Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * coretemp.c - Linux kernel module for hardware monitoring |
| 3 | * |
| 4 | * Copyright (C) 2007 Rudolf Marek <r.marek@assembler.cz> |
| 5 | * |
| 6 | * Inspired from many hwmon drivers |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License as published by |
| 10 | * the Free Software Foundation; version 2 of the License. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 20 | * 02110-1301 USA. |
| 21 | */ |
| 22 | |
| 23 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/jiffies.h> |
| 29 | #include <linux/hwmon.h> |
| 30 | #include <linux/sysfs.h> |
| 31 | #include <linux/hwmon-sysfs.h> |
| 32 | #include <linux/err.h> |
| 33 | #include <linux/mutex.h> |
| 34 | #include <linux/list.h> |
| 35 | #include <linux/platform_device.h> |
| 36 | #include <linux/cpu.h> |
| 37 | #include <linux/smp.h> |
| 38 | #include <linux/moduleparam.h> |
| 39 | #include <linux/pci.h> |
| 40 | #include <asm/msr.h> |
| 41 | #include <asm/processor.h> |
| 42 | #include <asm/cpu_device_id.h> |
| 43 | |
| 44 | #define DRVNAME "coretemp" |
| 45 | |
| 46 | /* |
| 47 | * force_tjmax only matters when TjMax can't be read from the CPU itself. |
| 48 | * When set, it replaces the driver's suboptimal heuristic. |
| 49 | */ |
| 50 | static int force_tjmax; |
| 51 | module_param_named(tjmax, force_tjmax, int, 0444); |
| 52 | MODULE_PARM_DESC(tjmax, "TjMax value in degrees Celsius"); |
| 53 | |
| 54 | #define BASE_SYSFS_ATTR_NO 2 /* Sysfs Base attr no for coretemp */ |
| 55 | #define NUM_REAL_CORES 128 /* Number of Real cores per cpu */ |
| 56 | #define CORETEMP_NAME_LENGTH 19 /* String Length of attrs */ |
| 57 | #define MAX_CORE_ATTRS 4 /* Maximum no of basic attrs */ |
| 58 | #define TOTAL_ATTRS (MAX_CORE_ATTRS + 1) |
| 59 | #define MAX_CORE_DATA (NUM_REAL_CORES + BASE_SYSFS_ATTR_NO) |
| 60 | |
| 61 | #define TO_PHYS_ID(cpu) (cpu_data(cpu).phys_proc_id) |
| 62 | #define TO_CORE_ID(cpu) (cpu_data(cpu).cpu_core_id) |
| 63 | #define TO_ATTR_NO(cpu) (TO_CORE_ID(cpu) + BASE_SYSFS_ATTR_NO) |
| 64 | |
| 65 | #ifdef CONFIG_SMP |
| 66 | #define for_each_sibling(i, cpu) \ |
| 67 | for_each_cpu(i, topology_sibling_cpumask(cpu)) |
| 68 | #else |
| 69 | #define for_each_sibling(i, cpu) for (i = 0; false; ) |
| 70 | #endif |
| 71 | |
| 72 | /* |
| 73 | * Per-Core Temperature Data |
| 74 | * @last_updated: The time when the current temperature value was updated |
| 75 | * earlier (in jiffies). |
| 76 | * @cpu_core_id: The CPU Core from which temperature values should be read |
| 77 | * This value is passed as "id" field to rdmsr/wrmsr functions. |
| 78 | * @status_reg: One of IA32_THERM_STATUS or IA32_PACKAGE_THERM_STATUS, |
| 79 | * from where the temperature values should be read. |
| 80 | * @attr_size: Total number of pre-core attrs displayed in the sysfs. |
| 81 | * @is_pkg_data: If this is 1, the temp_data holds pkgtemp data. |
| 82 | * Otherwise, temp_data holds coretemp data. |
| 83 | * @valid: If this is 1, the current temperature is valid. |
| 84 | */ |
| 85 | struct temp_data { |
| 86 | int temp; |
| 87 | int ttarget; |
| 88 | int tjmax; |
| 89 | unsigned long last_updated; |
| 90 | unsigned int cpu; |
| 91 | u32 cpu_core_id; |
| 92 | u32 status_reg; |
| 93 | int attr_size; |
| 94 | bool is_pkg_data; |
| 95 | bool valid; |
| 96 | struct sensor_device_attribute sd_attrs[TOTAL_ATTRS]; |
| 97 | char attr_name[TOTAL_ATTRS][CORETEMP_NAME_LENGTH]; |
| 98 | struct attribute *attrs[TOTAL_ATTRS + 1]; |
| 99 | struct attribute_group attr_group; |
| 100 | struct mutex update_lock; |
| 101 | }; |
| 102 | |
| 103 | /* Platform Data per Physical CPU */ |
