil.c
@@ -0,0 +1,1000 @@
+/*
+ * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_shared.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_error.h"
+#include "xfs_alloc.h"
+#include "xfs_extent_busy.h"
+#include "xfs_discard.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_log.h"
+#include "xfs_log_priv.h"
+
+/*
+ * Allocate a new ticket. Failing to get a new ticket makes it really hard to
+ * recover, so we don't allow failure here. Also, we allocate in a context that
+ * we don't want to be issuing transactions from, so we need to tell the
+ * allocation code this as well.
+ *
+ * We don't reserve any space for the ticket - we are going to steal whatever
+ * space we require from transactions as they commit. To ensure we reserve all
+ * the space required, we need to set the current reservation of the ticket to
+ * zero so that we know to steal the initial transaction overhead from the
+ * first transaction commit.
+ */
+static struct xlog_ticket *
+xlog_cil_ticket_alloc(
+	struct xlog	*log)
+{
+	struct xlog_ticket *tic;
+
+	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
+				KM_SLEEP|KM_NOFS);
+	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
+
+	/*
+	 * set the current reservation to zero so we know to steal the basic
+	 * transaction overhead reservation from the first transaction commit.
+	 */
+	tic->t_curr_res = 0;
+	return tic;
+}
+
+/*
+ * After the first stage of log recovery is done, we know where the head and
+ * tail of the log are. We need this log initialisation done before we can
+ * initialise the first CIL checkpoint context.
+ *
+ * Here we allocate a log ticket to track space usage during a CIL push.  This
+ * ticket is passed to xlog_write() directly so that we don't slowly leak log
+ * space by failing to account for space used by log headers and additional
+ * region headers for split regions.
+ */
+void
+xlog_cil_init_post_recovery(
+	struct xlog	*log)
+{
+	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
+	log->l_cilp->xc_ctx->sequence = 1;
+}
+
+/*
+ * Prepare the log item for insertion into the CIL. Calculate the difference in
+ * log space and vectors it will consume, and if it is a new item pin it as
+ * well.
+ */
+STATIC void
+xfs_cil_prepare_item(
+	struct xlog		*log,
+	struct xfs_log_vec	*lv,
+	struct xfs_log_vec	*old_lv,
+	int			*diff_len,
+	int			*diff_iovecs)
+{
+	/* Account for the new LV being passed in */
+	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
+		*diff_len += lv->lv_bytes;
+		*diff_iovecs += lv->lv_niovecs;
+	}
+
+	/*
+	 * If there is no old LV, this is the first time we've seen the item in
+	 * this CIL context and so we need to pin it. If we are replacing the
+	 * old_lv, then remove the space it accounts for and free it.
+	 */
+	if (!old_lv)
+		lv->lv_item->li_ops->iop_pin(lv->lv_item);
+	else if (old_lv != lv) {
+		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
+
+		*diff_len -= old_lv->lv_bytes;
+		*diff_iovecs -= old_lv->lv_niovecs;
+		kmem_free(old_lv);
+	}
+
+	/* attach new log vector to log item */
+	lv->lv_item->li_lv = lv;
+
+	/*
+	 * If this is the first time the item is being committed to the
+	 * CIL, store the sequence number on the log item so we can
+	 * tell in future commits whether this is the first checkpoint
+	 * the item is being committed into.
+	 */
+	if (!lv->lv_item->li_seq)
+		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
+}
+
+/*
+ * Format log item into a flat buffers
+ *
+ * For delayed logging, we need to hold a formatted buffer containing all the
+ * changes on the log item. This enables us to relog the item in memory and
+ * write it out asynchronously without needing to relock the object that was
+ * modified at the time it gets written into the iclog.
+ *
+ * This function builds a vector for the changes in each log item in the
+ * transaction. It then works out the length of the buffer needed for each log
+ * item, allocates them and formats the vector for the item into the buffer.
+ * The buffer is then attached to the log item are then inserted into the
+ * Committed Item List for tracking until the next checkpoint is written out.
+ *
+ * We don't set up region headers during this process; we simply copy the
+ * regions into the flat buffer. We can do this because we still have to do a
+ * formatting step to write the regions into the iclog buffer.  Writing the
+ * ophdrs during the iclog write means that we can support splitting large
+ * regions across iclog boundares without needing a change in the format of the
+ * item/region encapsulation.
