Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * drivers/acpi/power.c - ACPI Power Resources management. |
| 3 | * |
| 4 | * Copyright (C) 2001 - 2015 Intel Corp. |
| 5 | * Author: Andy Grover <andrew.grover@intel.com> |
| 6 | * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 7 | * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
| 8 | * |
| 9 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or (at |
| 14 | * your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 19 | * General Public License for more details. |
| 20 | * |
| 21 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 22 | */ |
| 23 | |
| 24 | /* |
| 25 | * ACPI power-managed devices may be controlled in two ways: |
| 26 | * 1. via "Device Specific (D-State) Control" |
| 27 | * 2. via "Power Resource Control". |
| 28 | * The code below deals with ACPI Power Resources control. |
| 29 | * |
| 30 | * An ACPI "power resource object" represents a software controllable power |
| 31 | * plane, clock plane, or other resource depended on by a device. |
| 32 | * |
| 33 | * A device may rely on multiple power resources, and a power resource |
| 34 | * may be shared by multiple devices. |
| 35 | */ |
| 36 | |
| 37 | #include <linux/kernel.h> |
| 38 | #include <linux/module.h> |
| 39 | #include <linux/init.h> |
| 40 | #include <linux/types.h> |
| 41 | #include <linux/slab.h> |
| 42 | #include <linux/pm_runtime.h> |
| 43 | #include <linux/sysfs.h> |
| 44 | #include <linux/acpi.h> |
| 45 | #include "sleep.h" |
| 46 | #include "internal.h" |
| 47 | |
| 48 | #define _COMPONENT ACPI_POWER_COMPONENT |
| 49 | ACPI_MODULE_NAME("power"); |
| 50 | #define ACPI_POWER_CLASS "power_resource" |
| 51 | #define ACPI_POWER_DEVICE_NAME "Power Resource" |
| 52 | #define ACPI_POWER_FILE_INFO "info" |
| 53 | #define ACPI_POWER_FILE_STATUS "state" |
| 54 | #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 |
| 55 | #define ACPI_POWER_RESOURCE_STATE_ON 0x01 |
| 56 | #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF |
| 57 | |
| 58 | struct acpi_power_resource { |
| 59 | struct acpi_device device; |
| 60 | struct list_head list_node; |
| 61 | char *name; |
| 62 | u32 system_level; |
| 63 | u32 order; |
| 64 | unsigned int ref_count; |
| 65 | bool wakeup_enabled; |
| 66 | struct mutex resource_lock; |
| 67 | }; |
| 68 | |
| 69 | struct acpi_power_resource_entry { |
| 70 | struct list_head node; |
| 71 | struct acpi_power_resource *resource; |
| 72 | }; |
| 73 | |
| 74 | static LIST_HEAD(acpi_power_resource_list); |
| 75 | static DEFINE_MUTEX(power_resource_list_lock); |
| 76 | |
| 77 | /* -------------------------------------------------------------------------- |
| 78 | Power Resource Management |
| 79 | -------------------------------------------------------------------------- */ |
| 80 | |
| 81 | static inline |
| 82 | struct acpi_power_resource *to_power_resource(struct acpi_device *device) |
| 83 | { |
| 84 | return container_of(device, struct acpi_power_resource, device); |
| 85 | } |
| 86 | |
| 87 | static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) |
| 88 | { |
| 89 | struct acpi_device *device; |
| 90 | |
| 91 | if (acpi_bus_get_device(handle, &device)) |
| 92 | return NULL; |
| 93 | |
| 94 | return to_power_resource(device); |
| 95 | } |
| 96 | |
| 97 | static int acpi_power_resources_list_add(acpi_handle handle, |
| 98 | struct list_head *list) |
| 99 | { |
| 100 | struct acpi_power_resource *resource = acpi_power_get_context(handle); |
| 101 | struct acpi_power_resource_entry *entry; |
| 102 | |
| 103 | if (!resource || !list) |
| 104 | return -EINVAL; |
| 105 | |
| 106 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| 107 | if (!entry) |
