File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/fs/xfs/xfs_mru_cache.c b/fs/xfs/xfs_mru_cache.c
new file mode 100644
index 0000000..f8a674d
--- /dev/null
+++ b/fs/xfs/xfs_mru_cache.c
@@ -0,0 +1,552 @@
+/*
+ * Copyright (c) 2006-2007 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+#include "xfs.h"
+#include "xfs_mru_cache.h"
+
+/*
+ * The MRU Cache data structure consists of a data store, an array of lists and
+ * a lock to protect its internal state.  At initialisation time, the client
+ * supplies an element lifetime in milliseconds and a group count, as well as a
+ * function pointer to call when deleting elements.  A data structure for
+ * queueing up work in the form of timed callbacks is also included.
+ *
+ * The group count controls how many lists are created, and thereby how finely
+ * the elements are grouped in time.  When reaping occurs, all the elements in
+ * all the lists whose time has expired are deleted.
+ *
+ * To give an example of how this works in practice, consider a client that
+ * initialises an MRU Cache with a lifetime of ten seconds and a group count of
+ * five.  Five internal lists will be created, each representing a two second
+ * period in time.  When the first element is added, time zero for the data
+ * structure is initialised to the current time.
+ *
+ * All the elements added in the first two seconds are appended to the first
+ * list.  Elements added in the third second go into the second list, and so on.
+ * If an element is accessed at any point, it is removed from its list and
+ * inserted at the head of the current most-recently-used list.
+ *
+ * The reaper function will have nothing to do until at least twelve seconds
+ * have elapsed since the first element was added.  The reason for this is that
+ * if it were called at t=11s, there could be elements in the first list that
+ * have only been inactive for nine seconds, so it still does nothing.  If it is
+ * called anywhere between t=12 and t=14 seconds, it will delete all the
+ * elements that remain in the first list.  It's therefore possible for elements
+ * to remain in the data store even after they've been inactive for up to
+ * (t + t/g) seconds, where t is the inactive element lifetime and g is the
+ * number of groups.
+ *
+ * The above example assumes that the reaper function gets called at least once
+ * every (t/g) seconds.  If it is called less frequently, unused elements will
+ * accumulate in the reap list until the reaper function is eventually called.
+ * The current implementation uses work queue callbacks to carefully time the
+ * reaper function calls, so this should happen rarely, if at all.
+ *
+ * From a design perspective, the primary reason for the choice of a list array
+ * representing discrete time intervals is that it's only practical to reap
+ * expired elements in groups of some appreciable size.  This automatically
+ * introduces a granularity to element lifetimes, so there's no point storing an
+ * individual timeout with each element that specifies a more precise reap time.
+ * The bonus is a saving of sizeof(long) bytes of memory per element stored.
+ *
+ * The elements could have been stored in just one list, but an array of
+ * counters or pointers would need to be maintained to allow them to be divided
+ * up into discrete time groups.  More critically, the process of touching or
+ * removing an element would involve walking large portions of the entire list,
+ * which would have a detrimental effect on performance.  The additional memory
+ * requirement for the array of list heads is minimal.
+ *
+ * When an element is touched or deleted, it needs to be removed from its
+ * current list.  Doubly linked lists are used to make the list maintenance
+ * portion of these operations O(1).  Since reaper timing can be imprecise,
+ * inserts and lookups can occur when there are no free lists available.  When
+ * this happens, all the elements on the LRU list need to be migrated to the end
+ * of the reap list.  To keep the list maintenance portion of these operations
+ * O(1) also, list tails need to be accessible without walking the entire list.
+ * This is the reason why doubly linked list heads are used.
+ */
+
+/*
+ * An MRU Cache is a dynamic data structure that stores its elements in a way
+ * that allows efficient lookups, but also groups them into discrete time
+ * intervals based on insertion time.  This allows elements to be efficiently
+ * and automatically reaped after a fixed period of inactivity.
