| /* |
| * drivers/power/process.c - Functions for starting/stopping processes on |
| * suspend transitions. |
| * |
| * Originally from swsusp. |
| */ |
| |
| |
| #undef DEBUG |
| |
| #include <linux/interrupt.h> |
| #include <linux/oom.h> |
| #include <linux/suspend.h> |
| #include <linux/module.h> |
| #include <linux/syscalls.h> |
| #include <linux/freezer.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/kmod.h> |
| #include <trace/events/power.h> |
| #include <linux/cpuset.h> |
| |
| /* |
| * Timeout for stopping processes |
| */ |
| unsigned int __read_mostly freeze_timeout_msecs = 20 * MSEC_PER_SEC; |
| |
| static int try_to_freeze_tasks(bool user_only) |
| { |
| struct task_struct *g, *p; |
| unsigned long end_time; |
| unsigned int todo; |
| bool wq_busy = false; |
| struct timeval start, end; |
| u64 elapsed_msecs64; |
| unsigned int elapsed_msecs; |
| bool wakeup = false; |
| int sleep_usecs = USEC_PER_MSEC; |
| |
| do_gettimeofday(&start); |
| |
| end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs); |
| |
| if (!user_only) |
| freeze_workqueues_begin(); |
| |
| while (true) { |
| todo = 0; |
| read_lock(&tasklist_lock); |
| for_each_process_thread(g, p) { |
| if (p == current || !freeze_task(p)) |
| continue; |
| |
| if (!freezer_should_skip(p)) |
| todo++; |
| } |
| read_unlock(&tasklist_lock); |
| |
| if (!user_only) { |
| wq_busy = freeze_workqueues_busy(); |
| todo += wq_busy; |
| } |
| |
| if (!todo || time_after(jiffies, end_time)) |
| break; |
| |
| if (pm_wakeup_pending()) { |
| wakeup = true; |
| break; |
| } |
| |
| /* |
| * We need to retry, but first give the freezing tasks some |
| * time to enter the refrigerator. Start with an initial |
| * 1 ms sleep followed by exponential backoff until 8 ms. |
| */ |
| usleep_range(sleep_usecs / 2, sleep_usecs); |
| if (sleep_usecs < 8 * USEC_PER_MSEC) |
| sleep_usecs *= 2; |
| } |
| |
| do_gettimeofday(&end); |
| elapsed_msecs64 = timeval_to_ns(&end) - timeval_to_ns(&start); |
| do_div(elapsed_msecs64, NSEC_PER_MSEC); |
| elapsed_msecs = elapsed_msecs64; |
| |
| if (todo) { |
| pr_cont("\n"); |
| pr_err("Freezing of tasks %s after %d.%03d seconds " |
| "(%d tasks refusing to freeze, wq_busy=%d):\n", |
| wakeup ? "aborted" : "failed", |
| elapsed_msecs / 1000, elapsed_msecs % 1000, |
| todo - wq_busy, wq_busy); |
| |
| if (!wakeup) { |
| read_lock(&tasklist_lock); |
| for_each_process_thread(g, p) { |
| if (p != current && !freezer_should_skip(p) |
| && freezing(p) && !frozen(p)) |
| sched_show_task(p); |
| } |
| read_unlock(&tasklist_lock); |
| } |
| } else { |
| pr_cont("(elapsed %d.%03d seconds) ", elapsed_msecs / 1000, |
| elapsed_msecs % 1000); |
| } |
| |
| return todo ? -EBUSY : 0; |
| } |
| |
| /** |
| * freeze_processes - Signal user space processes to enter the refrigerator. |
| * The current thread will not be frozen. The same process that calls |
| * freeze_processes must later call thaw_processes. |
| * |
| * On success, returns 0. On failure, -errno and system is fully thawed. |
| */ |
| int freeze_processes(void) |
| { |
| int error; |
| |
| error = __usermodehelper_disable(UMH_FREEZING); |
| if (error) |
| return error; |
| |
| /* Make sure this task doesn't get frozen */ |
| current->flags |= PF_SUSPEND_TASK; |
| |
| if (!pm_freezing) |
| atomic_inc(&system_freezing_cnt); |
| |
| pm_wakeup_clear(); |
| pr_info("Freezing user space processes ... "); |
| pm_freezing = true; |
| error = try_to_freeze_tasks(true); |
| if (!error) { |
| __usermodehelper_set_disable_depth(UMH_DISABLED); |
| pr_cont("done."); |
| } |
| pr_cont("\n"); |
| BUG_ON(in_atomic()); |
| |
| /* |
| * Now that the whole userspace is frozen we need to disbale |
| * the OOM killer to disallow any further interference with |
| * killable tasks. |
| */ |
| if (!error && !oom_killer_disable()) |
| error = -EBUSY; |
| |
| if (error) |
| thaw_processes(); |
| return error; |
| } |
| |
| /** |
| * freeze_kernel_threads - Make freezable kernel threads go to the refrigerator. |
| * |
| * On success, returns 0. On failure, -errno and only the kernel threads are |
| * thawed, so as to give a chance to the caller to do additional cleanups |
| * (if any) before thawing the userspace tasks. So, it is the responsibility |
| * of the caller to thaw the userspace tasks, when the time is right. |
| */ |
| int freeze_kernel_threads(void) |
| { |
| int error; |
| |
| pr_info("Freezing remaining freezable tasks ... "); |
| |
| pm_nosig_freezing = true; |
| error = try_to_freeze_tasks(false); |
| if (!error) |
| pr_cont("done."); |
| |
| pr_cont("\n"); |
| BUG_ON(in_atomic()); |
| |
| if (error) |
| thaw_kernel_threads(); |
| return error; |
| } |
| |
| void thaw_processes(void) |
| { |
| struct task_struct *g, *p; |
| struct task_struct *curr = current; |
| |
| trace_suspend_resume(TPS("thaw_processes"), 0, true); |
| if (pm_freezing) |
| atomic_dec(&system_freezing_cnt); |
| pm_freezing = false; |
| pm_nosig_freezing = false; |
| |
| oom_killer_enable(); |
| |
| pr_info("Restarting tasks ... "); |
| |
| __usermodehelper_set_disable_depth(UMH_FREEZING); |
| thaw_workqueues(); |
| |
| cpuset_wait_for_hotplug(); |
| |
| read_lock(&tasklist_lock); |
| for_each_process_thread(g, p) { |
| /* No other threads should have PF_SUSPEND_TASK set */ |
| WARN_ON((p != curr) && (p->flags & PF_SUSPEND_TASK)); |
| __thaw_task(p); |
| } |
| read_unlock(&tasklist_lock); |
| |
| WARN_ON(!(curr->flags & PF_SUSPEND_TASK)); |
| curr->flags &= ~PF_SUSPEND_TASK; |
| |
| usermodehelper_enable(); |
| |
| schedule(); |
| pr_cont("done.\n"); |
| trace_suspend_resume(TPS("thaw_processes"), 0, false); |
| } |
| |
| void thaw_kernel_threads(void) |
| { |
| struct task_struct *g, *p; |
| |
| pm_nosig_freezing = false; |
| pr_info("Restarting kernel threads ... "); |
| |
| thaw_workqueues(); |
| |
| read_lock(&tasklist_lock); |
| for_each_process_thread(g, p) { |
| if (p->flags & (PF_KTHREAD | PF_WQ_WORKER)) |
| __thaw_task(p); |
| } |
| read_unlock(&tasklist_lock); |
| |
| schedule(); |
| pr_cont("done.\n"); |
| } |