+ *
+ * Hence what we need to do now is change the rewrite the vector array to point
+ * to the copied region inside the buffer we just allocated. This allows us to
+ * format the regions into the iclog as though they are being formatted
+ * directly out of the objects themselves.
+ */
+static void
+xlog_cil_insert_format_items(
+	struct xlog		*log,
+	struct xfs_trans	*tp,
+	int			*diff_len,
+	int			*diff_iovecs)
+{
+	struct xfs_log_item_desc *lidp;
+
+
+	/* Bail out if we didn't find a log item.  */
+	if (list_empty(&tp->t_items)) {
+		ASSERT(0);
+		return;
+	}
+
+	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
+		struct xfs_log_item *lip = lidp->lid_item;
+		struct xfs_log_vec *lv;
+		struct xfs_log_vec *old_lv;
+		int	niovecs = 0;
+		int	nbytes = 0;
+		int	buf_size;
+		bool	ordered = false;
+
+		/* Skip items which aren't dirty in this transaction. */
+		if (!(lidp->lid_flags & XFS_LID_DIRTY))
+			continue;
+
+		/* get number of vecs and size of data to be stored */
+		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
+
+		/* Skip items that do not have any vectors for writing */
+		if (!niovecs)
+			continue;
+
+		/*
+		 * Ordered items need to be tracked but we do not wish to write
+		 * them. We need a logvec to track the object, but we do not
+		 * need an iovec or buffer to be allocated for copying data.
+		 */
+		if (niovecs == XFS_LOG_VEC_ORDERED) {
+			ordered = true;
+			niovecs = 0;
+			nbytes = 0;
+		}
+
+		/*
+		 * We 64-bit align the length of each iovec so that the start
+		 * of the next one is naturally aligned.  We'll need to
+		 * account for that slack space here. Then round nbytes up
+		 * to 64-bit alignment so that the initial buffer alignment is
+		 * easy to calculate and verify.
+		 */
+		nbytes += niovecs * sizeof(uint64_t);
+		nbytes = round_up(nbytes, sizeof(uint64_t));
+
+		/* grab the old item if it exists for reservation accounting */
+		old_lv = lip->li_lv;
+
+		/*
+		 * The data buffer needs to start 64-bit aligned, so round up
+		 * that space to ensure we can align it appropriately and not
+		 * overrun the buffer.
+		 */
+		buf_size = nbytes +
+			   round_up((sizeof(struct xfs_log_vec) +
+				     niovecs * sizeof(struct xfs_log_iovec)),
+				    sizeof(uint64_t));
+
+		/* compare to existing item size */
+		if (lip->li_lv && buf_size <= lip->li_lv->lv_size) {
+			/* same or smaller, optimise common overwrite case */
+			lv = lip->li_lv;
+			lv->lv_next = NULL;
+
+			if (ordered)
+				goto insert;
+
+			/*
+			 * set the item up as though it is a new insertion so
+			 * that the space reservation accounting is correct.
+			 */
+			*diff_iovecs -= lv->lv_niovecs;
+			*diff_len -= lv->lv_bytes;
+		} else {
+			/* allocate new data chunk */
+			lv = kmem_zalloc(buf_size, KM_SLEEP|KM_NOFS);
+			lv->lv_item = lip;
+			lv->lv_size = buf_size;
+			if (ordered) {
+				/* track as an ordered logvec */
+				ASSERT(lip->li_lv == NULL);
+				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
+				goto insert;
+			}
+			lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
+		}
+
+		/* Ensure the lv is set up according to ->iop_size */
+		lv->lv_niovecs = niovecs;
+
+		/* The allocated data region lies beyond the iovec region */
+		lv->lv_buf_len = 0;
+		lv->lv_bytes = 0;
+		lv->lv_buf = (char *)lv + buf_size - nbytes;
+		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
+
+		lip->li_ops->iop_format(lip, lv);
+insert:
+		ASSERT(lv->lv_buf_len <= nbytes);
+		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
+	}
+}
+
+/*
+ * Insert the log items into the CIL and calculate the difference in space
+ * consumed by the item. Add the space to the checkpoint ticket and calculate
+ * if the change requires additional log metadata. If it does, take that space
+ * as well. Remove the amount of space we added to the checkpoint ticket from
+ * the current transaction ticket so that the accounting works out correctly.
