File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
new file mode 100644
index 0000000..17f7bcf
--- /dev/null
+++ b/kernel/time/hrtimer.c
@@ -0,0 +1,1835 @@
+/*
+ *  linux/kernel/hrtimer.c
+ *
+ *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
+ *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
+ *
+ *  High-resolution kernel timers
+ *
+ *  In contrast to the low-resolution timeout API implemented in
+ *  kernel/timer.c, hrtimers provide finer resolution and accuracy
+ *  depending on system configuration and capabilities.
+ *
+ *  These timers are currently used for:
+ *   - itimers
+ *   - POSIX timers
+ *   - nanosleep
+ *   - precise in-kernel timing
+ *
+ *  Started by: Thomas Gleixner and Ingo Molnar
+ *
+ *  Credits:
+ *	based on kernel/timer.c
+ *
+ *	Help, testing, suggestions, bugfixes, improvements were
+ *	provided by:
+ *
+ *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
+ *	et. al.
+ *
+ *  For licencing details see kernel-base/COPYING
+ */
+
+#include <linux/cpu.h>
+#include <linux/export.h>
+#include <linux/percpu.h>
+#include <linux/hrtimer.h>
+#include <linux/notifier.h>
+#include <linux/syscalls.h>
+#include <linux/kallsyms.h>
+#include <linux/interrupt.h>
+#include <linux/tick.h>
+#include <linux/seq_file.h>
+#include <linux/err.h>
+#include <linux/debugobjects.h>
+#include <linux/sched.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
+#include <linux/timer.h>
+#include <linux/freezer.h>
+
+#include <asm/uaccess.h>
+
+#include <trace/events/timer.h>
+
+#include "tick-internal.h"
+
+/*
+ * The timer bases:
+ *
+ * There are more clockids than hrtimer bases. Thus, we index
+ * into the timer bases by the hrtimer_base_type enum. When trying
+ * to reach a base using a clockid, hrtimer_clockid_to_base()
+ * is used to convert from clockid to the proper hrtimer_base_type.
+ */
+DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
+{
+	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
+	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
+	.clock_base =
+	{
+		{
+			.index = HRTIMER_BASE_MONOTONIC,
+			.clockid = CLOCK_MONOTONIC,
+			.get_time = &ktime_get,
+		},
+		{
+			.index = HRTIMER_BASE_REALTIME,
+			.clockid = CLOCK_REALTIME,
+			.get_time = &ktime_get_real,
+		},
+		{
+			.index = HRTIMER_BASE_BOOTTIME,
+			.clockid = CLOCK_BOOTTIME,
+			.get_time = &ktime_get_boottime,
+		},
+		{
+			.index = HRTIMER_BASE_TAI,
+			.clockid = CLOCK_TAI,
+			.get_time = &ktime_get_clocktai,
+		},
+	}
+};
+
+static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
+	/* Make sure we catch unsupported clockids */
+	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
+
+	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
+	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
+	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
+	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
+};
+
+static inline int hrtimer_clockid_to_base(clockid_t clock_id)
+{
+	int base = hrtimer_clock_to_base_table[clock_id];
+	BUG_ON(base == HRTIMER_MAX_CLOCK_BASES);
+	return base;
+}
+
+/*
+ * Functions and macros which are different for UP/SMP systems are kept in a
+ * single place
+ */
+#ifdef CONFIG_SMP
+
+/*
+ * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
+ * such that hrtimer_callback_running() can unconditionally dereference
+ * timer->base->cpu_base
+ */
+static struct hrtimer_cpu_base migration_cpu_base = {
+	.seq = SEQCNT_ZERO(migration_cpu_base),
+	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
+};
+
+#define migration_base	migration_cpu_base.clock_base[0]
+
+/*
+ * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
+ * means that all timers which are tied to this base via timer->base are
+ * locked, and the base itself is locked too.
+ *
+ * So __run_timers/migrate_timers can safely modify all timers which could
+ * be found on the lists/queues.
+ *
+ * When the timer's base is locked, and the timer removed from list, it is
+ * possible to set timer->base = &migration_base and drop the lock: the timer
+ * remains locked.
+ */
+static
+struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
+					     unsigned long *flags)
+{
+	struct hrtimer_clock_base *base;
+
+	for (;;) {
+		base = timer->base;
+		if (likely(base != &migration_base)) {
+			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+			if (likely(base == timer->base))
+				return base;
+			/* The timer has migrated to another CPU: */
+			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
+		}
+		cpu_relax();
+	}
+}
+
+/*
+ * With HIGHRES=y we do not migrate the timer when it is expiring
+ * before the next event on the target cpu because we cannot reprogram
+ * the target cpu hardware and we would cause it to fire late.
+ *
+ * Called with cpu_base->lock of target cpu held.
+ */
+static int
+hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+	ktime_t expires;
+
+	if (!new_base->cpu_base->hres_active)
+		return 0;
+
+	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
+	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
+#else
+	return 0;
+#endif
+}
+
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+static inline
+struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
+					 int pinned)
+{
+	if (pinned || !base->migration_enabled)
+		return base;
+	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
+}
+#else
+static inline
+struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
+					 int pinned)
+{
+	return base;
+}
+#endif
+
+/*
+ * We switch the timer base to a power-optimized selected CPU target,
+ * if:
+ *	- NO_HZ_COMMON is enabled
+ *	- timer migration is enabled
+ *	- the timer callback is not running
+ *	- the timer is not the first expiring timer on the new target
+ *
+ * If one of the above requirements is not fulfilled we move the timer
+ * to the current CPU or leave it on the previously assigned CPU if
+ * the timer callback is currently running.
+ */
+static inline struct hrtimer_clock_base *
+switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
+		    int pinned)
+{
+	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
+	struct hrtimer_clock_base *new_base;
+	int basenum = base->index;
+
+	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
+	new_cpu_base = get_target_base(this_cpu_base, pinned);
+again:
+	new_base = &new_cpu_base->clock_base[basenum];
+
+	if (base != new_base) {
+		/*
+		 * We are trying to move timer to new_base.
