File-copy from v4.4.100

This is the result of 'cp' from a linux-stable tree with the 'v4.4.100'
tag checked out (commit 26d6298789e695c9f627ce49a7bbd2286405798a) on
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Please refer to that tree for all history prior to this point.

Change-Id: I8a9ee2aea93cd29c52c847d0ce33091a73ae6afe
diff --git a/kernel/trace/trace_seq.c b/kernel/trace/trace_seq.c
new file mode 100644
index 0000000..e694c9f
--- /dev/null
+++ b/kernel/trace/trace_seq.c
@@ -0,0 +1,377 @@
+/*
+ * trace_seq.c
+ *
+ * Copyright (C) 2008-2014 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
+ *
+ * The trace_seq is a handy tool that allows you to pass a descriptor around
+ * to a buffer that other functions can write to. It is similar to the
+ * seq_file functionality but has some differences.
+ *
+ * To use it, the trace_seq must be initialized with trace_seq_init().
+ * This will set up the counters within the descriptor. You can call
+ * trace_seq_init() more than once to reset the trace_seq to start
+ * from scratch.
+ * 
+ * The buffer size is currently PAGE_SIZE, although it may become dynamic
+ * in the future.
+ *
+ * A write to the buffer will either succed or fail. That is, unlike
+ * sprintf() there will not be a partial write (well it may write into
+ * the buffer but it wont update the pointers). This allows users to
+ * try to write something into the trace_seq buffer and if it fails
+ * they can flush it and try again.
+ *
+ */
+#include <linux/uaccess.h>
+#include <linux/seq_file.h>
+#include <linux/trace_seq.h>
+
+/* How much buffer is left on the trace_seq? */
+#define TRACE_SEQ_BUF_LEFT(s) seq_buf_buffer_left(&(s)->seq)
+
+/* How much buffer is written? */
+#define TRACE_SEQ_BUF_USED(s) seq_buf_used(&(s)->seq)
+
+/*
+ * trace_seq should work with being initialized with 0s.
+ */
+static inline void __trace_seq_init(struct trace_seq *s)
+{
+	if (unlikely(!s->seq.size))
+		trace_seq_init(s);
+}
+
+/**
+ * trace_print_seq - move the contents of trace_seq into a seq_file
+ * @m: the seq_file descriptor that is the destination
+ * @s: the trace_seq descriptor that is the source.
+ *
+ * Returns 0 on success and non zero on error. If it succeeds to
+ * write to the seq_file it will reset the trace_seq, otherwise
+ * it does not modify the trace_seq to let the caller try again.
+ */
+int trace_print_seq(struct seq_file *m, struct trace_seq *s)
+{
+	int ret;
+
+	__trace_seq_init(s);
+
+	ret = seq_buf_print_seq(m, &s->seq);
+
+	/*
+	 * Only reset this buffer if we successfully wrote to the
+	 * seq_file buffer. This lets the caller try again or
+	 * do something else with the contents.
+	 */
+	if (!ret)
+		trace_seq_init(s);
+
+	return ret;
+}
+
+/**
+ * trace_seq_printf - sequence printing of trace information
+ * @s: trace sequence descriptor
+ * @fmt: printf format string
+ *
+ * The tracer may use either sequence operations or its own
+ * copy to user routines. To simplify formating of a trace
+ * trace_seq_printf() is used to store strings into a special
+ * buffer (@s). Then the output may be either used by
+ * the sequencer or pulled into another buffer.
+ */
+void trace_seq_printf(struct trace_seq *s, const char *fmt, ...)
+{
+	unsigned int save_len = s->seq.len;
+	va_list ap;
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	va_start(ap, fmt);
+	seq_buf_vprintf(&s->seq, fmt, ap);
+	va_end(ap);
+
+	/* If we can't write it all, don't bother writing anything */
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+	}
+}
+EXPORT_SYMBOL_GPL(trace_seq_printf);
+
+/**
+ * trace_seq_bitmask - write a bitmask array in its ASCII representation
+ * @s:		trace sequence descriptor
+ * @maskp:	points to an array of unsigned longs that represent a bitmask
+ * @nmaskbits:	The number of bits that are valid in @maskp
+ *
+ * Writes a ASCII representation of a bitmask string into @s.