+ */
+static void
+xlog_cil_insert_items(
+	struct xlog		*log,
+	struct xfs_trans	*tp)
+{
+	struct xfs_cil		*cil = log->l_cilp;
+	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
+	struct xfs_log_item_desc *lidp;
+	int			len = 0;
+	int			diff_iovecs = 0;
+	int			iclog_space;
+
+	ASSERT(tp);
+
+	/*
+	 * We can do this safely because the context can't checkpoint until we
+	 * are done so it doesn't matter exactly how we update the CIL.
+	 */
+	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
+
+	/*
+	 * Now (re-)position everything modified at the tail of the CIL.
+	 * We do this here so we only need to take the CIL lock once during
+	 * the transaction commit.
+	 */
+	spin_lock(&cil->xc_cil_lock);
+	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
+		struct xfs_log_item	*lip = lidp->lid_item;
+
+		/* Skip items which aren't dirty in this transaction. */
+		if (!(lidp->lid_flags & XFS_LID_DIRTY))
+			continue;
+
+		/*
+		 * Only move the item if it isn't already at the tail. This is
+		 * to prevent a transient list_empty() state when reinserting
+		 * an item that is already the only item in the CIL.
+		 */
+		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
+			list_move_tail(&lip->li_cil, &cil->xc_cil);
+	}
+
+	/* account for space used by new iovec headers  */
+	len += diff_iovecs * sizeof(xlog_op_header_t);
+	ctx->nvecs += diff_iovecs;
+
+	/* attach the transaction to the CIL if it has any busy extents */
+	if (!list_empty(&tp->t_busy))
+		list_splice_init(&tp->t_busy, &ctx->busy_extents);
+
+	/*
+	 * Now transfer enough transaction reservation to the context ticket
+	 * for the checkpoint. The context ticket is special - the unit
+	 * reservation has to grow as well as the current reservation as we
+	 * steal from tickets so we can correctly determine the space used
+	 * during the transaction commit.
+	 */
+	if (ctx->ticket->t_curr_res == 0) {
+		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
+		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
+	}
+
+	/* do we need space for more log record headers? */
+	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
+	if (len > 0 && (ctx->space_used / iclog_space !=
+				(ctx->space_used + len) / iclog_space)) {
+		int hdrs;
+
+		hdrs = (len + iclog_space - 1) / iclog_space;
+		/* need to take into account split region headers, too */
+		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
+		ctx->ticket->t_unit_res += hdrs;
+		ctx->ticket->t_curr_res += hdrs;
+		tp->t_ticket->t_curr_res -= hdrs;
+		ASSERT(tp->t_ticket->t_curr_res >= len);
+	}
+	tp->t_ticket->t_curr_res -= len;
+	ctx->space_used += len;
+
+	spin_unlock(&cil->xc_cil_lock);
+}
+
+static void
+xlog_cil_free_logvec(
+	struct xfs_log_vec	*log_vector)
+{
+	struct xfs_log_vec	*lv;
+
+	for (lv = log_vector; lv; ) {
+		struct xfs_log_vec *next = lv->lv_next;
+		kmem_free(lv);
+		lv = next;
+	}
+}
+
+/*
+ * Mark all items committed and clear busy extents. We free the log vector
+ * chains in a separate pass so that we unpin the log items as quickly as
+ * possible.
+ */
+static void
+xlog_cil_committed(
+	void	*args,
+	int	abort)
+{
+	struct xfs_cil_ctx	*ctx = args;
+	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
+
+	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
+					ctx->start_lsn, abort);
+
+	xfs_extent_busy_sort(&ctx->busy_extents);
+	xfs_extent_busy_clear(mp, &ctx->busy_extents,
+			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
+
+	/*
+	 * If we are aborting the commit, wake up anyone waiting on the
+	 * committing list.  If we don't, then a shutdown we can leave processes
+	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
+	 * will never happen because we aborted it.