+		 * However we can't change timer's base while it is running,
+		 * so we keep it on the same CPU. No hassle vs. reprogramming
+		 * the event source in the high resolution case. The softirq
+		 * code will take care of this when the timer function has
+		 * completed. There is no conflict as we hold the lock until
+		 * the timer is enqueued.
+		 */
+		if (unlikely(hrtimer_callback_running(timer)))
+			return base;
+
+		/* See the comment in lock_hrtimer_base() */
+		timer->base = &migration_base;
+		raw_spin_unlock(&base->cpu_base->lock);
+		raw_spin_lock(&new_base->cpu_base->lock);
+
+		if (new_cpu_base != this_cpu_base &&
+		    hrtimer_check_target(timer, new_base)) {
+			raw_spin_unlock(&new_base->cpu_base->lock);
+			raw_spin_lock(&base->cpu_base->lock);
+			new_cpu_base = this_cpu_base;
+			timer->base = base;
+			goto again;
+		}
+		timer->base = new_base;
+	} else {
+		if (new_cpu_base != this_cpu_base &&
+		    hrtimer_check_target(timer, new_base)) {
+			new_cpu_base = this_cpu_base;
+			goto again;
+		}
+	}
+	return new_base;
+}
+
+#else /* CONFIG_SMP */
+
+static inline struct hrtimer_clock_base *
+lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+	struct hrtimer_clock_base *base = timer->base;
+
+	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
+
+	return base;
+}
+
+# define switch_hrtimer_base(t, b, p)	(b)
+
+#endif	/* !CONFIG_SMP */
+
+/*
+ * Functions for the union type storage format of ktime_t which are
+ * too large for inlining:
+ */
+#if BITS_PER_LONG < 64
+/*
+ * Divide a ktime value by a nanosecond value
+ */
+s64 __ktime_divns(const ktime_t kt, s64 div)
+{
+	int sft = 0;
+	s64 dclc;
+	u64 tmp;
+
+	dclc = ktime_to_ns(kt);
+	tmp = dclc < 0 ? -dclc : dclc;
+
+	/* Make sure the divisor is less than 2^32: */
+	while (div >> 32) {
+		sft++;
+		div >>= 1;
+	}
+	tmp >>= sft;
+	do_div(tmp, (unsigned long) div);
+	return dclc < 0 ? -tmp : tmp;
+}
+EXPORT_SYMBOL_GPL(__ktime_divns);
+#endif /* BITS_PER_LONG >= 64 */
+
+/*
+ * Add two ktime values and do a safety check for overflow:
+ */
+ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
+{
+	ktime_t res = ktime_add(lhs, rhs);
+
+	/*
+	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
+	 * return to user space in a timespec:
+	 */
+	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
+		res = ktime_set(KTIME_SEC_MAX, 0);
+
+	return res;
+}
+
+EXPORT_SYMBOL_GPL(ktime_add_safe);
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr hrtimer_debug_descr;
+
+static void *hrtimer_debug_hint(void *addr)
+{
+	return ((struct hrtimer *) addr)->function;
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
+{
+	struct hrtimer *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		hrtimer_cancel(timer);
+		debug_object_init(timer, &hrtimer_debug_descr);
+		return 1;
+	default:
+		return 0;
+	}
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+	switch (state) {
+
+	case ODEBUG_STATE_NOTAVAILABLE:
+		WARN_ON_ONCE(1);
+		return 0;
+
+	case ODEBUG_STATE_ACTIVE:
+		WARN_ON(1);
+
+	default:
+		return 0;
+	}
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
+{
+	struct hrtimer *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		hrtimer_cancel(timer);
+		debug_object_free(timer, &hrtimer_debug_descr);
+		return 1;
+	default:
+		return 0;
+	}
+}
+
+static struct debug_obj_descr hrtimer_debug_descr = {
+	.name		= "hrtimer",
+	.debug_hint	= hrtimer_debug_hint,
+	.fixup_init	= hrtimer_fixup_init,
+	.fixup_activate	= hrtimer_fixup_activate,
+	.fixup_free	= hrtimer_fixup_free,
+};
+
+static inline void debug_hrtimer_init(struct hrtimer *timer)
+{
+	debug_object_init(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_activate(struct hrtimer *timer)
+{
+	debug_object_activate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
+{
+	debug_object_deactivate(timer, &hrtimer_debug_descr);
+}
+
+static inline void debug_hrtimer_free(struct hrtimer *timer)
+{
+	debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+			   enum hrtimer_mode mode);
+
+void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
+			   enum hrtimer_mode mode)
+{
+	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+	__hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
+
+void destroy_hrtimer_on_stack(struct hrtimer *timer)
+{
+	debug_object_free(timer, &hrtimer_debug_descr);
+}
+
+#else
+static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
+static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
+#endif
+
+static inline void
+debug_init(struct hrtimer *timer, clockid_t clockid,
+	   enum hrtimer_mode mode)
+{
+	debug_hrtimer_init(timer);
+	trace_hrtimer_init(timer, clockid, mode);
+}
+
+static inline void debug_activate(struct hrtimer *timer)
+{
+	debug_hrtimer_activate(timer);
+	trace_hrtimer_start(timer);
+}
+
+static inline void debug_deactivate(struct hrtimer *timer)
+{
+	debug_hrtimer_deactivate(timer);
+	trace_hrtimer_cancel(timer);
+}
+
+#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
+static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
+					     struct hrtimer *timer)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+	cpu_base->next_timer = timer;
+#endif
+}
+
+static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
+{
+	struct hrtimer_clock_base *base = cpu_base->clock_base;
+	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
+	unsigned int active = cpu_base->active_bases;
+
+	hrtimer_update_next_timer(cpu_base, NULL);
+	for (; active; base++, active >>= 1) {
+		struct timerqueue_node *next;
+		struct hrtimer *timer;
+
+		if (!(active & 0x01))
+			continue;
+
+		next = timerqueue_getnext(&base->active);
+		timer = container_of(next, struct hrtimer, node);
+		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+		if (expires.tv64 < expires_next.tv64) {
+			expires_next = expires;
+			hrtimer_update_next_timer(cpu_base, timer);
+		}
+	}
+	/*
+	 * clock_was_set() might have changed base->offset of any of
+	 * the clock bases so the result might be negative. Fix it up
+	 * to prevent a false positive in clockevents_program_event().
