Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* SCTP kernel implementation |
| 2 | * (C) Copyright IBM Corp. 2001, 2004 |
| 3 | * Copyright (c) 1999 Cisco, Inc. |
| 4 | * Copyright (c) 1999-2001 Motorola, Inc. |
| 5 | * |
| 6 | * This file is part of the SCTP kernel implementation |
| 7 | * |
| 8 | * These functions work with the state functions in sctp_sm_statefuns.c |
| 9 | * to implement that state operations. These functions implement the |
| 10 | * steps which require modifying existing data structures. |
| 11 | * |
| 12 | * This SCTP implementation is free software; |
| 13 | * you can redistribute it and/or modify it under the terms of |
| 14 | * the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2, or (at your option) |
| 16 | * any later version. |
| 17 | * |
| 18 | * This SCTP implementation is distributed in the hope that it |
| 19 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 20 | * ************************ |
| 21 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 22 | * See the GNU General Public License for more details. |
| 23 | * |
| 24 | * You should have received a copy of the GNU General Public License |
| 25 | * along with GNU CC; see the file COPYING. If not, see |
| 26 | * <http://www.gnu.org/licenses/>. |
| 27 | * |
| 28 | * Please send any bug reports or fixes you make to the |
| 29 | * email address(es): |
| 30 | * lksctp developers <linux-sctp@vger.kernel.org> |
| 31 | * |
| 32 | * Written or modified by: |
| 33 | * La Monte H.P. Yarroll <piggy@acm.org> |
| 34 | * Karl Knutson <karl@athena.chicago.il.us> |
| 35 | * Jon Grimm <jgrimm@austin.ibm.com> |
| 36 | * Hui Huang <hui.huang@nokia.com> |
| 37 | * Dajiang Zhang <dajiang.zhang@nokia.com> |
| 38 | * Daisy Chang <daisyc@us.ibm.com> |
| 39 | * Sridhar Samudrala <sri@us.ibm.com> |
| 40 | * Ardelle Fan <ardelle.fan@intel.com> |
| 41 | */ |
| 42 | |
| 43 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 44 | |
| 45 | #include <linux/skbuff.h> |
| 46 | #include <linux/types.h> |
| 47 | #include <linux/socket.h> |
| 48 | #include <linux/ip.h> |
| 49 | #include <linux/gfp.h> |
| 50 | #include <net/sock.h> |
| 51 | #include <net/sctp/sctp.h> |
| 52 | #include <net/sctp/sm.h> |
| 53 | |
| 54 | static int sctp_cmd_interpreter(sctp_event_t event_type, |
| 55 | sctp_subtype_t subtype, |
| 56 | sctp_state_t state, |
| 57 | struct sctp_endpoint *ep, |
| 58 | struct sctp_association *asoc, |
| 59 | void *event_arg, |
| 60 | sctp_disposition_t status, |
| 61 | sctp_cmd_seq_t *commands, |
| 62 | gfp_t gfp); |
| 63 | static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, |
| 64 | sctp_state_t state, |
| 65 | struct sctp_endpoint *ep, |
| 66 | struct sctp_association *asoc, |
| 67 | void *event_arg, |
| 68 | sctp_disposition_t status, |
| 69 | sctp_cmd_seq_t *commands, |
| 70 | gfp_t gfp); |
| 71 | |
| 72 | static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, |
| 73 | struct sctp_transport *t); |
| 74 | /******************************************************************** |
| 75 | * Helper functions |
| 76 | ********************************************************************/ |
| 77 | |
| 78 | /* A helper function for delayed processing of INET ECN CE bit. */ |
| 79 | static void sctp_do_ecn_ce_work(struct sctp_association *asoc, |
| 80 | __u32 lowest_tsn) |
| 81 | { |
| 82 | /* Save the TSN away for comparison when we receive CWR */ |
| 83 | |
| 84 | asoc->last_ecne_tsn = lowest_tsn; |
| 85 | asoc->need_ecne = 1; |
| 86 | } |
| 87 | |
| 88 | /* Helper function for delayed processing of SCTP ECNE chunk. */ |
| 89 | /* RFC 2960 Appendix A |
| 90 | * |
| 91 | * RFC 2481 details a specific bit for a sender to send in |
| 92 | * the header of its next outbound TCP segment to indicate to |
| 93 | * its peer that it has reduced its congestion window. This |
| 94 | * is termed the CWR bit. For SCTP the same indication is made |
| 95 | * by including the CWR chunk. This chunk contains one data |
| 96 | * element, i.e. the TSN number that was sent in the ECNE chunk. |
| 97 | * This element represents the lowest TSN number in the datagram |
| 98 | * that was originally marked with the CE bit. |
| 99 | */ |
| 100 | static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, |
| 101 | __u32 lowest_tsn, |
| 102 | struct sctp_chunk *chunk) |
| 103 | { |
| 104 | struct sctp_chunk *repl; |
| 105 | |
| 106 | /* Our previously transmitted packet ran into some congestion |
| 107 | * so we should take action by reducing cwnd and ssthresh |
| 108 | * and then ACK our peer that we we've done so by |
| 109 | * sending a CWR. |
| 110 | */ |
| 111 | |
| 112 | /* First, try to determine if we want to actually lower |
| 113 | * our cwnd variables. Only lower them if the ECNE looks more |
| 114 | * recent than the last response. |
| 115 | */ |
| 116 | if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { |
| 117 | struct sctp_transport *transport; |
| 118 | |
| 119 | /* Find which transport's congestion variables |
| 120 | * need to be adjusted. |
| 121 | */ |
| 122 | transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); |
| 123 | |
| 124 | /* Update the congestion variables. */ |
| 125 | if (transport) |
| 126 | sctp_transport_lower_cwnd(transport, |
| 127 | SCTP_LOWER_CWND_ECNE); |
| 128 | asoc->last_cwr_tsn = lowest_tsn; |
| 129 | } |
| 130 | |
| 131 | /* Always try to quiet the other end. In case of lost CWR, |
| 132 | * resend last_cwr_tsn. |
| 133 | */ |
| 134 | repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); |
| 135 | |
| 136 | /* If we run out of memory, it will look like a lost CWR. We'll |
| 137 | * get back in sync eventually. |
| 138 | */ |
| 139 | return repl; |
| 140 | } |
| 141 | |
| 142 | /* Helper function to do delayed processing of ECN CWR chunk. */ |
| 143 | static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, |
| 144 | __u32 lowest_tsn) |
| 145 | { |
| 146 | /* Turn off ECNE getting auto-prepended to every outgoing |
| 147 | * packet |
| 148 | */ |
| 149 | asoc->need_ecne = 0; |
| 150 | } |
| 151 | |
| 152 | /* Generate SACK if necessary. We call this at the end of a packet. */ |
| 153 | static int sctp_gen_sack(struct sctp_association *asoc, int force, |
| 154 | sctp_cmd_seq_t *commands) |
| 155 | { |
| 156 | __u32 ctsn, max_tsn_seen; |
| 157 | struct sctp_chunk *sack; |
| 158 | struct sctp_transport *trans = asoc->peer.last_data_from; |
| 159 | int error = 0; |
| 160 | |
| 161 | if (force || |
| 162 | (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || |
| 163 | (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) |
| 164 | asoc->peer.sack_needed = 1; |
| 165 | |
| 166 | ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); |
| 167 | max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); |
| 168 | |
| 169 | /* From 12.2 Parameters necessary per association (i.e. the TCB): |
| 170 | * |
| 171 | * Ack State : This flag indicates if the next received packet |
| 172 | * : is to be responded to with a SACK. ... |
| 173 | * : When DATA chunks are out of order, SACK's |
| 174 | * : are not delayed (see Section 6). |
| 175 | * |
| 176 | * [This is actually not mentioned in Section 6, but we |
| 177 | * implement it here anyway. --piggy] |
| 178 | */ |
| 179 | if (max_tsn_seen != ctsn) |
| 180 | asoc->peer.sack_needed = 1; |
| 181 | |
| 182 | /* From 6.2 Acknowledgement on Reception of DATA Chunks: |
| 183 | * |
| 184 | * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, |
| 185 | * an acknowledgement SHOULD be generated for at least every |
| 186 | * second packet (not every second DATA chunk) received, and |
| 187 | * SHOULD be generated within 200 ms of the arrival of any |
| 188 | * unacknowledged DATA chunk. ... |
| 189 | */ |
| 190 | if (!asoc->peer.sack_needed) { |
| 191 | asoc->peer.sack_cnt++; |
| 192 | |
| 193 | /* Set the SACK delay timeout based on the |
| 194 | * SACK delay for the last transport |
| 195 | * data was received from, or the default |
| 196 | * for the association. |
| 197 | */ |
| 198 | if (trans) { |