+	 */
+	spin_lock(&ctx->cil->xc_push_lock);
+	if (abort)
+		wake_up_all(&ctx->cil->xc_commit_wait);
+	list_del(&ctx->committing);
+	spin_unlock(&ctx->cil->xc_push_lock);
+
+	xlog_cil_free_logvec(ctx->lv_chain);
+
+	if (!list_empty(&ctx->busy_extents)) {
+		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
+
+		xfs_discard_extents(mp, &ctx->busy_extents);
+		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
+	}
+
+	kmem_free(ctx);
+}
+
+/*
+ * Push the Committed Item List to the log. If @push_seq flag is zero, then it
+ * is a background flush and so we can chose to ignore it. Otherwise, if the
+ * current sequence is the same as @push_seq we need to do a flush. If
+ * @push_seq is less than the current sequence, then it has already been
+ * flushed and we don't need to do anything - the caller will wait for it to
+ * complete if necessary.
+ *
+ * @push_seq is a value rather than a flag because that allows us to do an
+ * unlocked check of the sequence number for a match. Hence we can allows log
+ * forces to run racily and not issue pushes for the same sequence twice. If we
+ * get a race between multiple pushes for the same sequence they will block on
+ * the first one and then abort, hence avoiding needless pushes.
+ */
+STATIC int
+xlog_cil_push(
+	struct xlog		*log)
+{
+	struct xfs_cil		*cil = log->l_cilp;
+	struct xfs_log_vec	*lv;
+	struct xfs_cil_ctx	*ctx;
+	struct xfs_cil_ctx	*new_ctx;
+	struct xlog_in_core	*commit_iclog;
+	struct xlog_ticket	*tic;
+	int			num_iovecs;
+	int			error = 0;
+	struct xfs_trans_header thdr;
+	struct xfs_log_iovec	lhdr;
+	struct xfs_log_vec	lvhdr = { NULL };
+	xfs_lsn_t		commit_lsn;
+	xfs_lsn_t		push_seq;
+
+	if (!cil)
+		return 0;
+
+	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
+	new_ctx->ticket = xlog_cil_ticket_alloc(log);
+
+	down_write(&cil->xc_ctx_lock);
+	ctx = cil->xc_ctx;
+
+	spin_lock(&cil->xc_push_lock);
+	push_seq = cil->xc_push_seq;
+	ASSERT(push_seq <= ctx->sequence);
+
+	/*
+	 * Check if we've anything to push. If there is nothing, then we don't
+	 * move on to a new sequence number and so we have to be able to push
+	 * this sequence again later.
+	 */
+	if (list_empty(&cil->xc_cil)) {
+		cil->xc_push_seq = 0;
+		spin_unlock(&cil->xc_push_lock);
+		goto out_skip;
+	}
+
+
+	/* check for a previously pushed seqeunce */
+	if (push_seq < cil->xc_ctx->sequence) {
+		spin_unlock(&cil->xc_push_lock);
+		goto out_skip;
+	}
+
+	/*
+	 * We are now going to push this context, so add it to the committing
+	 * list before we do anything else. This ensures that anyone waiting on
+	 * this push can easily detect the difference between a "push in
+	 * progress" and "CIL is empty, nothing to do".
+	 *
+	 * IOWs, a wait loop can now check for:
+	 *	the current sequence not being found on the committing list;
+	 *	an empty CIL; and
+	 *	an unchanged sequence number
+	 * to detect a push that had nothing to do and therefore does not need
+	 * waiting on. If the CIL is not empty, we get put on the committing
+	 * list before emptying the CIL and bumping the sequence number. Hence
+	 * an empty CIL and an unchanged sequence number means we jumped out
+	 * above after doing nothing.
+	 *
+	 * Hence the waiter will either find the commit sequence on the
+	 * committing list or the sequence number will be unchanged and the CIL
+	 * still dirty. In that latter case, the push has not yet started, and
+	 * so the waiter will have to continue trying to check the CIL
+	 * committing list until it is found. In extreme cases of delay, the
+	 * sequence may fully commit between the attempts the wait makes to wait
+	 * on the commit sequence.