+ *
+ * When a client data pointer is stored in the MRU Cache it needs to be added to
+ * both the data store and to one of the lists.  It must also be possible to
+ * access each of these entries via the other, i.e. to:
+ *
+ *    a) Walk a list, removing the corresponding data store entry for each item.
+ *    b) Look up a data store entry, then access its list entry directly.
+ *
+ * To achieve both of these goals, each entry must contain both a list entry and
+ * a key, in addition to the user's data pointer.  Note that it's not a good
+ * idea to have the client embed one of these structures at the top of their own
+ * data structure, because inserting the same item more than once would most
+ * likely result in a loop in one of the lists.  That's a sure-fire recipe for
+ * an infinite loop in the code.
+ */
+struct xfs_mru_cache {
+	struct radix_tree_root	store;     /* Core storage data structure.  */
+	struct list_head	*lists;    /* Array of lists, one per grp.  */
+	struct list_head	reap_list; /* Elements overdue for reaping. */
+	spinlock_t		lock;      /* Lock to protect this struct.  */
+	unsigned int		grp_count; /* Number of discrete groups.    */
+	unsigned int		grp_time;  /* Time period spanned by grps.  */
+	unsigned int		lru_grp;   /* Group containing time zero.   */
+	unsigned long		time_zero; /* Time first element was added. */
+	xfs_mru_cache_free_func_t free_func; /* Function pointer for freeing. */
+	struct delayed_work	work;      /* Workqueue data for reaping.   */
+	unsigned int		queued;	   /* work has been queued */
+};
+
+static struct workqueue_struct	*xfs_mru_reap_wq;
+
+/*
+ * When inserting, destroying or reaping, it's first necessary to update the
+ * lists relative to a particular time.  In the case of destroying, that time
+ * will be well in the future to ensure that all items are moved to the reap
+ * list.  In all other cases though, the time will be the current time.
+ *
+ * This function enters a loop, moving the contents of the LRU list to the reap
+ * list again and again until either a) the lists are all empty, or b) time zero
+ * has been advanced sufficiently to be within the immediate element lifetime.
+ *
+ * Case a) above is detected by counting how many groups are migrated and
+ * stopping when they've all been moved.  Case b) is detected by monitoring the
+ * time_zero field, which is updated as each group is migrated.
+ *
+ * The return value is the earliest time that more migration could be needed, or
+ * zero if there's no need to schedule more work because the lists are empty.
+ */
+STATIC unsigned long
+_xfs_mru_cache_migrate(
+	struct xfs_mru_cache	*mru,
+	unsigned long		now)
+{
+	unsigned int		grp;
+	unsigned int		migrated = 0;
+	struct list_head	*lru_list;
+
+	/* Nothing to do if the data store is empty. */
+	if (!mru->time_zero)
+		return 0;
+
+	/* While time zero is older than the time spanned by all the lists. */
+	while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
+
+		/*
+		 * If the LRU list isn't empty, migrate its elements to the tail
+		 * of the reap list.
+		 */
+		lru_list = mru->lists + mru->lru_grp;
+		if (!list_empty(lru_list))
+			list_splice_init(lru_list, mru->reap_list.prev);
+
+		/*
+		 * Advance the LRU group number, freeing the old LRU list to
+		 * become the new MRU list; advance time zero accordingly.
+		 */
+		mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
+		mru->time_zero += mru->grp_time;
+
+		/*
+		 * If reaping is so far behind that all the elements on all the
+		 * lists have been migrated to the reap list, it's now empty.
