blob: d937c39b3a0b3569a7e4a67ec24973e17c9e4211 [file] [log] [blame]
/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "hw-ops.h"
#include <linux/export.h>
static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
struct ath9k_tx_queue_info *qi)
{
ath_dbg(ath9k_hw_common(ah), INTERRUPT,
"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
ah->txurn_interrupt_mask);
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_IMR_S0,
SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
| SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
REG_WRITE(ah, AR_IMR_S1,
SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
| SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
REGWRITE_BUFFER_FLUSH(ah);
}
u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
{
return REG_READ(ah, AR_QTXDP(q));
}
EXPORT_SYMBOL(ath9k_hw_gettxbuf);
void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
{
REG_WRITE(ah, AR_QTXDP(q), txdp);
}
EXPORT_SYMBOL(ath9k_hw_puttxbuf);
void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
{
ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
REG_WRITE(ah, AR_Q_TXE, 1 << q);
}
EXPORT_SYMBOL(ath9k_hw_txstart);
u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
{
u32 npend;
npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
if (npend == 0) {
if (REG_READ(ah, AR_Q_TXE) & (1 << q))
npend = 1;
}
return npend;
}
EXPORT_SYMBOL(ath9k_hw_numtxpending);
/**
* ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
*
* @ah: atheros hardware struct
* @bIncTrigLevel: whether or not the frame trigger level should be updated
*
* The frame trigger level specifies the minimum number of bytes,
* in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
* before the PCU will initiate sending the frame on the air. This can
* mean we initiate transmit before a full frame is on the PCU TX FIFO.
* Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
* first)
*
* Caution must be taken to ensure to set the frame trigger level based
* on the DMA request size. For example if the DMA request size is set to
* 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
* there need to be enough space in the tx FIFO for the requested transfer
* size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
* the threshold to a value beyond 6, then the transmit will hang.
*
* Current dual stream devices have a PCU TX FIFO size of 8 KB.
* Current single stream devices have a PCU TX FIFO size of 4 KB, however,
* there is a hardware issue which forces us to use 2 KB instead so the
* frame trigger level must not exceed 2 KB for these chipsets.
*/
bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
{
u32 txcfg, curLevel, newLevel;
if (ah->tx_trig_level >= ah->config.max_txtrig_level)
return false;
ath9k_hw_disable_interrupts(ah);
txcfg = REG_READ(ah, AR_TXCFG);
curLevel = MS(txcfg, AR_FTRIG);
newLevel = curLevel;
if (bIncTrigLevel) {
if (curLevel < ah->config.max_txtrig_level)
newLevel++;
} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
newLevel--;
if (newLevel != curLevel)
REG_WRITE(ah, AR_TXCFG,
(txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
ath9k_hw_enable_interrupts(ah);
ah->tx_trig_level = newLevel;
return newLevel != curLevel;
}
EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
{
int maxdelay = 1000;
int i, q;
if (ah->curchan) {
if (IS_CHAN_HALF_RATE(ah->curchan))
maxdelay *= 2;
else if (IS_CHAN_QUARTER_RATE(ah->curchan))
maxdelay *= 4;
}
REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
for (q = 0; q < AR_NUM_QCU; q++) {
for (i = 0; i < maxdelay; i++) {
if (i)
udelay(5);
if (!ath9k_hw_numtxpending(ah, q))
break;
}
}
REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
REG_WRITE(ah, AR_Q_TXD, 0);
}
EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
{
#define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
#define ATH9K_TIME_QUANTUM 100 /* usec */
int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
int wait;
REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (wait = wait_time; wait != 0; wait--) {
if (wait != wait_time)
udelay(ATH9K_TIME_QUANTUM);
if (ath9k_hw_numtxpending(ah, q) == 0)
break;
}
REG_WRITE(ah, AR_Q_TXD, 0);
return wait != 0;
#undef ATH9K_TX_STOP_DMA_TIMEOUT
#undef ATH9K_TIME_QUANTUM
}
EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
const struct ath9k_tx_queue_info *qinfo)
{
u32 cw;
