Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* SCTP kernel implementation |
| 2 | * (C) Copyright IBM Corp. 2001, 2004 |
| 3 | * Copyright (c) 1999-2000 Cisco, Inc. |
| 4 | * Copyright (c) 1999-2001 Motorola, Inc. |
| 5 | * Copyright (c) 2001 Intel Corp. |
| 6 | * Copyright (c) 2001 La Monte H.P. Yarroll |
| 7 | * |
| 8 | * This file is part of the SCTP kernel implementation |
| 9 | * |
| 10 | * This module provides the abstraction for an SCTP association. |
| 11 | * |
| 12 | * This SCTP implementation is free software; |
| 13 | * you can redistribute it and/or modify it under the terms of |
| 14 | * the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2, or (at your option) |
| 16 | * any later version. |
| 17 | * |
| 18 | * This SCTP implementation is distributed in the hope that it |
| 19 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 20 | * ************************ |
| 21 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 22 | * See the GNU General Public License for more details. |
| 23 | * |
| 24 | * You should have received a copy of the GNU General Public License |
| 25 | * along with GNU CC; see the file COPYING. If not, see |
| 26 | * <http://www.gnu.org/licenses/>. |
| 27 | * |
| 28 | * Please send any bug reports or fixes you make to the |
| 29 | * email address(es): |
| 30 | * lksctp developers <linux-sctp@vger.kernel.org> |
| 31 | * |
| 32 | * Written or modified by: |
| 33 | * La Monte H.P. Yarroll <piggy@acm.org> |
| 34 | * Karl Knutson <karl@athena.chicago.il.us> |
| 35 | * Jon Grimm <jgrimm@us.ibm.com> |
| 36 | * Xingang Guo <xingang.guo@intel.com> |
| 37 | * Hui Huang <hui.huang@nokia.com> |
| 38 | * Sridhar Samudrala <sri@us.ibm.com> |
| 39 | * Daisy Chang <daisyc@us.ibm.com> |
| 40 | * Ryan Layer <rmlayer@us.ibm.com> |
| 41 | * Kevin Gao <kevin.gao@intel.com> |
| 42 | */ |
| 43 | |
| 44 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 45 | |
| 46 | #include <linux/types.h> |
| 47 | #include <linux/fcntl.h> |
| 48 | #include <linux/poll.h> |
| 49 | #include <linux/init.h> |
| 50 | |
| 51 | #include <linux/slab.h> |
| 52 | #include <linux/in.h> |
| 53 | #include <net/ipv6.h> |
| 54 | #include <net/sctp/sctp.h> |
| 55 | #include <net/sctp/sm.h> |
| 56 | |
| 57 | /* Forward declarations for internal functions. */ |
| 58 | static void sctp_select_active_and_retran_path(struct sctp_association *asoc); |
| 59 | static void sctp_assoc_bh_rcv(struct work_struct *work); |
| 60 | static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); |
| 61 | static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); |
| 62 | |
| 63 | /* 1st Level Abstractions. */ |
| 64 | |
| 65 | /* Initialize a new association from provided memory. */ |
| 66 | static struct sctp_association *sctp_association_init(struct sctp_association *asoc, |
| 67 | const struct sctp_endpoint *ep, |
| 68 | const struct sock *sk, |
| 69 | sctp_scope_t scope, |
| 70 | gfp_t gfp) |
| 71 | { |
| 72 | struct net *net = sock_net(sk); |
| 73 | struct sctp_sock *sp; |
| 74 | int i; |
| 75 | sctp_paramhdr_t *p; |
| 76 | int err; |
| 77 | |
| 78 | /* Retrieve the SCTP per socket area. */ |
| 79 | sp = sctp_sk((struct sock *)sk); |
| 80 | |
| 81 | /* Discarding const is appropriate here. */ |
| 82 | asoc->ep = (struct sctp_endpoint *)ep; |
| 83 | asoc->base.sk = (struct sock *)sk; |
| 84 | |
| 85 | sctp_endpoint_hold(asoc->ep); |
| 86 | sock_hold(asoc->base.sk); |
| 87 | |
| 88 | /* Initialize the common base substructure. */ |
| 89 | asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; |
| 90 | |
| 91 | /* Initialize the object handling fields. */ |
| 92 | atomic_set(&asoc->base.refcnt, 1); |
| 93 | |
| 94 | /* Initialize the bind addr area. */ |
| 95 | sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); |
| 96 | |
| 97 | asoc->state = SCTP_STATE_CLOSED; |
| 98 | asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); |
| 99 | asoc->user_frag = sp->user_frag; |
| 100 | |
| 101 | /* Set the association max_retrans and RTO values from the |
| 102 | * socket values. |
| 103 | */ |
| 104 | asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; |
| 105 | asoc->pf_retrans = net->sctp.pf_retrans; |
| 106 | |
| 107 | asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); |
| 108 | asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); |
| 109 | asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); |
| 110 | |
| 111 | /* Initialize the association's heartbeat interval based on the |
| 112 | * sock configured value. |
| 113 | */ |
| 114 | asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); |
| 115 | |
| 116 | /* Initialize path max retrans value. */ |
| 117 | asoc->pathmaxrxt = sp->pathmaxrxt; |
| 118 | |
| 119 | /* Initialize default path MTU. */ |
| 120 | asoc->pathmtu = sp->pathmtu; |
| 121 | |
| 122 | /* Set association default SACK delay */ |
| 123 | asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); |
| 124 | asoc->sackfreq = sp->sackfreq; |
| 125 | |
| 126 | /* Set the association default flags controlling |
| 127 | * Heartbeat, SACK delay, and Path MTU Discovery. |
| 128 | */ |
| 129 | asoc->param_flags = sp->param_flags; |
| 130 | |
| 131 | /* Initialize the maximum number of new data packets that can be sent |
| 132 | * in a burst. |
| 133 | */ |
| 134 | asoc->max_burst = sp->max_burst; |
| 135 | |
| 136 | /* initialize association timers */ |
| 137 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; |
| 138 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; |
| 139 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; |
| 140 | |
| 141 | /* sctpimpguide Section 2.12.2 |
| 142 | * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the |
| 143 | * recommended value of 5 times 'RTO.Max'. |
| 144 | */ |
| 145 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] |
| 146 | = 5 * asoc->rto_max; |
| 147 | |
| 148 | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; |
| 149 | asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; |
| 150 | |
| 151 | /* Initializes the timers */ |
| 152 | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) |
| 153 | setup_timer(&asoc->timers[i], sctp_timer_events[i], |
| 154 | (unsigned long)asoc); |
| 155 | |
| 156 | /* Pull default initialization values from the sock options. |
| 157 | * Note: This assumes that the values have already been |
| 158 | * validated in the sock. |
| 159 | */ |
| 160 | asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; |
| 161 | asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; |
| 162 | asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; |
| 163 | |
| 164 | asoc->max_init_timeo = |
| 165 | msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); |
| 166 | |
| 167 | /* Set the local window size for receive. |
| 168 | * This is also the rcvbuf space per association. |
| 169 | * RFC 6 - A SCTP receiver MUST be able to receive a minimum of |
| 170 | * 1500 bytes in one SCTP packet. |
| 171 | */ |
| 172 | if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) |
| 173 | asoc->rwnd = SCTP_DEFAULT_MINWINDOW; |
| 174 | else |
| 175 | asoc->rwnd = sk->sk_rcvbuf/2; |
| 176 | |
| 177 | asoc->a_rwnd = asoc->rwnd; |
| 178 | |
| 179 | /* Use my own max window until I learn something better. */ |
| 180 | asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; |
| 181 | |
| 182 | /* Initialize the receive memory counter */ |
| 183 | atomic_set(&asoc->rmem_alloc, 0); |
| 184 | |
| 185 | init_waitqueue_head(&asoc->wait); |
| 186 | |
| 187 | asoc->c.my_vtag = sctp_generate_tag(ep); |
| 188 | asoc->c.my_port = ep->base.bind_addr.port; |
| 189 | |
| 190 | asoc->c.initial_tsn = sctp_generate_tsn(ep); |
| 191 | |
| 192 | asoc->next_tsn = asoc->c.initial_tsn; |
| 193 | |
| 194 | asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| 195 | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| 196 | asoc->highest_sacked = asoc->ctsn_ack_point; |