+	 */
+	list_add(&ctx->committing, &cil->xc_committing);
+	spin_unlock(&cil->xc_push_lock);
+
+	/*
+	 * pull all the log vectors off the items in the CIL, and
+	 * remove the items from the CIL. We don't need the CIL lock
+	 * here because it's only needed on the transaction commit
+	 * side which is currently locked out by the flush lock.
+	 */
+	lv = NULL;
+	num_iovecs = 0;
+	while (!list_empty(&cil->xc_cil)) {
+		struct xfs_log_item	*item;
+
+		item = list_first_entry(&cil->xc_cil,
+					struct xfs_log_item, li_cil);
+		list_del_init(&item->li_cil);
+		if (!ctx->lv_chain)
+			ctx->lv_chain = item->li_lv;
+		else
+			lv->lv_next = item->li_lv;
+		lv = item->li_lv;
+		item->li_lv = NULL;
+		num_iovecs += lv->lv_niovecs;
+	}
+
+	/*
+	 * initialise the new context and attach it to the CIL. Then attach
+	 * the current context to the CIL committing lsit so it can be found
+	 * during log forces to extract the commit lsn of the sequence that
+	 * needs to be forced.
+	 */
+	INIT_LIST_HEAD(&new_ctx->committing);
+	INIT_LIST_HEAD(&new_ctx->busy_extents);
+	new_ctx->sequence = ctx->sequence + 1;
+	new_ctx->cil = cil;
+	cil->xc_ctx = new_ctx;
+
+	/*
+	 * The switch is now done, so we can drop the context lock and move out
+	 * of a shared context. We can't just go straight to the commit record,
+	 * though - we need to synchronise with previous and future commits so
+	 * that the commit records are correctly ordered in the log to ensure
+	 * that we process items during log IO completion in the correct order.
+	 *
+	 * For example, if we get an EFI in one checkpoint and the EFD in the
+	 * next (e.g. due to log forces), we do not want the checkpoint with
+	 * the EFD to be committed before the checkpoint with the EFI.  Hence
+	 * we must strictly order the commit records of the checkpoints so
+	 * that: a) the checkpoint callbacks are attached to the iclogs in the
+	 * correct order; and b) the checkpoints are replayed in correct order
+	 * in log recovery.
+	 *
+	 * Hence we need to add this context to the committing context list so
+	 * that higher sequences will wait for us to write out a commit record
+	 * before they do.
+	 *
+	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
+	 * structure atomically with the addition of this sequence to the
+	 * committing list. This also ensures that we can do unlocked checks
+	 * against the current sequence in log forces without risking
+	 * deferencing a freed context pointer.
+	 */
+	spin_lock(&cil->xc_push_lock);
+	cil->xc_current_sequence = new_ctx->sequence;
+	spin_unlock(&cil->xc_push_lock);
+	up_write(&cil->xc_ctx_lock);
+
+	/*
+	 * Build a checkpoint transaction header and write it to the log to
+	 * begin the transaction. We need to account for the space used by the
+	 * transaction header here as it is not accounted for in xlog_write().
+	 *
+	 * The LSN we need to pass to the log items on transaction commit is
+	 * the LSN reported by the first log vector write. If we use the commit
+	 * record lsn then we can move the tail beyond the grant write head.
+	 */
+	tic = ctx->ticket;
+	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
+	thdr.th_type = XFS_TRANS_CHECKPOINT;
+	thdr.th_tid = tic->t_tid;
+	thdr.th_num_items = num_iovecs;
+	lhdr.i_addr = &thdr;
+	lhdr.i_len = sizeof(xfs_trans_header_t);
+	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
+	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
+
+	lvhdr.lv_niovecs = 1;
+	lvhdr.lv_iovecp = &lhdr;
+	lvhdr.lv_next = ctx->lv_chain;
+
+	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
+	if (error)
+		goto out_abort_free_ticket;
+
+	/*
+	 * now that we've written the checkpoint into the log, strictly
+	 * order the commit records so replay will get them in the right order.
+	 */
+restart:
+	spin_lock(&cil->xc_push_lock);
+	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
+		/*
+		 * Avoid getting stuck in this loop because we were woken by the
+		 * shutdown, but then went back to sleep once already in the
+		 * shutdown state.