| 199 | /* We will need a SACK for the next packet. */ |
| 200 | if (asoc->peer.sack_cnt >= trans->sackfreq - 1) |
| 201 | asoc->peer.sack_needed = 1; |
| 202 | |
| 203 | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = |
| 204 | trans->sackdelay; |
| 205 | } else { |
| 206 | /* We will need a SACK for the next packet. */ |
| 207 | if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) |
| 208 | asoc->peer.sack_needed = 1; |
| 209 | |
| 210 | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = |
| 211 | asoc->sackdelay; |
| 212 | } |
| 213 | |
| 214 | /* Restart the SACK timer. */ |
| 215 | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, |
| 216 | SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); |
| 217 | } else { |
| 218 | asoc->a_rwnd = asoc->rwnd; |
| 219 | sack = sctp_make_sack(asoc); |
| 220 | if (!sack) |
| 221 | goto nomem; |
| 222 | |
| 223 | asoc->peer.sack_needed = 0; |
| 224 | asoc->peer.sack_cnt = 0; |
| 225 | |
| 226 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); |
| 227 | |
| 228 | /* Stop the SACK timer. */ |
| 229 | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, |
| 230 | SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); |
| 231 | } |
| 232 | |
| 233 | return error; |
| 234 | nomem: |
| 235 | error = -ENOMEM; |
| 236 | return error; |
| 237 | } |
| 238 | |
| 239 | /* When the T3-RTX timer expires, it calls this function to create the |
| 240 | * relevant state machine event. |
| 241 | */ |
| 242 | void sctp_generate_t3_rtx_event(unsigned long peer) |
| 243 | { |
| 244 | int error; |
| 245 | struct sctp_transport *transport = (struct sctp_transport *) peer; |
| 246 | struct sctp_association *asoc = transport->asoc; |
| 247 | struct sock *sk = asoc->base.sk; |
| 248 | struct net *net = sock_net(sk); |
| 249 | |
| 250 | /* Check whether a task is in the sock. */ |
| 251 | |
| 252 | bh_lock_sock(sk); |
| 253 | if (sock_owned_by_user(sk)) { |
| 254 | pr_debug("%s: sock is busy\n", __func__); |
| 255 | |
| 256 | /* Try again later. */ |
| 257 | if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) |
| 258 | sctp_transport_hold(transport); |
| 259 | goto out_unlock; |
| 260 | } |
| 261 | |
| 262 | /* Is this transport really dead and just waiting around for |
| 263 | * the timer to let go of the reference? |
| 264 | */ |
| 265 | if (transport->dead) |
| 266 | goto out_unlock; |
| 267 | |
| 268 | /* Run through the state machine. */ |
| 269 | error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, |
| 270 | SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), |
| 271 | asoc->state, |
| 272 | asoc->ep, asoc, |
| 273 | transport, GFP_ATOMIC); |
| 274 | |
| 275 | if (error) |
| 276 | sk->sk_err = -error; |
| 277 | |
| 278 | out_unlock: |
| 279 | bh_unlock_sock(sk); |
| 280 | sctp_transport_put(transport); |
| 281 | } |
| 282 | |
| 283 | /* This is a sa interface for producing timeout events. It works |
| 284 | * for timeouts which use the association as their parameter. |
| 285 | */ |
| 286 | static void sctp_generate_timeout_event(struct sctp_association *asoc, |
| 287 | sctp_event_timeout_t timeout_type) |
| 288 | { |
| 289 | struct sock *sk = asoc->base.sk; |
| 290 | struct net *net = sock_net(sk); |
| 291 | int error = 0; |
| 292 | |
| 293 | bh_lock_sock(sk); |
| 294 | if (sock_owned_by_user(sk)) { |
| 295 | pr_debug("%s: sock is busy: timer %d\n", __func__, |
| 296 | timeout_type); |
| 297 | |
| 298 | /* Try again later. */ |
| 299 | if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) |
| 300 | sctp_association_hold(asoc); |
| 301 | goto out_unlock; |
| 302 | } |
| 303 | |
| 304 | /* Is this association really dead and just waiting around for |
| 305 | * the timer to let go of the reference? |
| 306 | */ |
| 307 | if (asoc->base.dead) |
| 308 | goto out_unlock; |
| 309 | |
| 310 | /* Run through the state machine. */ |
| 311 | error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, |
| 312 | SCTP_ST_TIMEOUT(timeout_type), |
| 313 | asoc->state, asoc->ep, asoc, |
| 314 | (void *)timeout_type, GFP_ATOMIC); |
| 315 | |
| 316 | if (error) |
| 317 | sk->sk_err = -error; |
| 318 | |
| 319 | out_unlock: |
| 320 | bh_unlock_sock(sk); |
| 321 | sctp_association_put(asoc); |
| 322 | } |
| 323 | |
| 324 | static void sctp_generate_t1_cookie_event(unsigned long data) |
| 325 | { |
| 326 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 327 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); |
| 328 | } |
| 329 | |
| 330 | static void sctp_generate_t1_init_event(unsigned long data) |
| 331 | { |
| 332 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 333 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); |
| 334 | } |
| 335 | |
| 336 | static void sctp_generate_t2_shutdown_event(unsigned long data) |
| 337 | { |
| 338 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 339 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); |
| 340 | } |
| 341 | |
| 342 | static void sctp_generate_t4_rto_event(unsigned long data) |
| 343 | { |
| 344 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 345 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); |
| 346 | } |
| 347 | |
| 348 | static void sctp_generate_t5_shutdown_guard_event(unsigned long data) |
| 349 | { |
| 350 | struct sctp_association *asoc = (struct sctp_association *)data; |
| 351 | sctp_generate_timeout_event(asoc, |
| 352 | SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); |
| 353 | |
| 354 | } /* sctp_generate_t5_shutdown_guard_event() */ |
| 355 | |
| 356 | static void sctp_generate_autoclose_event(unsigned long data) |
| 357 | { |
| 358 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 359 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); |
| 360 | } |
| 361 | |
| 362 | /* Generate a heart beat event. If the sock is busy, reschedule. Make |
| 363 | * sure that the transport is still valid. |
| 364 | */ |
| 365 | void sctp_generate_heartbeat_event(unsigned long data) |
| 366 | { |
| 367 | int error = 0; |
| 368 | struct sctp_transport *transport = (struct sctp_transport *) data; |
| 369 | struct sctp_association *asoc = transport->asoc; |
| 370 | struct sock *sk = asoc->base.sk; |
| 371 | struct net *net = sock_net(sk); |
| 372 | |
| 373 | bh_lock_sock(sk); |
| 374 | if (sock_owned_by_user(sk)) { |
| 375 | pr_debug("%s: sock is busy\n", __func__); |
| 376 | |
| 377 | /* Try again later. */ |
| 378 | if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) |
| 379 | sctp_transport_hold(transport); |
| 380 | goto out_unlock; |
| 381 | } |
| 382 | |
| 383 | /* Is this structure just waiting around for us to actually |
| 384 | * get destroyed? |
| 385 | */ |
| 386 | if (transport->dead) |
| 387 | goto out_unlock; |
| 388 | |
| 389 | error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, |
| 390 | SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), |
| 391 | asoc->state, asoc->ep, asoc, |
| 392 | transport, GFP_ATOMIC); |
| 393 | |
| 394 | if (error) |
| 395 | sk->sk_err = -error; |
| 396 | |
| 397 | out_unlock: |
| 398 | bh_unlock_sock(sk); |
| 399 | sctp_transport_put(transport); |
| 400 | } |
| 401 | |
| 402 | /* Handle the timeout of the ICMP protocol unreachable timer. Trigger |
| 403 | * the correct state machine transition that will close the association. |
| 404 | */ |
| 405 | void sctp_generate_proto_unreach_event(unsigned long data) |
| 406 | { |
| 407 | struct sctp_transport *transport = (struct sctp_transport *) data; |
| 408 | struct sctp_association *asoc = transport->asoc; |
| 409 | struct sock *sk = asoc->base.sk; |
| 410 | struct net *net = sock_net(sk); |
| 411 | |
| 412 | bh_lock_sock(sk); |
| 413 | if (sock_owned_by_user(sk)) { |
| 414 | pr_debug("%s: sock is busy\n", __func__); |
| 415 | |
| 416 | /* Try again later. */ |
| 417 | if (!mod_timer(&transport->proto_unreach_timer, |
| 418 | jiffies + (HZ/20))) |
| 419 | sctp_association_hold(asoc); |
| 420 | goto out_unlock; |
| 421 | } |
| 422 | |
| 423 | /* Is this structure just waiting around for us to actually |