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_tx_queue_info *qi;
qi = &ah->txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
ath_dbg(common, QUEUE,
"Set TXQ properties, inactive queue: %u\n", q);
return false;
}
ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
qi->tqi_ver = qinfo->tqi_ver;
qi->tqi_subtype = qinfo->tqi_subtype;
qi->tqi_qflags = qinfo->tqi_qflags;
qi->tqi_priority = qinfo->tqi_priority;
if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
else
qi->tqi_aifs = INIT_AIFS;
if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmin, 1024U);
qi->tqi_cwmin = 1;
while (qi->tqi_cwmin < cw)
qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
} else
qi->tqi_cwmin = qinfo->tqi_cwmin;
if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
cw = min(qinfo->tqi_cwmax, 1024U);
qi->tqi_cwmax = 1;
while (qi->tqi_cwmax < cw)
qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
} else
qi->tqi_cwmax = INIT_CWMAX;
if (qinfo->tqi_shretry != 0)
qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
else
qi->tqi_shretry = INIT_SH_RETRY;
if (qinfo->tqi_lgretry != 0)
qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
else
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
qi->tqi_burstTime = qinfo->tqi_burstTime;
qi->tqi_readyTime = qinfo->tqi_readyTime;
switch (qinfo->tqi_subtype) {
case ATH9K_WME_UPSD:
if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
break;
default:
break;
}
return true;
}
EXPORT_SYMBOL(ath9k_hw_set_txq_props);
bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_tx_queue_info *qi;
qi = &ah->txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
ath_dbg(common, QUEUE,
"Get TXQ properties, inactive queue: %u\n", q);
return false;
}
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_ver = qi->tqi_ver;
qinfo->tqi_subtype = qi->tqi_subtype;
qinfo->tqi_qflags = qi->tqi_qflags;
qinfo->tqi_priority = qi->tqi_priority;
qinfo->tqi_aifs = qi->tqi_aifs;
qinfo->tqi_cwmin = qi->tqi_cwmin;
qinfo->tqi_cwmax = qi->tqi_cwmax;
qinfo->tqi_shretry = qi->tqi_shretry;
qinfo->tqi_lgretry = qi->tqi_lgretry;
qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
qinfo->tqi_burstTime = qi->tqi_burstTime;
qinfo->tqi_readyTime = qi->tqi_readyTime;
return true;
}
EXPORT_SYMBOL(ath9k_hw_get_txq_props);
int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
const struct ath9k_tx_queue_info *qinfo)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_tx_queue_info *qi;
int q;
switch (type) {
case ATH9K_TX_QUEUE_BEACON:
q = ATH9K_NUM_TX_QUEUES - 1;
break;
case ATH9K_TX_QUEUE_CAB:
q = ATH9K_NUM_TX_QUEUES - 2;
break;
case ATH9K_TX_QUEUE_PSPOLL:
q = 1;
break;
case ATH9K_TX_QUEUE_UAPSD:
q = ATH9K_NUM_TX_QUEUES - 3;
break;
case ATH9K_TX_QUEUE_DATA:
q = qinfo->tqi_subtype;
break;
default:
ath_err(common, "Invalid TX queue type: %u\n", type);
return -1;
}
ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
qi = &ah->txq[q];
if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
ath_err(common, "TX queue: %u already active\n", q);
return -1;
}
memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
qi->tqi_type = type;
qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
(void) ath9k_hw_set_txq_props(ah, q, qinfo);
return q;
}
EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
{
ah->txok_interrupt_mask &= ~(1 << q);
ah->txerr_interrupt_mask &= ~(1 << q);
ah->txdesc_interrupt_mask &= ~(1 << q);
ah->txeol_interrupt_mask &= ~(1 << q);
ah->txurn_interrupt_mask &= ~(1 << q);
}
bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_tx_queue_info *qi;
qi = &ah->txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
return false;
}
ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
ath9k_hw_clear_queue_interrupts(ah, q);
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_tx_queue_info *qi;
u32 cwMin, chanCwMin, value;
qi = &ah->txq[q];
if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
return true;
}
ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
chanCwMin = INIT_CWMIN;
for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
} else
cwMin = qi->tqi_cwmin;
ENABLE_REGWRITE_BUFFER(ah);
REG_WRITE(ah, AR_DLCL_IFS(q),
SM(cwMin, AR_D_LCL_IFS_CWMIN) |
SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
else
REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
if (qi->tqi_cbrPeriod) {
REG_WRITE(ah, AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
(qi->tqi_cbrOverflowLimit ?
AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
}
if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
AR_Q_RDYTIMECFG_EN);
}
REG_WRITE(ah, AR_DCHNTIME(q),
SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
(qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_burstTime
&& (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
REGWRITE_BUFFER_FLUSH(ah);
if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
switch (qi->tqi_type) {
case ATH9K_TX_QUEUE_BEACON:
ENABLE_REGWRITE_BUFFER(ah);
REG_SET_BIT(ah, AR_QMISC(q),
AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1);
REG_SET_BIT(ah, AR_DMISC(q),
(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS);
REGWRITE_BUFFER_FLUSH(ah);
/*
* cwmin and cwmax should be 0 for beacon queue
* but not for IBSS as we would create an imbalance
* on beaconing fairness for participating nodes.
*/
if (AR_SREV_9300_20_OR_LATER(ah) &&
ah->opmode != NL80211_IFTYPE_ADHOC) {
REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
| SM(0, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
}
break;
case ATH9K_TX_QUEUE_CAB:
ENABLE_REGWRITE_BUFFER(ah);
REG_SET_BIT(ah, AR_QMISC(q),
AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0);
value = (qi->tqi_readyTime -
(ah->config.sw_beacon_response_time -
ah->config.dma_beacon_response_time)) * 1024;
REG_WRITE(ah, AR_QRDYTIMECFG(q),
value | AR_Q_RDYTIMECFG_EN);
REG_SET_BIT(ah, AR_DMISC(q),
(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
REGWRITE_BUFFER_FLUSH(ah);
break;
case ATH9K_TX_QUEUE_PSPOLL:
REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
break;
case ATH9K_TX_QUEUE_UAPSD:
REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
break;
default:
break;
}
if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
REG_SET_BIT(ah, AR_DMISC(q),
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (AR_SREV_9300_20_OR_LATER(ah))
REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
ath9k_hw_clear_queue_interrupts(ah, q);
if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
ah->txok_interrupt_mask |= 1 << q;
ah->txerr_interrupt_mask |= 1 << q;
}
if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
ah->txdesc_interrupt_mask |= 1 << q;
if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
ah->txeol_interrupt_mask |= 1 << q;
if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
ah->txurn_interrupt_mask |= 1 << q;
ath9k_hw_set_txq_interrupts(ah, qi);
return true;
}
EXPORT_SYMBOL(ath9k_hw_resettxqueue);
int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
struct ath_rx_status *rs)
{
struct ar5416_desc ads;
struct ar5416_desc *adsp = AR5416DESC(ds);
u32 phyerr;
if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
return -EINPROGRESS;
ads.u.rx = adsp->u.rx;
rs->rs_status = 0;
rs->rs_flags = 0;
rs->flag = 0;
rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
rs->rs_tstamp = ads.AR_RcvTimestamp;
if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
rs->rs_rssi = ATH9K_RSSI_BAD;
rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
} else {
rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
AR_RxRSSIAnt00);
rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
AR_RxRSSIAnt01);
rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
AR_RxRSSIAnt02);
rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
AR_RxRSSIAnt10);
rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
AR_RxRSSIAnt11);
rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
AR_RxRSSIAnt12);
}
if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
else
rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
/* directly mapped flags for ieee80211_rx_status */
rs->flag |=
(ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
rs->flag |=
(ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
if (AR_SREV_9280_20_OR_LATER(ah))
rs->flag |=
(ads.ds_rxstatus3 & AR_STBC) ?