+		 */
+		if (XLOG_FORCED_SHUTDOWN(log)) {
+			spin_unlock(&cil->xc_push_lock);
+			goto out_abort_free_ticket;
+		}
+
+		/*
+		 * Higher sequences will wait for this one so skip them.
+		 * Don't wait for our own sequence, either.
+		 */
+		if (new_ctx->sequence >= ctx->sequence)
+			continue;
+		if (!new_ctx->commit_lsn) {
+			/*
+			 * It is still being pushed! Wait for the push to
+			 * complete, then start again from the beginning.
+			 */
+			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
+			goto restart;
+		}
+	}
+	spin_unlock(&cil->xc_push_lock);
+
+	/* xfs_log_done always frees the ticket on error. */
+	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
+	if (commit_lsn == -1)
+		goto out_abort;
+
+	/* attach all the transactions w/ busy extents to iclog */
+	ctx->log_cb.cb_func = xlog_cil_committed;
+	ctx->log_cb.cb_arg = ctx;
+	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
+	if (error)
+		goto out_abort;
+
+	/*
+	 * now the checkpoint commit is complete and we've attached the
+	 * callbacks to the iclog we can assign the commit LSN to the context
+	 * and wake up anyone who is waiting for the commit to complete.
+	 */
+	spin_lock(&cil->xc_push_lock);
+	ctx->commit_lsn = commit_lsn;
+	wake_up_all(&cil->xc_commit_wait);
+	spin_unlock(&cil->xc_push_lock);
+
+	/* release the hounds! */
+	return xfs_log_release_iclog(log->l_mp, commit_iclog);
+
+out_skip:
+	up_write(&cil->xc_ctx_lock);
+	xfs_log_ticket_put(new_ctx->ticket);
+	kmem_free(new_ctx);
+	return 0;
+
+out_abort_free_ticket:
+	xfs_log_ticket_put(tic);
+out_abort:
+	xlog_cil_committed(ctx, XFS_LI_ABORTED);
+	return -EIO;
+}
+
+static void
+xlog_cil_push_work(
+	struct work_struct	*work)
+{
+	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
+							xc_push_work);
+	xlog_cil_push(cil->xc_log);
+}
+
+/*
+ * We need to push CIL every so often so we don't cache more than we can fit in
+ * the log. The limit really is that a checkpoint can't be more than half the
+ * log (the current checkpoint is not allowed to overwrite the previous
+ * checkpoint), but commit latency and memory usage limit this to a smaller
+ * size.
+ */
+static void
+xlog_cil_push_background(
+	struct xlog	*log)
+{
+	struct xfs_cil	*cil = log->l_cilp;
+
+	/*
+	 * The cil won't be empty because we are called while holding the
+	 * context lock so whatever we added to the CIL will still be there
+	 */
+	ASSERT(!list_empty(&cil->xc_cil));
+
+	/*
+	 * don't do a background push if we haven't used up all the
+	 * space available yet.
+	 */
+	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
+		return;
+
+	spin_lock(&cil->xc_push_lock);
+	if (cil->xc_push_seq < cil->xc_current_sequence) {
+		cil->xc_push_seq = cil->xc_current_sequence;
+		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
+	}
+	spin_unlock(&cil->xc_push_lock);
+
+}
+
+/*
+ * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
+ * number that is passed. When it returns, the work will be queued for
+ * @push_seq, but it won't be completed. The caller is expected to do any
+ * waiting for push_seq to complete if it is required.
+ */
+static void
+xlog_cil_push_now(
+	struct xlog	*log,
+	xfs_lsn_t	push_seq)
+{
+	struct xfs_cil	*cil = log->l_cilp;
+
+	if (!cil)
+		return;
+
+	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
+
+	/* start on any pending background push to minimise wait time on it */
+	flush_work(&cil->xc_push_work);
+
+	/*
+	 * If the CIL is empty or we've already pushed the sequence then
+	 * there's no work we need to do.