| 197 | asoc->last_cwr_tsn = asoc->ctsn_ack_point; |
| 198 | |
| 199 | /* ADDIP Section 4.1 Asconf Chunk Procedures |
| 200 | * |
| 201 | * When an endpoint has an ASCONF signaled change to be sent to the |
| 202 | * remote endpoint it should do the following: |
| 203 | * ... |
| 204 | * A2) a serial number should be assigned to the chunk. The serial |
| 205 | * number SHOULD be a monotonically increasing number. The serial |
| 206 | * numbers SHOULD be initialized at the start of the |
| 207 | * association to the same value as the initial TSN. |
| 208 | */ |
| 209 | asoc->addip_serial = asoc->c.initial_tsn; |
| 210 | |
| 211 | INIT_LIST_HEAD(&asoc->addip_chunk_list); |
| 212 | INIT_LIST_HEAD(&asoc->asconf_ack_list); |
| 213 | |
| 214 | /* Make an empty list of remote transport addresses. */ |
| 215 | INIT_LIST_HEAD(&asoc->peer.transport_addr_list); |
| 216 | |
| 217 | /* RFC 2960 5.1 Normal Establishment of an Association |
| 218 | * |
| 219 | * After the reception of the first data chunk in an |
| 220 | * association the endpoint must immediately respond with a |
| 221 | * sack to acknowledge the data chunk. Subsequent |
| 222 | * acknowledgements should be done as described in Section |
| 223 | * 6.2. |
| 224 | * |
| 225 | * [We implement this by telling a new association that it |
| 226 | * already received one packet.] |
| 227 | */ |
| 228 | asoc->peer.sack_needed = 1; |
| 229 | asoc->peer.sack_generation = 1; |
| 230 | |
| 231 | /* Assume that the peer will tell us if he recognizes ASCONF |
| 232 | * as part of INIT exchange. |
| 233 | * The sctp_addip_noauth option is there for backward compatibility |
| 234 | * and will revert old behavior. |
| 235 | */ |
| 236 | if (net->sctp.addip_noauth) |
| 237 | asoc->peer.asconf_capable = 1; |
| 238 | |
| 239 | /* Create an input queue. */ |
| 240 | sctp_inq_init(&asoc->base.inqueue); |
| 241 | sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); |
| 242 | |
| 243 | /* Create an output queue. */ |
| 244 | sctp_outq_init(asoc, &asoc->outqueue); |
| 245 | |
| 246 | if (!sctp_ulpq_init(&asoc->ulpq, asoc)) |
| 247 | goto fail_init; |
| 248 | |
| 249 | /* Assume that peer would support both address types unless we are |
| 250 | * told otherwise. |
| 251 | */ |
| 252 | asoc->peer.ipv4_address = 1; |
| 253 | if (asoc->base.sk->sk_family == PF_INET6) |
| 254 | asoc->peer.ipv6_address = 1; |
| 255 | INIT_LIST_HEAD(&asoc->asocs); |
| 256 | |
| 257 | asoc->default_stream = sp->default_stream; |
| 258 | asoc->default_ppid = sp->default_ppid; |
| 259 | asoc->default_flags = sp->default_flags; |
| 260 | asoc->default_context = sp->default_context; |
| 261 | asoc->default_timetolive = sp->default_timetolive; |
| 262 | asoc->default_rcv_context = sp->default_rcv_context; |
| 263 | |
| 264 | /* AUTH related initializations */ |
| 265 | INIT_LIST_HEAD(&asoc->endpoint_shared_keys); |
| 266 | err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); |
| 267 | if (err) |
| 268 | goto fail_init; |
| 269 | |
| 270 | asoc->active_key_id = ep->active_key_id; |
| 271 | |
| 272 | /* Save the hmacs and chunks list into this association */ |
| 273 | if (ep->auth_hmacs_list) |
| 274 | memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, |
| 275 | ntohs(ep->auth_hmacs_list->param_hdr.length)); |
| 276 | if (ep->auth_chunk_list) |
| 277 | memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, |
| 278 | ntohs(ep->auth_chunk_list->param_hdr.length)); |
| 279 | |
| 280 | /* Get the AUTH random number for this association */ |
| 281 | p = (sctp_paramhdr_t *)asoc->c.auth_random; |
| 282 | p->type = SCTP_PARAM_RANDOM; |
| 283 | p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); |
| 284 | get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); |
| 285 | |
| 286 | return asoc; |
| 287 | |
| 288 | fail_init: |
| 289 | sock_put(asoc->base.sk); |
| 290 | sctp_endpoint_put(asoc->ep); |
| 291 | return NULL; |
| 292 | } |
| 293 | |
| 294 | /* Allocate and initialize a new association */ |
| 295 | struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, |
| 296 | const struct sock *sk, |
| 297 | sctp_scope_t scope, |
| 298 | gfp_t gfp) |
| 299 | { |
| 300 | struct sctp_association *asoc; |
| 301 | |
| 302 | asoc = kzalloc(sizeof(*asoc), gfp); |
| 303 | if (!asoc) |
| 304 | goto fail; |
| 305 | |
| 306 | if (!sctp_association_init(asoc, ep, sk, scope, gfp)) |
| 307 | goto fail_init; |
| 308 | |
| 309 | SCTP_DBG_OBJCNT_INC(assoc); |
| 310 | |
| 311 | pr_debug("Created asoc %p\n", asoc); |
| 312 | |
| 313 | return asoc; |
| 314 | |
| 315 | fail_init: |
| 316 | kfree(asoc); |
| 317 | fail: |
| 318 | return NULL; |
| 319 | } |
| 320 | |
| 321 | /* Free this association if possible. There may still be users, so |
| 322 | * the actual deallocation may be delayed. |
| 323 | */ |
| 324 | void sctp_association_free(struct sctp_association *asoc) |
| 325 | { |
| 326 | struct sock *sk = asoc->base.sk; |
| 327 | struct sctp_transport *transport; |
| 328 | struct list_head *pos, *temp; |
| 329 | int i; |
| 330 | |
| 331 | /* Only real associations count against the endpoint, so |
| 332 | * don't bother for if this is a temporary association. |
| 333 | */ |
| 334 | if (!list_empty(&asoc->asocs)) { |
| 335 | list_del(&asoc->asocs); |
| 336 | |
| 337 | /* Decrement the backlog value for a TCP-style listening |
| 338 | * socket. |
| 339 | */ |
| 340 | if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) |
| 341 | sk->sk_ack_backlog--; |
| 342 | } |
| 343 | |
| 344 | /* Mark as dead, so other users can know this structure is |
| 345 | * going away. |
| 346 | */ |
| 347 | asoc->base.dead = true; |
| 348 | |
| 349 | /* Dispose of any data lying around in the outqueue. */ |
| 350 | sctp_outq_free(&asoc->outqueue); |
| 351 | |
| 352 | /* Dispose of any pending messages for the upper layer. */ |
| 353 | sctp_ulpq_free(&asoc->ulpq); |
| 354 | |
| 355 | /* Dispose of any pending chunks on the inqueue. */ |
| 356 | sctp_inq_free(&asoc->base.inqueue); |
| 357 | |
| 358 | sctp_tsnmap_free(&asoc->peer.tsn_map); |
| 359 | |
| 360 | /* Free ssnmap storage. */ |
| 361 | sctp_ssnmap_free(asoc->ssnmap); |
| 362 | |
| 363 | /* Clean up the bound address list. */ |
| 364 | sctp_bind_addr_free(&asoc->base.bind_addr); |
| 365 | |
| 366 | /* Do we need to go through all of our timers and |
| 367 | * delete them? To be safe we will try to delete all, but we |
| 368 | * should be able to go through and make a guess based |
| 369 | * on our state. |
| 370 | */ |
| 371 | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { |
| 372 | if (del_timer(&asoc->timers[i])) |
| 373 | sctp_association_put(asoc); |
| 374 | } |
| 375 | |
| 376 | /* Free peer's cached cookie. */ |
| 377 | kfree(asoc->peer.cookie); |
| 378 | kfree(asoc->peer.peer_random); |
| 379 | kfree(asoc->peer.peer_chunks); |
| 380 | kfree(asoc->peer.peer_hmacs); |
| 381 | |
| 382 | /* Release the transport structures. */ |
| 383 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 384 | transport = list_entry(pos, struct sctp_transport, transports); |
| 385 | list_del_rcu(pos); |
| 386 | sctp_transport_free(transport); |
| 387 | } |
| 388 | |
| 389 | asoc->peer.transport_count = 0; |
| 390 | |
| 391 | sctp_asconf_queue_teardown(asoc); |
| 392 | |
| 393 | /* Free pending address space being deleted */ |
| 394 | kfree(asoc->asconf_addr_del_pending); |
| 395 | |
| 396 | /* AUTH - Free the endpoint shared keys */ |
| 397 | sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); |
| 398 | |
| 399 | /* AUTH - Free the association shared key */ |
| 400 | sctp_auth_key_put(asoc->asoc_shared_key); |
| 401 | |
| 402 | sctp_association_put(asoc); |
| 403 | } |
| 404 | |
| 405 | /* Cleanup and free up an association. */ |
| 406 | static void sctp_association_destroy(struct sctp_association *asoc) |
| 407 | { |
| 408 | if (unlikely(!asoc->base.dead)) { |
| 409 | WARN(1, "Attempt to destroy undead association %p!\n", asoc); |
| 410 | return; |