/* we can only Nss=1 STBC */
(1 << RX_FLAG_STBC_SHIFT) : 0;
if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
/*
* Treat these errors as mutually exclusive to avoid spurious
* extra error reports from the hardware. If a CRC error is
* reported, then decryption and MIC errors are irrelevant,
* the frame is going to be dropped either way
*/
if (ads.ds_rxstatus8 & AR_PHYErr) {
rs->rs_status |= ATH9K_RXERR_PHY;
phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
rs->rs_phyerr = phyerr;
} else if (ads.ds_rxstatus8 & AR_CRCErr)
rs->rs_status |= ATH9K_RXERR_CRC;
else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
rs->rs_status |= ATH9K_RXERR_DECRYPT;
else if (ads.ds_rxstatus8 & AR_MichaelErr)
rs->rs_status |= ATH9K_RXERR_MIC;
} else {
if (ads.ds_rxstatus8 &
(AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
/* Only up to MCS16 supported, everything above is invalid */
if (rs->rs_rate >= 0x90)
rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
}
if (ads.ds_rxstatus8 & AR_KeyMiss)
rs->rs_status |= ATH9K_RXERR_KEYMISS;
return 0;
}
EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
/*
* This can stop or re-enables RX.
*
* If bool is set this will kill any frame which is currently being
* transferred between the MAC and baseband and also prevent any new
* frames from getting started.
*/
bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
{
u32 reg;
if (set) {
REG_SET_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
0, AH_WAIT_TIMEOUT)) {
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS |
AR_DIAG_RX_ABORT));
reg = REG_READ(ah, AR_OBS_BUS_1);
ath_err(ath9k_hw_common(ah),
"RX failed to go idle in 10 ms RXSM=0x%x\n",
reg);
return false;
}
} else {
REG_CLR_BIT(ah, AR_DIAG_SW,
(AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
}
return true;
}
EXPORT_SYMBOL(ath9k_hw_setrxabort);
void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
{
REG_WRITE(ah, AR_RXDP, rxdp);
}
EXPORT_SYMBOL(ath9k_hw_putrxbuf);
void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
{
ath9k_enable_mib_counters(ah);
ath9k_ani_reset(ah, is_scanning);
REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
}
EXPORT_SYMBOL(ath9k_hw_startpcureceive);
void ath9k_hw_abortpcurecv(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
ath9k_hw_disable_mib_counters(ah);
}
EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
{
#define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
struct ath_common *common = ath9k_hw_common(ah);
u32 mac_status, last_mac_status = 0;
int i;
/* Enable access to the DMA observation bus */
REG_WRITE(ah, AR_MACMISC,
((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
(AR_MACMISC_MISC_OBS_BUS_1 <<
AR_MACMISC_MISC_OBS_BUS_MSB_S)));
REG_WRITE(ah, AR_CR, AR_CR_RXD);
/* Wait for rx enable bit to go low */
for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
break;
if (!AR_SREV_9300_20_OR_LATER(ah)) {
mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
if (mac_status == 0x1c0 && mac_status == last_mac_status) {
*reset = true;
break;
}
last_mac_status = mac_status;
}
udelay(AH_TIME_QUANTUM);
}
if (i == 0) {
ath_err(common,
"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
AH_RX_STOP_DMA_TIMEOUT / 1000,
REG_READ(ah, AR_CR),
REG_READ(ah, AR_DIAG_SW),
REG_READ(ah, AR_DMADBG_7));
return false;
} else {
return true;
}
#undef AH_RX_STOP_DMA_TIMEOUT
}
EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
int ath9k_hw_beaconq_setup(struct ath_hw *ah)
{
struct ath9k_tx_queue_info qi;
memset(&qi, 0, sizeof(qi));
qi.tqi_aifs = 1;
qi.tqi_cwmin = 0;
qi.tqi_cwmax = 0;
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
}
EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
bool ath9k_hw_intrpend(struct ath_hw *ah)
{
u32 host_isr;
if (AR_SREV_9100(ah))
return true;
host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if (((host_isr & AR_INTR_MAC_IRQ) ||
(host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
(host_isr != AR_INTR_SPURIOUS))
return true;
host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
if ((host_isr & AR_INTR_SYNC_DEFAULT)
&& (host_isr != AR_INTR_SPURIOUS))
return true;
return false;
}
EXPORT_SYMBOL(ath9k_hw_intrpend);
void ath9k_hw_kill_interrupts(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
ath_dbg(common, INTERRUPT, "disable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) REG_READ(ah, AR_IER);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