+ */
+void trace_seq_bitmask(struct trace_seq *s, const unsigned long *maskp,
+		      int nmaskbits)
+{
+	unsigned int save_len = s->seq.len;
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	seq_buf_printf(&s->seq, "%*pb", nmaskbits, maskp);
+
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+	}
+}
+EXPORT_SYMBOL_GPL(trace_seq_bitmask);
+
+/**
+ * trace_seq_vprintf - sequence printing of trace information
+ * @s: trace sequence descriptor
+ * @fmt: printf format string
+ *
+ * The tracer may use either sequence operations or its own
+ * copy to user routines. To simplify formating of a trace
+ * trace_seq_printf is used to store strings into a special
+ * buffer (@s). Then the output may be either used by
+ * the sequencer or pulled into another buffer.
+ */
+void trace_seq_vprintf(struct trace_seq *s, const char *fmt, va_list args)
+{
+	unsigned int save_len = s->seq.len;
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	seq_buf_vprintf(&s->seq, fmt, args);
+
+	/* If we can't write it all, don't bother writing anything */
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+	}
+}
+EXPORT_SYMBOL_GPL(trace_seq_vprintf);
+
+/**
+ * trace_seq_bprintf - Write the printf string from binary arguments
+ * @s: trace sequence descriptor
+ * @fmt: The format string for the @binary arguments
+ * @binary: The binary arguments for @fmt.
+ *
+ * When recording in a fast path, a printf may be recorded with just
+ * saving the format and the arguments as they were passed to the
+ * function, instead of wasting cycles converting the arguments into
+ * ASCII characters. Instead, the arguments are saved in a 32 bit
+ * word array that is defined by the format string constraints.
+ *
+ * This function will take the format and the binary array and finish
+ * the conversion into the ASCII string within the buffer.
+ */
+void trace_seq_bprintf(struct trace_seq *s, const char *fmt, const u32 *binary)
+{
+	unsigned int save_len = s->seq.len;
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	seq_buf_bprintf(&s->seq, fmt, binary);
+
+	/* If we can't write it all, don't bother writing anything */
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+		return;
+	}
+}
+EXPORT_SYMBOL_GPL(trace_seq_bprintf);
+
+/**
+ * trace_seq_puts - trace sequence printing of simple string
+ * @s: trace sequence descriptor
+ * @str: simple string to record
+ *
+ * The tracer may use either the sequence operations or its own
+ * copy to user routines. This function records a simple string
+ * into a special buffer (@s) for later retrieval by a sequencer
+ * or other mechanism.
+ */
+void trace_seq_puts(struct trace_seq *s, const char *str)
+{
+	unsigned int len = strlen(str);
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	if (len > TRACE_SEQ_BUF_LEFT(s)) {
+		s->full = 1;
+		return;
+	}
+
+	seq_buf_putmem(&s->seq, str, len);
+}
+EXPORT_SYMBOL_GPL(trace_seq_puts);
+
+/**
+ * trace_seq_putc - trace sequence printing of simple character
+ * @s: trace sequence descriptor
+ * @c: simple character to record
+ *
+ * The tracer may use either the sequence operations or its own
+ * copy to user routines. This function records a simple charater
+ * into a special buffer (@s) for later retrieval by a sequencer
+ * or other mechanism.
+ */
+void trace_seq_putc(struct trace_seq *s, unsigned char c)
+{
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	if (TRACE_SEQ_BUF_LEFT(s) < 1) {
+		s->full = 1;
+		return;
+	}
+
+	seq_buf_putc(&s->seq, c);
+}
+EXPORT_SYMBOL_GPL(trace_seq_putc);
+
+/**
+ * trace_seq_putmem - write raw data into the trace_seq buffer
+ * @s: trace sequence descriptor
+ * @mem: The raw memory to copy into the buffer
+ * @len: The length of the raw memory to copy (in bytes)
+ *
+ * There may be cases where raw memory needs to be written into the
+ * buffer and a strcpy() would not work. Using this function allows
+ * for such cases.