| 411 | } |
| 412 | |
| 413 | sctp_endpoint_put(asoc->ep); |
| 414 | sock_put(asoc->base.sk); |
| 415 | |
| 416 | if (asoc->assoc_id != 0) { |
| 417 | spin_lock_bh(&sctp_assocs_id_lock); |
| 418 | idr_remove(&sctp_assocs_id, asoc->assoc_id); |
| 419 | spin_unlock_bh(&sctp_assocs_id_lock); |
| 420 | } |
| 421 | |
| 422 | WARN_ON(atomic_read(&asoc->rmem_alloc)); |
| 423 | |
| 424 | kfree(asoc); |
| 425 | SCTP_DBG_OBJCNT_DEC(assoc); |
| 426 | } |
| 427 | |
| 428 | /* Change the primary destination address for the peer. */ |
| 429 | void sctp_assoc_set_primary(struct sctp_association *asoc, |
| 430 | struct sctp_transport *transport) |
| 431 | { |
| 432 | int changeover = 0; |
| 433 | |
| 434 | /* it's a changeover only if we already have a primary path |
| 435 | * that we are changing |
| 436 | */ |
| 437 | if (asoc->peer.primary_path != NULL && |
| 438 | asoc->peer.primary_path != transport) |
| 439 | changeover = 1 ; |
| 440 | |
| 441 | asoc->peer.primary_path = transport; |
| 442 | |
| 443 | /* Set a default msg_name for events. */ |
| 444 | memcpy(&asoc->peer.primary_addr, &transport->ipaddr, |
| 445 | sizeof(union sctp_addr)); |
| 446 | |
| 447 | /* If the primary path is changing, assume that the |
| 448 | * user wants to use this new path. |
| 449 | */ |
| 450 | if ((transport->state == SCTP_ACTIVE) || |
| 451 | (transport->state == SCTP_UNKNOWN)) |
| 452 | asoc->peer.active_path = transport; |
| 453 | |
| 454 | /* |
| 455 | * SFR-CACC algorithm: |
| 456 | * Upon the receipt of a request to change the primary |
| 457 | * destination address, on the data structure for the new |
| 458 | * primary destination, the sender MUST do the following: |
| 459 | * |
| 460 | * 1) If CHANGEOVER_ACTIVE is set, then there was a switch |
| 461 | * to this destination address earlier. The sender MUST set |
| 462 | * CYCLING_CHANGEOVER to indicate that this switch is a |
| 463 | * double switch to the same destination address. |
| 464 | * |
| 465 | * Really, only bother is we have data queued or outstanding on |
| 466 | * the association. |
| 467 | */ |
| 468 | if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) |
| 469 | return; |
| 470 | |
| 471 | if (transport->cacc.changeover_active) |
| 472 | transport->cacc.cycling_changeover = changeover; |
| 473 | |
| 474 | /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that |
| 475 | * a changeover has occurred. |
| 476 | */ |
| 477 | transport->cacc.changeover_active = changeover; |
| 478 | |
| 479 | /* 3) The sender MUST store the next TSN to be sent in |
| 480 | * next_tsn_at_change. |
| 481 | */ |
| 482 | transport->cacc.next_tsn_at_change = asoc->next_tsn; |
| 483 | } |
| 484 | |
| 485 | /* Remove a transport from an association. */ |
| 486 | void sctp_assoc_rm_peer(struct sctp_association *asoc, |
| 487 | struct sctp_transport *peer) |
| 488 | { |
| 489 | struct list_head *pos; |
| 490 | struct sctp_transport *transport; |
| 491 | |
| 492 | pr_debug("%s: association:%p addr:%pISpc\n", |
| 493 | __func__, asoc, &peer->ipaddr.sa); |
| 494 | |
| 495 | /* If we are to remove the current retran_path, update it |
| 496 | * to the next peer before removing this peer from the list. |
| 497 | */ |
| 498 | if (asoc->peer.retran_path == peer) |
| 499 | sctp_assoc_update_retran_path(asoc); |
| 500 | |
| 501 | /* Remove this peer from the list. */ |
| 502 | list_del_rcu(&peer->transports); |
| 503 | |
| 504 | /* Get the first transport of asoc. */ |
| 505 | pos = asoc->peer.transport_addr_list.next; |
| 506 | transport = list_entry(pos, struct sctp_transport, transports); |
| 507 | |
| 508 | /* Update any entries that match the peer to be deleted. */ |
| 509 | if (asoc->peer.primary_path == peer) |
| 510 | sctp_assoc_set_primary(asoc, transport); |
| 511 | if (asoc->peer.active_path == peer) |
| 512 | asoc->peer.active_path = transport; |
| 513 | if (asoc->peer.retran_path == peer) |
| 514 | asoc->peer.retran_path = transport; |
| 515 | if (asoc->peer.last_data_from == peer) |
| 516 | asoc->peer.last_data_from = transport; |
| 517 | |
| 518 | /* If we remove the transport an INIT was last sent to, set it to |
| 519 | * NULL. Combined with the update of the retran path above, this |
| 520 | * will cause the next INIT to be sent to the next available |
| 521 | * transport, maintaining the cycle. |
| 522 | */ |
| 523 | if (asoc->init_last_sent_to == peer) |
| 524 | asoc->init_last_sent_to = NULL; |
| 525 | |
| 526 | /* If we remove the transport an SHUTDOWN was last sent to, set it |
| 527 | * to NULL. Combined with the update of the retran path above, this |
| 528 | * will cause the next SHUTDOWN to be sent to the next available |
| 529 | * transport, maintaining the cycle. |
| 530 | */ |
| 531 | if (asoc->shutdown_last_sent_to == peer) |
| 532 | asoc->shutdown_last_sent_to = NULL; |
| 533 | |
| 534 | /* If we remove the transport an ASCONF was last sent to, set it to |
| 535 | * NULL. |
| 536 | */ |
| 537 | if (asoc->addip_last_asconf && |
| 538 | asoc->addip_last_asconf->transport == peer) |
| 539 | asoc->addip_last_asconf->transport = NULL; |
| 540 | |
| 541 | /* If we have something on the transmitted list, we have to |
| 542 | * save it off. The best place is the active path. |
| 543 | */ |
| 544 | if (!list_empty(&peer->transmitted)) { |
| 545 | struct sctp_transport *active = asoc->peer.active_path; |
| 546 | struct sctp_chunk *ch; |
| 547 | |
| 548 | /* Reset the transport of each chunk on this list */ |
| 549 | list_for_each_entry(ch, &peer->transmitted, |
| 550 | transmitted_list) { |
| 551 | ch->transport = NULL; |
| 552 | ch->rtt_in_progress = 0; |
| 553 | } |
| 554 | |
| 555 | list_splice_tail_init(&peer->transmitted, |
| 556 | &active->transmitted); |
| 557 | |
| 558 | /* Start a T3 timer here in case it wasn't running so |
| 559 | * that these migrated packets have a chance to get |
| 560 | * retransmitted. |
| 561 | */ |
| 562 | if (!timer_pending(&active->T3_rtx_timer)) |
| 563 | if (!mod_timer(&active->T3_rtx_timer, |
| 564 | jiffies + active->rto)) |
| 565 | sctp_transport_hold(active); |
| 566 | } |
| 567 | |
| 568 | asoc->peer.transport_count--; |
| 569 | |
| 570 | sctp_transport_free(peer); |
| 571 | } |
| 572 | |
| 573 | /* Add a transport address to an association. */ |
| 574 | struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, |
| 575 | const union sctp_addr *addr, |
| 576 | const gfp_t gfp, |
| 577 | const int peer_state) |
| 578 | { |
| 579 | struct net *net = sock_net(asoc->base.sk); |
| 580 | struct sctp_transport *peer; |
| 581 | struct sctp_sock *sp; |
| 582 | unsigned short port; |
| 583 | |
| 584 | sp = sctp_sk(asoc->base.sk); |
| 585 | |
| 586 | /* AF_INET and AF_INET6 share common port field. */ |
| 587 | port = ntohs(addr->v4.sin_port); |
| 588 | |
| 589 | pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, |
| 590 | asoc, &addr->sa, peer_state); |
| 591 | |
| 592 | /* Set the port if it has not been set yet. */ |
| 593 | if (0 == asoc->peer.port) |
| 594 | asoc->peer.port = port; |
| 595 | |
| 596 | /* Check to see if this is a duplicate. */ |
| 597 | peer = sctp_assoc_lookup_paddr(asoc, addr); |
| 598 | if (peer) { |
| 599 | /* An UNKNOWN state is only set on transports added by |
| 600 | * user in sctp_connectx() call. Such transports should be |
| 601 | * considered CONFIRMED per RFC 4960, Section 5.4. |
| 602 | */ |
| 603 | if (peer->state == SCTP_UNKNOWN) { |
| 604 | peer->state = SCTP_ACTIVE; |
| 605 | } |
| 606 | return peer; |
| 607 | } |
| 608 | |
| 609 | peer = sctp_transport_new(net, addr, gfp); |
| 610 | if (!peer) |
| 611 | return NULL; |
| 612 | |
| 613 | sctp_transport_set_owner(peer, asoc); |
| 614 | |
| 615 | /* Initialize the peer's heartbeat interval based on the |
| 616 | * association configured value. |
| 617 | */ |
| 618 | peer->hbinterval = asoc->hbinterval; |
| 619 | |
| 620 | /* Set the path max_retrans. */ |
| 621 | peer->pathmaxrxt = asoc->pathmaxrxt; |
| 622 | |
