Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * |
| 3 | * Optmized version of the standard do_csum() function |
| 4 | * |
| 5 | * Return: a 64bit quantity containing the 16bit Internet checksum |
| 6 | * |
| 7 | * Inputs: |
| 8 | * in0: address of buffer to checksum (char *) |
| 9 | * in1: length of the buffer (int) |
| 10 | * |
| 11 | * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co |
| 12 | * Stephane Eranian <eranian@hpl.hp.com> |
| 13 | * |
| 14 | * 02/04/22 Ken Chen <kenneth.w.chen@intel.com> |
| 15 | * Data locality study on the checksum buffer. |
| 16 | * More optimization cleanup - remove excessive stop bits. |
| 17 | * 02/04/08 David Mosberger <davidm@hpl.hp.com> |
| 18 | * More cleanup and tuning. |
| 19 | * 01/04/18 Jun Nakajima <jun.nakajima@intel.com> |
| 20 | * Clean up and optimize and the software pipeline, loading two |
| 21 | * back-to-back 8-byte words per loop. Clean up the initialization |
| 22 | * for the loop. Support the cases where load latency = 1 or 2. |
| 23 | * Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default). |
| 24 | */ |
| 25 | |
| 26 | #include <asm/asmmacro.h> |
| 27 | |
| 28 | // |
| 29 | // Theory of operations: |
| 30 | // The goal is to go as quickly as possible to the point where |
| 31 | // we can checksum 16 bytes/loop. Before reaching that point we must |
| 32 | // take care of incorrect alignment of first byte. |
| 33 | // |
| 34 | // The code hereafter also takes care of the "tail" part of the buffer |
| 35 | // before entering the core loop, if any. The checksum is a sum so it |
| 36 | // allows us to commute operations. So we do the "head" and "tail" |
| 37 | // first to finish at full speed in the body. Once we get the head and |
| 38 | // tail values, we feed them into the pipeline, very handy initialization. |
| 39 | // |
| 40 | // Of course we deal with the special case where the whole buffer fits |
| 41 | // into one 8 byte word. In this case we have only one entry in the pipeline. |
| 42 | // |
| 43 | // We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for |
| 44 | // possible load latency and also to accommodate for head and tail. |
| 45 | // |
| 46 | // The end of the function deals with folding the checksum from 64bits |
| 47 | // down to 16bits taking care of the carry. |
| 48 | // |
| 49 | // This version avoids synchronization in the core loop by also using a |
| 50 | // pipeline for the accumulation of the checksum in resultx[] (x=1,2). |
| 51 | // |
| 52 | // wordx[] (x=1,2) |
| 53 | // |---| |
| 54 | // | | 0 : new value loaded in pipeline |
| 55 | // |---| |
| 56 | // | | - : in transit data |
| 57 | // |---| |
| 58 | // | | LOAD_LATENCY : current value to add to checksum |
| 59 | // |---| |
| 60 | // | | LOAD_LATENCY+1 : previous value added to checksum |
| 61 | // |---| (previous iteration) |
| 62 | // |
| 63 | // resultx[] (x=1,2) |
| 64 | // |---| |
| 65 | // | | 0 : initial value |
| 66 | // |---| |
| 67 | // | | LOAD_LATENCY-1 : new checksum |
| 68 | // |---| |
| 69 | // | | LOAD_LATENCY : previous value of checksum |
| 70 | // |---| |
| 71 | // | | LOAD_LATENCY+1 : final checksum when out of the loop |
| 72 | // |---| |
| 73 | // |
| 74 | // |
| 75 | // See RFC1071 "Computing the Internet Checksum" for various techniques for |
| 76 | // calculating the Internet checksum. |
| 77 | // |
| 78 | // NOT YET DONE: |
| 79 | // - Maybe another algorithm which would take care of the folding at the |
| 80 | // end in a different manner |
| 81 | // - Work with people more knowledgeable than me on the network stack |
| 82 | // to figure out if we could not split the function depending on the |
| 83 | // type of packet or alignment we get. Like the ip_fast_csum() routine |