+	 */
+	spin_lock(&cil->xc_push_lock);
+	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
+		spin_unlock(&cil->xc_push_lock);
+		return;
+	}
+
+	cil->xc_push_seq = push_seq;
+	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
+	spin_unlock(&cil->xc_push_lock);
+}
+
+bool
+xlog_cil_empty(
+	struct xlog	*log)
+{
+	struct xfs_cil	*cil = log->l_cilp;
+	bool		empty = false;
+
+	spin_lock(&cil->xc_push_lock);
+	if (list_empty(&cil->xc_cil))
+		empty = true;
+	spin_unlock(&cil->xc_push_lock);
+	return empty;
+}
+
+/*
+ * Commit a transaction with the given vector to the Committed Item List.
+ *
+ * To do this, we need to format the item, pin it in memory if required and
+ * account for the space used by the transaction. Once we have done that we
+ * need to release the unused reservation for the transaction, attach the
+ * transaction to the checkpoint context so we carry the busy extents through
+ * to checkpoint completion, and then unlock all the items in the transaction.
+ *
+ * Called with the context lock already held in read mode to lock out
+ * background commit, returns without it held once background commits are
+ * allowed again.
+ */
+void
+xfs_log_commit_cil(
+	struct xfs_mount	*mp,
+	struct xfs_trans	*tp,
+	xfs_lsn_t		*commit_lsn,
+	bool			regrant)
+{
+	struct xlog		*log = mp->m_log;
+	struct xfs_cil		*cil = log->l_cilp;
+
+	/* lock out background commit */
+	down_read(&cil->xc_ctx_lock);
+
+	xlog_cil_insert_items(log, tp);
+
+	/* check we didn't blow the reservation */
+	if (tp->t_ticket->t_curr_res < 0)
+		xlog_print_tic_res(mp, tp->t_ticket);
+
+	tp->t_commit_lsn = cil->xc_ctx->sequence;
+	if (commit_lsn)
+		*commit_lsn = tp->t_commit_lsn;
+
+	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
+	xfs_trans_unreserve_and_mod_sb(tp);
+
+	/*
+	 * Once all the items of the transaction have been copied to the CIL,
+	 * the items can be unlocked and freed.
+	 *
+	 * This needs to be done before we drop the CIL context lock because we
+	 * have to update state in the log items and unlock them before they go
+	 * to disk. If we don't, then the CIL checkpoint can race with us and
+	 * we can run checkpoint completion before we've updated and unlocked
+	 * the log items. This affects (at least) processing of stale buffers,
+	 * inodes and EFIs.
+	 */
+	xfs_trans_free_items(tp, tp->t_commit_lsn, false);
+
+	xlog_cil_push_background(log);
+
+	up_read(&cil->xc_ctx_lock);
+}
+
+/*
+ * Conditionally push the CIL based on the sequence passed in.
+ *
+ * We only need to push if we haven't already pushed the sequence
+ * number given. Hence the only time we will trigger a push here is
+ * if the push sequence is the same as the current context.
+ *
+ * We return the current commit lsn to allow the callers to determine if a
+ * iclog flush is necessary following this call.
+ */
+xfs_lsn_t
+xlog_cil_force_lsn(
+	struct xlog	*log,
+	xfs_lsn_t	sequence)
+{
+	struct xfs_cil		*cil = log->l_cilp;
+	struct xfs_cil_ctx	*ctx;
+	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
+
+	ASSERT(sequence <= cil->xc_current_sequence);
+
+	/*
+	 * check to see if we need to force out the current context.
+	 * xlog_cil_push() handles racing pushes for the same sequence,
+	 * so no need to deal with it here.
+	 */
+restart:
+	xlog_cil_push_now(log, sequence);
+
+	/*
+	 * See if we can find a previous sequence still committing.
+	 * We need to wait for all previous sequence commits to complete
+	 * before allowing the force of push_seq to go ahead. Hence block
+	 * on commits for those as well.
+	 */
+	spin_lock(&cil->xc_push_lock);
+	list_for_each_entry(ctx, &cil->xc_committing, committing) {
+		/*
+		 * Avoid getting stuck in this loop because we were woken by the
+		 * shutdown, but then went back to sleep once already in the
+		 * shutdown state.
+		 */
+		if (XLOG_FORCED_SHUTDOWN(log))
+			goto out_shutdown;
+		if (ctx->sequence > sequence)
+			continue;
+		if (!ctx->commit_lsn) {
+			/*
+			 * It is still being pushed! Wait for the push to
+			 * complete, then start again from the beginning.