| 623 | /* And the partial failure retrans threshold */ |
| 624 | peer->pf_retrans = asoc->pf_retrans; |
| 625 | |
| 626 | /* Initialize the peer's SACK delay timeout based on the |
| 627 | * association configured value. |
| 628 | */ |
| 629 | peer->sackdelay = asoc->sackdelay; |
| 630 | peer->sackfreq = asoc->sackfreq; |
| 631 | |
| 632 | /* Enable/disable heartbeat, SACK delay, and path MTU discovery |
| 633 | * based on association setting. |
| 634 | */ |
| 635 | peer->param_flags = asoc->param_flags; |
| 636 | |
| 637 | sctp_transport_route(peer, NULL, sp); |
| 638 | |
| 639 | /* Initialize the pmtu of the transport. */ |
| 640 | if (peer->param_flags & SPP_PMTUD_DISABLE) { |
| 641 | if (asoc->pathmtu) |
| 642 | peer->pathmtu = asoc->pathmtu; |
| 643 | else |
| 644 | peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; |
| 645 | } |
| 646 | |
| 647 | /* If this is the first transport addr on this association, |
| 648 | * initialize the association PMTU to the peer's PMTU. |
| 649 | * If not and the current association PMTU is higher than the new |
| 650 | * peer's PMTU, reset the association PMTU to the new peer's PMTU. |
| 651 | */ |
| 652 | if (asoc->pathmtu) |
| 653 | asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); |
| 654 | else |
| 655 | asoc->pathmtu = peer->pathmtu; |
| 656 | |
| 657 | pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, |
| 658 | asoc->pathmtu); |
| 659 | |
| 660 | peer->pmtu_pending = 0; |
| 661 | |
| 662 | asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); |
| 663 | |
| 664 | /* The asoc->peer.port might not be meaningful yet, but |
| 665 | * initialize the packet structure anyway. |
| 666 | */ |
| 667 | sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, |
| 668 | asoc->peer.port); |
| 669 | |
| 670 | /* 7.2.1 Slow-Start |
| 671 | * |
| 672 | * o The initial cwnd before DATA transmission or after a sufficiently |
| 673 | * long idle period MUST be set to |
| 674 | * min(4*MTU, max(2*MTU, 4380 bytes)) |
| 675 | * |
| 676 | * o The initial value of ssthresh MAY be arbitrarily high |
| 677 | * (for example, implementations MAY use the size of the |
| 678 | * receiver advertised window). |
| 679 | */ |
| 680 | peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); |
| 681 | |
| 682 | /* At this point, we may not have the receiver's advertised window, |
| 683 | * so initialize ssthresh to the default value and it will be set |
| 684 | * later when we process the INIT. |
| 685 | */ |
| 686 | peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; |
| 687 | |
| 688 | peer->partial_bytes_acked = 0; |
| 689 | peer->flight_size = 0; |
| 690 | peer->burst_limited = 0; |
| 691 | |
| 692 | /* Set the transport's RTO.initial value */ |
| 693 | peer->rto = asoc->rto_initial; |
| 694 | sctp_max_rto(asoc, peer); |
| 695 | |
| 696 | /* Set the peer's active state. */ |
| 697 | peer->state = peer_state; |
| 698 | |
| 699 | /* Attach the remote transport to our asoc. */ |
| 700 | list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); |
| 701 | asoc->peer.transport_count++; |
| 702 | |
| 703 | /* If we do not yet have a primary path, set one. */ |
| 704 | if (!asoc->peer.primary_path) { |
| 705 | sctp_assoc_set_primary(asoc, peer); |
| 706 | asoc->peer.retran_path = peer; |
| 707 | } |
| 708 | |
| 709 | if (asoc->peer.active_path == asoc->peer.retran_path && |
| 710 | peer->state != SCTP_UNCONFIRMED) { |
| 711 | asoc->peer.retran_path = peer; |
| 712 | } |
| 713 | |
| 714 | return peer; |
| 715 | } |
| 716 | |
| 717 | /* Delete a transport address from an association. */ |
| 718 | void sctp_assoc_del_peer(struct sctp_association *asoc, |
| 719 | const union sctp_addr *addr) |
| 720 | { |
| 721 | struct list_head *pos; |
| 722 | struct list_head *temp; |
| 723 | struct sctp_transport *transport; |
| 724 | |
| 725 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 726 | transport = list_entry(pos, struct sctp_transport, transports); |
| 727 | if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { |
| 728 | /* Do book keeping for removing the peer and free it. */ |
| 729 | sctp_assoc_rm_peer(asoc, transport); |
| 730 | break; |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | /* Lookup a transport by address. */ |
| 736 | struct sctp_transport *sctp_assoc_lookup_paddr( |
| 737 | const struct sctp_association *asoc, |
| 738 | const union sctp_addr *address) |
| 739 | { |
| 740 | struct sctp_transport *t; |
| 741 | |
| 742 | /* Cycle through all transports searching for a peer address. */ |
| 743 | |
| 744 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 745 | transports) { |
| 746 | if (sctp_cmp_addr_exact(address, &t->ipaddr)) |
| 747 | return t; |
| 748 | } |
| 749 | |
| 750 | return NULL; |
| 751 | } |
| 752 | |
| 753 | /* Remove all transports except a give one */ |
| 754 | void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, |
| 755 | struct sctp_transport *primary) |
| 756 | { |
| 757 | struct sctp_transport *temp; |
| 758 | struct sctp_transport *t; |
| 759 | |
| 760 | list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, |
| 761 | transports) { |
| 762 | /* if the current transport is not the primary one, delete it */ |
| 763 | if (t != primary) |
| 764 | sctp_assoc_rm_peer(asoc, t); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /* Engage in transport control operations. |
| 769 | * Mark the transport up or down and send a notification to the user. |
| 770 | * Select and update the new active and retran paths. |
| 771 | */ |
| 772 | void sctp_assoc_control_transport(struct sctp_association *asoc, |
| 773 | struct sctp_transport *transport, |
| 774 | sctp_transport_cmd_t command, |
| 775 | sctp_sn_error_t error) |
| 776 | { |
| 777 | struct sctp_ulpevent *event; |
| 778 | struct sockaddr_storage addr; |
| 779 | int spc_state = 0; |
| 780 | bool ulp_notify = true; |
| 781 | |
| 782 | /* Record the transition on the transport. */ |
| 783 | switch (command) { |
| 784 | case SCTP_TRANSPORT_UP: |
| 785 | /* If we are moving from UNCONFIRMED state due |
| 786 | * to heartbeat success, report the SCTP_ADDR_CONFIRMED |
| 787 | * state to the user, otherwise report SCTP_ADDR_AVAILABLE. |
| 788 | */ |
| 789 | if (SCTP_UNCONFIRMED == transport->state && |
| 790 | SCTP_HEARTBEAT_SUCCESS == error) |
| 791 | spc_state = SCTP_ADDR_CONFIRMED; |
| 792 | else |
| 793 | spc_state = SCTP_ADDR_AVAILABLE; |
| 794 | /* Don't inform ULP about transition from PF to |
| 795 | * active state and set cwnd to 1 MTU, see SCTP |
| 796 | * Quick failover draft section 5.1, point 5 |
| 797 | */ |
| 798 | if (transport->state == SCTP_PF) { |
| 799 | ulp_notify = false; |
| 800 | transport->cwnd = asoc->pathmtu; |
| 801 | } |
| 802 | transport->state = SCTP_ACTIVE; |
| 803 | break; |
| 804 | |
| 805 | case SCTP_TRANSPORT_DOWN: |
| 806 | /* If the transport was never confirmed, do not transition it |
| 807 | * to inactive state. Also, release the cached route since |
| 808 | * there may be a better route next time. |
| 809 | */ |
| 810 | if (transport->state != SCTP_UNCONFIRMED) |
| 811 | transport->state = SCTP_INACTIVE; |
| 812 | else { |
| 813 | dst_release(transport->dst); |
| 814 | transport->dst = NULL; |
| 815 | ulp_notify = false; |
| 816 | } |
| 817 | |
| 818 | spc_state = SCTP_ADDR_UNREACHABLE; |
| 819 | break; |
| 820 | |
| 821 | case SCTP_TRANSPORT_PF: |
| 822 | transport->state = SCTP_PF; |
| 823 | ulp_notify = false; |
| 824 | break; |
| 825 | |
| 826 | default: |
| 827 | return; |
| 828 | } |
| 829 | |
| 830 | /* Generate and send a SCTP_PEER_ADDR_CHANGE notification |
| 831 | * to the user. |
| 832 | */ |
| 833 | if (ulp_notify) { |
| 834 | memset(&addr, 0, sizeof(struct sockaddr_storage)); |
| 835 | memcpy(&addr, &transport->ipaddr, |
| 836 | transport->af_specific->sockaddr_len); |
| 837 | |
| 838 | event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, |
| 839 | 0, spc_state, error, GFP_ATOMIC); |