| 104 | struct platform_data { |
| 105 | struct device *hwmon_dev; |
| 106 | u16 phys_proc_id; |
| 107 | struct temp_data *core_data[MAX_CORE_DATA]; |
| 108 | struct device_attribute name_attr; |
| 109 | }; |
| 110 | |
| 111 | struct pdev_entry { |
| 112 | struct list_head list; |
| 113 | struct platform_device *pdev; |
| 114 | u16 phys_proc_id; |
| 115 | }; |
| 116 | |
| 117 | static LIST_HEAD(pdev_list); |
| 118 | static DEFINE_MUTEX(pdev_list_mutex); |
| 119 | |
| 120 | static ssize_t show_label(struct device *dev, |
| 121 | struct device_attribute *devattr, char *buf) |
| 122 | { |
| 123 | struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| 124 | struct platform_data *pdata = dev_get_drvdata(dev); |
| 125 | struct temp_data *tdata = pdata->core_data[attr->index]; |
| 126 | |
| 127 | if (tdata->is_pkg_data) |
| 128 | return sprintf(buf, "Physical id %u\n", pdata->phys_proc_id); |
| 129 | |
| 130 | return sprintf(buf, "Core %u\n", tdata->cpu_core_id); |
| 131 | } |
| 132 | |
| 133 | static ssize_t show_crit_alarm(struct device *dev, |
| 134 | struct device_attribute *devattr, char *buf) |
| 135 | { |
| 136 | u32 eax, edx; |
| 137 | struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| 138 | struct platform_data *pdata = dev_get_drvdata(dev); |
| 139 | struct temp_data *tdata = pdata->core_data[attr->index]; |
| 140 | |
| 141 | rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx); |
| 142 | |
| 143 | return sprintf(buf, "%d\n", (eax >> 5) & 1); |
| 144 | } |
| 145 | |
| 146 | static ssize_t show_tjmax(struct device *dev, |
| 147 | struct device_attribute *devattr, char *buf) |
| 148 | { |
| 149 | struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| 150 | struct platform_data *pdata = dev_get_drvdata(dev); |
| 151 | |
| 152 | return sprintf(buf, "%d\n", pdata->core_data[attr->index]->tjmax); |
| 153 | } |
| 154 | |
| 155 | static ssize_t show_ttarget(struct device *dev, |
| 156 | struct device_attribute *devattr, char *buf) |
| 157 | { |
| 158 | struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| 159 | struct platform_data *pdata = dev_get_drvdata(dev); |
| 160 | |
| 161 | return sprintf(buf, "%d\n", pdata->core_data[attr->index]->ttarget); |
| 162 | } |
| 163 | |
| 164 | static ssize_t show_temp(struct device *dev, |
| 165 | struct device_attribute *devattr, char *buf) |
| 166 | { |
| 167 | u32 eax, edx; |
| 168 | struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); |
| 169 | struct platform_data *pdata = dev_get_drvdata(dev); |
| 170 | struct temp_data *tdata = pdata->core_data[attr->index]; |
| 171 | |
| 172 | mutex_lock(&tdata->update_lock); |
| 173 | |
| 174 | /* Check whether the time interval has elapsed */ |
| 175 | if (!tdata->valid || time_after(jiffies, tdata->last_updated + HZ)) { |
| 176 | rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx); |
| 177 | /* |
| 178 | * Ignore the valid bit. In all observed cases the register |
| 179 | * value is either low or zero if the valid bit is 0. |
| 180 | * Return it instead of reporting an error which doesn't |
| 181 | * really help at all. |
| 182 | */ |
| 183 | tdata->temp = tdata->tjmax - ((eax >> 16) & 0x7f) * 1000; |
| 184 | tdata->valid = 1; |
| 185 | tdata->last_updated = jiffies; |
| 186 | } |
| 187 | |
| 188 | mutex_unlock(&tdata->update_lock); |
| 189 | return sprintf(buf, "%d\n", tdata->temp); |
| 190 | } |
| 191 | |
| 192 | struct tjmax_pci { |
| 193 | unsigned int device; |
| 194 | int tjmax; |
| 195 | }; |
| 196 | |
| 197 | static const struct tjmax_pci tjmax_pci_table[] = { |
| 198 | { 0x0708, 110000 }, /* CE41x0 (Sodaville ) */ |
| 199 | { 0x0c72, 102000 }, /* Atom S1240 (Centerton) */ |