| 424 | * get destroyed? |
| 425 | */ |
| 426 | if (asoc->base.dead) |
| 427 | goto out_unlock; |
| 428 | |
| 429 | sctp_do_sm(net, SCTP_EVENT_T_OTHER, |
| 430 | SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), |
| 431 | asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); |
| 432 | |
| 433 | out_unlock: |
| 434 | bh_unlock_sock(sk); |
| 435 | sctp_association_put(asoc); |
| 436 | } |
| 437 | |
| 438 | |
| 439 | /* Inject a SACK Timeout event into the state machine. */ |
| 440 | static void sctp_generate_sack_event(unsigned long data) |
| 441 | { |
| 442 | struct sctp_association *asoc = (struct sctp_association *) data; |
| 443 | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); |
| 444 | } |
| 445 | |
| 446 | sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { |
| 447 | NULL, |
| 448 | sctp_generate_t1_cookie_event, |
| 449 | sctp_generate_t1_init_event, |
| 450 | sctp_generate_t2_shutdown_event, |
| 451 | NULL, |
| 452 | sctp_generate_t4_rto_event, |
| 453 | sctp_generate_t5_shutdown_guard_event, |
| 454 | NULL, |
| 455 | sctp_generate_sack_event, |
| 456 | sctp_generate_autoclose_event, |
| 457 | }; |
| 458 | |
| 459 | |
| 460 | /* RFC 2960 8.2 Path Failure Detection |
| 461 | * |
| 462 | * When its peer endpoint is multi-homed, an endpoint should keep a |
| 463 | * error counter for each of the destination transport addresses of the |
| 464 | * peer endpoint. |
| 465 | * |
| 466 | * Each time the T3-rtx timer expires on any address, or when a |
| 467 | * HEARTBEAT sent to an idle address is not acknowledged within a RTO, |
| 468 | * the error counter of that destination address will be incremented. |
| 469 | * When the value in the error counter exceeds the protocol parameter |
| 470 | * 'Path.Max.Retrans' of that destination address, the endpoint should |
| 471 | * mark the destination transport address as inactive, and a |
| 472 | * notification SHOULD be sent to the upper layer. |
| 473 | * |
| 474 | */ |
| 475 | static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands, |
| 476 | struct sctp_association *asoc, |
| 477 | struct sctp_transport *transport, |
| 478 | int is_hb) |
| 479 | { |
| 480 | /* The check for association's overall error counter exceeding the |
| 481 | * threshold is done in the state function. |
| 482 | */ |
| 483 | /* We are here due to a timer expiration. If the timer was |
| 484 | * not a HEARTBEAT, then normal error tracking is done. |
| 485 | * If the timer was a heartbeat, we only increment error counts |
| 486 | * when we already have an outstanding HEARTBEAT that has not |
| 487 | * been acknowledged. |
| 488 | * Additionally, some tranport states inhibit error increments. |
| 489 | */ |
| 490 | if (!is_hb) { |
| 491 | asoc->overall_error_count++; |
| 492 | if (transport->state != SCTP_INACTIVE) |
| 493 | transport->error_count++; |
| 494 | } else if (transport->hb_sent) { |
| 495 | if (transport->state != SCTP_UNCONFIRMED) |
| 496 | asoc->overall_error_count++; |
| 497 | if (transport->state != SCTP_INACTIVE) |
| 498 | transport->error_count++; |
| 499 | } |
| 500 | |
| 501 | /* If the transport error count is greater than the pf_retrans |
| 502 | * threshold, and less than pathmaxrtx, and if the current state |
| 503 | * is SCTP_ACTIVE, then mark this transport as Partially Failed, |
| 504 | * see SCTP Quick Failover Draft, section 5.1 |
| 505 | */ |
| 506 | if ((transport->state == SCTP_ACTIVE) && |
| 507 | (asoc->pf_retrans < transport->pathmaxrxt) && |
| 508 | (transport->error_count > asoc->pf_retrans)) { |
| 509 | |
| 510 | sctp_assoc_control_transport(asoc, transport, |
| 511 | SCTP_TRANSPORT_PF, |
| 512 | 0); |
| 513 | |
| 514 | /* Update the hb timer to resend a heartbeat every rto */ |
| 515 | sctp_cmd_hb_timer_update(commands, transport); |
| 516 | } |
| 517 | |
| 518 | if (transport->state != SCTP_INACTIVE && |
| 519 | (transport->error_count > transport->pathmaxrxt)) { |
| 520 | pr_debug("%s: association:%p transport addr:%pISpc failed\n", |
| 521 | __func__, asoc, &transport->ipaddr.sa); |
| 522 | |
| 523 | sctp_assoc_control_transport(asoc, transport, |
| 524 | SCTP_TRANSPORT_DOWN, |
| 525 | SCTP_FAILED_THRESHOLD); |
| 526 | } |
| 527 | |
| 528 | /* E2) For the destination address for which the timer |
| 529 | * expires, set RTO <- RTO * 2 ("back off the timer"). The |
| 530 | * maximum value discussed in rule C7 above (RTO.max) may be |
| 531 | * used to provide an upper bound to this doubling operation. |
| 532 | * |
| 533 | * Special Case: the first HB doesn't trigger exponential backoff. |
| 534 | * The first unacknowledged HB triggers it. We do this with a flag |
| 535 | * that indicates that we have an outstanding HB. |
| 536 | */ |
| 537 | if (!is_hb || transport->hb_sent) { |
| 538 | transport->rto = min((transport->rto * 2), transport->asoc->rto_max); |
| 539 | sctp_max_rto(asoc, transport); |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | /* Worker routine to handle INIT command failure. */ |
| 544 | static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, |
| 545 | struct sctp_association *asoc, |
| 546 | unsigned int error) |
| 547 | { |
| 548 | struct sctp_ulpevent *event; |
| 549 | |
| 550 | event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, |
| 551 | (__u16)error, 0, 0, NULL, |
| 552 | GFP_ATOMIC); |
| 553 | |
| 554 | if (event) |
| 555 | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, |
| 556 | SCTP_ULPEVENT(event)); |
| 557 | |
| 558 | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, |
| 559 | SCTP_STATE(SCTP_STATE_CLOSED)); |
| 560 | |
| 561 | /* SEND_FAILED sent later when cleaning up the association. */ |
| 562 | asoc->outqueue.error = error; |
| 563 | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); |
| 564 | } |
| 565 | |
| 566 | /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ |
| 567 | static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, |
| 568 | struct sctp_association *asoc, |
| 569 | sctp_event_t event_type, |
| 570 | sctp_subtype_t subtype, |
| 571 | struct sctp_chunk *chunk, |
| 572 | unsigned int error) |
| 573 | { |
| 574 | struct sctp_ulpevent *event; |
| 575 | struct sctp_chunk *abort; |
| 576 | /* Cancel any partial delivery in progress. */ |
| 577 | sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); |
| 578 | |
| 579 | if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) |
| 580 | event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, |
| 581 | (__u16)error, 0, 0, chunk, |
| 582 | GFP_ATOMIC); |
| 583 | else |
| 584 | event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, |
| 585 | (__u16)error, 0, 0, NULL, |
| 586 | GFP_ATOMIC); |
| 587 | if (event) |
| 588 | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, |
| 589 | SCTP_ULPEVENT(event)); |
| 590 | |
| 591 | if (asoc->overall_error_count >= asoc->max_retrans) { |
| 592 | abort = sctp_make_violation_max_retrans(asoc, chunk); |
| 593 | if (abort) |
| 594 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 595 | SCTP_CHUNK(abort)); |
| 596 | } |
| 597 | |
| 598 | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, |
| 599 | SCTP_STATE(SCTP_STATE_CLOSED)); |
| 600 | |
| 601 | /* SEND_FAILED sent later when cleaning up the association. */ |
| 602 | asoc->outqueue.error = error; |
| 603 | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); |
| 604 | } |
| 605 | |
| 606 | /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT |
| 607 | * inside the cookie. In reality, this is only used for INIT-ACK processing |
| 608 | * since all other cases use "temporary" associations and can do all |
| 609 | * their work in statefuns directly. |
| 610 | */ |
| 611 | static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, |
| 612 | struct sctp_association *asoc, |
| 613 | struct sctp_chunk *chunk, |
| 614 | sctp_init_chunk_t *peer_init, |
| 615 | gfp_t gfp) |
| 616 | { |
| 617 | int error; |
| 618 | |
| 619 | /* We only process the init as a sideeffect in a single |
| 620 | * case. This is when we process the INIT-ACK. If we |