+ */
+void trace_seq_putmem(struct trace_seq *s, const void *mem, unsigned int len)
+{
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	if (len > TRACE_SEQ_BUF_LEFT(s)) {
+		s->full = 1;
+		return;
+	}
+
+	seq_buf_putmem(&s->seq, mem, len);
+}
+EXPORT_SYMBOL_GPL(trace_seq_putmem);
+
+/**
+ * trace_seq_putmem_hex - write raw memory into the buffer in ASCII hex
+ * @s: trace sequence descriptor
+ * @mem: The raw memory to write its hex ASCII representation of
+ * @len: The length of the raw memory to copy (in bytes)
+ *
+ * This is similar to trace_seq_putmem() except instead of just copying the
+ * raw memory into the buffer it writes its ASCII representation of it
+ * in hex characters.
+ */
+void trace_seq_putmem_hex(struct trace_seq *s, const void *mem,
+			 unsigned int len)
+{
+	unsigned int save_len = s->seq.len;
+
+	if (s->full)
+		return;
+
+	__trace_seq_init(s);
+
+	/* Each byte is represented by two chars */
+	if (len * 2 > TRACE_SEQ_BUF_LEFT(s)) {
+		s->full = 1;
+		return;
+	}
+
+	/* The added spaces can still cause an overflow */
+	seq_buf_putmem_hex(&s->seq, mem, len);
+
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+		return;
+	}
+}
+EXPORT_SYMBOL_GPL(trace_seq_putmem_hex);
+
+/**
+ * trace_seq_path - copy a path into the sequence buffer
+ * @s: trace sequence descriptor
+ * @path: path to write into the sequence buffer.
+ *
+ * Write a path name into the sequence buffer.
+ *
+ * Returns 1 if we successfully written all the contents to
+ *   the buffer.
+ * Returns 0 if we the length to write is bigger than the
+ *   reserved buffer space. In this case, nothing gets written.
+ */
+int trace_seq_path(struct trace_seq *s, const struct path *path)
+{
+	unsigned int save_len = s->seq.len;
+
+	if (s->full)
+		return 0;
+
+	__trace_seq_init(s);
+
+	if (TRACE_SEQ_BUF_LEFT(s) < 1) {
+		s->full = 1;
+		return 0;
+	}
+
+	seq_buf_path(&s->seq, path, "\n");
+
+	if (unlikely(seq_buf_has_overflowed(&s->seq))) {
+		s->seq.len = save_len;
+		s->full = 1;
+		return 0;
+	}
+
+	return 1;
+}
+EXPORT_SYMBOL_GPL(trace_seq_path);
+
+/**
+ * trace_seq_to_user - copy the squence buffer to user space
+ * @s: trace sequence descriptor
+ * @ubuf: The userspace memory location to copy to
+ * @cnt: The amount to copy
+ *
+ * Copies the sequence buffer into the userspace memory pointed to
+ * by @ubuf. It starts from the last read position (@s->readpos)
+ * and writes up to @cnt characters or till it reaches the end of
+ * the content in the buffer (@s->len), which ever comes first.
+ *
+ * On success, it returns a positive number of the number of bytes
+ * it copied.
+ *
+ * On failure it returns -EBUSY if all of the content in the
+ * sequence has been already read, which includes nothing in the
+ * sequenc (@s->len == @s->readpos).
+ *
+ * Returns -EFAULT if the copy to userspace fails.
+ */
+int trace_seq_to_user(struct trace_seq *s, char __user *ubuf, int cnt)
+{
+	__trace_seq_init(s);
+	return seq_buf_to_user(&s->seq, ubuf, cnt);
+}
+EXPORT_SYMBOL_GPL(trace_seq_to_user);