| 200 | { 0x0c73, 95000 }, /* Atom S1220 (Centerton) */ |
| 201 | { 0x0c75, 95000 }, /* Atom S1260 (Centerton) */ |
| 202 | }; |
| 203 | |
| 204 | struct tjmax { |
| 205 | char const *id; |
| 206 | int tjmax; |
| 207 | }; |
| 208 | |
| 209 | static const struct tjmax tjmax_table[] = { |
| 210 | { "CPU 230", 100000 }, /* Model 0x1c, stepping 2 */ |
| 211 | { "CPU 330", 125000 }, /* Model 0x1c, stepping 2 */ |
| 212 | }; |
| 213 | |
| 214 | struct tjmax_model { |
| 215 | u8 model; |
| 216 | u8 mask; |
| 217 | int tjmax; |
| 218 | }; |
| 219 | |
| 220 | #define ANY 0xff |
| 221 | |
| 222 | static const struct tjmax_model tjmax_model_table[] = { |
| 223 | { 0x1c, 10, 100000 }, /* D4xx, K4xx, N4xx, D5xx, K5xx, N5xx */ |
| 224 | { 0x1c, ANY, 90000 }, /* Z5xx, N2xx, possibly others |
| 225 | * Note: Also matches 230 and 330, |
| 226 | * which are covered by tjmax_table |
| 227 | */ |
| 228 | { 0x26, ANY, 90000 }, /* Atom Tunnel Creek (Exx), Lincroft (Z6xx) |
| 229 | * Note: TjMax for E6xxT is 110C, but CPU type |
| 230 | * is undetectable by software |
| 231 | */ |
| 232 | { 0x27, ANY, 90000 }, /* Atom Medfield (Z2460) */ |
| 233 | { 0x35, ANY, 90000 }, /* Atom Clover Trail/Cloverview (Z27x0) */ |
| 234 | { 0x36, ANY, 100000 }, /* Atom Cedar Trail/Cedarview (N2xxx, D2xxx) |
| 235 | * Also matches S12x0 (stepping 9), covered by |
| 236 | * PCI table |
| 237 | */ |
| 238 | }; |
| 239 | |
| 240 | static int adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) |
| 241 | { |
| 242 | /* The 100C is default for both mobile and non mobile CPUs */ |
| 243 | |
| 244 | int tjmax = 100000; |
| 245 | int tjmax_ee = 85000; |
| 246 | int usemsr_ee = 1; |
| 247 | int err; |
| 248 | u32 eax, edx; |
| 249 | int i; |
| 250 | struct pci_dev *host_bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)); |
| 251 | |
| 252 | /* |
| 253 | * Explicit tjmax table entries override heuristics. |
| 254 | * First try PCI host bridge IDs, followed by model ID strings |
| 255 | * and model/stepping information. |
| 256 | */ |
| 257 | if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL) { |
| 258 | for (i = 0; i < ARRAY_SIZE(tjmax_pci_table); i++) { |
| 259 | if (host_bridge->device == tjmax_pci_table[i].device) |
| 260 | return tjmax_pci_table[i].tjmax; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | for (i = 0; i < ARRAY_SIZE(tjmax_table); i++) { |
| 265 | if (strstr(c->x86_model_id, tjmax_table[i].id)) |
| 266 | return tjmax_table[i].tjmax; |
| 267 | } |
| 268 | |
| 269 | for (i = 0; i < ARRAY_SIZE(tjmax_model_table); i++) { |
| 270 | const struct tjmax_model *tm = &tjmax_model_table[i]; |
| 271 | if (c->x86_model == tm->model && |
| 272 | (tm->mask == ANY || c->x86_mask == tm->mask)) |
| 273 | return tm->tjmax; |
| 274 | } |
| 275 | |
| 276 | /* Early chips have no MSR for TjMax */ |
| 277 | |
| 278 | if (c->x86_model == 0xf && c->x86_mask < 4) |
| 279 | usemsr_ee = 0; |
| 280 | |
| 281 | if (c->x86_model > 0xe && usemsr_ee) { |
| 282 | u8 platform_id; |
| 283 | |
| 284 | /* |
| 285 | * Now we can detect the mobile CPU using Intel provided table |
| 286 | * http://softwarecommunity.intel.com/Wiki/Mobility/720.htm |
| 287 | * For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU |
| 288 | */ |
| 289 | err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx); |
| 290 | if (err) { |
| 291 | dev_warn(dev, |
| 292 | "Unable to access MSR 0x17, assuming desktop" |
| 293 | " CPU\n"); |
| 294 | usemsr_ee = 0; |
| 295 | } else if (c->x86_model < 0x17 && !(eax & 0x10000000)) { |
| 296 | /* |
| 297 | * Trust bit 28 up to Penryn, I could not find any |
| 298 | * documentation on that; if you happen to know |