| 840 | if (event) |
| 841 | sctp_ulpq_tail_event(&asoc->ulpq, event); |
| 842 | } |
| 843 | |
| 844 | /* Select new active and retran paths. */ |
| 845 | sctp_select_active_and_retran_path(asoc); |
| 846 | } |
| 847 | |
| 848 | /* Hold a reference to an association. */ |
| 849 | void sctp_association_hold(struct sctp_association *asoc) |
| 850 | { |
| 851 | atomic_inc(&asoc->base.refcnt); |
| 852 | } |
| 853 | |
| 854 | /* Release a reference to an association and cleanup |
| 855 | * if there are no more references. |
| 856 | */ |
| 857 | void sctp_association_put(struct sctp_association *asoc) |
| 858 | { |
| 859 | if (atomic_dec_and_test(&asoc->base.refcnt)) |
| 860 | sctp_association_destroy(asoc); |
| 861 | } |
| 862 | |
| 863 | /* Allocate the next TSN, Transmission Sequence Number, for the given |
| 864 | * association. |
| 865 | */ |
| 866 | __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) |
| 867 | { |
| 868 | /* From Section 1.6 Serial Number Arithmetic: |
| 869 | * Transmission Sequence Numbers wrap around when they reach |
| 870 | * 2**32 - 1. That is, the next TSN a DATA chunk MUST use |
| 871 | * after transmitting TSN = 2*32 - 1 is TSN = 0. |
| 872 | */ |
| 873 | __u32 retval = asoc->next_tsn; |
| 874 | asoc->next_tsn++; |
| 875 | asoc->unack_data++; |
| 876 | |
| 877 | return retval; |
| 878 | } |
| 879 | |
| 880 | /* Compare two addresses to see if they match. Wildcard addresses |
| 881 | * only match themselves. |
| 882 | */ |
| 883 | int sctp_cmp_addr_exact(const union sctp_addr *ss1, |
| 884 | const union sctp_addr *ss2) |
| 885 | { |
| 886 | struct sctp_af *af; |
| 887 | |
| 888 | af = sctp_get_af_specific(ss1->sa.sa_family); |
| 889 | if (unlikely(!af)) |
| 890 | return 0; |
| 891 | |
| 892 | return af->cmp_addr(ss1, ss2); |
| 893 | } |
| 894 | |
| 895 | /* Return an ecne chunk to get prepended to a packet. |
| 896 | * Note: We are sly and return a shared, prealloced chunk. FIXME: |
| 897 | * No we don't, but we could/should. |
| 898 | */ |
| 899 | struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) |
| 900 | { |
| 901 | if (!asoc->need_ecne) |
| 902 | return NULL; |
| 903 | |
| 904 | /* Send ECNE if needed. |
| 905 | * Not being able to allocate a chunk here is not deadly. |
| 906 | */ |
| 907 | return sctp_make_ecne(asoc, asoc->last_ecne_tsn); |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * Find which transport this TSN was sent on. |
| 912 | */ |
| 913 | struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, |
| 914 | __u32 tsn) |
| 915 | { |
| 916 | struct sctp_transport *active; |
| 917 | struct sctp_transport *match; |
| 918 | struct sctp_transport *transport; |
| 919 | struct sctp_chunk *chunk; |
| 920 | __be32 key = htonl(tsn); |
| 921 | |
| 922 | match = NULL; |
| 923 | |
| 924 | /* |
| 925 | * FIXME: In general, find a more efficient data structure for |
| 926 | * searching. |
| 927 | */ |
| 928 | |
| 929 | /* |
| 930 | * The general strategy is to search each transport's transmitted |
| 931 | * list. Return which transport this TSN lives on. |
| 932 | * |
| 933 | * Let's be hopeful and check the active_path first. |
| 934 | * Another optimization would be to know if there is only one |
| 935 | * outbound path and not have to look for the TSN at all. |
| 936 | * |
| 937 | */ |
| 938 | |
| 939 | active = asoc->peer.active_path; |
| 940 | |
| 941 | list_for_each_entry(chunk, &active->transmitted, |
| 942 | transmitted_list) { |
| 943 | |
| 944 | if (key == chunk->subh.data_hdr->tsn) { |
| 945 | match = active; |
| 946 | goto out; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | /* If not found, go search all the other transports. */ |
| 951 | list_for_each_entry(transport, &asoc->peer.transport_addr_list, |
| 952 | transports) { |
| 953 | |
| 954 | if (transport == active) |
| 955 | continue; |
| 956 | list_for_each_entry(chunk, &transport->transmitted, |
| 957 | transmitted_list) { |
| 958 | if (key == chunk->subh.data_hdr->tsn) { |
| 959 | match = transport; |
| 960 | goto out; |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | out: |
| 965 | return match; |
| 966 | } |
| 967 | |
| 968 | /* Is this the association we are looking for? */ |
| 969 | struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, |
| 970 | struct net *net, |
| 971 | const union sctp_addr *laddr, |
| 972 | const union sctp_addr *paddr) |
| 973 | { |
| 974 | struct sctp_transport *transport; |
| 975 | |
| 976 | if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && |
| 977 | (htons(asoc->peer.port) == paddr->v4.sin_port) && |
| 978 | net_eq(sock_net(asoc->base.sk), net)) { |
| 979 | transport = sctp_assoc_lookup_paddr(asoc, paddr); |
| 980 | if (!transport) |
| 981 | goto out; |
| 982 | |
| 983 | if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, |
| 984 | sctp_sk(asoc->base.sk))) |
| 985 | goto out; |
| 986 | } |
| 987 | transport = NULL; |
| 988 | |
| 989 | out: |
| 990 | return transport; |
| 991 | } |
| 992 | |
| 993 | /* Do delayed input processing. This is scheduled by sctp_rcv(). */ |
| 994 | static void sctp_assoc_bh_rcv(struct work_struct *work) |
| 995 | { |
| 996 | struct sctp_association *asoc = |
| 997 | container_of(work, struct sctp_association, |
| 998 | base.inqueue.immediate); |
| 999 | struct net *net = sock_net(asoc->base.sk); |
| 1000 | struct sctp_endpoint *ep; |
| 1001 | struct sctp_chunk *chunk; |
| 1002 | struct sctp_inq *inqueue; |
| 1003 | int state; |
| 1004 | sctp_subtype_t subtype; |
| 1005 | int error = 0; |
| 1006 | |
| 1007 | /* The association should be held so we should be safe. */ |
| 1008 | ep = asoc->ep; |
| 1009 | |
| 1010 | inqueue = &asoc->base.inqueue; |
| 1011 | sctp_association_hold(asoc); |
| 1012 | while (NULL != (chunk = sctp_inq_pop(inqueue))) { |
| 1013 | state = asoc->state; |
| 1014 | subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); |
| 1015 | |
| 1016 | /* SCTP-AUTH, Section 6.3: |
| 1017 | * The receiver has a list of chunk types which it expects |
| 1018 | * to be received only after an AUTH-chunk. This list has |
| 1019 | * been sent to the peer during the association setup. It |
| 1020 | * MUST silently discard these chunks if they are not placed |
| 1021 | * after an AUTH chunk in the packet. |
| 1022 | */ |
| 1023 | if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) |
| 1024 | continue; |
| 1025 | |
| 1026 | /* Remember where the last DATA chunk came from so we |
| 1027 | * know where to send the SACK. |
| 1028 | */ |
| 1029 | if (sctp_chunk_is_data(chunk)) |
| 1030 | asoc->peer.last_data_from = chunk->transport; |
| 1031 | else { |
| 1032 | SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); |
| 1033 | asoc->stats.ictrlchunks++; |
| 1034 | if (chunk->chunk_hdr->type == SCTP_CID_SACK) |
| 1035 | asoc->stats.isacks++; |
| 1036 | } |
| 1037 | |
| 1038 | if (chunk->transport) |
| 1039 | chunk->transport->last_time_heard = ktime_get(); |
| 1040 | |
| 1041 | /* Run through the state machine. */ |
| 1042 | error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, |
| 1043 | state, ep, asoc, chunk, GFP_ATOMIC); |
| 1044 | |
| 1045 | /* Check to see if the association is freed in response to |
| 1046 | * the incoming chunk. If so, get out of the while loop. |
| 1047 | */ |
| 1048 | if (asoc->base.dead) |
| 1049 | break; |
| 1050 | |
| 1051 | /* If there is an error on chunk, discard this packet. */ |
| 1052 | if (error && chunk) |
| 1053 | chunk->pdiscard = 1; |
| 1054 | } |
| 1055 | sctp_association_put(asoc); |
| 1056 | } |
| 1057 | |
| 1058 | /* This routine moves an association from its old sk to a new sk. */ |
| 1059 | void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) |
| 1060 | { |
| 1061 | struct sctp_sock *newsp = sctp_sk(newsk); |
| 1062 | struct sock *oldsk = assoc->base.sk; |
| 1063 | |
| 1064 | /* Delete the association from the old endpoint's list of |
| 1065 | * associations. |
| 1066 | */ |