| 108 | return -ENOMEM; |
| 109 | |
| 110 | entry->resource = resource; |
| 111 | if (!list_empty(list)) { |
| 112 | struct acpi_power_resource_entry *e; |
| 113 | |
| 114 | list_for_each_entry(e, list, node) |
| 115 | if (e->resource->order > resource->order) { |
| 116 | list_add_tail(&entry->node, &e->node); |
| 117 | return 0; |
| 118 | } |
| 119 | } |
| 120 | list_add_tail(&entry->node, list); |
| 121 | return 0; |
| 122 | } |
| 123 | |
| 124 | void acpi_power_resources_list_free(struct list_head *list) |
| 125 | { |
| 126 | struct acpi_power_resource_entry *entry, *e; |
| 127 | |
| 128 | list_for_each_entry_safe(entry, e, list, node) { |
| 129 | list_del(&entry->node); |
| 130 | kfree(entry); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | int acpi_extract_power_resources(union acpi_object *package, unsigned int start, |
| 135 | struct list_head *list) |
| 136 | { |
| 137 | unsigned int i; |
| 138 | int err = 0; |
| 139 | |
| 140 | for (i = start; i < package->package.count; i++) { |
| 141 | union acpi_object *element = &package->package.elements[i]; |
| 142 | acpi_handle rhandle; |
| 143 | |
| 144 | if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { |
| 145 | err = -ENODATA; |
| 146 | break; |
| 147 | } |
| 148 | rhandle = element->reference.handle; |
| 149 | if (!rhandle) { |
| 150 | err = -ENODEV; |
| 151 | break; |
| 152 | } |
| 153 | err = acpi_add_power_resource(rhandle); |
| 154 | if (err) |
| 155 | break; |
| 156 | |
| 157 | err = acpi_power_resources_list_add(rhandle, list); |
| 158 | if (err) |
| 159 | break; |
| 160 | } |
| 161 | if (err) |
| 162 | acpi_power_resources_list_free(list); |
| 163 | |
| 164 | return err; |
| 165 | } |
| 166 | |
| 167 | static int acpi_power_get_state(acpi_handle handle, int *state) |
| 168 | { |
| 169 | acpi_status status = AE_OK; |
| 170 | unsigned long long sta = 0; |
| 171 | char node_name[5]; |
| 172 | struct acpi_buffer buffer = { sizeof(node_name), node_name }; |
| 173 | |
| 174 | |
| 175 | if (!handle || !state) |
| 176 | return -EINVAL; |
| 177 | |
| 178 | status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); |
| 179 | if (ACPI_FAILURE(status)) |
| 180 | return -ENODEV; |
| 181 | |
| 182 | *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: |
| 183 | ACPI_POWER_RESOURCE_STATE_OFF; |
| 184 | |
| 185 | acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); |
| 186 | |
| 187 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", |
| 188 | node_name, |
| 189 | *state ? "on" : "off")); |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | static int acpi_power_get_list_state(struct list_head *list, int *state) |
| 195 | { |
| 196 | struct acpi_power_resource_entry *entry; |
| 197 | int cur_state; |
| 198 | |
| 199 | if (!list || !state) |
| 200 | return -EINVAL; |
| 201 | |
| 202 | /* The state of the list is 'on' IFF all resources are 'on'. */ |
| 203 | cur_state = 0; |
| 204 | list_for_each_entry(entry, list, node) { |
| 205 | struct acpi_power_resource *resource = entry->resource; |
| 206 | acpi_handle handle = resource->device.handle; |
| 207 | int result; |
| 208 | |
| 209 | mutex_lock(&resource->resource_lock); |
| 210 | result = acpi_power_get_state(handle, &cur_state); |
| 211 | mutex_unlock(&resource->resource_lock); |
| 212 | if (result) |
| 213 | return result; |
| 214 | |
| 215 | if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) |
| 216 | break; |
| 217 | } |
| 218 | |
| 219 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", |
| 220 | cur_state ? "on" : "off")); |
| 221 | |
| 222 | *state = cur_state; |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | static int __acpi_power_on(struct acpi_power_resource *resource) |