| 299 | * someone at Intel please ask |
| 300 | */ |
| 301 | usemsr_ee = 0; |
| 302 | } else { |
| 303 | /* Platform ID bits 52:50 (EDX starts at bit 32) */ |
| 304 | platform_id = (edx >> 18) & 0x7; |
| 305 | |
| 306 | /* |
| 307 | * Mobile Penryn CPU seems to be platform ID 7 or 5 |
| 308 | * (guesswork) |
| 309 | */ |
| 310 | if (c->x86_model == 0x17 && |
| 311 | (platform_id == 5 || platform_id == 7)) { |
| 312 | /* |
| 313 | * If MSR EE bit is set, set it to 90 degrees C, |
| 314 | * otherwise 105 degrees C |
| 315 | */ |
| 316 | tjmax_ee = 90000; |
| 317 | tjmax = 105000; |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | if (usemsr_ee) { |
| 323 | err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx); |
| 324 | if (err) { |
| 325 | dev_warn(dev, |
| 326 | "Unable to access MSR 0xEE, for Tjmax, left" |
| 327 | " at default\n"); |
| 328 | } else if (eax & 0x40000000) { |
| 329 | tjmax = tjmax_ee; |
| 330 | } |
| 331 | } else if (tjmax == 100000) { |
| 332 | /* |
| 333 | * If we don't use msr EE it means we are desktop CPU |
| 334 | * (with exeception of Atom) |
| 335 | */ |
| 336 | dev_warn(dev, "Using relative temperature scale!\n"); |
| 337 | } |
| 338 | |
| 339 | return tjmax; |
| 340 | } |
| 341 | |
| 342 | static bool cpu_has_tjmax(struct cpuinfo_x86 *c) |
| 343 | { |
| 344 | u8 model = c->x86_model; |
| 345 | |
| 346 | return model > 0xe && |
| 347 | model != 0x1c && |
| 348 | model != 0x26 && |
| 349 | model != 0x27 && |
| 350 | model != 0x35 && |
| 351 | model != 0x36; |
| 352 | } |
| 353 | |
| 354 | static int get_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) |
| 355 | { |
| 356 | int err; |
| 357 | u32 eax, edx; |
| 358 | u32 val; |
| 359 | |
| 360 | /* |
| 361 | * A new feature of current Intel(R) processors, the |
| 362 | * IA32_TEMPERATURE_TARGET contains the TjMax value |
| 363 | */ |
| 364 | err = rdmsr_safe_on_cpu(id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); |
| 365 | if (err) { |
| 366 | if (cpu_has_tjmax(c)) |
| 367 | dev_warn(dev, "Unable to read TjMax from CPU %u\n", id); |
| 368 | } else { |
| 369 | val = (eax >> 16) & 0xff; |
| 370 | /* |
| 371 | * If the TjMax is not plausible, an assumption |
| 372 | * will be used |
| 373 | */ |
| 374 | if (val) { |
| 375 | dev_dbg(dev, "TjMax is %d degrees C\n", val); |
| 376 | return val * 1000; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | if (force_tjmax) { |
| 381 | dev_notice(dev, "TjMax forced to %d degrees C by user\n", |
| 382 | force_tjmax); |
| 383 | return force_tjmax * 1000; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * An assumption is made for early CPUs and unreadable MSR. |
| 388 | * NOTE: the calculated value may not be correct. |
| 389 | */ |
| 390 | return adjust_tjmax(c, id, dev); |
| 391 | } |
| 392 | |
| 393 | static int create_core_attrs(struct temp_data *tdata, struct device *dev, |
| 394 | int attr_no) |
| 395 | { |
| 396 | int i; |
| 397 | static ssize_t (*const rd_ptr[TOTAL_ATTRS]) (struct device *dev, |
| 398 | struct device_attribute *devattr, char *buf) = { |
| 399 | show_label, show_crit_alarm, show_temp, show_tjmax, |
| 400 | show_ttarget }; |
| 401 | static const char *const suffixes[TOTAL_ATTRS] = { |
| 402 | "label", "crit_alarm", "input", "crit", "max" |
| 403 | }; |
| 404 | |
| 405 | for (i = 0; i < tdata->attr_size; i++) { |
| 406 | snprintf(tdata->attr_name[i], CORETEMP_NAME_LENGTH, |
| 407 | "temp%d_%s", attr_no, suffixes[i]); |
| 408 | sysfs_attr_init(&tdata->sd_attrs[i].dev_attr.attr); |
| 409 | tdata->sd_attrs[i].dev_attr.attr.name = tdata->attr_name[i]; |
| 410 | tdata->sd_attrs[i].dev_attr.attr.mode = S_IRUGO; |