| 621 | * fail during INIT processing (due to malloc problems), |
| 622 | * just return the error and stop processing the stack. |
| 623 | */ |
| 624 | if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) |
| 625 | error = -ENOMEM; |
| 626 | else |
| 627 | error = 0; |
| 628 | |
| 629 | return error; |
| 630 | } |
| 631 | |
| 632 | /* Helper function to break out starting up of heartbeat timers. */ |
| 633 | static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, |
| 634 | struct sctp_association *asoc) |
| 635 | { |
| 636 | struct sctp_transport *t; |
| 637 | |
| 638 | /* Start a heartbeat timer for each transport on the association. |
| 639 | * hold a reference on the transport to make sure none of |
| 640 | * the needed data structures go away. |
| 641 | */ |
| 642 | list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { |
| 643 | |
| 644 | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) |
| 645 | sctp_transport_hold(t); |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, |
| 650 | struct sctp_association *asoc) |
| 651 | { |
| 652 | struct sctp_transport *t; |
| 653 | |
| 654 | /* Stop all heartbeat timers. */ |
| 655 | |
| 656 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 657 | transports) { |
| 658 | if (del_timer(&t->hb_timer)) |
| 659 | sctp_transport_put(t); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | /* Helper function to stop any pending T3-RTX timers */ |
| 664 | static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, |
| 665 | struct sctp_association *asoc) |
| 666 | { |
| 667 | struct sctp_transport *t; |
| 668 | |
| 669 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 670 | transports) { |
| 671 | if (del_timer(&t->T3_rtx_timer)) |
| 672 | sctp_transport_put(t); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | |
| 677 | /* Helper function to update the heartbeat timer. */ |
| 678 | static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, |
| 679 | struct sctp_transport *t) |
| 680 | { |
| 681 | /* Update the heartbeat timer. */ |
| 682 | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) |
| 683 | sctp_transport_hold(t); |
| 684 | } |
| 685 | |
| 686 | /* Helper function to handle the reception of an HEARTBEAT ACK. */ |
| 687 | static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, |
| 688 | struct sctp_association *asoc, |
| 689 | struct sctp_transport *t, |
| 690 | struct sctp_chunk *chunk) |
| 691 | { |
| 692 | sctp_sender_hb_info_t *hbinfo; |
| 693 | int was_unconfirmed = 0; |
| 694 | |
| 695 | /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the |
| 696 | * HEARTBEAT should clear the error counter of the destination |
| 697 | * transport address to which the HEARTBEAT was sent. |
| 698 | */ |
| 699 | t->error_count = 0; |
| 700 | |
| 701 | /* |
| 702 | * Although RFC4960 specifies that the overall error count must |
| 703 | * be cleared when a HEARTBEAT ACK is received, we make an |
| 704 | * exception while in SHUTDOWN PENDING. If the peer keeps its |
| 705 | * window shut forever, we may never be able to transmit our |
| 706 | * outstanding data and rely on the retransmission limit be reached |
| 707 | * to shutdown the association. |
| 708 | */ |
| 709 | if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) |
| 710 | t->asoc->overall_error_count = 0; |
| 711 | |
| 712 | /* Clear the hb_sent flag to signal that we had a good |
| 713 | * acknowledgement. |
| 714 | */ |
| 715 | t->hb_sent = 0; |
| 716 | |
| 717 | /* Mark the destination transport address as active if it is not so |
| 718 | * marked. |
| 719 | */ |
| 720 | if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { |
| 721 | was_unconfirmed = 1; |
| 722 | sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, |
| 723 | SCTP_HEARTBEAT_SUCCESS); |
| 724 | } |
| 725 | |
| 726 | if (t->state == SCTP_PF) |
| 727 | sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, |
| 728 | SCTP_HEARTBEAT_SUCCESS); |
| 729 | |
| 730 | /* HB-ACK was received for a the proper HB. Consider this |
| 731 | * forward progress. |
| 732 | */ |
| 733 | if (t->dst) |
| 734 | dst_confirm(t->dst); |
| 735 | |
| 736 | /* The receiver of the HEARTBEAT ACK should also perform an |
| 737 | * RTT measurement for that destination transport address |
| 738 | * using the time value carried in the HEARTBEAT ACK chunk. |
| 739 | * If the transport's rto_pending variable has been cleared, |
| 740 | * it was most likely due to a retransmit. However, we want |
| 741 | * to re-enable it to properly update the rto. |
| 742 | */ |
| 743 | if (t->rto_pending == 0) |
| 744 | t->rto_pending = 1; |
| 745 | |
| 746 | hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; |
| 747 | sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); |
| 748 | |
| 749 | /* Update the heartbeat timer. */ |
| 750 | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) |
| 751 | sctp_transport_hold(t); |
| 752 | |
| 753 | if (was_unconfirmed && asoc->peer.transport_count == 1) |
| 754 | sctp_transport_immediate_rtx(t); |
| 755 | } |
| 756 | |
| 757 | |
| 758 | /* Helper function to process the process SACK command. */ |
| 759 | static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, |
| 760 | struct sctp_association *asoc, |
| 761 | struct sctp_chunk *chunk) |
| 762 | { |
| 763 | int err = 0; |
| 764 | |
| 765 | if (sctp_outq_sack(&asoc->outqueue, chunk)) { |
| 766 | struct net *net = sock_net(asoc->base.sk); |
| 767 | |
| 768 | /* There are no more TSNs awaiting SACK. */ |
| 769 | err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, |
| 770 | SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), |
| 771 | asoc->state, asoc->ep, asoc, NULL, |
| 772 | GFP_ATOMIC); |
| 773 | } |
| 774 | |
| 775 | return err; |
| 776 | } |
| 777 | |
| 778 | /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set |
| 779 | * the transport for a shutdown chunk. |
| 780 | */ |
| 781 | static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, |
| 782 | struct sctp_association *asoc, |
| 783 | struct sctp_chunk *chunk) |
| 784 | { |
| 785 | struct sctp_transport *t; |
| 786 | |
| 787 | if (chunk->transport) |
| 788 | t = chunk->transport; |
| 789 | else { |
| 790 | t = sctp_assoc_choose_alter_transport(asoc, |
| 791 | asoc->shutdown_last_sent_to); |
| 792 | chunk->transport = t; |
| 793 | } |
| 794 | asoc->shutdown_last_sent_to = t; |
| 795 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; |
| 796 | } |
| 797 | |
| 798 | /* Helper function to change the state of an association. */ |
| 799 | static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, |
| 800 | struct sctp_association *asoc, |
| 801 | sctp_state_t state) |
| 802 | { |
| 803 | struct sock *sk = asoc->base.sk; |
| 804 | |
| 805 | asoc->state = state; |
| 806 | |
| 807 | pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); |
| 808 | |
| 809 | if (sctp_style(sk, TCP)) { |
| 810 | /* Change the sk->sk_state of a TCP-style socket that has |
| 811 | * successfully completed a connect() call. |
| 812 | */ |
| 813 | if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) |
| 814 | sk->sk_state = SCTP_SS_ESTABLISHED; |
| 815 | |
| 816 | /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ |
| 817 | if (sctp_state(asoc, SHUTDOWN_RECEIVED) && |
| 818 | sctp_sstate(sk, ESTABLISHED)) |
| 819 | sk->sk_shutdown |= RCV_SHUTDOWN; |
| 820 | } |
| 821 | |
| 822 | if (sctp_state(asoc, COOKIE_WAIT)) { |
| 823 | /* Reset init timeouts since they may have been |
| 824 | * increased due to timer expirations. |
| 825 | */ |
| 826 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = |
| 827 | asoc->rto_initial; |
| 828 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = |
| 829 | asoc->rto_initial; |
| 830 | } |
| 831 | |
| 832 | if (sctp_state(asoc, ESTABLISHED) || |
| 833 | sctp_state(asoc, CLOSED) || |
| 834 | sctp_state(asoc, SHUTDOWN_RECEIVED)) { |
| 835 | /* Wake up any processes waiting in the asoc's wait queue in |
| 836 | * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). |
| 837 | */ |