| 227 | { |
| 228 | acpi_status status = AE_OK; |
| 229 | |
| 230 | status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); |
| 231 | if (ACPI_FAILURE(status)) |
| 232 | return -ENODEV; |
| 233 | |
| 234 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", |
| 235 | resource->name)); |
| 236 | |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | static int acpi_power_on_unlocked(struct acpi_power_resource *resource) |
| 241 | { |
| 242 | int result = 0; |
| 243 | |
| 244 | if (resource->ref_count++) { |
| 245 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| 246 | "Power resource [%s] already on\n", |
| 247 | resource->name)); |
| 248 | } else { |
| 249 | result = __acpi_power_on(resource); |
| 250 | if (result) |
| 251 | resource->ref_count--; |
| 252 | } |
| 253 | return result; |
| 254 | } |
| 255 | |
| 256 | static int acpi_power_on(struct acpi_power_resource *resource) |
| 257 | { |
| 258 | int result; |
| 259 | |
| 260 | mutex_lock(&resource->resource_lock); |
| 261 | result = acpi_power_on_unlocked(resource); |
| 262 | mutex_unlock(&resource->resource_lock); |
| 263 | return result; |
| 264 | } |
| 265 | |
| 266 | static int __acpi_power_off(struct acpi_power_resource *resource) |
| 267 | { |
| 268 | acpi_status status; |
| 269 | |
| 270 | status = acpi_evaluate_object(resource->device.handle, "_OFF", |
| 271 | NULL, NULL); |
| 272 | if (ACPI_FAILURE(status)) |
| 273 | return -ENODEV; |
| 274 | |
| 275 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", |
| 276 | resource->name)); |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | static int acpi_power_off_unlocked(struct acpi_power_resource *resource) |
| 281 | { |
| 282 | int result = 0; |
| 283 | |
| 284 | if (!resource->ref_count) { |
| 285 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| 286 | "Power resource [%s] already off\n", |
| 287 | resource->name)); |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | if (--resource->ref_count) { |
| 292 | ACPI_DEBUG_PRINT((ACPI_DB_INFO, |
| 293 | "Power resource [%s] still in use\n", |
| 294 | resource->name)); |
| 295 | } else { |
| 296 | result = __acpi_power_off(resource); |
| 297 | if (result) |
| 298 | resource->ref_count++; |
| 299 | } |
| 300 | return result; |
| 301 | } |
| 302 | |
| 303 | static int acpi_power_off(struct acpi_power_resource *resource) |
| 304 | { |
| 305 | int result; |
| 306 | |
| 307 | mutex_lock(&resource->resource_lock); |
| 308 | result = acpi_power_off_unlocked(resource); |
| 309 | mutex_unlock(&resource->resource_lock); |
| 310 | return result; |
| 311 | } |
| 312 | |
| 313 | static int acpi_power_off_list(struct list_head *list) |
| 314 | { |
| 315 | struct acpi_power_resource_entry *entry; |
| 316 | int result = 0; |
| 317 | |
| 318 | list_for_each_entry_reverse(entry, list, node) { |
| 319 | result = acpi_power_off(entry->resource); |
| 320 | if (result) |
| 321 | goto err; |
| 322 | } |
| 323 | return 0; |
| 324 | |
| 325 | err: |
| 326 | list_for_each_entry_continue(entry, list, node) |
| 327 | acpi_power_on(entry->resource); |
| 328 | |
| 329 | return result; |
| 330 | } |
| 331 | |
| 332 | static int acpi_power_on_list(struct list_head *list) |
| 333 | { |
| 334 | struct acpi_power_resource_entry *entry; |
| 335 | int result = 0; |
| 336 | |
| 337 | list_for_each_entry(entry, list, node) { |
| 338 | result = acpi_power_on(entry->resource); |
| 339 | if (result) |
| 340 | goto err; |
| 341 | } |
| 342 | return 0; |
| 343 | |
| 344 | err: |
| 345 | list_for_each_entry_continue_reverse(entry, list, node) |
| 346 | acpi_power_off(entry->resource); |
| 347 | |
| 348 | return result; |
| 349 | } |
| 350 | |