| 411 | tdata->sd_attrs[i].dev_attr.show = rd_ptr[i]; |
| 412 | tdata->sd_attrs[i].index = attr_no; |
| 413 | tdata->attrs[i] = &tdata->sd_attrs[i].dev_attr.attr; |
| 414 | } |
| 415 | tdata->attr_group.attrs = tdata->attrs; |
| 416 | return sysfs_create_group(&dev->kobj, &tdata->attr_group); |
| 417 | } |
| 418 | |
| 419 | |
| 420 | static int chk_ucode_version(unsigned int cpu) |
| 421 | { |
| 422 | struct cpuinfo_x86 *c = &cpu_data(cpu); |
| 423 | |
| 424 | /* |
| 425 | * Check if we have problem with errata AE18 of Core processors: |
| 426 | * Readings might stop update when processor visited too deep sleep, |
| 427 | * fixed for stepping D0 (6EC). |
| 428 | */ |
| 429 | if (c->x86_model == 0xe && c->x86_mask < 0xc && c->microcode < 0x39) { |
| 430 | pr_err("Errata AE18 not fixed, update BIOS or microcode of the CPU!\n"); |
| 431 | return -ENODEV; |
| 432 | } |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | static struct platform_device *coretemp_get_pdev(unsigned int cpu) |
| 437 | { |
| 438 | u16 phys_proc_id = TO_PHYS_ID(cpu); |
| 439 | struct pdev_entry *p; |
| 440 | |
| 441 | mutex_lock(&pdev_list_mutex); |
| 442 | |
| 443 | list_for_each_entry(p, &pdev_list, list) |
| 444 | if (p->phys_proc_id == phys_proc_id) { |
| 445 | mutex_unlock(&pdev_list_mutex); |
| 446 | return p->pdev; |
| 447 | } |
| 448 | |
| 449 | mutex_unlock(&pdev_list_mutex); |
| 450 | return NULL; |
| 451 | } |
| 452 | |
| 453 | static struct temp_data *init_temp_data(unsigned int cpu, int pkg_flag) |
| 454 | { |
| 455 | struct temp_data *tdata; |
| 456 | |
| 457 | tdata = kzalloc(sizeof(struct temp_data), GFP_KERNEL); |
| 458 | if (!tdata) |
| 459 | return NULL; |
| 460 | |
| 461 | tdata->status_reg = pkg_flag ? MSR_IA32_PACKAGE_THERM_STATUS : |
| 462 | MSR_IA32_THERM_STATUS; |
| 463 | tdata->is_pkg_data = pkg_flag; |
| 464 | tdata->cpu = cpu; |
| 465 | tdata->cpu_core_id = TO_CORE_ID(cpu); |
| 466 | tdata->attr_size = MAX_CORE_ATTRS; |
| 467 | mutex_init(&tdata->update_lock); |
| 468 | return tdata; |
| 469 | } |
| 470 | |
| 471 | static int create_core_data(struct platform_device *pdev, unsigned int cpu, |
| 472 | int pkg_flag) |
| 473 | { |
| 474 | struct temp_data *tdata; |
| 475 | struct platform_data *pdata = platform_get_drvdata(pdev); |
| 476 | struct cpuinfo_x86 *c = &cpu_data(cpu); |
| 477 | u32 eax, edx; |
| 478 | int err, attr_no; |
| 479 | |
| 480 | /* |
| 481 | * Find attr number for sysfs: |
| 482 | * We map the attr number to core id of the CPU |
| 483 | * The attr number is always core id + 2 |
| 484 | * The Pkgtemp will always show up as temp1_*, if available |
| 485 | */ |
| 486 | attr_no = pkg_flag ? 1 : TO_ATTR_NO(cpu); |
| 487 | |
| 488 | if (attr_no > MAX_CORE_DATA - 1) |
| 489 | return -ERANGE; |
| 490 | |
| 491 | /* |
| 492 | * Provide a single set of attributes for all HT siblings of a core |
| 493 | * to avoid duplicate sensors (the processor ID and core ID of all |
| 494 | * HT siblings of a core are the same). |
| 495 | * Skip if a HT sibling of this core is already registered. |
| 496 | * This is not an error. |
| 497 | */ |
| 498 | if (pdata->core_data[attr_no] != NULL) |
| 499 | return 0; |
| 500 | |
| 501 | tdata = init_temp_data(cpu, pkg_flag); |
| 502 | if (!tdata) |
| 503 | return -ENOMEM; |
| 504 | |
| 505 | /* Test if we can access the status register */ |
| 506 | err = rdmsr_safe_on_cpu(cpu, tdata->status_reg, &eax, &edx); |
| 507 | if (err) |
| 508 | goto exit_free; |
| 509 | |
| 510 | /* We can access status register. Get Critical Temperature */ |
| 511 | tdata->tjmax = get_tjmax(c, cpu, &pdev->dev); |
| 512 | |
| 513 | /* |
| 514 | * Read the still undocumented bits 8:15 of IA32_TEMPERATURE_TARGET. |