+		 */
+		if (++migrated == mru->grp_count) {
+			mru->lru_grp = 0;
+			mru->time_zero = 0;
+			return 0;
+		}
+	}
+
+	/* Find the first non-empty list from the LRU end. */
+	for (grp = 0; grp < mru->grp_count; grp++) {
+
+		/* Check the grp'th list from the LRU end. */
+		lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
+		if (!list_empty(lru_list))
+			return mru->time_zero +
+			       (mru->grp_count + grp) * mru->grp_time;
+	}
+
+	/* All the lists must be empty. */
+	mru->lru_grp = 0;
+	mru->time_zero = 0;
+	return 0;
+}
+
+/*
+ * When inserting or doing a lookup, an element needs to be inserted into the
+ * MRU list.  The lists must be migrated first to ensure that they're
+ * up-to-date, otherwise the new element could be given a shorter lifetime in
+ * the cache than it should.
+ */
+STATIC void
+_xfs_mru_cache_list_insert(
+	struct xfs_mru_cache	*mru,
+	struct xfs_mru_cache_elem *elem)
+{
+	unsigned int		grp = 0;
+	unsigned long		now = jiffies;
+
+	/*
+	 * If the data store is empty, initialise time zero, leave grp set to
+	 * zero and start the work queue timer if necessary.  Otherwise, set grp
+	 * to the number of group times that have elapsed since time zero.
+	 */
+	if (!_xfs_mru_cache_migrate(mru, now)) {
+		mru->time_zero = now;
+		if (!mru->queued) {
+			mru->queued = 1;
+			queue_delayed_work(xfs_mru_reap_wq, &mru->work,
+			                   mru->grp_count * mru->grp_time);
+		}
+	} else {
+		grp = (now - mru->time_zero) / mru->grp_time;
+		grp = (mru->lru_grp + grp) % mru->grp_count;
+	}
+
+	/* Insert the element at the tail of the corresponding list. */
+	list_add_tail(&elem->list_node, mru->lists + grp);
+}
+
+/*
+ * When destroying or reaping, all the elements that were migrated to the reap
+ * list need to be deleted.  For each element this involves removing it from the
+ * data store, removing it from the reap list, calling the client's free
+ * function and deleting the element from the element zone.
+ *
+ * We get called holding the mru->lock, which we drop and then reacquire.
+ * Sparse need special help with this to tell it we know what we are doing.
+ */
+STATIC void
+_xfs_mru_cache_clear_reap_list(
+	struct xfs_mru_cache	*mru)
+		__releases(mru->lock) __acquires(mru->lock)
+{
+	struct xfs_mru_cache_elem *elem, *next;
+	struct list_head	tmp;
+
+	INIT_LIST_HEAD(&tmp);
+	list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
+
+		/* Remove the element from the data store. */
+		radix_tree_delete(&mru->store, elem->key);
+
+		/*
+		 * remove to temp list so it can be freed without
+		 * needing to hold the lock
+		 */
+		list_move(&elem->list_node, &tmp);
+	}
+	spin_unlock(&mru->lock);
+
+	list_for_each_entry_safe(elem, next, &tmp, list_node) {
+		list_del_init(&elem->list_node);
+		mru->free_func(elem);
+	}
+
+	spin_lock(&mru->lock);
+}
+
+/*
+ * We fire the reap timer every group expiry interval so
+ * we always have a reaper ready to run. This makes shutdown
+ * and flushing of the reaper easy to do. Hence we need to
+ * keep when the next reap must occur so we can determine
+ * at each interval whether there is anything we need to do.