| 351 | static struct attribute *attrs[] = { |
| 352 | NULL, |
| 353 | }; |
| 354 | |
| 355 | static struct attribute_group attr_groups[] = { |
| 356 | [ACPI_STATE_D0] = { |
| 357 | .name = "power_resources_D0", |
| 358 | .attrs = attrs, |
| 359 | }, |
| 360 | [ACPI_STATE_D1] = { |
| 361 | .name = "power_resources_D1", |
| 362 | .attrs = attrs, |
| 363 | }, |
| 364 | [ACPI_STATE_D2] = { |
| 365 | .name = "power_resources_D2", |
| 366 | .attrs = attrs, |
| 367 | }, |
| 368 | [ACPI_STATE_D3_HOT] = { |
| 369 | .name = "power_resources_D3hot", |
| 370 | .attrs = attrs, |
| 371 | }, |
| 372 | }; |
| 373 | |
| 374 | static struct attribute_group wakeup_attr_group = { |
| 375 | .name = "power_resources_wakeup", |
| 376 | .attrs = attrs, |
| 377 | }; |
| 378 | |
| 379 | static void acpi_power_hide_list(struct acpi_device *adev, |
| 380 | struct list_head *resources, |
| 381 | struct attribute_group *attr_group) |
| 382 | { |
| 383 | struct acpi_power_resource_entry *entry; |
| 384 | |
| 385 | if (list_empty(resources)) |
| 386 | return; |
| 387 | |
| 388 | list_for_each_entry_reverse(entry, resources, node) { |
| 389 | struct acpi_device *res_dev = &entry->resource->device; |
| 390 | |
| 391 | sysfs_remove_link_from_group(&adev->dev.kobj, |
| 392 | attr_group->name, |
| 393 | dev_name(&res_dev->dev)); |
| 394 | } |
| 395 | sysfs_remove_group(&adev->dev.kobj, attr_group); |
| 396 | } |
| 397 | |
| 398 | static void acpi_power_expose_list(struct acpi_device *adev, |
| 399 | struct list_head *resources, |
| 400 | struct attribute_group *attr_group) |
| 401 | { |
| 402 | struct acpi_power_resource_entry *entry; |
| 403 | int ret; |
| 404 | |
| 405 | if (list_empty(resources)) |
| 406 | return; |
| 407 | |
| 408 | ret = sysfs_create_group(&adev->dev.kobj, attr_group); |
| 409 | if (ret) |
| 410 | return; |
| 411 | |
| 412 | list_for_each_entry(entry, resources, node) { |
| 413 | struct acpi_device *res_dev = &entry->resource->device; |
| 414 | |
| 415 | ret = sysfs_add_link_to_group(&adev->dev.kobj, |
| 416 | attr_group->name, |
| 417 | &res_dev->dev.kobj, |
| 418 | dev_name(&res_dev->dev)); |
| 419 | if (ret) { |
| 420 | acpi_power_hide_list(adev, resources, attr_group); |
| 421 | break; |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | static void acpi_power_expose_hide(struct acpi_device *adev, |
| 427 | struct list_head *resources, |
| 428 | struct attribute_group *attr_group, |
| 429 | bool expose) |
| 430 | { |
| 431 | if (expose) |
| 432 | acpi_power_expose_list(adev, resources, attr_group); |
| 433 | else |
| 434 | acpi_power_hide_list(adev, resources, attr_group); |
| 435 | } |
| 436 | |
| 437 | void acpi_power_add_remove_device(struct acpi_device *adev, bool add) |
| 438 | { |
| 439 | int state; |
| 440 | |
| 441 | if (adev->wakeup.flags.valid) |
| 442 | acpi_power_expose_hide(adev, &adev->wakeup.resources, |
| 443 | &wakeup_attr_group, add); |
| 444 | |
| 445 | if (!adev->power.flags.power_resources) |
| 446 | return; |
| 447 | |
| 448 | for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) |
| 449 | acpi_power_expose_hide(adev, |
| 450 | &adev->power.states[state].resources, |
| 451 | &attr_groups[state], add); |
| 452 | } |
| 453 | |
| 454 | int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) |
| 455 | { |
| 456 | struct acpi_power_resource_entry *entry; |
| 457 | int system_level = 5; |
| 458 | |
| 459 | list_for_each_entry(entry, list, node) { |
| 460 | struct acpi_power_resource *resource = entry->resource; |
| 461 | acpi_handle handle = resource->device.handle; |
| 462 | int result; |
| 463 | int state; |
| 464 | |
| 465 | mutex_lock(&resource->resource_lock); |
| 466 | |
| 467 | result = acpi_power_get_state(handle, &state); |