| 838 | if (waitqueue_active(&asoc->wait)) |
| 839 | wake_up_interruptible(&asoc->wait); |
| 840 | |
| 841 | /* Wake up any processes waiting in the sk's sleep queue of |
| 842 | * a TCP-style or UDP-style peeled-off socket in |
| 843 | * sctp_wait_for_accept() or sctp_wait_for_packet(). |
| 844 | * For a UDP-style socket, the waiters are woken up by the |
| 845 | * notifications. |
| 846 | */ |
| 847 | if (!sctp_style(sk, UDP)) |
| 848 | sk->sk_state_change(sk); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | /* Helper function to delete an association. */ |
| 853 | static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, |
| 854 | struct sctp_association *asoc) |
| 855 | { |
| 856 | struct sock *sk = asoc->base.sk; |
| 857 | |
| 858 | /* If it is a non-temporary association belonging to a TCP-style |
| 859 | * listening socket that is not closed, do not free it so that accept() |
| 860 | * can pick it up later. |
| 861 | */ |
| 862 | if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && |
| 863 | (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) |
| 864 | return; |
| 865 | |
| 866 | sctp_unhash_established(asoc); |
| 867 | sctp_association_free(asoc); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * ADDIP Section 4.1 ASCONF Chunk Procedures |
| 872 | * A4) Start a T-4 RTO timer, using the RTO value of the selected |
| 873 | * destination address (we use active path instead of primary path just |
| 874 | * because primary path may be inactive. |
| 875 | */ |
| 876 | static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, |
| 877 | struct sctp_association *asoc, |
| 878 | struct sctp_chunk *chunk) |
| 879 | { |
| 880 | struct sctp_transport *t; |
| 881 | |
| 882 | t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); |
| 883 | asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; |
| 884 | chunk->transport = t; |
| 885 | } |
| 886 | |
| 887 | /* Process an incoming Operation Error Chunk. */ |
| 888 | static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, |
| 889 | struct sctp_association *asoc, |
| 890 | struct sctp_chunk *chunk) |
| 891 | { |
| 892 | struct sctp_errhdr *err_hdr; |
| 893 | struct sctp_ulpevent *ev; |
| 894 | |
| 895 | while (chunk->chunk_end > chunk->skb->data) { |
| 896 | err_hdr = (struct sctp_errhdr *)(chunk->skb->data); |
| 897 | |
| 898 | ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, |
| 899 | GFP_ATOMIC); |
| 900 | if (!ev) |
| 901 | return; |
| 902 | |
| 903 | sctp_ulpq_tail_event(&asoc->ulpq, ev); |
| 904 | |
| 905 | switch (err_hdr->cause) { |
| 906 | case SCTP_ERROR_UNKNOWN_CHUNK: |
| 907 | { |
| 908 | sctp_chunkhdr_t *unk_chunk_hdr; |
| 909 | |
| 910 | unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; |
| 911 | switch (unk_chunk_hdr->type) { |
| 912 | /* ADDIP 4.1 A9) If the peer responds to an ASCONF with |
| 913 | * an ERROR chunk reporting that it did not recognized |
| 914 | * the ASCONF chunk type, the sender of the ASCONF MUST |
| 915 | * NOT send any further ASCONF chunks and MUST stop its |
| 916 | * T-4 timer. |
| 917 | */ |
| 918 | case SCTP_CID_ASCONF: |
| 919 | if (asoc->peer.asconf_capable == 0) |
| 920 | break; |
| 921 | |
| 922 | asoc->peer.asconf_capable = 0; |
| 923 | sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, |
| 924 | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); |
| 925 | break; |
| 926 | default: |
| 927 | break; |
| 928 | } |
| 929 | break; |
| 930 | } |
| 931 | default: |
| 932 | break; |
| 933 | } |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | /* Process variable FWDTSN chunk information. */ |
| 938 | static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, |
| 939 | struct sctp_chunk *chunk) |
| 940 | { |
| 941 | struct sctp_fwdtsn_skip *skip; |
| 942 | /* Walk through all the skipped SSNs */ |
| 943 | sctp_walk_fwdtsn(skip, chunk) { |
| 944 | sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | /* Helper function to remove the association non-primary peer |
| 949 | * transports. |
| 950 | */ |
| 951 | static void sctp_cmd_del_non_primary(struct sctp_association *asoc) |
| 952 | { |
| 953 | struct sctp_transport *t; |
| 954 | struct list_head *pos; |
| 955 | struct list_head *temp; |
| 956 | |
| 957 | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { |
| 958 | t = list_entry(pos, struct sctp_transport, transports); |
| 959 | if (!sctp_cmp_addr_exact(&t->ipaddr, |
| 960 | &asoc->peer.primary_addr)) { |
| 961 | sctp_assoc_rm_peer(asoc, t); |
| 962 | } |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | /* Helper function to set sk_err on a 1-1 style socket. */ |
| 967 | static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) |
| 968 | { |
| 969 | struct sock *sk = asoc->base.sk; |
| 970 | |
| 971 | if (!sctp_style(sk, UDP)) |
| 972 | sk->sk_err = error; |
| 973 | } |
| 974 | |
| 975 | /* Helper function to generate an association change event */ |
| 976 | static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, |
| 977 | struct sctp_association *asoc, |
| 978 | u8 state) |
| 979 | { |
| 980 | struct sctp_ulpevent *ev; |
| 981 | |
| 982 | ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, |
| 983 | asoc->c.sinit_num_ostreams, |
| 984 | asoc->c.sinit_max_instreams, |
| 985 | NULL, GFP_ATOMIC); |
| 986 | if (ev) |
| 987 | sctp_ulpq_tail_event(&asoc->ulpq, ev); |
| 988 | } |
| 989 | |
| 990 | /* Helper function to generate an adaptation indication event */ |
| 991 | static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, |
| 992 | struct sctp_association *asoc) |
| 993 | { |
| 994 | struct sctp_ulpevent *ev; |
| 995 | |
| 996 | ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); |
| 997 | |
| 998 | if (ev) |
| 999 | sctp_ulpq_tail_event(&asoc->ulpq, ev); |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, |
| 1004 | sctp_event_timeout_t timer, |
| 1005 | char *name) |
| 1006 | { |
| 1007 | struct sctp_transport *t; |
| 1008 | |
| 1009 | t = asoc->init_last_sent_to; |
| 1010 | asoc->init_err_counter++; |
| 1011 | |
| 1012 | if (t->init_sent_count > (asoc->init_cycle + 1)) { |
| 1013 | asoc->timeouts[timer] *= 2; |
| 1014 | if (asoc->timeouts[timer] > asoc->max_init_timeo) { |
| 1015 | asoc->timeouts[timer] = asoc->max_init_timeo; |
| 1016 | } |
| 1017 | asoc->init_cycle++; |
| 1018 | |
| 1019 | pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" |
| 1020 | " cycle:%d timeout:%ld\n", __func__, name, |
| 1021 | asoc->init_err_counter, asoc->init_cycle, |
| 1022 | asoc->timeouts[timer]); |
| 1023 | } |
| 1024 | |
| 1025 | } |
| 1026 | |
| 1027 | /* Send the whole message, chunk by chunk, to the outqueue. |
| 1028 | * This way the whole message is queued up and bundling if |
| 1029 | * encouraged for small fragments. |
| 1030 | */ |
| 1031 | static int sctp_cmd_send_msg(struct sctp_association *asoc, |
| 1032 | struct sctp_datamsg *msg) |
| 1033 | { |
| 1034 | struct sctp_chunk *chunk; |
| 1035 | int error = 0; |
| 1036 | |
| 1037 | list_for_each_entry(chunk, &msg->chunks, frag_list) { |
| 1038 | error = sctp_outq_tail(&asoc->outqueue, chunk); |
| 1039 | if (error) |
| 1040 | break; |
| 1041 | } |
| 1042 | |
| 1043 | return error; |
| 1044 | } |
| 1045 | |
| 1046 | |
| 1047 | /* Sent the next ASCONF packet currently stored in the association. |
| 1048 | * This happens after the ASCONF_ACK was succeffully processed. |
| 1049 | */ |
| 1050 | static void sctp_cmd_send_asconf(struct sctp_association *asoc) |
| 1051 | { |
| 1052 | struct net *net = sock_net(asoc->base.sk); |
| 1053 | |
| 1054 | /* Send the next asconf chunk from the addip chunk |
| 1055 | * queue. |
| 1056 | */ |
| 1057 | if (!list_empty(&asoc->addip_chunk_list)) { |
| 1058 | struct list_head *entry = asoc->addip_chunk_list.next; |
| 1059 | struct sctp_chunk *asconf = list_entry(entry, |
| 1060 | struct sctp_chunk, list); |
| 1061 | list_del_init(entry); |
| 1062 | |
| 1063 | /* Hold the chunk until an ASCONF_ACK is received. */ |
| 1064 | sctp_chunk_hold(asconf); |
| 1065 | if (sctp_primitive_ASCONF(net, asoc, asconf)) |