+ */
+STATIC void
+_xfs_mru_cache_reap(
+	struct work_struct	*work)
+{
+	struct xfs_mru_cache	*mru =
+		container_of(work, struct xfs_mru_cache, work.work);
+	unsigned long		now, next;
+
+	ASSERT(mru && mru->lists);
+	if (!mru || !mru->lists)
+		return;
+
+	spin_lock(&mru->lock);
+	next = _xfs_mru_cache_migrate(mru, jiffies);
+	_xfs_mru_cache_clear_reap_list(mru);
+
+	mru->queued = next;
+	if ((mru->queued > 0)) {
+		now = jiffies;
+		if (next <= now)
+			next = 0;
+		else
+			next -= now;
+		queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
+	}
+
+	spin_unlock(&mru->lock);
+}
+
+int
+xfs_mru_cache_init(void)
+{
+	xfs_mru_reap_wq = alloc_workqueue("xfs_mru_cache",
+				WQ_MEM_RECLAIM|WQ_FREEZABLE, 1);
+	if (!xfs_mru_reap_wq)
+		return -ENOMEM;
+	return 0;
+}
+
+void
+xfs_mru_cache_uninit(void)
+{
+	destroy_workqueue(xfs_mru_reap_wq);
+}
+
+/*
+ * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
+ * with the address of the pointer, a lifetime value in milliseconds, a group
+ * count and a free function to use when deleting elements.  This function
+ * returns 0 if the initialisation was successful.
+ */
+int
+xfs_mru_cache_create(
+	struct xfs_mru_cache	**mrup,
+	unsigned int		lifetime_ms,
+	unsigned int		grp_count,
+	xfs_mru_cache_free_func_t free_func)
+{
+	struct xfs_mru_cache	*mru = NULL;
+	int			err = 0, grp;
+	unsigned int		grp_time;
+
+	if (mrup)
+		*mrup = NULL;
+
+	if (!mrup || !grp_count || !lifetime_ms || !free_func)
+		return -EINVAL;
+
+	if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
+		return -EINVAL;
+
+	if (!(mru = kmem_zalloc(sizeof(*mru), KM_SLEEP)))
+		return -ENOMEM;
+
+	/* An extra list is needed to avoid reaping up to a grp_time early. */
+	mru->grp_count = grp_count + 1;
+	mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), KM_SLEEP);
+
+	if (!mru->lists) {
+		err = -ENOMEM;
+		goto exit;
+	}
+
+	for (grp = 0; grp < mru->grp_count; grp++)
+		INIT_LIST_HEAD(mru->lists + grp);
+
+	/*
+	 * We use GFP_KERNEL radix tree preload and do inserts under a
+	 * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
+	 */
+	INIT_RADIX_TREE(&mru->store, GFP_ATOMIC);
+	INIT_LIST_HEAD(&mru->reap_list);
+	spin_lock_init(&mru->lock);
+	INIT_DELAYED_WORK(&mru->work, _xfs_mru_cache_reap);
+
+	mru->grp_time  = grp_time;
+	mru->free_func = free_func;
+
+	*mrup = mru;
+
+exit:
+	if (err && mru && mru->lists)
+		kmem_free(mru->lists);
+	if (err && mru)
+		kmem_free(mru);
+
+	return err;
+}
+
+/*
+ * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
+ * free functions as they're deleted.  When this function returns, the caller is
+ * guaranteed that all the free functions for all the elements have finished
+ * executing and the reaper is not running.
+ */
+static void
+xfs_mru_cache_flush(
+	struct xfs_mru_cache	*mru)
+{
+	if (!mru || !mru->lists)
+		return;
+
+	spin_lock(&mru->lock);
+	if (mru->queued) {
+		spin_unlock(&mru->lock);
+		cancel_delayed_work_sync(&mru->work);
+		spin_lock(&mru->lock);
+	}
+
+	_xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
+	_xfs_mru_cache_clear_reap_list(mru);
+
+	spin_unlock(&mru->lock);
+}
+
+void
+xfs_mru_cache_destroy(
+	struct xfs_mru_cache	*mru)
+{
+	if (!mru || !mru->lists)
+		return;
+
+	xfs_mru_cache_flush(mru);
+
+	kmem_free(mru->lists);
+	kmem_free(mru);
+}
+
+/*
+ * To insert an element, call xfs_mru_cache_insert() with the data store, the
+ * element's key and the client data pointer.  This function returns 0 on
+ * success or ENOMEM if memory for the data element couldn't be allocated.