| 468 | if (result) { |
| 469 | mutex_unlock(&resource->resource_lock); |
| 470 | return result; |
| 471 | } |
| 472 | if (state == ACPI_POWER_RESOURCE_STATE_ON) { |
| 473 | resource->ref_count++; |
| 474 | resource->wakeup_enabled = true; |
| 475 | } |
| 476 | if (system_level > resource->system_level) |
| 477 | system_level = resource->system_level; |
| 478 | |
| 479 | mutex_unlock(&resource->resource_lock); |
| 480 | } |
| 481 | *system_level_p = system_level; |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | /* -------------------------------------------------------------------------- |
| 486 | Device Power Management |
| 487 | -------------------------------------------------------------------------- */ |
| 488 | |
| 489 | /** |
| 490 | * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in |
| 491 | * ACPI 3.0) _PSW (Power State Wake) |
| 492 | * @dev: Device to handle. |
| 493 | * @enable: 0 - disable, 1 - enable the wake capabilities of the device. |
| 494 | * @sleep_state: Target sleep state of the system. |
| 495 | * @dev_state: Target power state of the device. |
| 496 | * |
| 497 | * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power |
| 498 | * State Wake) for the device, if present. On failure reset the device's |
| 499 | * wakeup.flags.valid flag. |
| 500 | * |
| 501 | * RETURN VALUE: |
| 502 | * 0 if either _DSW or _PSW has been successfully executed |
| 503 | * 0 if neither _DSW nor _PSW has been found |
| 504 | * -ENODEV if the execution of either _DSW or _PSW has failed |
| 505 | */ |
| 506 | int acpi_device_sleep_wake(struct acpi_device *dev, |
| 507 | int enable, int sleep_state, int dev_state) |
| 508 | { |
| 509 | union acpi_object in_arg[3]; |
| 510 | struct acpi_object_list arg_list = { 3, in_arg }; |
| 511 | acpi_status status = AE_OK; |
| 512 | |
| 513 | /* |
| 514 | * Try to execute _DSW first. |
| 515 | * |
| 516 | * Three agruments are needed for the _DSW object: |
| 517 | * Argument 0: enable/disable the wake capabilities |
| 518 | * Argument 1: target system state |
| 519 | * Argument 2: target device state |
| 520 | * When _DSW object is called to disable the wake capabilities, maybe |
| 521 | * the first argument is filled. The values of the other two agruments |
| 522 | * are meaningless. |
| 523 | */ |
| 524 | in_arg[0].type = ACPI_TYPE_INTEGER; |
| 525 | in_arg[0].integer.value = enable; |
| 526 | in_arg[1].type = ACPI_TYPE_INTEGER; |
| 527 | in_arg[1].integer.value = sleep_state; |
| 528 | in_arg[2].type = ACPI_TYPE_INTEGER; |
| 529 | in_arg[2].integer.value = dev_state; |
| 530 | status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); |
| 531 | if (ACPI_SUCCESS(status)) { |
| 532 | return 0; |
| 533 | } else if (status != AE_NOT_FOUND) { |
| 534 | printk(KERN_ERR PREFIX "_DSW execution failed\n"); |
| 535 | dev->wakeup.flags.valid = 0; |
| 536 | return -ENODEV; |
| 537 | } |
| 538 | |
| 539 | /* Execute _PSW */ |
| 540 | status = acpi_execute_simple_method(dev->handle, "_PSW", enable); |
| 541 | if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { |
| 542 | printk(KERN_ERR PREFIX "_PSW execution failed\n"); |
| 543 | dev->wakeup.flags.valid = 0; |
| 544 | return -ENODEV; |
| 545 | } |
| 546 | |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): |
| 552 | * 1. Power on the power resources required for the wakeup device |
| 553 | * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power |
| 554 | * State Wake) for the device, if present |
| 555 | */ |
| 556 | int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) |
| 557 | { |
| 558 | struct acpi_power_resource_entry *entry; |
| 559 | int err = 0; |
| 560 | |