+	 */
+	if (expires_next.tv64 < 0)
+		expires_next.tv64 = 0;
+	return expires_next;
+}
+#endif
+
+static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
+{
+	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
+	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
+	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
+
+	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
+					    offs_real, offs_boot, offs_tai);
+}
+
+/* High resolution timer related functions */
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer enabled ?
+ */
+static int hrtimer_hres_enabled __read_mostly  = 1;
+unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
+EXPORT_SYMBOL_GPL(hrtimer_resolution);
+
+/*
+ * Enable / Disable high resolution mode
+ */
+static int __init setup_hrtimer_hres(char *str)
+{
+	if (!strcmp(str, "off"))
+		hrtimer_hres_enabled = 0;
+	else if (!strcmp(str, "on"))
+		hrtimer_hres_enabled = 1;
+	else
+		return 0;
+	return 1;
+}
+
+__setup("highres=", setup_hrtimer_hres);
+
+/*
+ * hrtimer_high_res_enabled - query, if the highres mode is enabled
+ */
+static inline int hrtimer_is_hres_enabled(void)
+{
+	return hrtimer_hres_enabled;
+}
+
+/*
+ * Is the high resolution mode active ?
+ */
+static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
+{
+	return cpu_base->hres_active;
+}
+
+static inline int hrtimer_hres_active(void)
+{
+	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
+}
+
+/*
+ * Reprogram the event source with checking both queues for the
+ * next event
+ * Called with interrupts disabled and base->lock held
+ */
+static void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
+{
+	ktime_t expires_next;
+
+	if (!cpu_base->hres_active)
+		return;
+
+	expires_next = __hrtimer_get_next_event(cpu_base);
+
+	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
+		return;
+
+	cpu_base->expires_next.tv64 = expires_next.tv64;
+
+	/*
+	 * If a hang was detected in the last timer interrupt then we
+	 * leave the hang delay active in the hardware. We want the
+	 * system to make progress. That also prevents the following
+	 * scenario:
+	 * T1 expires 50ms from now
+	 * T2 expires 5s from now
+	 *
+	 * T1 is removed, so this code is called and would reprogram
+	 * the hardware to 5s from now. Any hrtimer_start after that
+	 * will not reprogram the hardware due to hang_detected being
+	 * set. So we'd effectivly block all timers until the T2 event
+	 * fires.
+	 */
+	if (cpu_base->hang_detected)
+		return;
+
+	tick_program_event(cpu_base->expires_next, 1);
+}
+
+/*
+ * When a timer is enqueued and expires earlier than the already enqueued
+ * timers, we have to check, whether it expires earlier than the timer for
+ * which the clock event device was armed.
+ *
+ * Called with interrupts disabled and base->cpu_base.lock held
+ */
+static void hrtimer_reprogram(struct hrtimer *timer,
+			      struct hrtimer_clock_base *base)
+{
+	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
+
+	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
+
+	/*
+	 * If the timer is not on the current cpu, we cannot reprogram
+	 * the other cpus clock event device.
+	 */
+	if (base->cpu_base != cpu_base)
+		return;
+
+	/*
+	 * If the hrtimer interrupt is running, then it will
+	 * reevaluate the clock bases and reprogram the clock event
+	 * device. The callbacks are always executed in hard interrupt
+	 * context so we don't need an extra check for a running
+	 * callback.
+	 */
+	if (cpu_base->in_hrtirq)
+		return;
+
+	/*
+	 * CLOCK_REALTIME timer might be requested with an absolute
+	 * expiry time which is less than base->offset. Set it to 0.
+	 */
+	if (expires.tv64 < 0)
+		expires.tv64 = 0;
+
+	if (expires.tv64 >= cpu_base->expires_next.tv64)
+		return;
+
+	/* Update the pointer to the next expiring timer */
+	cpu_base->next_timer = timer;
+
+	/*
+	 * If a hang was detected in the last timer interrupt then we
+	 * do not schedule a timer which is earlier than the expiry
+	 * which we enforced in the hang detection. We want the system
+	 * to make progress.
+	 */
+	if (cpu_base->hang_detected)
+		return;
+
+	/*
+	 * Program the timer hardware. We enforce the expiry for
+	 * events which are already in the past.
+	 */
+	cpu_base->expires_next = expires;
+	tick_program_event(expires, 1);
+}
+
+/*
+ * Initialize the high resolution related parts of cpu_base
+ */
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
+{
+	base->expires_next.tv64 = KTIME_MAX;
+	base->hres_active = 0;
+}
+
+/*
+ * Retrigger next event is called after clock was set
+ *
+ * Called with interrupts disabled via on_each_cpu()
+ */
+static void retrigger_next_event(void *arg)
+{
+	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
+
+	if (!base->hres_active)
+		return;
+
+	raw_spin_lock(&base->lock);
+	hrtimer_update_base(base);
+	hrtimer_force_reprogram(base, 0);
+	raw_spin_unlock(&base->lock);
+}
+
+/*
+ * Switch to high resolution mode
+ */
+static void hrtimer_switch_to_hres(void)
+{
+	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
+
+	if (tick_init_highres()) {
+		printk(KERN_WARNING "Could not switch to high resolution "
+				    "mode on CPU %d\n", base->cpu);
+		return;
+	}
+	base->hres_active = 1;
+	hrtimer_resolution = HIGH_RES_NSEC;
+
+	tick_setup_sched_timer();
+	/* "Retrigger" the interrupt to get things going */
+	retrigger_next_event(NULL);
+}
+
+static void clock_was_set_work(struct work_struct *work)
+{
+	clock_was_set();
+}
+
+static DECLARE_WORK(hrtimer_work, clock_was_set_work);
+
+/*
+ * Called from timekeeping and resume code to reprogramm the hrtimer
+ * interrupt device on all cpus.