| 1066 | sctp_chunk_free(asconf); |
| 1067 | else |
| 1068 | asoc->addip_last_asconf = asconf; |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | |
| 1073 | /* These three macros allow us to pull the debugging code out of the |
| 1074 | * main flow of sctp_do_sm() to keep attention focused on the real |
| 1075 | * functionality there. |
| 1076 | */ |
| 1077 | #define debug_pre_sfn() \ |
| 1078 | pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ |
| 1079 | ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ |
| 1080 | asoc, sctp_state_tbl[state], state_fn->name) |
| 1081 | |
| 1082 | #define debug_post_sfn() \ |
| 1083 | pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ |
| 1084 | sctp_status_tbl[status]) |
| 1085 | |
| 1086 | #define debug_post_sfx() \ |
| 1087 | pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ |
| 1088 | asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ |
| 1089 | sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) |
| 1090 | |
| 1091 | /* |
| 1092 | * This is the master state machine processing function. |
| 1093 | * |
| 1094 | * If you want to understand all of lksctp, this is a |
| 1095 | * good place to start. |
| 1096 | */ |
| 1097 | int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype, |
| 1098 | sctp_state_t state, |
| 1099 | struct sctp_endpoint *ep, |
| 1100 | struct sctp_association *asoc, |
| 1101 | void *event_arg, |
| 1102 | gfp_t gfp) |
| 1103 | { |
| 1104 | sctp_cmd_seq_t commands; |
| 1105 | const sctp_sm_table_entry_t *state_fn; |
| 1106 | sctp_disposition_t status; |
| 1107 | int error = 0; |
| 1108 | typedef const char *(printfn_t)(sctp_subtype_t); |
| 1109 | static printfn_t *table[] = { |
| 1110 | NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, |
| 1111 | }; |
| 1112 | printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; |
| 1113 | |
| 1114 | /* Look up the state function, run it, and then process the |
| 1115 | * side effects. These three steps are the heart of lksctp. |
| 1116 | */ |
| 1117 | state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); |
| 1118 | |
| 1119 | sctp_init_cmd_seq(&commands); |
| 1120 | |
| 1121 | debug_pre_sfn(); |
| 1122 | status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); |
| 1123 | debug_post_sfn(); |
| 1124 | |
| 1125 | error = sctp_side_effects(event_type, subtype, state, |
| 1126 | ep, asoc, event_arg, status, |
| 1127 | &commands, gfp); |
| 1128 | debug_post_sfx(); |
| 1129 | |
| 1130 | return error; |
| 1131 | } |
| 1132 | |
| 1133 | /***************************************************************** |
| 1134 | * This the master state function side effect processing function. |
| 1135 | *****************************************************************/ |
| 1136 | static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, |
| 1137 | sctp_state_t state, |
| 1138 | struct sctp_endpoint *ep, |
| 1139 | struct sctp_association *asoc, |
| 1140 | void *event_arg, |
| 1141 | sctp_disposition_t status, |
| 1142 | sctp_cmd_seq_t *commands, |
| 1143 | gfp_t gfp) |
| 1144 | { |
| 1145 | int error; |
| 1146 | |
| 1147 | /* FIXME - Most of the dispositions left today would be categorized |
| 1148 | * as "exceptional" dispositions. For those dispositions, it |
| 1149 | * may not be proper to run through any of the commands at all. |
| 1150 | * For example, the command interpreter might be run only with |
| 1151 | * disposition SCTP_DISPOSITION_CONSUME. |
| 1152 | */ |
| 1153 | if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, |
| 1154 | ep, asoc, |
| 1155 | event_arg, status, |
| 1156 | commands, gfp))) |
| 1157 | goto bail; |
| 1158 | |
| 1159 | switch (status) { |
| 1160 | case SCTP_DISPOSITION_DISCARD: |
| 1161 | pr_debug("%s: ignored sctp protocol event - state:%d, " |
| 1162 | "event_type:%d, event_id:%d\n", __func__, state, |
| 1163 | event_type, subtype.chunk); |
| 1164 | break; |
| 1165 | |
| 1166 | case SCTP_DISPOSITION_NOMEM: |
| 1167 | /* We ran out of memory, so we need to discard this |
| 1168 | * packet. |
| 1169 | */ |
| 1170 | /* BUG--we should now recover some memory, probably by |
| 1171 | * reneging... |
| 1172 | */ |
| 1173 | error = -ENOMEM; |
| 1174 | break; |
| 1175 | |
| 1176 | case SCTP_DISPOSITION_DELETE_TCB: |
| 1177 | /* This should now be a command. */ |
| 1178 | break; |
| 1179 | |
| 1180 | case SCTP_DISPOSITION_CONSUME: |
| 1181 | case SCTP_DISPOSITION_ABORT: |
| 1182 | /* |
| 1183 | * We should no longer have much work to do here as the |
| 1184 | * real work has been done as explicit commands above. |
| 1185 | */ |
| 1186 | break; |
| 1187 | |
| 1188 | case SCTP_DISPOSITION_VIOLATION: |
| 1189 | net_err_ratelimited("protocol violation state %d chunkid %d\n", |
| 1190 | state, subtype.chunk); |
| 1191 | break; |
| 1192 | |
| 1193 | case SCTP_DISPOSITION_NOT_IMPL: |
| 1194 | pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", |
| 1195 | state, event_type, subtype.chunk); |
| 1196 | break; |
| 1197 | |
| 1198 | case SCTP_DISPOSITION_BUG: |
| 1199 | pr_err("bug in state %d, event_type %d, event_id %d\n", |
| 1200 | state, event_type, subtype.chunk); |
| 1201 | BUG(); |
| 1202 | break; |
| 1203 | |
| 1204 | default: |
| 1205 | pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", |
| 1206 | status, state, event_type, subtype.chunk); |
| 1207 | BUG(); |
| 1208 | break; |
| 1209 | } |
| 1210 | |
| 1211 | bail: |
| 1212 | return error; |
| 1213 | } |
| 1214 | |
| 1215 | /******************************************************************** |
| 1216 | * 2nd Level Abstractions |
| 1217 | ********************************************************************/ |
| 1218 | |
| 1219 | /* This is the side-effect interpreter. */ |
| 1220 | static int sctp_cmd_interpreter(sctp_event_t event_type, |
| 1221 | sctp_subtype_t subtype, |
| 1222 | sctp_state_t state, |
| 1223 | struct sctp_endpoint *ep, |
| 1224 | struct sctp_association *asoc, |
| 1225 | void *event_arg, |
| 1226 | sctp_disposition_t status, |
| 1227 | sctp_cmd_seq_t *commands, |
| 1228 | gfp_t gfp) |
| 1229 | { |
| 1230 | int error = 0; |
| 1231 | int force; |
| 1232 | sctp_cmd_t *cmd; |
| 1233 | struct sctp_chunk *new_obj; |
| 1234 | struct sctp_chunk *chunk = NULL; |
| 1235 | struct sctp_packet *packet; |
| 1236 | struct timer_list *timer; |
| 1237 | unsigned long timeout; |
| 1238 | struct sctp_transport *t; |
| 1239 | struct sctp_sackhdr sackh; |
| 1240 | int local_cork = 0; |
| 1241 | |
| 1242 | if (SCTP_EVENT_T_TIMEOUT != event_type) |
| 1243 | chunk = event_arg; |
| 1244 | |
| 1245 | /* Note: This whole file is a huge candidate for rework. |
| 1246 | * For example, each command could either have its own handler, so |
| 1247 | * the loop would look like: |
| 1248 | * while (cmds) |
| 1249 | * cmd->handle(x, y, z) |
| 1250 | * --jgrimm |
| 1251 | */ |
| 1252 | while (NULL != (cmd = sctp_next_cmd(commands))) { |
| 1253 | switch (cmd->verb) { |
| 1254 | case SCTP_CMD_NOP: |
| 1255 | /* Do nothing. */ |
| 1256 | break; |
| 1257 | |
| 1258 | case SCTP_CMD_NEW_ASOC: |
| 1259 | /* Register a new association. */ |
| 1260 | if (local_cork) { |
| 1261 | sctp_outq_uncork(&asoc->outqueue); |
| 1262 | local_cork = 0; |
| 1263 | } |
| 1264 | |
| 1265 | /* Register with the endpoint. */ |
| 1266 | asoc = cmd->obj.asoc; |
| 1267 | BUG_ON(asoc->peer.primary_path == NULL); |
| 1268 | sctp_endpoint_add_asoc(ep, asoc); |
| 1269 | sctp_hash_established(asoc); |
| 1270 | break; |
| 1271 | |
| 1272 | case SCTP_CMD_UPDATE_ASSOC: |
| 1273 | sctp_assoc_update(asoc, cmd->obj.asoc); |
| 1274 | break; |
| 1275 | |
| 1276 | case SCTP_CMD_PURGE_OUTQUEUE: |
| 1277 | sctp_outq_teardown(&asoc->outqueue); |
| 1278 | break; |
| 1279 | |
| 1280 | case SCTP_CMD_DELETE_TCB: |
| 1281 | if (local_cork) { |
| 1282 | sctp_outq_uncork(&asoc->outqueue); |
| 1283 | local_cork = 0; |
| 1284 | } |
| 1285 | /* Delete the current association. */ |
| 1286 | sctp_cmd_delete_tcb(commands, asoc); |
| 1287 | asoc = NULL; |
| 1288 | break; |
| 1289 | |
| 1290 | case SCTP_CMD_NEW_STATE: |