| 515 | * The target temperature is available on older CPUs but not in this |
| 516 | * register. Atoms don't have the register at all. |
| 517 | */ |
| 518 | if (c->x86_model > 0xe && c->x86_model != 0x1c) { |
| 519 | err = rdmsr_safe_on_cpu(cpu, MSR_IA32_TEMPERATURE_TARGET, |
| 520 | &eax, &edx); |
| 521 | if (!err) { |
| 522 | tdata->ttarget |
| 523 | = tdata->tjmax - ((eax >> 8) & 0xff) * 1000; |
| 524 | tdata->attr_size++; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | pdata->core_data[attr_no] = tdata; |
| 529 | |
| 530 | /* Create sysfs interfaces */ |
| 531 | err = create_core_attrs(tdata, pdata->hwmon_dev, attr_no); |
| 532 | if (err) |
| 533 | goto exit_free; |
| 534 | |
| 535 | return 0; |
| 536 | exit_free: |
| 537 | pdata->core_data[attr_no] = NULL; |
| 538 | kfree(tdata); |
| 539 | return err; |
| 540 | } |
| 541 | |
| 542 | static void coretemp_add_core(unsigned int cpu, int pkg_flag) |
| 543 | { |
| 544 | struct platform_device *pdev = coretemp_get_pdev(cpu); |
| 545 | int err; |
| 546 | |
| 547 | if (!pdev) |
| 548 | return; |
| 549 | |
| 550 | err = create_core_data(pdev, cpu, pkg_flag); |
| 551 | if (err) |
| 552 | dev_err(&pdev->dev, "Adding Core %u failed\n", cpu); |
| 553 | } |
| 554 | |
| 555 | static void coretemp_remove_core(struct platform_data *pdata, |
| 556 | int indx) |
| 557 | { |
| 558 | struct temp_data *tdata = pdata->core_data[indx]; |
| 559 | |
| 560 | /* Remove the sysfs attributes */ |
| 561 | sysfs_remove_group(&pdata->hwmon_dev->kobj, &tdata->attr_group); |
| 562 | |
| 563 | kfree(pdata->core_data[indx]); |
| 564 | pdata->core_data[indx] = NULL; |
| 565 | } |
| 566 | |
| 567 | static int coretemp_probe(struct platform_device *pdev) |
| 568 | { |
| 569 | struct device *dev = &pdev->dev; |
| 570 | struct platform_data *pdata; |
| 571 | |
| 572 | /* Initialize the per-package data structures */ |
| 573 | pdata = devm_kzalloc(dev, sizeof(struct platform_data), GFP_KERNEL); |
| 574 | if (!pdata) |
| 575 | return -ENOMEM; |
| 576 | |
| 577 | pdata->phys_proc_id = pdev->id; |
| 578 | platform_set_drvdata(pdev, pdata); |
| 579 | |
| 580 | pdata->hwmon_dev = devm_hwmon_device_register_with_groups(dev, DRVNAME, |
| 581 | pdata, NULL); |
| 582 | return PTR_ERR_OR_ZERO(pdata->hwmon_dev); |
| 583 | } |
| 584 | |
| 585 | static int coretemp_remove(struct platform_device *pdev) |
| 586 | { |
| 587 | struct platform_data *pdata = platform_get_drvdata(pdev); |
| 588 | int i; |
| 589 | |
| 590 | for (i = MAX_CORE_DATA - 1; i >= 0; --i) |
| 591 | if (pdata->core_data[i]) |
| 592 | coretemp_remove_core(pdata, i); |
| 593 | |
| 594 | return 0; |
| 595 | } |
| 596 | |
| 597 | static struct platform_driver coretemp_driver = { |
| 598 | .driver = { |
| 599 | .name = DRVNAME, |
| 600 | }, |
| 601 | .probe = coretemp_probe, |
| 602 | .remove = coretemp_remove, |
| 603 | }; |
| 604 | |
| 605 | static int coretemp_device_add(unsigned int cpu) |
| 606 | { |
| 607 | int err; |
| 608 | struct platform_device *pdev; |
| 609 | struct pdev_entry *pdev_entry; |
| 610 | |
| 611 | mutex_lock(&pdev_list_mutex); |
| 612 | |
| 613 | pdev = platform_device_alloc(DRVNAME, TO_PHYS_ID(cpu)); |
| 614 | if (!pdev) { |
| 615 | err = -ENOMEM; |
| 616 | pr_err("Device allocation failed\n"); |
| 617 | goto exit; |
| 618 | } |
| 619 | |
| 620 | pdev_entry = kzalloc(sizeof(struct pdev_entry), GFP_KERNEL); |
| 621 | if (!pdev_entry) { |
| 622 | err = -ENOMEM; |
| 623 | goto exit_device_put; |
| 624 | } |
| 625 | |
| 626 | err = platform_device_add(pdev); |
| 627 | if (err) { |
| 628 | pr_err("Device addition failed (%d)\n", err); |
| 629 | goto exit_device_free; |