| 561 | if (!dev || !dev->wakeup.flags.valid) |
| 562 | return -EINVAL; |
| 563 | |
| 564 | mutex_lock(&acpi_device_lock); |
| 565 | |
| 566 | if (dev->wakeup.prepare_count++) |
| 567 | goto out; |
| 568 | |
| 569 | list_for_each_entry(entry, &dev->wakeup.resources, node) { |
| 570 | struct acpi_power_resource *resource = entry->resource; |
| 571 | |
| 572 | mutex_lock(&resource->resource_lock); |
| 573 | |
| 574 | if (!resource->wakeup_enabled) { |
| 575 | err = acpi_power_on_unlocked(resource); |
| 576 | if (!err) |
| 577 | resource->wakeup_enabled = true; |
| 578 | } |
| 579 | |
| 580 | mutex_unlock(&resource->resource_lock); |
| 581 | |
| 582 | if (err) { |
| 583 | dev_err(&dev->dev, |
| 584 | "Cannot turn wakeup power resources on\n"); |
| 585 | dev->wakeup.flags.valid = 0; |
| 586 | goto out; |
| 587 | } |
| 588 | } |
| 589 | /* |
| 590 | * Passing 3 as the third argument below means the device may be |
| 591 | * put into arbitrary power state afterward. |
| 592 | */ |
| 593 | err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); |
| 594 | if (err) |
| 595 | dev->wakeup.prepare_count = 0; |
| 596 | |
| 597 | out: |
| 598 | mutex_unlock(&acpi_device_lock); |
| 599 | return err; |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Shutdown a wakeup device, counterpart of above method |
| 604 | * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power |
| 605 | * State Wake) for the device, if present |
| 606 | * 2. Shutdown down the power resources |
| 607 | */ |
| 608 | int acpi_disable_wakeup_device_power(struct acpi_device *dev) |
| 609 | { |
| 610 | struct acpi_power_resource_entry *entry; |
| 611 | int err = 0; |
| 612 | |
| 613 | if (!dev || !dev->wakeup.flags.valid) |
| 614 | return -EINVAL; |
| 615 | |
| 616 | mutex_lock(&acpi_device_lock); |
| 617 | |
| 618 | if (--dev->wakeup.prepare_count > 0) |
| 619 | goto out; |
| 620 | |
| 621 | /* |
| 622 | * Executing the code below even if prepare_count is already zero when |
| 623 | * the function is called may be useful, for example for initialisation. |
| 624 | */ |
| 625 | if (dev->wakeup.prepare_count < 0) |
| 626 | dev->wakeup.prepare_count = 0; |
| 627 | |
| 628 | err = acpi_device_sleep_wake(dev, 0, 0, 0); |
| 629 | if (err) |
| 630 | goto out; |
| 631 | |
| 632 | list_for_each_entry(entry, &dev->wakeup.resources, node) { |
| 633 | struct acpi_power_resource *resource = entry->resource; |
| 634 | |
| 635 | mutex_lock(&resource->resource_lock); |
| 636 | |
| 637 | if (resource->wakeup_enabled) { |
| 638 | err = acpi_power_off_unlocked(resource); |
| 639 | if (!err) |
| 640 | resource->wakeup_enabled = false; |
| 641 | } |
| 642 | |
| 643 | mutex_unlock(&resource->resource_lock); |
| 644 | |
| 645 | if (err) { |
| 646 | dev_err(&dev->dev, |
| 647 | "Cannot turn wakeup power resources off\n"); |
| 648 | dev->wakeup.flags.valid = 0; |
| 649 | break; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | out: |
| 654 | mutex_unlock(&acpi_device_lock); |
| 655 | return err; |
| 656 | } |
| 657 | |
| 658 | int acpi_power_get_inferred_state(struct acpi_device *device, int *state) |
| 659 | { |
| 660 | int result = 0; |
| 661 | int list_state = 0; |
| 662 | int i = 0; |
| 663 | |
| 664 | if (!device || !state) |
| 665 | return -EINVAL; |
| 666 | |
| 667 | /* |
| 668 | * We know a device's inferred power state when all the resources |
| 669 | * required for a given D-state are 'on'. |
| 670 | */ |
| 671 | for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { |
| 672 | struct list_head *list = &device->power.states[i].resources; |
| 673 | |
| 674 | if (list_empty(list)) |
| 675 | continue; |
| 676 | |
| 677 | result = acpi_power_get_list_state(list, &list_state); |