| 1067 | list_del_init(&assoc->asocs); |
| 1068 | |
| 1069 | /* Decrement the backlog value for a TCP-style socket. */ |
| 1070 | if (sctp_style(oldsk, TCP)) |
| 1071 | oldsk->sk_ack_backlog--; |
| 1072 | |
| 1073 | /* Release references to the old endpoint and the sock. */ |
| 1074 | sctp_endpoint_put(assoc->ep); |
| 1075 | sock_put(assoc->base.sk); |
| 1076 | |
| 1077 | /* Get a reference to the new endpoint. */ |
| 1078 | assoc->ep = newsp->ep; |
| 1079 | sctp_endpoint_hold(assoc->ep); |
| 1080 | |
| 1081 | /* Get a reference to the new sock. */ |
| 1082 | assoc->base.sk = newsk; |
| 1083 | sock_hold(assoc->base.sk); |
| 1084 | |
| 1085 | /* Add the association to the new endpoint's list of associations. */ |
| 1086 | sctp_endpoint_add_asoc(newsp->ep, assoc); |
| 1087 | } |
| 1088 | |
| 1089 | /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ |
| 1090 | void sctp_assoc_update(struct sctp_association *asoc, |
| 1091 | struct sctp_association *new) |
| 1092 | { |
| 1093 | struct sctp_transport *trans; |
| 1094 | struct list_head *pos, *temp; |
| 1095 | |
| 1096 | /* Copy in new parameters of peer. */ |
| 1097 | asoc->c = new->c; |
| 1098 | asoc->peer.rwnd = new->peer.rwnd; |
| 1099 | asoc->peer.sack_needed = new->peer.sack_needed; |
| 1100 | asoc->peer.auth_capable = new->peer.auth_capable; |
| 1101 | asoc->peer.i = new->peer.i; |
| 1102 | sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, |
| 1103 | asoc->peer.i.initial_tsn, GFP_ATOMIC); |
| 1104 | |
| 1105 | /* Remove any peer addresses not present in the new association. */ |
| 1106 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 1107 | trans = list_entry(pos, struct sctp_transport, transports); |
| 1108 | if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { |
| 1109 | sctp_assoc_rm_peer(asoc, trans); |
| 1110 | continue; |
| 1111 | } |
| 1112 | |
| 1113 | if (asoc->state >= SCTP_STATE_ESTABLISHED) |
| 1114 | sctp_transport_reset(trans); |
| 1115 | } |
| 1116 | |
| 1117 | /* If the case is A (association restart), use |
| 1118 | * initial_tsn as next_tsn. If the case is B, use |
| 1119 | * current next_tsn in case data sent to peer |
| 1120 | * has been discarded and needs retransmission. |
| 1121 | */ |
| 1122 | if (asoc->state >= SCTP_STATE_ESTABLISHED) { |
| 1123 | asoc->next_tsn = new->next_tsn; |
| 1124 | asoc->ctsn_ack_point = new->ctsn_ack_point; |
| 1125 | asoc->adv_peer_ack_point = new->adv_peer_ack_point; |
| 1126 | |
| 1127 | /* Reinitialize SSN for both local streams |
| 1128 | * and peer's streams. |
| 1129 | */ |
| 1130 | sctp_ssnmap_clear(asoc->ssnmap); |
| 1131 | |
| 1132 | /* Flush the ULP reassembly and ordered queue. |
| 1133 | * Any data there will now be stale and will |
| 1134 | * cause problems. |
| 1135 | */ |
| 1136 | sctp_ulpq_flush(&asoc->ulpq); |
| 1137 | |
| 1138 | /* reset the overall association error count so |
| 1139 | * that the restarted association doesn't get torn |
| 1140 | * down on the next retransmission timer. |
| 1141 | */ |
| 1142 | asoc->overall_error_count = 0; |
| 1143 | |
| 1144 | } else { |
| 1145 | /* Add any peer addresses from the new association. */ |
| 1146 | list_for_each_entry(trans, &new->peer.transport_addr_list, |
| 1147 | transports) { |
| 1148 | if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) |
| 1149 | sctp_assoc_add_peer(asoc, &trans->ipaddr, |
| 1150 | GFP_ATOMIC, trans->state); |
| 1151 | } |
| 1152 | |
| 1153 | asoc->ctsn_ack_point = asoc->next_tsn - 1; |
| 1154 | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; |
| 1155 | if (!asoc->ssnmap) { |
| 1156 | /* Move the ssnmap. */ |
| 1157 | asoc->ssnmap = new->ssnmap; |
| 1158 | new->ssnmap = NULL; |
| 1159 | } |
| 1160 | |
| 1161 | if (!asoc->assoc_id) { |
| 1162 | /* get a new association id since we don't have one |
| 1163 | * yet. |
| 1164 | */ |
| 1165 | sctp_assoc_set_id(asoc, GFP_ATOMIC); |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | /* SCTP-AUTH: Save the peer parameters from the new associations |
| 1170 | * and also move the association shared keys over |
| 1171 | */ |
| 1172 | kfree(asoc->peer.peer_random); |
| 1173 | asoc->peer.peer_random = new->peer.peer_random; |
| 1174 | new->peer.peer_random = NULL; |
| 1175 | |
| 1176 | kfree(asoc->peer.peer_chunks); |
| 1177 | asoc->peer.peer_chunks = new->peer.peer_chunks; |
| 1178 | new->peer.peer_chunks = NULL; |
| 1179 | |
| 1180 | kfree(asoc->peer.peer_hmacs); |
| 1181 | asoc->peer.peer_hmacs = new->peer.peer_hmacs; |
| 1182 | new->peer.peer_hmacs = NULL; |
| 1183 | |
| 1184 | sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); |
| 1185 | } |
| 1186 | |
| 1187 | /* Update the retran path for sending a retransmitted packet. |
| 1188 | * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: |
| 1189 | * |
| 1190 | * When there is outbound data to send and the primary path |
| 1191 | * becomes inactive (e.g., due to failures), or where the |
| 1192 | * SCTP user explicitly requests to send data to an |
| 1193 | * inactive destination transport address, before reporting |
| 1194 | * an error to its ULP, the SCTP endpoint should try to send |
| 1195 | * the data to an alternate active destination transport |
| 1196 | * address if one exists. |
| 1197 | * |
| 1198 | * When retransmitting data that timed out, if the endpoint |
| 1199 | * is multihomed, it should consider each source-destination |
| 1200 | * address pair in its retransmission selection policy. |
| 1201 | * When retransmitting timed-out data, the endpoint should |
| 1202 | * attempt to pick the most divergent source-destination |
| 1203 | * pair from the original source-destination pair to which |
| 1204 | * the packet was transmitted. |
| 1205 | * |
| 1206 | * Note: Rules for picking the most divergent source-destination |
| 1207 | * pair are an implementation decision and are not specified |
| 1208 | * within this document. |
| 1209 | * |
| 1210 | * Our basic strategy is to round-robin transports in priorities |
| 1211 | * according to sctp_trans_score() e.g., if no such |
| 1212 | * transport with state SCTP_ACTIVE exists, round-robin through |
| 1213 | * SCTP_UNKNOWN, etc. You get the picture. |
| 1214 | */ |
| 1215 | static u8 sctp_trans_score(const struct sctp_transport *trans) |
| 1216 | { |
| 1217 | switch (trans->state) { |
| 1218 | case SCTP_ACTIVE: |
| 1219 | return 3; /* best case */ |
| 1220 | case SCTP_UNKNOWN: |
| 1221 | return 2; |
| 1222 | case SCTP_PF: |
| 1223 | return 1; |
| 1224 | default: /* case SCTP_INACTIVE */ |
| 1225 | return 0; /* worst case */ |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, |
| 1230 | struct sctp_transport *trans2) |
| 1231 | { |
| 1232 | if (trans1->error_count > trans2->error_count) { |
| 1233 | return trans2; |
| 1234 | } else if (trans1->error_count == trans2->error_count && |
| 1235 | ktime_after(trans2->last_time_heard, |
| 1236 | trans1->last_time_heard)) { |
| 1237 | return trans2; |
| 1238 | } else { |
| 1239 | return trans1; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, |
| 1244 | struct sctp_transport *best) |
| 1245 | { |
| 1246 | u8 score_curr, score_best; |
| 1247 | |
| 1248 | if (best == NULL || curr == best) |
| 1249 | return curr; |
| 1250 | |
| 1251 | score_curr = sctp_trans_score(curr); |
| 1252 | score_best = sctp_trans_score(best); |
| 1253 | |
| 1254 | /* First, try a score-based selection if both transport states |
| 1255 | * differ. If we're in a tie, lets try to make a more clever |
| 1256 | * decision here based on error counts and last time heard. |
| 1257 | */ |
| 1258 | if (score_curr > score_best) |
| 1259 | return curr; |
| 1260 | else if (score_curr == score_best) |
| 1261 | return sctp_trans_elect_tie(curr, best); |
| 1262 | else |
| 1263 | return best; |
| 1264 | } |
| 1265 | |
| 1266 | void sctp_assoc_update_retran_path(struct sctp_association *asoc) |
| 1267 | { |
| 1268 | struct sctp_transport *trans = asoc->peer.retran_path; |