| 630 | } |
| 631 | |
| 632 | pdev_entry->pdev = pdev; |
| 633 | pdev_entry->phys_proc_id = pdev->id; |
| 634 | |
| 635 | list_add_tail(&pdev_entry->list, &pdev_list); |
| 636 | mutex_unlock(&pdev_list_mutex); |
| 637 | |
| 638 | return 0; |
| 639 | |
| 640 | exit_device_free: |
| 641 | kfree(pdev_entry); |
| 642 | exit_device_put: |
| 643 | platform_device_put(pdev); |
| 644 | exit: |
| 645 | mutex_unlock(&pdev_list_mutex); |
| 646 | return err; |
| 647 | } |
| 648 | |
| 649 | static void coretemp_device_remove(unsigned int cpu) |
| 650 | { |
| 651 | struct pdev_entry *p, *n; |
| 652 | u16 phys_proc_id = TO_PHYS_ID(cpu); |
| 653 | |
| 654 | mutex_lock(&pdev_list_mutex); |
| 655 | list_for_each_entry_safe(p, n, &pdev_list, list) { |
| 656 | if (p->phys_proc_id != phys_proc_id) |
| 657 | continue; |
| 658 | platform_device_unregister(p->pdev); |
| 659 | list_del(&p->list); |
| 660 | kfree(p); |
| 661 | } |
| 662 | mutex_unlock(&pdev_list_mutex); |
| 663 | } |
| 664 | |
| 665 | static bool is_any_core_online(struct platform_data *pdata) |
| 666 | { |
| 667 | int i; |
| 668 | |
| 669 | /* Find online cores, except pkgtemp data */ |
| 670 | for (i = MAX_CORE_DATA - 1; i >= 0; --i) { |
| 671 | if (pdata->core_data[i] && |
| 672 | !pdata->core_data[i]->is_pkg_data) { |
| 673 | return true; |
| 674 | } |
| 675 | } |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | static void get_core_online(unsigned int cpu) |
| 680 | { |
| 681 | struct cpuinfo_x86 *c = &cpu_data(cpu); |
| 682 | struct platform_device *pdev = coretemp_get_pdev(cpu); |
| 683 | int err; |
| 684 | |
| 685 | /* |
| 686 | * CPUID.06H.EAX[0] indicates whether the CPU has thermal |
| 687 | * sensors. We check this bit only, all the early CPUs |
| 688 | * without thermal sensors will be filtered out. |
| 689 | */ |
| 690 | if (!cpu_has(c, X86_FEATURE_DTHERM)) |
| 691 | return; |
| 692 | |
| 693 | if (!pdev) { |
| 694 | /* Check the microcode version of the CPU */ |
| 695 | if (chk_ucode_version(cpu)) |
| 696 | return; |
| 697 | |
| 698 | /* |
| 699 | * Alright, we have DTS support. |
| 700 | * We are bringing the _first_ core in this pkg |
| 701 | * online. So, initialize per-pkg data structures and |
| 702 | * then bring this core online. |
| 703 | */ |
| 704 | err = coretemp_device_add(cpu); |
| 705 | if (err) |
| 706 | return; |
| 707 | /* |
| 708 | * Check whether pkgtemp support is available. |
| 709 | * If so, add interfaces for pkgtemp. |
| 710 | */ |
| 711 | if (cpu_has(c, X86_FEATURE_PTS)) |
| 712 | coretemp_add_core(cpu, 1); |
| 713 | } |
| 714 | /* |
| 715 | * Physical CPU device already exists. |
| 716 | * So, just add interfaces for this core. |
| 717 | */ |
| 718 | coretemp_add_core(cpu, 0); |
| 719 | } |
| 720 | |
| 721 | static void put_core_offline(unsigned int cpu) |
| 722 | { |
| 723 | int i, indx; |
| 724 | struct platform_data *pdata; |
| 725 | struct platform_device *pdev = coretemp_get_pdev(cpu); |
| 726 | |
| 727 | /* If the physical CPU device does not exist, just return */ |
| 728 | if (!pdev) |
| 729 | return; |
| 730 | |
| 731 | pdata = platform_get_drvdata(pdev); |
| 732 | |
| 733 | indx = TO_ATTR_NO(cpu); |
| 734 | |
| 735 | /* The core id is too big, just return */ |
| 736 | if (indx > MAX_CORE_DATA - 1) |
| 737 | return; |
| 738 | |
| 739 | if (pdata->core_data[indx] && pdata->core_data[indx]->cpu == cpu) |
| 740 | coretemp_remove_core(pdata, indx); |
| 741 | |
| 742 | /* |
| 743 | * If a HT sibling of a core is taken offline, but another HT sibling |
| 744 | * of the same core is still online, register the alternate sibling. |
| 745 | * This ensures that exactly one set of attributes is provided as long |