+ */
+void clock_was_set_delayed(void)
+{
+	schedule_work(&hrtimer_work);
+}
+
+#else
+
+static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
+static inline int hrtimer_hres_active(void) { return 0; }
+static inline int hrtimer_is_hres_enabled(void) { return 0; }
+static inline void hrtimer_switch_to_hres(void) { }
+static inline void
+hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
+static inline int hrtimer_reprogram(struct hrtimer *timer,
+				    struct hrtimer_clock_base *base)
+{
+	return 0;
+}
+static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
+static inline void retrigger_next_event(void *arg) { }
+
+#endif /* CONFIG_HIGH_RES_TIMERS */
+
+/*
+ * Clock realtime was set
+ *
+ * Change the offset of the realtime clock vs. the monotonic
+ * clock.
+ *
+ * We might have to reprogram the high resolution timer interrupt. On
+ * SMP we call the architecture specific code to retrigger _all_ high
+ * resolution timer interrupts. On UP we just disable interrupts and
+ * call the high resolution interrupt code.
+ */
+void clock_was_set(void)
+{
+#ifdef CONFIG_HIGH_RES_TIMERS
+	/* Retrigger the CPU local events everywhere */
+	on_each_cpu(retrigger_next_event, NULL, 1);
+#endif
+	timerfd_clock_was_set();
+}
+
+/*
+ * During resume we might have to reprogram the high resolution timer
+ * interrupt on all online CPUs.  However, all other CPUs will be
+ * stopped with IRQs interrupts disabled so the clock_was_set() call
+ * must be deferred.
+ */
+void hrtimers_resume(void)
+{
+	WARN_ONCE(!irqs_disabled(),
+		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
+
+	/* Retrigger on the local CPU */
+	retrigger_next_event(NULL);
+	/* And schedule a retrigger for all others */
+	clock_was_set_delayed();
+}
+
+static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+	if (timer->start_site)
+		return;
+	timer->start_site = __builtin_return_address(0);
+	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+	timer->start_pid = current->pid;
+#endif
+}
+
+static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+	timer->start_site = NULL;
+#endif
+}
+
+static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
+{
+#ifdef CONFIG_TIMER_STATS
+	if (likely(!timer_stats_active))
+		return;
+	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+				 timer->function, timer->start_comm, 0);
+#endif
+}
+
+/*
+ * Counterpart to lock_hrtimer_base above:
+ */
+static inline
+void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
+{
+	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
+}
+
+/**
+ * hrtimer_forward - forward the timer expiry
+ * @timer:	hrtimer to forward
+ * @now:	forward past this time
+ * @interval:	the interval to forward
+ *
+ * Forward the timer expiry so it will expire in the future.
+ * Returns the number of overruns.
+ *
+ * Can be safely called from the callback function of @timer. If
+ * called from other contexts @timer must neither be enqueued nor
+ * running the callback and the caller needs to take care of
+ * serialization.
+ *
+ * Note: This only updates the timer expiry value and does not requeue
+ * the timer.
+ */
+u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
+{
+	u64 orun = 1;
+	ktime_t delta;
+
+	delta = ktime_sub(now, hrtimer_get_expires(timer));
+
+	if (delta.tv64 < 0)
+		return 0;
+
+	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
+		return 0;
+
+	if (interval.tv64 < hrtimer_resolution)
+		interval.tv64 = hrtimer_resolution;
+
+	if (unlikely(delta.tv64 >= interval.tv64)) {
+		s64 incr = ktime_to_ns(interval);
+
+		orun = ktime_divns(delta, incr);
+		hrtimer_add_expires_ns(timer, incr * orun);
+		if (hrtimer_get_expires_tv64(timer) > now.tv64)
+			return orun;
+		/*
+		 * This (and the ktime_add() below) is the
+		 * correction for exact:
+		 */
+		orun++;
+	}
+	hrtimer_add_expires(timer, interval);
+
+	return orun;
+}
+EXPORT_SYMBOL_GPL(hrtimer_forward);
+
+/*
+ * enqueue_hrtimer - internal function to (re)start a timer
+ *
+ * The timer is inserted in expiry order. Insertion into the
+ * red black tree is O(log(n)). Must hold the base lock.
+ *
+ * Returns 1 when the new timer is the leftmost timer in the tree.
+ */
+static int enqueue_hrtimer(struct hrtimer *timer,
+			   struct hrtimer_clock_base *base)
+{
+	debug_activate(timer);
+
+	base->cpu_base->active_bases |= 1 << base->index;
+
+	timer->state = HRTIMER_STATE_ENQUEUED;
+
+	return timerqueue_add(&base->active, &timer->node);
+}
+
+/*
+ * __remove_hrtimer - internal function to remove a timer
+ *
+ * Caller must hold the base lock.
+ *
+ * High resolution timer mode reprograms the clock event device when the
+ * timer is the one which expires next. The caller can disable this by setting
+ * reprogram to zero. This is useful, when the context does a reprogramming
+ * anyway (e.g. timer interrupt)
+ */
+static void __remove_hrtimer(struct hrtimer *timer,
+			     struct hrtimer_clock_base *base,
+			     u8 newstate, int reprogram)
+{
+	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
+	u8 state = timer->state;
+
+	timer->state = newstate;
+	if (!(state & HRTIMER_STATE_ENQUEUED))
+		return;
+
+	if (!timerqueue_del(&base->active, &timer->node))
+		cpu_base->active_bases &= ~(1 << base->index);
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+	/*
+	 * Note: If reprogram is false we do not update
+	 * cpu_base->next_timer. This happens when we remove the first
+	 * timer on a remote cpu. No harm as we never dereference
+	 * cpu_base->next_timer. So the worst thing what can happen is
+	 * an superflous call to hrtimer_force_reprogram() on the
+	 * remote cpu later on if the same timer gets enqueued again.
+	 */
+	if (reprogram && timer == cpu_base->next_timer)
+		hrtimer_force_reprogram(cpu_base, 1);
+#endif
+}
+
+/*
+ * remove hrtimer, called with base lock held
+ */
+static inline int
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
+{
+	if (hrtimer_is_queued(timer)) {
+		u8 state = timer->state;
+		int reprogram;
+
+		/*
+		 * Remove the timer and force reprogramming when high
+		 * resolution mode is active and the timer is on the current
+		 * CPU. If we remove a timer on another CPU, reprogramming is
+		 * skipped. The interrupt event on this CPU is fired and
+		 * reprogramming happens in the interrupt handler. This is a
+		 * rare case and less expensive than a smp call.