| 1269 | struct sctp_transport *trans_next = NULL; |
| 1270 | |
| 1271 | /* We're done as we only have the one and only path. */ |
| 1272 | if (asoc->peer.transport_count == 1) |
| 1273 | return; |
| 1274 | /* If active_path and retran_path are the same and active, |
| 1275 | * then this is the only active path. Use it. |
| 1276 | */ |
| 1277 | if (asoc->peer.active_path == asoc->peer.retran_path && |
| 1278 | asoc->peer.active_path->state == SCTP_ACTIVE) |
| 1279 | return; |
| 1280 | |
| 1281 | /* Iterate from retran_path's successor back to retran_path. */ |
| 1282 | for (trans = list_next_entry(trans, transports); 1; |
| 1283 | trans = list_next_entry(trans, transports)) { |
| 1284 | /* Manually skip the head element. */ |
| 1285 | if (&trans->transports == &asoc->peer.transport_addr_list) |
| 1286 | continue; |
| 1287 | if (trans->state == SCTP_UNCONFIRMED) |
| 1288 | continue; |
| 1289 | trans_next = sctp_trans_elect_best(trans, trans_next); |
| 1290 | /* Active is good enough for immediate return. */ |
| 1291 | if (trans_next->state == SCTP_ACTIVE) |
| 1292 | break; |
| 1293 | /* We've reached the end, time to update path. */ |
| 1294 | if (trans == asoc->peer.retran_path) |
| 1295 | break; |
| 1296 | } |
| 1297 | |
| 1298 | asoc->peer.retran_path = trans_next; |
| 1299 | |
| 1300 | pr_debug("%s: association:%p updated new path to addr:%pISpc\n", |
| 1301 | __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); |
| 1302 | } |
| 1303 | |
| 1304 | static void sctp_select_active_and_retran_path(struct sctp_association *asoc) |
| 1305 | { |
| 1306 | struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; |
| 1307 | struct sctp_transport *trans_pf = NULL; |
| 1308 | |
| 1309 | /* Look for the two most recently used active transports. */ |
| 1310 | list_for_each_entry(trans, &asoc->peer.transport_addr_list, |
| 1311 | transports) { |
| 1312 | /* Skip uninteresting transports. */ |
| 1313 | if (trans->state == SCTP_INACTIVE || |
| 1314 | trans->state == SCTP_UNCONFIRMED) |
| 1315 | continue; |
| 1316 | /* Keep track of the best PF transport from our |
| 1317 | * list in case we don't find an active one. |
| 1318 | */ |
| 1319 | if (trans->state == SCTP_PF) { |
| 1320 | trans_pf = sctp_trans_elect_best(trans, trans_pf); |
| 1321 | continue; |
| 1322 | } |
| 1323 | /* For active transports, pick the most recent ones. */ |
| 1324 | if (trans_pri == NULL || |
| 1325 | ktime_after(trans->last_time_heard, |
| 1326 | trans_pri->last_time_heard)) { |
| 1327 | trans_sec = trans_pri; |
| 1328 | trans_pri = trans; |
| 1329 | } else if (trans_sec == NULL || |
| 1330 | ktime_after(trans->last_time_heard, |
| 1331 | trans_sec->last_time_heard)) { |
| 1332 | trans_sec = trans; |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | /* RFC 2960 6.4 Multi-Homed SCTP Endpoints |
| 1337 | * |
| 1338 | * By default, an endpoint should always transmit to the primary |
| 1339 | * path, unless the SCTP user explicitly specifies the |
| 1340 | * destination transport address (and possibly source transport |
| 1341 | * address) to use. [If the primary is active but not most recent, |
| 1342 | * bump the most recently used transport.] |
| 1343 | */ |
| 1344 | if ((asoc->peer.primary_path->state == SCTP_ACTIVE || |
| 1345 | asoc->peer.primary_path->state == SCTP_UNKNOWN) && |
| 1346 | asoc->peer.primary_path != trans_pri) { |
| 1347 | trans_sec = trans_pri; |
| 1348 | trans_pri = asoc->peer.primary_path; |
| 1349 | } |
| 1350 | |
| 1351 | /* We did not find anything useful for a possible retransmission |
| 1352 | * path; either primary path that we found is the the same as |
| 1353 | * the current one, or we didn't generally find an active one. |
| 1354 | */ |
| 1355 | if (trans_sec == NULL) |
| 1356 | trans_sec = trans_pri; |
| 1357 | |
| 1358 | /* If we failed to find a usable transport, just camp on the |
| 1359 | * active or pick a PF iff it's the better choice. |
| 1360 | */ |
| 1361 | if (trans_pri == NULL) { |
| 1362 | trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); |
| 1363 | trans_sec = trans_pri; |
| 1364 | } |
| 1365 | |
| 1366 | /* Set the active and retran transports. */ |
| 1367 | asoc->peer.active_path = trans_pri; |
| 1368 | asoc->peer.retran_path = trans_sec; |
| 1369 | } |
| 1370 | |
| 1371 | struct sctp_transport * |
| 1372 | sctp_assoc_choose_alter_transport(struct sctp_association *asoc, |
| 1373 | struct sctp_transport *last_sent_to) |
| 1374 | { |
| 1375 | /* If this is the first time packet is sent, use the active path, |
| 1376 | * else use the retran path. If the last packet was sent over the |
| 1377 | * retran path, update the retran path and use it. |
| 1378 | */ |
| 1379 | if (last_sent_to == NULL) { |
| 1380 | return asoc->peer.active_path; |
| 1381 | } else { |
| 1382 | if (last_sent_to == asoc->peer.retran_path) |
| 1383 | sctp_assoc_update_retran_path(asoc); |
| 1384 | |
| 1385 | return asoc->peer.retran_path; |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | /* Update the association's pmtu and frag_point by going through all the |
| 1390 | * transports. This routine is called when a transport's PMTU has changed. |
| 1391 | */ |
| 1392 | void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) |
| 1393 | { |
| 1394 | struct sctp_transport *t; |
| 1395 | __u32 pmtu = 0; |
| 1396 | |
| 1397 | if (!asoc) |
| 1398 | return; |
| 1399 | |
| 1400 | /* Get the lowest pmtu of all the transports. */ |
| 1401 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 1402 | transports) { |
| 1403 | if (t->pmtu_pending && t->dst) { |
| 1404 | sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); |
| 1405 | t->pmtu_pending = 0; |
| 1406 | } |
| 1407 | if (!pmtu || (t->pathmtu < pmtu)) |
| 1408 | pmtu = t->pathmtu; |
| 1409 | } |
| 1410 | |
| 1411 | if (pmtu) { |
| 1412 | asoc->pathmtu = pmtu; |
| 1413 | asoc->frag_point = sctp_frag_point(asoc, pmtu); |
| 1414 | } |
| 1415 | |
| 1416 | pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, |
| 1417 | asoc->pathmtu, asoc->frag_point); |
| 1418 | } |
| 1419 | |
| 1420 | /* Should we send a SACK to update our peer? */ |
| 1421 | static inline bool sctp_peer_needs_update(struct sctp_association *asoc) |
| 1422 | { |
| 1423 | struct net *net = sock_net(asoc->base.sk); |
| 1424 | switch (asoc->state) { |
| 1425 | case SCTP_STATE_ESTABLISHED: |
| 1426 | case SCTP_STATE_SHUTDOWN_PENDING: |
| 1427 | case SCTP_STATE_SHUTDOWN_RECEIVED: |
| 1428 | case SCTP_STATE_SHUTDOWN_SENT: |
| 1429 | if ((asoc->rwnd > asoc->a_rwnd) && |
| 1430 | ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, |
| 1431 | (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), |
| 1432 | asoc->pathmtu))) |
| 1433 | return true; |
| 1434 | break; |
| 1435 | default: |
| 1436 | break; |
| 1437 | } |
| 1438 | return false; |
| 1439 | } |
| 1440 | |
| 1441 | /* Increase asoc's rwnd by len and send any window update SACK if needed. */ |
| 1442 | void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) |
| 1443 | { |
| 1444 | struct sctp_chunk *sack; |
| 1445 | struct timer_list *timer; |
| 1446 | |
| 1447 | if (asoc->rwnd_over) { |
| 1448 | if (asoc->rwnd_over >= len) { |
| 1449 | asoc->rwnd_over -= len; |
| 1450 | } else { |
| 1451 | asoc->rwnd += (len - asoc->rwnd_over); |
| 1452 | asoc->rwnd_over = 0; |
| 1453 | } |
| 1454 | } else { |
| 1455 | asoc->rwnd += len; |
| 1456 | } |
| 1457 | |
| 1458 | /* If we had window pressure, start recovering it |
| 1459 | * once our rwnd had reached the accumulated pressure |
| 1460 | * threshold. The idea is to recover slowly, but up |
| 1461 | * to the initial advertised window. |
| 1462 | */ |
| 1463 | if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { |
| 1464 | int change = min(asoc->pathmtu, asoc->rwnd_press); |
| 1465 | asoc->rwnd += change; |
| 1466 | asoc->rwnd_press -= change; |
| 1467 | } |
| 1468 | |
| 1469 | pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", |
| 1470 | __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, |