+			 */
+			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
+			goto restart;
+		}
+		if (ctx->sequence != sequence)
+			continue;
+		/* found it! */
+		commit_lsn = ctx->commit_lsn;
+	}
+
+	/*
+	 * The call to xlog_cil_push_now() executes the push in the background.
+	 * Hence by the time we have got here it our sequence may not have been
+	 * pushed yet. This is true if the current sequence still matches the
+	 * push sequence after the above wait loop and the CIL still contains
+	 * dirty objects. This is guaranteed by the push code first adding the
+	 * context to the committing list before emptying the CIL.
+	 *
+	 * Hence if we don't find the context in the committing list and the
+	 * current sequence number is unchanged then the CIL contents are
+	 * significant.  If the CIL is empty, if means there was nothing to push
+	 * and that means there is nothing to wait for. If the CIL is not empty,
+	 * it means we haven't yet started the push, because if it had started
+	 * we would have found the context on the committing list.
+	 */
+	if (sequence == cil->xc_current_sequence &&
+	    !list_empty(&cil->xc_cil)) {
+		spin_unlock(&cil->xc_push_lock);
+		goto restart;
+	}
+
+	spin_unlock(&cil->xc_push_lock);
+	return commit_lsn;
+
+	/*
+	 * We detected a shutdown in progress. We need to trigger the log force
+	 * to pass through it's iclog state machine error handling, even though
+	 * we are already in a shutdown state. Hence we can't return
+	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
+	 * LSN is already stable), so we return a zero LSN instead.
+	 */
+out_shutdown:
+	spin_unlock(&cil->xc_push_lock);
+	return 0;
+}
+
+/*
+ * Check if the current log item was first committed in this sequence.
+ * We can't rely on just the log item being in the CIL, we have to check
+ * the recorded commit sequence number.
+ *
+ * Note: for this to be used in a non-racy manner, it has to be called with
+ * CIL flushing locked out. As a result, it should only be used during the
+ * transaction commit process when deciding what to format into the item.
+ */
+bool
+xfs_log_item_in_current_chkpt(
+	struct xfs_log_item *lip)
+{
+	struct xfs_cil_ctx *ctx;
+
+	if (list_empty(&lip->li_cil))
+		return false;
+
+	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
+
+	/*
+	 * li_seq is written on the first commit of a log item to record the
+	 * first checkpoint it is written to. Hence if it is different to the
+	 * current sequence, we're in a new checkpoint.
+	 */
+	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
+		return false;
+	return true;
+}
+
+/*
+ * Perform initial CIL structure initialisation.
+ */
+int
+xlog_cil_init(
+	struct xlog	*log)
+{
+	struct xfs_cil	*cil;
+	struct xfs_cil_ctx *ctx;
+
+	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
+	if (!cil)
+		return -ENOMEM;
+
+	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
+	if (!ctx) {
+		kmem_free(cil);
+		return -ENOMEM;
+	}
+
+	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
+	INIT_LIST_HEAD(&cil->xc_cil);
+	INIT_LIST_HEAD(&cil->xc_committing);
+	spin_lock_init(&cil->xc_cil_lock);
+	spin_lock_init(&cil->xc_push_lock);
+	init_rwsem(&cil->xc_ctx_lock);
+	init_waitqueue_head(&cil->xc_commit_wait);
+
+	INIT_LIST_HEAD(&ctx->committing);
+	INIT_LIST_HEAD(&ctx->busy_extents);
+	ctx->sequence = 1;
+	ctx->cil = cil;
+	cil->xc_ctx = ctx;
+	cil->xc_current_sequence = ctx->sequence;
+
+	cil->xc_log = log;
+	log->l_cilp = cil;
+	return 0;
+}
+
+void
+xlog_cil_destroy(
+	struct xlog	*log)
+{
+	if (log->l_cilp->xc_ctx) {
+		if (log->l_cilp->xc_ctx->ticket)
+			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
+		kmem_free(log->l_cilp->xc_ctx);
+	}
+
+	ASSERT(list_empty(&log->l_cilp->xc_cil));
+	kmem_free(log->l_cilp);
+}
+