+		 */
+		debug_deactivate(timer);
+		timer_stats_hrtimer_clear_start_info(timer);
+		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
+
+		if (!restart)
+			state = HRTIMER_STATE_INACTIVE;
+
+		__remove_hrtimer(timer, base, state, reprogram);
+		return 1;
+	}
+	return 0;
+}
+
+static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
+					    const enum hrtimer_mode mode)
+{
+#ifdef CONFIG_TIME_LOW_RES
+	/*
+	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
+	 * granular time values. For relative timers we add hrtimer_resolution
+	 * (i.e. one jiffie) to prevent short timeouts.
+	 */
+	timer->is_rel = mode & HRTIMER_MODE_REL;
+	if (timer->is_rel)
+		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
+#endif
+	return tim;
+}
+
+/**
+ * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
+ * @timer:	the timer to be added
+ * @tim:	expiry time
+ * @delta_ns:	"slack" range for the timer
+ * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
+ *		relative (HRTIMER_MODE_REL)
+ */
+void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
+			    unsigned long delta_ns, const enum hrtimer_mode mode)
+{
+	struct hrtimer_clock_base *base, *new_base;
+	unsigned long flags;
+	int leftmost;
+
+	base = lock_hrtimer_base(timer, &flags);
+
+	/* Remove an active timer from the queue: */
+	remove_hrtimer(timer, base, true);
+
+	if (mode & HRTIMER_MODE_REL)
+		tim = ktime_add_safe(tim, base->get_time());
+
+	tim = hrtimer_update_lowres(timer, tim, mode);
+
+	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
+
+	/* Switch the timer base, if necessary: */
+	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
+
+	timer_stats_hrtimer_set_start_info(timer);
+
+	leftmost = enqueue_hrtimer(timer, new_base);
+	if (!leftmost)
+		goto unlock;
+
+	if (!hrtimer_is_hres_active(timer)) {
+		/*
+		 * Kick to reschedule the next tick to handle the new timer
+		 * on dynticks target.
+		 */
+		if (new_base->cpu_base->nohz_active)
+			wake_up_nohz_cpu(new_base->cpu_base->cpu);
+	} else {
+		hrtimer_reprogram(timer, new_base);
+	}
+unlock:
+	unlock_hrtimer_base(timer, &flags);
+}
+EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
+
+/**
+ * hrtimer_try_to_cancel - try to deactivate a timer
+ * @timer:	hrtimer to stop
+ *
+ * Returns:
+ *  0 when the timer was not active
+ *  1 when the timer was active
+ * -1 when the timer is currently excuting the callback function and
+ *    cannot be stopped
+ */
+int hrtimer_try_to_cancel(struct hrtimer *timer)
+{
+	struct hrtimer_clock_base *base;
+	unsigned long flags;
+	int ret = -1;
+
+	/*
+	 * Check lockless first. If the timer is not active (neither
+	 * enqueued nor running the callback, nothing to do here.  The
+	 * base lock does not serialize against a concurrent enqueue,
+	 * so we can avoid taking it.
+	 */
+	if (!hrtimer_active(timer))
+		return 0;
+
+	base = lock_hrtimer_base(timer, &flags);
+
+	if (!hrtimer_callback_running(timer))
+		ret = remove_hrtimer(timer, base, false);
+
+	unlock_hrtimer_base(timer, &flags);
+
+	return ret;
+
+}
+EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
+
+/**
+ * hrtimer_cancel - cancel a timer and wait for the handler to finish.
+ * @timer:	the timer to be cancelled
+ *
+ * Returns:
+ *  0 when the timer was not active
+ *  1 when the timer was active
+ */
+int hrtimer_cancel(struct hrtimer *timer)
+{
+	for (;;) {
+		int ret = hrtimer_try_to_cancel(timer);
+
+		if (ret >= 0)
+			return ret;
+		cpu_relax();
+	}
+}
+EXPORT_SYMBOL_GPL(hrtimer_cancel);
+
+/**
+ * hrtimer_get_remaining - get remaining time for the timer
+ * @timer:	the timer to read
+ * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
+ */
+ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
+{
+	unsigned long flags;
+	ktime_t rem;
+
+	lock_hrtimer_base(timer, &flags);
+	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
+		rem = hrtimer_expires_remaining_adjusted(timer);
+	else
+		rem = hrtimer_expires_remaining(timer);
+	unlock_hrtimer_base(timer, &flags);
+
+	return rem;
+}
+EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
+
+#ifdef CONFIG_NO_HZ_COMMON
+/**
+ * hrtimer_get_next_event - get the time until next expiry event
+ *
+ * Returns the next expiry time or KTIME_MAX if no timer is pending.
+ */
+u64 hrtimer_get_next_event(void)
+{
+	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+	u64 expires = KTIME_MAX;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&cpu_base->lock, flags);
+
+	if (!__hrtimer_hres_active(cpu_base))
+		expires = __hrtimer_get_next_event(cpu_base).tv64;
+
+	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
+
+	return expires;
+}
+#endif
+
+static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+			   enum hrtimer_mode mode)
+{
+	struct hrtimer_cpu_base *cpu_base;
+	int base;
+
+	memset(timer, 0, sizeof(struct hrtimer));
+
+	cpu_base = raw_cpu_ptr(&hrtimer_bases);
+
+	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
+		clock_id = CLOCK_MONOTONIC;
+
+	base = hrtimer_clockid_to_base(clock_id);
+	timer->base = &cpu_base->clock_base[base];
+	timerqueue_init(&timer->node);
+
+#ifdef CONFIG_TIMER_STATS
+	timer->start_site = NULL;
+	timer->start_pid = -1;
+	memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
+}
+
+/**
+ * hrtimer_init - initialize a timer to the given clock
+ * @timer:	the timer to be initialized
+ * @clock_id:	the clock to be used
+ * @mode:	timer mode abs/rel
+ */
+void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
+		  enum hrtimer_mode mode)
+{
+	debug_init(timer, clock_id, mode);
+	__hrtimer_init(timer, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_init);
+
+/*
+ * A timer is active, when it is enqueued into the rbtree or the
+ * callback function is running or it's in the state of being migrated
+ * to another cpu.