| 1291 | /* Enter a new state. */ |
| 1292 | sctp_cmd_new_state(commands, asoc, cmd->obj.state); |
| 1293 | break; |
| 1294 | |
| 1295 | case SCTP_CMD_REPORT_TSN: |
| 1296 | /* Record the arrival of a TSN. */ |
| 1297 | error = sctp_tsnmap_mark(&asoc->peer.tsn_map, |
| 1298 | cmd->obj.u32, NULL); |
| 1299 | break; |
| 1300 | |
| 1301 | case SCTP_CMD_REPORT_FWDTSN: |
| 1302 | /* Move the Cumulattive TSN Ack ahead. */ |
| 1303 | sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); |
| 1304 | |
| 1305 | /* purge the fragmentation queue */ |
| 1306 | sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); |
| 1307 | |
| 1308 | /* Abort any in progress partial delivery. */ |
| 1309 | sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); |
| 1310 | break; |
| 1311 | |
| 1312 | case SCTP_CMD_PROCESS_FWDTSN: |
| 1313 | sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk); |
| 1314 | break; |
| 1315 | |
| 1316 | case SCTP_CMD_GEN_SACK: |
| 1317 | /* Generate a Selective ACK. |
| 1318 | * The argument tells us whether to just count |
| 1319 | * the packet and MAYBE generate a SACK, or |
| 1320 | * force a SACK out. |
| 1321 | */ |
| 1322 | force = cmd->obj.i32; |
| 1323 | error = sctp_gen_sack(asoc, force, commands); |
| 1324 | break; |
| 1325 | |
| 1326 | case SCTP_CMD_PROCESS_SACK: |
| 1327 | /* Process an inbound SACK. */ |
| 1328 | error = sctp_cmd_process_sack(commands, asoc, |
| 1329 | cmd->obj.chunk); |
| 1330 | break; |
| 1331 | |
| 1332 | case SCTP_CMD_GEN_INIT_ACK: |
| 1333 | /* Generate an INIT ACK chunk. */ |
| 1334 | new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, |
| 1335 | 0); |
| 1336 | if (!new_obj) |
| 1337 | goto nomem; |
| 1338 | |
| 1339 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 1340 | SCTP_CHUNK(new_obj)); |
| 1341 | break; |
| 1342 | |
| 1343 | case SCTP_CMD_PEER_INIT: |
| 1344 | /* Process a unified INIT from the peer. |
| 1345 | * Note: Only used during INIT-ACK processing. If |
| 1346 | * there is an error just return to the outter |
| 1347 | * layer which will bail. |
| 1348 | */ |
| 1349 | error = sctp_cmd_process_init(commands, asoc, chunk, |
| 1350 | cmd->obj.init, gfp); |
| 1351 | break; |
| 1352 | |
| 1353 | case SCTP_CMD_GEN_COOKIE_ECHO: |
| 1354 | /* Generate a COOKIE ECHO chunk. */ |
| 1355 | new_obj = sctp_make_cookie_echo(asoc, chunk); |
| 1356 | if (!new_obj) { |
| 1357 | if (cmd->obj.chunk) |
| 1358 | sctp_chunk_free(cmd->obj.chunk); |
| 1359 | goto nomem; |
| 1360 | } |
| 1361 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 1362 | SCTP_CHUNK(new_obj)); |
| 1363 | |
| 1364 | /* If there is an ERROR chunk to be sent along with |
| 1365 | * the COOKIE_ECHO, send it, too. |
| 1366 | */ |
| 1367 | if (cmd->obj.chunk) |
| 1368 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 1369 | SCTP_CHUNK(cmd->obj.chunk)); |
| 1370 | |
| 1371 | if (new_obj->transport) { |
| 1372 | new_obj->transport->init_sent_count++; |
| 1373 | asoc->init_last_sent_to = new_obj->transport; |
| 1374 | } |
| 1375 | |
| 1376 | /* FIXME - Eventually come up with a cleaner way to |
| 1377 | * enabling COOKIE-ECHO + DATA bundling during |
| 1378 | * multihoming stale cookie scenarios, the following |
| 1379 | * command plays with asoc->peer.retran_path to |
| 1380 | * avoid the problem of sending the COOKIE-ECHO and |
| 1381 | * DATA in different paths, which could result |
| 1382 | * in the association being ABORTed if the DATA chunk |
| 1383 | * is processed first by the server. Checking the |
| 1384 | * init error counter simply causes this command |
| 1385 | * to be executed only during failed attempts of |
| 1386 | * association establishment. |
| 1387 | */ |
| 1388 | if ((asoc->peer.retran_path != |
| 1389 | asoc->peer.primary_path) && |
| 1390 | (asoc->init_err_counter > 0)) { |
| 1391 | sctp_add_cmd_sf(commands, |
| 1392 | SCTP_CMD_FORCE_PRIM_RETRAN, |
| 1393 | SCTP_NULL()); |
| 1394 | } |
| 1395 | |
| 1396 | break; |
| 1397 | |
| 1398 | case SCTP_CMD_GEN_SHUTDOWN: |
| 1399 | /* Generate SHUTDOWN when in SHUTDOWN_SENT state. |
| 1400 | * Reset error counts. |
| 1401 | */ |
| 1402 | asoc->overall_error_count = 0; |
| 1403 | |
| 1404 | /* Generate a SHUTDOWN chunk. */ |
| 1405 | new_obj = sctp_make_shutdown(asoc, chunk); |
| 1406 | if (!new_obj) |
| 1407 | goto nomem; |
| 1408 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 1409 | SCTP_CHUNK(new_obj)); |
| 1410 | break; |
| 1411 | |
| 1412 | case SCTP_CMD_CHUNK_ULP: |
| 1413 | /* Send a chunk to the sockets layer. */ |
| 1414 | pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", |
| 1415 | __func__, cmd->obj.chunk, &asoc->ulpq); |
| 1416 | |
| 1417 | sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk, |
| 1418 | GFP_ATOMIC); |
| 1419 | break; |
| 1420 | |
| 1421 | case SCTP_CMD_EVENT_ULP: |
| 1422 | /* Send a notification to the sockets layer. */ |
| 1423 | pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", |
| 1424 | __func__, cmd->obj.ulpevent, &asoc->ulpq); |
| 1425 | |
| 1426 | sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent); |
| 1427 | break; |
| 1428 | |
| 1429 | case SCTP_CMD_REPLY: |
| 1430 | /* If an caller has not already corked, do cork. */ |
| 1431 | if (!asoc->outqueue.cork) { |
| 1432 | sctp_outq_cork(&asoc->outqueue); |
| 1433 | local_cork = 1; |
| 1434 | } |
| 1435 | /* Send a chunk to our peer. */ |
| 1436 | error = sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk); |
| 1437 | break; |
| 1438 | |
| 1439 | case SCTP_CMD_SEND_PKT: |
| 1440 | /* Send a full packet to our peer. */ |
| 1441 | packet = cmd->obj.packet; |
| 1442 | sctp_packet_transmit(packet); |
| 1443 | sctp_ootb_pkt_free(packet); |
| 1444 | break; |
| 1445 | |
| 1446 | case SCTP_CMD_T1_RETRAN: |
| 1447 | /* Mark a transport for retransmission. */ |
| 1448 | sctp_retransmit(&asoc->outqueue, cmd->obj.transport, |
| 1449 | SCTP_RTXR_T1_RTX); |
| 1450 | break; |
| 1451 | |
| 1452 | case SCTP_CMD_RETRAN: |
| 1453 | /* Mark a transport for retransmission. */ |
| 1454 | sctp_retransmit(&asoc->outqueue, cmd->obj.transport, |
| 1455 | SCTP_RTXR_T3_RTX); |
| 1456 | break; |
| 1457 | |
| 1458 | case SCTP_CMD_ECN_CE: |
| 1459 | /* Do delayed CE processing. */ |
| 1460 | sctp_do_ecn_ce_work(asoc, cmd->obj.u32); |
| 1461 | break; |
| 1462 | |
| 1463 | case SCTP_CMD_ECN_ECNE: |
| 1464 | /* Do delayed ECNE processing. */ |
| 1465 | new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, |
| 1466 | chunk); |
| 1467 | if (new_obj) |
| 1468 | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, |
| 1469 | SCTP_CHUNK(new_obj)); |
| 1470 | break; |
| 1471 | |
| 1472 | case SCTP_CMD_ECN_CWR: |
| 1473 | /* Do delayed CWR processing. */ |
| 1474 | sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); |
| 1475 | break; |
| 1476 | |
| 1477 | case SCTP_CMD_SETUP_T2: |
| 1478 | sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); |
| 1479 | break; |
| 1480 | |
| 1481 | case SCTP_CMD_TIMER_START_ONCE: |
| 1482 | timer = &asoc->timers[cmd->obj.to]; |
| 1483 | |
| 1484 | if (timer_pending(timer)) |
| 1485 | break; |
| 1486 | /* fall through */ |
| 1487 | |
| 1488 | case SCTP_CMD_TIMER_START: |
| 1489 | timer = &asoc->timers[cmd->obj.to]; |
| 1490 | timeout = asoc->timeouts[cmd->obj.to]; |
| 1491 | BUG_ON(!timeout); |
| 1492 | |
| 1493 | timer->expires = jiffies + timeout; |
| 1494 | sctp_association_hold(asoc); |
| 1495 | add_timer(timer); |
| 1496 | break; |
| 1497 | |
| 1498 | case SCTP_CMD_TIMER_RESTART: |
| 1499 | timer = &asoc->timers[cmd->obj.to]; |
| 1500 | timeout = asoc->timeouts[cmd->obj.to]; |
| 1501 | if (!mod_timer(timer, jiffies + timeout)) |
| 1502 | sctp_association_hold(asoc); |
| 1503 | break; |
| 1504 | |
| 1505 | case SCTP_CMD_TIMER_STOP: |
| 1506 | timer = &asoc->timers[cmd->obj.to]; |
| 1507 | if (del_timer(timer)) |
| 1508 | sctp_association_put(asoc); |
| 1509 | break; |
| 1510 | |
| 1511 | case SCTP_CMD_INIT_CHOOSE_TRANSPORT: |
| 1512 | chunk = cmd->obj.chunk; |
| 1513 | t = sctp_assoc_choose_alter_transport(asoc, |
| 1514 | asoc->init_last_sent_to); |