+ */
+int
+xfs_mru_cache_insert(
+	struct xfs_mru_cache	*mru,
+	unsigned long		key,
+	struct xfs_mru_cache_elem *elem)
+{
+	int			error;
+
+	ASSERT(mru && mru->lists);
+	if (!mru || !mru->lists)
+		return -EINVAL;
+
+	if (radix_tree_preload(GFP_NOFS))
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&elem->list_node);
+	elem->key = key;
+
+	spin_lock(&mru->lock);
+	error = radix_tree_insert(&mru->store, key, elem);
+	radix_tree_preload_end();
+	if (!error)
+		_xfs_mru_cache_list_insert(mru, elem);
+	spin_unlock(&mru->lock);
+
+	return error;
+}
+
+/*
+ * To remove an element without calling the free function, call
+ * xfs_mru_cache_remove() with the data store and the element's key.  On success
+ * the client data pointer for the removed element is returned, otherwise this
+ * function will return a NULL pointer.
+ */
+struct xfs_mru_cache_elem *
+xfs_mru_cache_remove(
+	struct xfs_mru_cache	*mru,
+	unsigned long		key)
+{
+	struct xfs_mru_cache_elem *elem;
+
+	ASSERT(mru && mru->lists);
+	if (!mru || !mru->lists)
+		return NULL;
+
+	spin_lock(&mru->lock);
+	elem = radix_tree_delete(&mru->store, key);
+	if (elem)
+		list_del(&elem->list_node);
+	spin_unlock(&mru->lock);
+
+	return elem;
+}
+
+/*
+ * To remove and element and call the free function, call xfs_mru_cache_delete()
+ * with the data store and the element's key.
+ */
+void
+xfs_mru_cache_delete(
+	struct xfs_mru_cache	*mru,
+	unsigned long		key)
+{
+	struct xfs_mru_cache_elem *elem;
+
+	elem = xfs_mru_cache_remove(mru, key);
+	if (elem)
+		mru->free_func(elem);
+}
+
+/*
+ * To look up an element using its key, call xfs_mru_cache_lookup() with the
+ * data store and the element's key.  If found, the element will be moved to the
+ * head of the MRU list to indicate that it's been touched.
+ *
+ * The internal data structures are protected by a spinlock that is STILL HELD
+ * when this function returns.  Call xfs_mru_cache_done() to release it.  Note
+ * that it is not safe to call any function that might sleep in the interim.
+ *
+ * The implementation could have used reference counting to avoid this
+ * restriction, but since most clients simply want to get, set or test a member
+ * of the returned data structure, the extra per-element memory isn't warranted.
+ *
+ * If the element isn't found, this function returns NULL and the spinlock is
+ * released.  xfs_mru_cache_done() should NOT be called when this occurs.
+ *
+ * Because sparse isn't smart enough to know about conditional lock return
+ * status, we need to help it get it right by annotating the path that does
+ * not release the lock.
+ */
+struct xfs_mru_cache_elem *
+xfs_mru_cache_lookup(
+	struct xfs_mru_cache	*mru,
+	unsigned long		key)
+{
+	struct xfs_mru_cache_elem *elem;
+
+	ASSERT(mru && mru->lists);
+	if (!mru || !mru->lists)
+		return NULL;
+
+	spin_lock(&mru->lock);
+	elem = radix_tree_lookup(&mru->store, key);
+	if (elem) {
+		list_del(&elem->list_node);
+		_xfs_mru_cache_list_insert(mru, elem);
+		__release(mru_lock); /* help sparse not be stupid */
+	} else
+		spin_unlock(&mru->lock);
+
+	return elem;
+}
+
+/*
+ * To release the internal data structure spinlock after having performed an
+ * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
+ * with the data store pointer.
+ */
+void
+xfs_mru_cache_done(
+	struct xfs_mru_cache	*mru)
+		__releases(mru->lock)
+{
+	spin_unlock(&mru->lock);
+}