+ *
+ * It is important for this function to not return a false negative.
+ */
+bool hrtimer_active(const struct hrtimer *timer)
+{
+	struct hrtimer_cpu_base *cpu_base;
+	unsigned int seq;
+
+	do {
+		cpu_base = READ_ONCE(timer->base->cpu_base);
+		seq = raw_read_seqcount_begin(&cpu_base->seq);
+
+		if (timer->state != HRTIMER_STATE_INACTIVE ||
+		    cpu_base->running == timer)
+			return true;
+
+	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
+		 cpu_base != READ_ONCE(timer->base->cpu_base));
+
+	return false;
+}
+EXPORT_SYMBOL_GPL(hrtimer_active);
+
+/*
+ * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
+ * distinct sections:
+ *
+ *  - queued:	the timer is queued
+ *  - callback:	the timer is being ran
+ *  - post:	the timer is inactive or (re)queued
+ *
+ * On the read side we ensure we observe timer->state and cpu_base->running
+ * from the same section, if anything changed while we looked at it, we retry.
+ * This includes timer->base changing because sequence numbers alone are
+ * insufficient for that.
+ *
+ * The sequence numbers are required because otherwise we could still observe
+ * a false negative if the read side got smeared over multiple consequtive
+ * __run_hrtimer() invocations.
+ */
+
+static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
+			  struct hrtimer_clock_base *base,
+			  struct hrtimer *timer, ktime_t *now)
+{
+	enum hrtimer_restart (*fn)(struct hrtimer *);
+	int restart;
+
+	lockdep_assert_held(&cpu_base->lock);
+
+	debug_deactivate(timer);
+	cpu_base->running = timer;
+
+	/*
+	 * Separate the ->running assignment from the ->state assignment.
+	 *
+	 * As with a regular write barrier, this ensures the read side in
+	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
+	 * timer->state == INACTIVE.
+	 */
+	raw_write_seqcount_barrier(&cpu_base->seq);
+
+	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
+	timer_stats_account_hrtimer(timer);
+	fn = timer->function;
+
+	/*
+	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
+	 * timer is restarted with a period then it becomes an absolute
+	 * timer. If its not restarted it does not matter.
+	 */
+	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
+		timer->is_rel = false;
+
+	/*
+	 * Because we run timers from hardirq context, there is no chance
+	 * they get migrated to another cpu, therefore its safe to unlock
+	 * the timer base.
+	 */
+	raw_spin_unlock(&cpu_base->lock);
+	trace_hrtimer_expire_entry(timer, now);
+	restart = fn(timer);
+	trace_hrtimer_expire_exit(timer);
+	raw_spin_lock(&cpu_base->lock);
+
+	/*
+	 * Note: We clear the running state after enqueue_hrtimer and
+	 * we do not reprogramm the event hardware. Happens either in
+	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
+	 *
+	 * Note: Because we dropped the cpu_base->lock above,
+	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
+	 * for us already.
+	 */
+	if (restart != HRTIMER_NORESTART &&
+	    !(timer->state & HRTIMER_STATE_ENQUEUED))
+		enqueue_hrtimer(timer, base);
+
+	/*
+	 * Separate the ->running assignment from the ->state assignment.
+	 *
+	 * As with a regular write barrier, this ensures the read side in
+	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
+	 * timer->state == INACTIVE.
+	 */
+	raw_write_seqcount_barrier(&cpu_base->seq);
+
+	WARN_ON_ONCE(cpu_base->running != timer);
+	cpu_base->running = NULL;
+}
+
+static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
+{
+	struct hrtimer_clock_base *base = cpu_base->clock_base;
+	unsigned int active = cpu_base->active_bases;
+
+	for (; active; base++, active >>= 1) {
+		struct timerqueue_node *node;
+		ktime_t basenow;
+
+		if (!(active & 0x01))
+			continue;
+
+		basenow = ktime_add(now, base->offset);
+
+		while ((node = timerqueue_getnext(&base->active))) {
+			struct hrtimer *timer;
+
+			timer = container_of(node, struct hrtimer, node);
+
+			/*
+			 * The immediate goal for using the softexpires is
+			 * minimizing wakeups, not running timers at the
+			 * earliest interrupt after their soft expiration.
+			 * This allows us to avoid using a Priority Search
+			 * Tree, which can answer a stabbing querry for
+			 * overlapping intervals and instead use the simple
+			 * BST we already have.
+			 * We don't add extra wakeups by delaying timers that
+			 * are right-of a not yet expired timer, because that
+			 * timer will have to trigger a wakeup anyway.
+			 */
+			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
+				break;
+
+			__run_hrtimer(cpu_base, base, timer, &basenow);
+		}
+	}
+}
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+
+/*
+ * High resolution timer interrupt
+ * Called with interrupts disabled
+ */
+void hrtimer_interrupt(struct clock_event_device *dev)
+{
+	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+	ktime_t expires_next, now, entry_time, delta;
+	int retries = 0;
+
+	BUG_ON(!cpu_base->hres_active);
+	cpu_base->nr_events++;
+	dev->next_event.tv64 = KTIME_MAX;
+
+	raw_spin_lock(&cpu_base->lock);
+	entry_time = now = hrtimer_update_base(cpu_base);
+retry:
+	cpu_base->in_hrtirq = 1;
+	/*
+	 * We set expires_next to KTIME_MAX here with cpu_base->lock
+	 * held to prevent that a timer is enqueued in our queue via
+	 * the migration code. This does not affect enqueueing of
+	 * timers which run their callback and need to be requeued on
+	 * this CPU.