void ath9k_hw_disable_interrupts(struct ath_hw *ah)
{
if (!(ah->imask & ATH9K_INT_GLOBAL))
atomic_set(&ah->intr_ref_cnt, -1);
else
atomic_dec(&ah->intr_ref_cnt);
ath9k_hw_kill_interrupts(ah);
}
EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
static void __ath9k_hw_enable_interrupts(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 sync_default = AR_INTR_SYNC_DEFAULT;
u32 async_mask;
if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
AR_SREV_9561(ah))
sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
async_mask = AR_INTR_MAC_IRQ;
if (ah->imask & ATH9K_INT_MCI)
async_mask |= AR_INTR_ASYNC_MASK_MCI;
ath_dbg(common, INTERRUPT, "enable IER\n");
REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (!AR_SREV_9100(ah)) {
REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
}
ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
}
void ath9k_hw_resume_interrupts(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
if (!(ah->imask & ATH9K_INT_GLOBAL))
return;
if (atomic_read(&ah->intr_ref_cnt) != 0) {
ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
atomic_read(&ah->intr_ref_cnt));
return;
}
__ath9k_hw_enable_interrupts(ah);
}
EXPORT_SYMBOL(ath9k_hw_resume_interrupts);
void ath9k_hw_enable_interrupts(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
if (!(ah->imask & ATH9K_INT_GLOBAL))
return;
if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
atomic_read(&ah->intr_ref_cnt));
return;
}
__ath9k_hw_enable_interrupts(ah);
}
EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
void ath9k_hw_set_interrupts(struct ath_hw *ah)
{
enum ath9k_int ints = ah->imask;
u32 mask, mask2;
struct ath9k_hw_capabilities *pCap = &ah->caps;
struct ath_common *common = ath9k_hw_common(ah);
if (!(ints & ATH9K_INT_GLOBAL))
ath9k_hw_disable_interrupts(ah);
ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
mask = ints & ATH9K_INT_COMMON;
mask2 = 0;
if (ints & ATH9K_INT_TX) {
if (ah->config.tx_intr_mitigation)
mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
else {
if (ah->txok_interrupt_mask)
mask |= AR_IMR_TXOK;
if (ah->txdesc_interrupt_mask)
mask |= AR_IMR_TXDESC;
}
if (ah->txerr_interrupt_mask)
mask |= AR_IMR_TXERR;
if (ah->txeol_interrupt_mask)
mask |= AR_IMR_TXEOL;
}
if (ints & ATH9K_INT_RX) {
if (AR_SREV_9300_20_OR_LATER(ah)) {
mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
if (ah->config.rx_intr_mitigation) {
mask &= ~AR_IMR_RXOK_LP;
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
} else {
mask |= AR_IMR_RXOK_LP;
}
} else {
if (ah->config.rx_intr_mitigation)
mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
else
mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
}
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
mask |= AR_IMR_GENTMR;
}
if (ints & ATH9K_INT_GENTIMER)
mask |= AR_IMR_GENTMR;
if (ints & (ATH9K_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & ATH9K_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & ATH9K_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & ATH9K_INT_CABEND)
mask2 |= AR_IMR_S2_CABEND;
if (ints & ATH9K_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & ATH9K_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & ATH9K_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
if (ints & ATH9K_INT_BB_WATCHDOG) {
mask |= AR_IMR_BCNMISC;
mask2 |= AR_IMR_S2_BB_WATCHDOG;
}
}
ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
REG_WRITE(ah, AR_IMR, mask);
ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST);
if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
if (ints & ATH9K_INT_BB_WATCHDOG)
ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
}
ah->imrs2_reg |= mask2;
REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
if (ints & ATH9K_INT_TIM_TIMER)
REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
else
REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
}
return;
}
EXPORT_SYMBOL(ath9k_hw_set_interrupts);
#define ATH9K_HW_MAX_DCU 10
#define ATH9K_HW_SLICE_PER_DCU 16
#define ATH9K_HW_BIT_IN_SLICE 16
void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
{
int dcu_idx;
u32 filter;
for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
AR_D_TXBLK_WRITE_SLICE);
filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
ath_dbg(ath9k_hw_common(ah), PS,
"DCU%d staid %d set %d txfilter %08x\n",
dcu_idx, destidx, set, filter);
REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
}
}
EXPORT_SYMBOL(ath9k_hw_set_tx_filter);