| 678 | if (result) |
| 679 | return result; |
| 680 | |
| 681 | if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { |
| 682 | *state = i; |
| 683 | return 0; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? |
| 688 | ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | int acpi_power_on_resources(struct acpi_device *device, int state) |
| 693 | { |
| 694 | if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) |
| 695 | return -EINVAL; |
| 696 | |
| 697 | return acpi_power_on_list(&device->power.states[state].resources); |
| 698 | } |
| 699 | |
| 700 | int acpi_power_transition(struct acpi_device *device, int state) |
| 701 | { |
| 702 | int result = 0; |
| 703 | |
| 704 | if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) |
| 705 | return -EINVAL; |
| 706 | |
| 707 | if (device->power.state == state || !device->flags.power_manageable) |
| 708 | return 0; |
| 709 | |
| 710 | if ((device->power.state < ACPI_STATE_D0) |
| 711 | || (device->power.state > ACPI_STATE_D3_COLD)) |
| 712 | return -ENODEV; |
| 713 | |
| 714 | /* |
| 715 | * First we reference all power resources required in the target list |
| 716 | * (e.g. so the device doesn't lose power while transitioning). Then, |
| 717 | * we dereference all power resources used in the current list. |
| 718 | */ |
| 719 | if (state < ACPI_STATE_D3_COLD) |
| 720 | result = acpi_power_on_list( |
| 721 | &device->power.states[state].resources); |
| 722 | |
| 723 | if (!result && device->power.state < ACPI_STATE_D3_COLD) |
| 724 | acpi_power_off_list( |
| 725 | &device->power.states[device->power.state].resources); |
| 726 | |
| 727 | /* We shouldn't change the state unless the above operations succeed. */ |
| 728 | device->power.state = result ? ACPI_STATE_UNKNOWN : state; |
| 729 | |
| 730 | return result; |
| 731 | } |
| 732 | |
| 733 | static void acpi_release_power_resource(struct device *dev) |
| 734 | { |
| 735 | struct acpi_device *device = to_acpi_device(dev); |
| 736 | struct acpi_power_resource *resource; |
| 737 | |
| 738 | resource = container_of(device, struct acpi_power_resource, device); |
| 739 | |
| 740 | mutex_lock(&power_resource_list_lock); |
| 741 | list_del(&resource->list_node); |
| 742 | mutex_unlock(&power_resource_list_lock); |
| 743 | |
| 744 | acpi_free_pnp_ids(&device->pnp); |
| 745 | kfree(resource); |
| 746 | } |
| 747 | |
| 748 | static ssize_t acpi_power_in_use_show(struct device *dev, |
| 749 | struct device_attribute *attr, |
| 750 | char *buf) { |
| 751 | struct acpi_power_resource *resource; |
| 752 | |
| 753 | resource = to_power_resource(to_acpi_device(dev)); |
| 754 | return sprintf(buf, "%u\n", !!resource->ref_count); |
| 755 | } |
| 756 | static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); |
| 757 | |
| 758 | static void acpi_power_sysfs_remove(struct acpi_device *device) |
| 759 | { |
| 760 | device_remove_file(&device->dev, &dev_attr_resource_in_use); |
| 761 | } |
| 762 | |
| 763 | static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) |
| 764 | { |
| 765 | mutex_lock(&power_resource_list_lock); |
| 766 | |
| 767 | if (!list_empty(&acpi_power_resource_list)) { |
| 768 | struct acpi_power_resource *r; |
| 769 | |
| 770 | list_for_each_entry(r, &acpi_power_resource_list, list_node) |
| 771 | if (r->order > resource->order) { |
| 772 | list_add_tail(&resource->list_node, &r->list_node); |
| 773 | goto out; |
| 774 | } |
| 775 | } |
| 776 | list_add_tail(&resource->list_node, &acpi_power_resource_list); |
| 777 | |
| 778 | out: |
| 779 | mutex_unlock(&power_resource_list_lock); |
| 780 | } |
| 781 | |
| 782 | int acpi_add_power_resource(acpi_handle handle) |
| 783 | { |