| 1471 | asoc->a_rwnd); |
| 1472 | |
| 1473 | /* Send a window update SACK if the rwnd has increased by at least the |
| 1474 | * minimum of the association's PMTU and half of the receive buffer. |
| 1475 | * The algorithm used is similar to the one described in |
| 1476 | * Section 4.2.3.3 of RFC 1122. |
| 1477 | */ |
| 1478 | if (sctp_peer_needs_update(asoc)) { |
| 1479 | asoc->a_rwnd = asoc->rwnd; |
| 1480 | |
| 1481 | pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " |
| 1482 | "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, |
| 1483 | asoc->a_rwnd); |
| 1484 | |
| 1485 | sack = sctp_make_sack(asoc); |
| 1486 | if (!sack) |
| 1487 | return; |
| 1488 | |
| 1489 | asoc->peer.sack_needed = 0; |
| 1490 | |
| 1491 | sctp_outq_tail(&asoc->outqueue, sack); |
| 1492 | |
| 1493 | /* Stop the SACK timer. */ |
| 1494 | timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; |
| 1495 | if (del_timer(timer)) |
| 1496 | sctp_association_put(asoc); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | /* Decrease asoc's rwnd by len. */ |
| 1501 | void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) |
| 1502 | { |
| 1503 | int rx_count; |
| 1504 | int over = 0; |
| 1505 | |
| 1506 | if (unlikely(!asoc->rwnd || asoc->rwnd_over)) |
| 1507 | pr_debug("%s: association:%p has asoc->rwnd:%u, " |
| 1508 | "asoc->rwnd_over:%u!\n", __func__, asoc, |
| 1509 | asoc->rwnd, asoc->rwnd_over); |
| 1510 | |
| 1511 | if (asoc->ep->rcvbuf_policy) |
| 1512 | rx_count = atomic_read(&asoc->rmem_alloc); |
| 1513 | else |
| 1514 | rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); |
| 1515 | |
| 1516 | /* If we've reached or overflowed our receive buffer, announce |
| 1517 | * a 0 rwnd if rwnd would still be positive. Store the |
| 1518 | * the potential pressure overflow so that the window can be restored |
| 1519 | * back to original value. |
| 1520 | */ |
| 1521 | if (rx_count >= asoc->base.sk->sk_rcvbuf) |
| 1522 | over = 1; |
| 1523 | |
| 1524 | if (asoc->rwnd >= len) { |
| 1525 | asoc->rwnd -= len; |
| 1526 | if (over) { |
| 1527 | asoc->rwnd_press += asoc->rwnd; |
| 1528 | asoc->rwnd = 0; |
| 1529 | } |
| 1530 | } else { |
| 1531 | asoc->rwnd_over = len - asoc->rwnd; |
| 1532 | asoc->rwnd = 0; |
| 1533 | } |
| 1534 | |
| 1535 | pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", |
| 1536 | __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, |
| 1537 | asoc->rwnd_press); |
| 1538 | } |
| 1539 | |
| 1540 | /* Build the bind address list for the association based on info from the |
| 1541 | * local endpoint and the remote peer. |
| 1542 | */ |
| 1543 | int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, |
| 1544 | sctp_scope_t scope, gfp_t gfp) |
| 1545 | { |
| 1546 | int flags; |
| 1547 | |
| 1548 | /* Use scoping rules to determine the subset of addresses from |
| 1549 | * the endpoint. |
| 1550 | */ |
| 1551 | flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; |
| 1552 | if (asoc->peer.ipv4_address) |
| 1553 | flags |= SCTP_ADDR4_PEERSUPP; |
| 1554 | if (asoc->peer.ipv6_address) |
| 1555 | flags |= SCTP_ADDR6_PEERSUPP; |
| 1556 | |
| 1557 | return sctp_bind_addr_copy(sock_net(asoc->base.sk), |
| 1558 | &asoc->base.bind_addr, |
| 1559 | &asoc->ep->base.bind_addr, |
| 1560 | scope, gfp, flags); |
| 1561 | } |
| 1562 | |
| 1563 | /* Build the association's bind address list from the cookie. */ |
| 1564 | int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, |
| 1565 | struct sctp_cookie *cookie, |
| 1566 | gfp_t gfp) |
| 1567 | { |
| 1568 | int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); |
| 1569 | int var_size3 = cookie->raw_addr_list_len; |
| 1570 | __u8 *raw = (__u8 *)cookie->peer_init + var_size2; |
| 1571 | |
| 1572 | return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, |
| 1573 | asoc->ep->base.bind_addr.port, gfp); |
| 1574 | } |
| 1575 | |
| 1576 | /* Lookup laddr in the bind address list of an association. */ |
| 1577 | int sctp_assoc_lookup_laddr(struct sctp_association *asoc, |
| 1578 | const union sctp_addr *laddr) |
| 1579 | { |
| 1580 | int found = 0; |
| 1581 | |
| 1582 | if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && |
| 1583 | sctp_bind_addr_match(&asoc->base.bind_addr, laddr, |
| 1584 | sctp_sk(asoc->base.sk))) |
| 1585 | found = 1; |
| 1586 | |
| 1587 | return found; |
| 1588 | } |
| 1589 | |
| 1590 | /* Set an association id for a given association */ |
| 1591 | int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) |
| 1592 | { |
| 1593 | bool preload = gfpflags_allow_blocking(gfp); |
| 1594 | int ret; |
| 1595 | |
| 1596 | /* If the id is already assigned, keep it. */ |
| 1597 | if (asoc->assoc_id) |
| 1598 | return 0; |
| 1599 | |
| 1600 | if (preload) |
| 1601 | idr_preload(gfp); |
| 1602 | spin_lock_bh(&sctp_assocs_id_lock); |
| 1603 | /* 0 is not a valid assoc_id, must be >= 1 */ |
| 1604 | ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); |
| 1605 | spin_unlock_bh(&sctp_assocs_id_lock); |
| 1606 | if (preload) |
| 1607 | idr_preload_end(); |
| 1608 | if (ret < 0) |
| 1609 | return ret; |
| 1610 | |
| 1611 | asoc->assoc_id = (sctp_assoc_t)ret; |
| 1612 | return 0; |
| 1613 | } |
| 1614 | |
| 1615 | /* Free the ASCONF queue */ |
| 1616 | static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) |
| 1617 | { |
| 1618 | struct sctp_chunk *asconf; |
| 1619 | struct sctp_chunk *tmp; |
| 1620 | |
| 1621 | list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { |
| 1622 | list_del_init(&asconf->list); |
| 1623 | sctp_chunk_free(asconf); |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | /* Free asconf_ack cache */ |
| 1628 | static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) |
| 1629 | { |
| 1630 | struct sctp_chunk *ack; |
| 1631 | struct sctp_chunk *tmp; |
| 1632 | |
| 1633 | list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, |
| 1634 | transmitted_list) { |
| 1635 | list_del_init(&ack->transmitted_list); |
| 1636 | sctp_chunk_free(ack); |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | /* Clean up the ASCONF_ACK queue */ |
| 1641 | void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) |
| 1642 | { |
| 1643 | struct sctp_chunk *ack; |
| 1644 | struct sctp_chunk *tmp; |
| 1645 | |
| 1646 | /* We can remove all the entries from the queue up to |
| 1647 | * the "Peer-Sequence-Number". |
| 1648 | */ |
| 1649 | list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, |
| 1650 | transmitted_list) { |
| 1651 | if (ack->subh.addip_hdr->serial == |
| 1652 | htonl(asoc->peer.addip_serial)) |
| 1653 | break; |
| 1654 | |
| 1655 | list_del_init(&ack->transmitted_list); |
| 1656 | sctp_chunk_free(ack); |
| 1657 | } |
| 1658 | } |
| 1659 | |
| 1660 | /* Find the ASCONF_ACK whose serial number matches ASCONF */ |
| 1661 | struct sctp_chunk *sctp_assoc_lookup_asconf_ack( |
| 1662 | const struct sctp_association *asoc, |
| 1663 | __be32 serial) |
| 1664 | { |
| 1665 | struct sctp_chunk *ack; |
| 1666 | |
| 1667 | /* Walk through the list of cached ASCONF-ACKs and find the |
| 1668 | * ack chunk whose serial number matches that of the request. |
| 1669 | */ |
| 1670 | list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { |
| 1671 | if (sctp_chunk_pending(ack)) |
| 1672 | continue; |
| 1673 | if (ack->subh.addip_hdr->serial == serial) { |
| 1674 | sctp_chunk_hold(ack); |
| 1675 | return ack; |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | return NULL; |
| 1680 | } |
| 1681 | |
| 1682 | void sctp_asconf_queue_teardown(struct sctp_association *asoc) |
| 1683 | { |
| 1684 | /* Free any cached ASCONF_ACK chunk. */ |
| 1685 | sctp_assoc_free_asconf_acks(asoc); |
| 1686 | |
| 1687 | /* Free the ASCONF queue. */ |
| 1688 | sctp_assoc_free_asconf_queue(asoc); |
| 1689 | |
| 1690 | /* Free any cached ASCONF chunk. */ |
| 1691 | if (asoc->addip_last_asconf) |
| 1692 | sctp_chunk_free(asoc->addip_last_asconf); |
| 1693 | } |