+	 */
+	cpu_base->expires_next.tv64 = KTIME_MAX;
+
+	__hrtimer_run_queues(cpu_base, now);
+
+	/* Reevaluate the clock bases for the next expiry */
+	expires_next = __hrtimer_get_next_event(cpu_base);
+	/*
+	 * Store the new expiry value so the migration code can verify
+	 * against it.
+	 */
+	cpu_base->expires_next = expires_next;
+	cpu_base->in_hrtirq = 0;
+	raw_spin_unlock(&cpu_base->lock);
+
+	/* Reprogramming necessary ? */
+	if (!tick_program_event(expires_next, 0)) {
+		cpu_base->hang_detected = 0;
+		return;
+	}
+
+	/*
+	 * The next timer was already expired due to:
+	 * - tracing
+	 * - long lasting callbacks
+	 * - being scheduled away when running in a VM
+	 *
+	 * We need to prevent that we loop forever in the hrtimer
+	 * interrupt routine. We give it 3 attempts to avoid
+	 * overreacting on some spurious event.
+	 *
+	 * Acquire base lock for updating the offsets and retrieving
+	 * the current time.
+	 */
+	raw_spin_lock(&cpu_base->lock);
+	now = hrtimer_update_base(cpu_base);
+	cpu_base->nr_retries++;
+	if (++retries < 3)
+		goto retry;
+	/*
+	 * Give the system a chance to do something else than looping
+	 * here. We stored the entry time, so we know exactly how long
+	 * we spent here. We schedule the next event this amount of
+	 * time away.
+	 */
+	cpu_base->nr_hangs++;
+	cpu_base->hang_detected = 1;
+	raw_spin_unlock(&cpu_base->lock);
+	delta = ktime_sub(now, entry_time);
+	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
+		cpu_base->max_hang_time = (unsigned int) delta.tv64;
+	/*
+	 * Limit it to a sensible value as we enforce a longer
+	 * delay. Give the CPU at least 100ms to catch up.
+	 */
+	if (delta.tv64 > 100 * NSEC_PER_MSEC)
+		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
+	else
+		expires_next = ktime_add(now, delta);
+	tick_program_event(expires_next, 1);
+	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
+		    ktime_to_ns(delta));
+}
+
+/*
+ * local version of hrtimer_peek_ahead_timers() called with interrupts
+ * disabled.
+ */
+static inline void __hrtimer_peek_ahead_timers(void)
+{
+	struct tick_device *td;
+
+	if (!hrtimer_hres_active())
+		return;
+
+	td = this_cpu_ptr(&tick_cpu_device);
+	if (td && td->evtdev)
+		hrtimer_interrupt(td->evtdev);
+}
+
+#else /* CONFIG_HIGH_RES_TIMERS */
+
+static inline void __hrtimer_peek_ahead_timers(void) { }
+
+#endif	/* !CONFIG_HIGH_RES_TIMERS */
+
+/*
+ * Called from run_local_timers in hardirq context every jiffy
+ */
+void hrtimer_run_queues(void)
+{
+	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
+	ktime_t now;
+
+	if (__hrtimer_hres_active(cpu_base))
+		return;
+
+	/*
+	 * This _is_ ugly: We have to check periodically, whether we
+	 * can switch to highres and / or nohz mode. The clocksource
+	 * switch happens with xtime_lock held. Notification from
+	 * there only sets the check bit in the tick_oneshot code,
+	 * otherwise we might deadlock vs. xtime_lock.
+	 */
+	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
+		hrtimer_switch_to_hres();
+		return;
+	}
+
+	raw_spin_lock(&cpu_base->lock);
+	now = hrtimer_update_base(cpu_base);
+	__hrtimer_run_queues(cpu_base, now);
+	raw_spin_unlock(&cpu_base->lock);
+}
+
+/*
+ * Sleep related functions:
+ */
+static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
+{
+	struct hrtimer_sleeper *t =
+		container_of(timer, struct hrtimer_sleeper, timer);
+	struct task_struct *task = t->task;
+
+	t->task = NULL;
+	if (task)
+		wake_up_process(task);
+
+	return HRTIMER_NORESTART;
+}
+
+void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
+{
+	sl->timer.function = hrtimer_wakeup;
+	sl->task = task;
+}
+EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
+
+static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
+{
+	hrtimer_init_sleeper(t, current);
+
+	do {
+		set_current_state(TASK_INTERRUPTIBLE);
+		hrtimer_start_expires(&t->timer, mode);
+
+		if (likely(t->task))
+			freezable_schedule();
+
+		hrtimer_cancel(&t->timer);
+		mode = HRTIMER_MODE_ABS;
+
+	} while (t->task && !signal_pending(current));
+
+	__set_current_state(TASK_RUNNING);
+
+	return t->task == NULL;
+}
+
+static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
+{
+	struct timespec rmt;
+	ktime_t rem;
+
+	rem = hrtimer_expires_remaining(timer);
+	if (rem.tv64 <= 0)
+		return 0;
+	rmt = ktime_to_timespec(rem);
+
+	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
+		return -EFAULT;
+
+	return 1;
+}
+
+long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
+{
+	struct hrtimer_sleeper t;
+	struct timespec __user  *rmtp;
+	int ret = 0;
+
+	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
+				HRTIMER_MODE_ABS);
+	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
+
+	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
+		goto out;
+
+	rmtp = restart->nanosleep.rmtp;
+	if (rmtp) {
+		ret = update_rmtp(&t.timer, rmtp);
+		if (ret <= 0)
+			goto out;
+	}
+
+	/* The other values in restart are already filled in */
+	ret = -ERESTART_RESTARTBLOCK;
+out:
+	destroy_hrtimer_on_stack(&t.timer);
+	return ret;
+}
+
+long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
+		       const enum hrtimer_mode mode, const clockid_t clockid)
+{
+	struct restart_block *restart;
+	struct hrtimer_sleeper t;
+	int ret = 0;
+	unsigned long slack;
+
+	slack = current->timer_slack_ns;
+	if (dl_task(current) || rt_task(current))
+		slack = 0;
+
+	hrtimer_init_on_stack(&t.timer, clockid, mode);
+	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
+	if (do_nanosleep(&t, mode))
+		goto out;
+