| 784 | struct acpi_power_resource *resource; |
| 785 | struct acpi_device *device = NULL; |
| 786 | union acpi_object acpi_object; |
| 787 | struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; |
| 788 | acpi_status status; |
| 789 | int state, result = -ENODEV; |
| 790 | |
| 791 | acpi_bus_get_device(handle, &device); |
| 792 | if (device) |
| 793 | return 0; |
| 794 | |
| 795 | resource = kzalloc(sizeof(*resource), GFP_KERNEL); |
| 796 | if (!resource) |
| 797 | return -ENOMEM; |
| 798 | |
| 799 | device = &resource->device; |
| 800 | acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, |
| 801 | ACPI_STA_DEFAULT); |
| 802 | mutex_init(&resource->resource_lock); |
| 803 | INIT_LIST_HEAD(&resource->list_node); |
| 804 | resource->name = device->pnp.bus_id; |
| 805 | strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); |
| 806 | strcpy(acpi_device_class(device), ACPI_POWER_CLASS); |
| 807 | device->power.state = ACPI_STATE_UNKNOWN; |
| 808 | |
| 809 | /* Evalute the object to get the system level and resource order. */ |
| 810 | status = acpi_evaluate_object(handle, NULL, NULL, &buffer); |
| 811 | if (ACPI_FAILURE(status)) |
| 812 | goto err; |
| 813 | |
| 814 | resource->system_level = acpi_object.power_resource.system_level; |
| 815 | resource->order = acpi_object.power_resource.resource_order; |
| 816 | |
| 817 | result = acpi_power_get_state(handle, &state); |
| 818 | if (result) |
| 819 | goto err; |
| 820 | |
| 821 | printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), |
| 822 | acpi_device_bid(device), state ? "on" : "off"); |
| 823 | |
| 824 | device->flags.match_driver = true; |
| 825 | result = acpi_device_add(device, acpi_release_power_resource); |
| 826 | if (result) |
| 827 | goto err; |
| 828 | |
| 829 | if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) |
| 830 | device->remove = acpi_power_sysfs_remove; |
| 831 | |
| 832 | acpi_power_add_resource_to_list(resource); |
| 833 | acpi_device_add_finalize(device); |
| 834 | return 0; |
| 835 | |
| 836 | err: |
| 837 | acpi_release_power_resource(&device->dev); |
| 838 | return result; |
| 839 | } |
| 840 | |
| 841 | #ifdef CONFIG_ACPI_SLEEP |
| 842 | void acpi_resume_power_resources(void) |
| 843 | { |
| 844 | struct acpi_power_resource *resource; |
| 845 | |
| 846 | mutex_lock(&power_resource_list_lock); |
| 847 | |
| 848 | list_for_each_entry(resource, &acpi_power_resource_list, list_node) { |
| 849 | int result, state; |
| 850 | |
| 851 | mutex_lock(&resource->resource_lock); |
| 852 | |
| 853 | result = acpi_power_get_state(resource->device.handle, &state); |
| 854 | if (result) { |
| 855 | mutex_unlock(&resource->resource_lock); |
| 856 | continue; |
| 857 | } |
| 858 | |
| 859 | if (state == ACPI_POWER_RESOURCE_STATE_OFF |
| 860 | && resource->ref_count) { |
| 861 | dev_info(&resource->device.dev, "Turning ON\n"); |
| 862 | __acpi_power_on(resource); |
| 863 | } |
| 864 | |
| 865 | mutex_unlock(&resource->resource_lock); |
| 866 | } |
| 867 | list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { |
| 868 | int result, state; |
| 869 | |
| 870 | mutex_lock(&resource->resource_lock); |
| 871 | |
| 872 | result = acpi_power_get_state(resource->device.handle, &state); |
| 873 | if (result) { |
| 874 | mutex_unlock(&resource->resource_lock); |
| 875 | continue; |
| 876 | } |
| 877 | |
| 878 | if (state == ACPI_POWER_RESOURCE_STATE_ON |
| 879 | && !resource->ref_count) { |
| 880 | dev_info(&resource->device.dev, "Turning OFF\n"); |
| 881 | __acpi_power_off(resource); |
| 882 | } |
| 883 | |
| 884 | mutex_unlock(&resource->resource_lock); |
| 885 | } |
| 886 | |
| 887 | mutex_unlock(&power_resource_list_lock); |
| 888 | } |
| 889 | #endif |