| 746 | * as at least one HT sibling of a core is online. |
| 747 | */ |
| 748 | for_each_sibling(i, cpu) { |
| 749 | if (i != cpu) { |
| 750 | get_core_online(i); |
| 751 | /* |
| 752 | * Display temperature sensor data for one HT sibling |
| 753 | * per core only, so abort the loop after one such |
| 754 | * sibling has been found. |
| 755 | */ |
| 756 | break; |
| 757 | } |
| 758 | } |
| 759 | /* |
| 760 | * If all cores in this pkg are offline, remove the device. |
| 761 | * coretemp_device_remove calls unregister_platform_device, |
| 762 | * which in turn calls coretemp_remove. This removes the |
| 763 | * pkgtemp entry and does other clean ups. |
| 764 | */ |
| 765 | if (!is_any_core_online(pdata)) |
| 766 | coretemp_device_remove(cpu); |
| 767 | } |
| 768 | |
| 769 | static int coretemp_cpu_callback(struct notifier_block *nfb, |
| 770 | unsigned long action, void *hcpu) |
| 771 | { |
| 772 | unsigned int cpu = (unsigned long) hcpu; |
| 773 | |
| 774 | switch (action) { |
| 775 | case CPU_ONLINE: |
| 776 | case CPU_DOWN_FAILED: |
| 777 | get_core_online(cpu); |
| 778 | break; |
| 779 | case CPU_DOWN_PREPARE: |
| 780 | put_core_offline(cpu); |
| 781 | break; |
| 782 | } |
| 783 | return NOTIFY_OK; |
| 784 | } |
| 785 | |
| 786 | static struct notifier_block coretemp_cpu_notifier __refdata = { |
| 787 | .notifier_call = coretemp_cpu_callback, |
| 788 | }; |
| 789 | |
| 790 | static const struct x86_cpu_id __initconst coretemp_ids[] = { |
| 791 | { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_DTHERM }, |
| 792 | {} |
| 793 | }; |
| 794 | MODULE_DEVICE_TABLE(x86cpu, coretemp_ids); |
| 795 | |
| 796 | static int __init coretemp_init(void) |
| 797 | { |
| 798 | int i, err; |
| 799 | |
| 800 | /* |
| 801 | * CPUID.06H.EAX[0] indicates whether the CPU has thermal |
| 802 | * sensors. We check this bit only, all the early CPUs |
| 803 | * without thermal sensors will be filtered out. |
| 804 | */ |
| 805 | if (!x86_match_cpu(coretemp_ids)) |
| 806 | return -ENODEV; |
| 807 | |
| 808 | err = platform_driver_register(&coretemp_driver); |
| 809 | if (err) |
| 810 | goto exit; |
| 811 | |
| 812 | cpu_notifier_register_begin(); |
| 813 | for_each_online_cpu(i) |
| 814 | get_core_online(i); |
| 815 | |
| 816 | #ifndef CONFIG_HOTPLUG_CPU |
| 817 | if (list_empty(&pdev_list)) { |
| 818 | cpu_notifier_register_done(); |
| 819 | err = -ENODEV; |
| 820 | goto exit_driver_unreg; |
| 821 | } |
| 822 | #endif |
| 823 | |
| 824 | __register_hotcpu_notifier(&coretemp_cpu_notifier); |
| 825 | cpu_notifier_register_done(); |
| 826 | return 0; |
| 827 | |
| 828 | #ifndef CONFIG_HOTPLUG_CPU |
| 829 | exit_driver_unreg: |
| 830 | platform_driver_unregister(&coretemp_driver); |
| 831 | #endif |
| 832 | exit: |
| 833 | return err; |
| 834 | } |
| 835 | |
| 836 | static void __exit coretemp_exit(void) |
| 837 | { |
| 838 | struct pdev_entry *p, *n; |
| 839 | |
| 840 | cpu_notifier_register_begin(); |
| 841 | __unregister_hotcpu_notifier(&coretemp_cpu_notifier); |
| 842 | mutex_lock(&pdev_list_mutex); |
| 843 | list_for_each_entry_safe(p, n, &pdev_list, list) { |
| 844 | platform_device_unregister(p->pdev); |
| 845 | list_del(&p->list); |
| 846 | kfree(p); |
| 847 | } |
| 848 | mutex_unlock(&pdev_list_mutex); |
| 849 | cpu_notifier_register_done(); |
| 850 | platform_driver_unregister(&coretemp_driver); |
| 851 | } |
| 852 | |
| 853 | MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>"); |
| 854 | MODULE_DESCRIPTION("Intel Core temperature monitor"); |
| 855 | MODULE_LICENSE("GPL"); |
| 856 | |
| 857 | module_init(coretemp_init) |
| 858 | module_exit(coretemp_exit) |