+	/* Absolute timers do not update the rmtp value and restart: */
+	if (mode == HRTIMER_MODE_ABS) {
+		ret = -ERESTARTNOHAND;
+		goto out;
+	}
+
+	if (rmtp) {
+		ret = update_rmtp(&t.timer, rmtp);
+		if (ret <= 0)
+			goto out;
+	}
+
+	restart = &current->restart_block;
+	restart->fn = hrtimer_nanosleep_restart;
+	restart->nanosleep.clockid = t.timer.base->clockid;
+	restart->nanosleep.rmtp = rmtp;
+	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
+
+	ret = -ERESTART_RESTARTBLOCK;
+out:
+	destroy_hrtimer_on_stack(&t.timer);
+	return ret;
+}
+
+SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
+		struct timespec __user *, rmtp)
+{
+	struct timespec tu;
+
+	if (copy_from_user(&tu, rqtp, sizeof(tu)))
+		return -EFAULT;
+
+	if (!timespec_valid(&tu))
+		return -EINVAL;
+
+	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
+}
+
+/*
+ * Functions related to boot-time initialization:
+ */
+static void init_hrtimers_cpu(int cpu)
+{
+	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
+	int i;
+
+	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+		cpu_base->clock_base[i].cpu_base = cpu_base;
+		timerqueue_init_head(&cpu_base->clock_base[i].active);
+	}
+
+	cpu_base->cpu = cpu;
+	hrtimer_init_hres(cpu_base);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+
+static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
+				struct hrtimer_clock_base *new_base)
+{
+	struct hrtimer *timer;
+	struct timerqueue_node *node;
+
+	while ((node = timerqueue_getnext(&old_base->active))) {
+		timer = container_of(node, struct hrtimer, node);
+		BUG_ON(hrtimer_callback_running(timer));
+		debug_deactivate(timer);
+
+		/*
+		 * Mark it as ENQUEUED not INACTIVE otherwise the
+		 * timer could be seen as !active and just vanish away
+		 * under us on another CPU
+		 */
+		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
+		timer->base = new_base;
+		/*
+		 * Enqueue the timers on the new cpu. This does not
+		 * reprogram the event device in case the timer
+		 * expires before the earliest on this CPU, but we run
+		 * hrtimer_interrupt after we migrated everything to
+		 * sort out already expired timers and reprogram the
+		 * event device.
+		 */
+		enqueue_hrtimer(timer, new_base);
+	}
+}
+
+static void migrate_hrtimers(int scpu)
+{
+	struct hrtimer_cpu_base *old_base, *new_base;
+	int i;
+
+	BUG_ON(cpu_online(scpu));
+	tick_cancel_sched_timer(scpu);
+
+	local_irq_disable();
+	old_base = &per_cpu(hrtimer_bases, scpu);
+	new_base = this_cpu_ptr(&hrtimer_bases);
+	/*
+	 * The caller is globally serialized and nobody else
+	 * takes two locks at once, deadlock is not possible.
+	 */
+	raw_spin_lock(&new_base->lock);
+	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
+		migrate_hrtimer_list(&old_base->clock_base[i],
+				     &new_base->clock_base[i]);
+	}
+
+	raw_spin_unlock(&old_base->lock);
+	raw_spin_unlock(&new_base->lock);
+
+	/* Check, if we got expired work to do */
+	__hrtimer_peek_ahead_timers();
+	local_irq_enable();
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static int hrtimer_cpu_notify(struct notifier_block *self,
+					unsigned long action, void *hcpu)
+{
+	int scpu = (long)hcpu;
+
+	switch (action) {
+
+	case CPU_UP_PREPARE:
+	case CPU_UP_PREPARE_FROZEN:
+		init_hrtimers_cpu(scpu);
+		break;
+
+#ifdef CONFIG_HOTPLUG_CPU
+	case CPU_DEAD:
+	case CPU_DEAD_FROZEN:
+		migrate_hrtimers(scpu);
+		break;
+#endif
+
+	default:
+		break;
+	}
+
+	return NOTIFY_OK;
+}
+
+static struct notifier_block hrtimers_nb = {
+	.notifier_call = hrtimer_cpu_notify,
+};
+
+void __init hrtimers_init(void)
+{
+	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
+			  (void *)(long)smp_processor_id());
+	register_cpu_notifier(&hrtimers_nb);
+}
+
+/**
+ * schedule_hrtimeout_range_clock - sleep until timeout
+ * @expires:	timeout value (ktime_t)
+ * @delta:	slack in expires timeout (ktime_t)
+ * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
+ */
+int __sched
+schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
+			       const enum hrtimer_mode mode, int clock)
+{
+	struct hrtimer_sleeper t;
+
+	/*
+	 * Optimize when a zero timeout value is given. It does not
+	 * matter whether this is an absolute or a relative time.
+	 */
+	if (expires && !expires->tv64) {
+		__set_current_state(TASK_RUNNING);
+		return 0;
+	}
+
+	/*
+	 * A NULL parameter means "infinite"
+	 */
+	if (!expires) {
+		schedule();
+		return -EINTR;
+	}
+
+	hrtimer_init_on_stack(&t.timer, clock, mode);
+	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+
+	hrtimer_init_sleeper(&t, current);
+
+	hrtimer_start_expires(&t.timer, mode);
+
+	if (likely(t.task))
+		schedule();
+
+	hrtimer_cancel(&t.timer);
+	destroy_hrtimer_on_stack(&t.timer);
+
+	__set_current_state(TASK_RUNNING);
+
+	return !t.task ? 0 : -EINTR;
+}
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires:	timeout value (ktime_t)
+ * @delta:	slack in expires timeout (ktime_t)
+ * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
+				     const enum hrtimer_mode mode)
+{
+	return schedule_hrtimeout_range_clock(expires, delta, mode,
+					      CLOCK_MONOTONIC);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
+
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires:	timeout value (ktime_t)
+ * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns.
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns 0 when the timer has expired otherwise -EINTR
+ */
+int __sched schedule_hrtimeout(ktime_t *expires,
+			       const enum hrtimer_mode mode)
+{
+	return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);