| 1515 | asoc->init_last_sent_to = t; |
| 1516 | chunk->transport = t; |
| 1517 | t->init_sent_count++; |
| 1518 | /* Set the new transport as primary */ |
| 1519 | sctp_assoc_set_primary(asoc, t); |
| 1520 | break; |
| 1521 | |
| 1522 | case SCTP_CMD_INIT_RESTART: |
| 1523 | /* Do the needed accounting and updates |
| 1524 | * associated with restarting an initialization |
| 1525 | * timer. Only multiply the timeout by two if |
| 1526 | * all transports have been tried at the current |
| 1527 | * timeout. |
| 1528 | */ |
| 1529 | sctp_cmd_t1_timer_update(asoc, |
| 1530 | SCTP_EVENT_TIMEOUT_T1_INIT, |
| 1531 | "INIT"); |
| 1532 | |
| 1533 | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, |
| 1534 | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); |
| 1535 | break; |
| 1536 | |
| 1537 | case SCTP_CMD_COOKIEECHO_RESTART: |
| 1538 | /* Do the needed accounting and updates |
| 1539 | * associated with restarting an initialization |
| 1540 | * timer. Only multiply the timeout by two if |
| 1541 | * all transports have been tried at the current |
| 1542 | * timeout. |
| 1543 | */ |
| 1544 | sctp_cmd_t1_timer_update(asoc, |
| 1545 | SCTP_EVENT_TIMEOUT_T1_COOKIE, |
| 1546 | "COOKIE"); |
| 1547 | |
| 1548 | /* If we've sent any data bundled with |
| 1549 | * COOKIE-ECHO we need to resend. |
| 1550 | */ |
| 1551 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 1552 | transports) { |
| 1553 | sctp_retransmit_mark(&asoc->outqueue, t, |
| 1554 | SCTP_RTXR_T1_RTX); |
| 1555 | } |
| 1556 | |
| 1557 | sctp_add_cmd_sf(commands, |
| 1558 | SCTP_CMD_TIMER_RESTART, |
| 1559 | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); |
| 1560 | break; |
| 1561 | |
| 1562 | case SCTP_CMD_INIT_FAILED: |
| 1563 | sctp_cmd_init_failed(commands, asoc, cmd->obj.err); |
| 1564 | break; |
| 1565 | |
| 1566 | case SCTP_CMD_ASSOC_FAILED: |
| 1567 | sctp_cmd_assoc_failed(commands, asoc, event_type, |
| 1568 | subtype, chunk, cmd->obj.err); |
| 1569 | break; |
| 1570 | |
| 1571 | case SCTP_CMD_INIT_COUNTER_INC: |
| 1572 | asoc->init_err_counter++; |
| 1573 | break; |
| 1574 | |
| 1575 | case SCTP_CMD_INIT_COUNTER_RESET: |
| 1576 | asoc->init_err_counter = 0; |
| 1577 | asoc->init_cycle = 0; |
| 1578 | list_for_each_entry(t, &asoc->peer.transport_addr_list, |
| 1579 | transports) { |
| 1580 | t->init_sent_count = 0; |
| 1581 | } |
| 1582 | break; |
| 1583 | |
| 1584 | case SCTP_CMD_REPORT_DUP: |
| 1585 | sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, |
| 1586 | cmd->obj.u32); |
| 1587 | break; |
| 1588 | |
| 1589 | case SCTP_CMD_REPORT_BAD_TAG: |
| 1590 | pr_debug("%s: vtag mismatch!\n", __func__); |
| 1591 | break; |
| 1592 | |
| 1593 | case SCTP_CMD_STRIKE: |
| 1594 | /* Mark one strike against a transport. */ |
| 1595 | sctp_do_8_2_transport_strike(commands, asoc, |
| 1596 | cmd->obj.transport, 0); |
| 1597 | break; |
| 1598 | |
| 1599 | case SCTP_CMD_TRANSPORT_IDLE: |
| 1600 | t = cmd->obj.transport; |
| 1601 | sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); |
| 1602 | break; |
| 1603 | |
| 1604 | case SCTP_CMD_TRANSPORT_HB_SENT: |
| 1605 | t = cmd->obj.transport; |
| 1606 | sctp_do_8_2_transport_strike(commands, asoc, |
| 1607 | t, 1); |
| 1608 | t->hb_sent = 1; |
| 1609 | break; |
| 1610 | |
| 1611 | case SCTP_CMD_TRANSPORT_ON: |
| 1612 | t = cmd->obj.transport; |
| 1613 | sctp_cmd_transport_on(commands, asoc, t, chunk); |
| 1614 | break; |
| 1615 | |
| 1616 | case SCTP_CMD_HB_TIMERS_START: |
| 1617 | sctp_cmd_hb_timers_start(commands, asoc); |
| 1618 | break; |
| 1619 | |
| 1620 | case SCTP_CMD_HB_TIMER_UPDATE: |
| 1621 | t = cmd->obj.transport; |
| 1622 | sctp_cmd_hb_timer_update(commands, t); |
| 1623 | break; |
| 1624 | |
| 1625 | case SCTP_CMD_HB_TIMERS_STOP: |
| 1626 | sctp_cmd_hb_timers_stop(commands, asoc); |
| 1627 | break; |
| 1628 | |
| 1629 | case SCTP_CMD_REPORT_ERROR: |
| 1630 | error = cmd->obj.error; |
| 1631 | break; |
| 1632 | |
| 1633 | case SCTP_CMD_PROCESS_CTSN: |
| 1634 | /* Dummy up a SACK for processing. */ |
| 1635 | sackh.cum_tsn_ack = cmd->obj.be32; |
| 1636 | sackh.a_rwnd = asoc->peer.rwnd + |
| 1637 | asoc->outqueue.outstanding_bytes; |
| 1638 | sackh.num_gap_ack_blocks = 0; |
| 1639 | sackh.num_dup_tsns = 0; |
| 1640 | chunk->subh.sack_hdr = &sackh; |
| 1641 | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, |
| 1642 | SCTP_CHUNK(chunk)); |
| 1643 | break; |
| 1644 | |
| 1645 | case SCTP_CMD_DISCARD_PACKET: |
| 1646 | /* We need to discard the whole packet. |
| 1647 | * Uncork the queue since there might be |
| 1648 | * responses pending |
| 1649 | */ |
| 1650 | chunk->pdiscard = 1; |
| 1651 | if (asoc) { |
| 1652 | sctp_outq_uncork(&asoc->outqueue); |
| 1653 | local_cork = 0; |
| 1654 | } |
| 1655 | break; |
| 1656 | |
| 1657 | case SCTP_CMD_RTO_PENDING: |
| 1658 | t = cmd->obj.transport; |
| 1659 | t->rto_pending = 1; |
| 1660 | break; |
| 1661 | |
| 1662 | case SCTP_CMD_PART_DELIVER: |
| 1663 | sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC); |
| 1664 | break; |
| 1665 | |
| 1666 | case SCTP_CMD_RENEGE: |
| 1667 | sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk, |
| 1668 | GFP_ATOMIC); |
| 1669 | break; |
| 1670 | |
| 1671 | case SCTP_CMD_SETUP_T4: |
| 1672 | sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); |
| 1673 | break; |
| 1674 | |
| 1675 | case SCTP_CMD_PROCESS_OPERR: |
| 1676 | sctp_cmd_process_operr(commands, asoc, chunk); |
| 1677 | break; |
| 1678 | case SCTP_CMD_CLEAR_INIT_TAG: |
| 1679 | asoc->peer.i.init_tag = 0; |
| 1680 | break; |
| 1681 | case SCTP_CMD_DEL_NON_PRIMARY: |
| 1682 | sctp_cmd_del_non_primary(asoc); |
| 1683 | break; |
| 1684 | case SCTP_CMD_T3_RTX_TIMERS_STOP: |
| 1685 | sctp_cmd_t3_rtx_timers_stop(commands, asoc); |
| 1686 | break; |
| 1687 | case SCTP_CMD_FORCE_PRIM_RETRAN: |
| 1688 | t = asoc->peer.retran_path; |
| 1689 | asoc->peer.retran_path = asoc->peer.primary_path; |
| 1690 | error = sctp_outq_uncork(&asoc->outqueue); |
| 1691 | local_cork = 0; |
| 1692 | asoc->peer.retran_path = t; |
| 1693 | break; |
| 1694 | case SCTP_CMD_SET_SK_ERR: |
| 1695 | sctp_cmd_set_sk_err(asoc, cmd->obj.error); |
| 1696 | break; |
| 1697 | case SCTP_CMD_ASSOC_CHANGE: |
| 1698 | sctp_cmd_assoc_change(commands, asoc, |
| 1699 | cmd->obj.u8); |
| 1700 | break; |
| 1701 | case SCTP_CMD_ADAPTATION_IND: |
| 1702 | sctp_cmd_adaptation_ind(commands, asoc); |
| 1703 | break; |
| 1704 | |
| 1705 | case SCTP_CMD_ASSOC_SHKEY: |
| 1706 | error = sctp_auth_asoc_init_active_key(asoc, |
| 1707 | GFP_ATOMIC); |
| 1708 | break; |
| 1709 | case SCTP_CMD_UPDATE_INITTAG: |
| 1710 | asoc->peer.i.init_tag = cmd->obj.u32; |
| 1711 | break; |
| 1712 | case SCTP_CMD_SEND_MSG: |
| 1713 | if (!asoc->outqueue.cork) { |
| 1714 | sctp_outq_cork(&asoc->outqueue); |
| 1715 | local_cork = 1; |
| 1716 | } |
| 1717 | error = sctp_cmd_send_msg(asoc, cmd->obj.msg); |
| 1718 | break; |
| 1719 | case SCTP_CMD_SEND_NEXT_ASCONF: |
| 1720 | sctp_cmd_send_asconf(asoc); |
| 1721 | break; |
| 1722 | case SCTP_CMD_PURGE_ASCONF_QUEUE: |
| 1723 | sctp_asconf_queue_teardown(asoc); |
| 1724 | break; |
| 1725 | |
| 1726 | case SCTP_CMD_SET_ASOC: |
| 1727 | asoc = cmd->obj.asoc; |
| 1728 | break; |
| 1729 | |
| 1730 | default: |
| 1731 | pr_warn("Impossible command: %u\n", |
| 1732 | cmd->verb); |
| 1733 | break; |
| 1734 | } |
| 1735 | |
| 1736 | if (error) |
| 1737 | break; |
| 1738 | } |
| 1739 | |
| 1740 | out: |
| 1741 | /* If this is in response to a received chunk, wait until |
| 1742 | * we are done with the packet to open the queue so that we don't |
| 1743 | * send multiple packets in response to a single request. |
| 1744 | */ |
| 1745 | if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { |
| 1746 | if (chunk->end_of_packet || chunk->singleton) |
| 1747 | error = sctp_outq_uncork(&asoc->outqueue); |
| 1748 | } else if (local_cork) |
| 1749 | error = sctp_outq_uncork(&asoc->outqueue); |
| 1750 | return error; |
| 1751 | nomem: |
| 1752 | error = -ENOMEM; |
| 1753 | goto out; |
| 1754 | } |
| 1755 | |