| 84 | // where we know we have at least 20bytes worth of data to checksum. |
| 85 | // - Do a better job of handling small packets. |
| 86 | // - Note on prefetching: it was found that under various load, i.e. ftp read/write, |
| 87 | // nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8% |
| 88 | // on the data that buffer points to (partly because the checksum is often preceded by |
| 89 | // a copy_from_user()). This finding indiate that lfetch will not be beneficial since |
| 90 | // the data is already in the cache. |
| 91 | // |
| 92 | |
| 93 | #define saved_pfs r11 |
| 94 | #define hmask r16 |
| 95 | #define tmask r17 |
| 96 | #define first1 r18 |
| 97 | #define firstval r19 |
| 98 | #define firstoff r20 |
| 99 | #define last r21 |
| 100 | #define lastval r22 |
| 101 | #define lastoff r23 |
| 102 | #define saved_lc r24 |
| 103 | #define saved_pr r25 |
| 104 | #define tmp1 r26 |
| 105 | #define tmp2 r27 |
| 106 | #define tmp3 r28 |
| 107 | #define carry1 r29 |
| 108 | #define carry2 r30 |
| 109 | #define first2 r31 |
| 110 | |
| 111 | #define buf in0 |
| 112 | #define len in1 |
| 113 | |
| 114 | #define LOAD_LATENCY 2 // XXX fix me |
| 115 | |
| 116 | #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2) |
| 117 | # error "Only 1 or 2 is supported/tested for LOAD_LATENCY." |
| 118 | #endif |
| 119 | |
| 120 | #define PIPE_DEPTH (LOAD_LATENCY+2) |
| 121 | #define ELD p[LOAD_LATENCY] // end of load |
| 122 | #define ELD_1 p[LOAD_LATENCY+1] // and next stage |
| 123 | |
| 124 | // unsigned long do_csum(unsigned char *buf,long len) |
| 125 | |
| 126 | GLOBAL_ENTRY(do_csum) |
| 127 | .prologue |
| 128 | .save ar.pfs, saved_pfs |
| 129 | alloc saved_pfs=ar.pfs,2,16,0,16 |
| 130 | .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2] |
| 131 | .rotp p[PIPE_DEPTH], pC1[2], pC2[2] |
| 132 | mov ret0=r0 // in case we have zero length |
| 133 | cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len) |
| 134 | ;; |
| 135 | add tmp1=buf,len // last byte's address |
| 136 | .save pr, saved_pr |
| 137 | mov saved_pr=pr // preserve predicates (rotation) |
| 138 | (p6) br.ret.spnt.many rp // return if zero or negative length |
| 139 | |
| 140 | mov hmask=-1 // initialize head mask |
| 141 | tbit.nz p15,p0=buf,0 // is buf an odd address? |
| 142 | and first1=-8,buf // 8-byte align down address of first1 element |
| 143 | |
| 144 | and firstoff=7,buf // how many bytes off for first1 element |
| 145 | mov tmask=-1 // initialize tail mask |
| 146 | |
| 147 | ;; |
| 148 | adds tmp2=-1,tmp1 // last-1 |
| 149 | and lastoff=7,tmp1 // how many bytes off for last element |
| 150 | ;; |
| 151 | sub tmp1=8,lastoff // complement to lastoff |
| 152 | and last=-8,tmp2 // address of word containing last byte |
| 153 | ;; |
| 154 | sub tmp3=last,first1 // tmp3=distance from first1 to last |
| 155 | .save ar.lc, saved_lc |
| 156 | mov saved_lc=ar.lc // save lc |
| 157 | cmp.eq p8,p9=last,first1 // everything fits in one word ? |
| 158 | |
| 159 | ld8 firstval=[first1],8 // load, ahead of time, "first1" word |
| 160 | and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0 |
| 161 | shl tmp2=firstoff,3 // number of bits |
| 162 | ;; |
| 163 | (p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed |
| 164 | shl tmp1=tmp1,3 // number of bits |
| 165 | (p9) adds tmp3=-8,tmp3 // effectively loaded |
| 166 | ;; |
| 167 | (p8) mov lastval=r0 // we don't need lastval if first1==last |
| 168 | shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[ |
| 169 | shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff] |
| 170 | ;; |
| 171 | .body |
| 172 | #define count tmp3 |
| 173 | |
| 174 | (p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only |
| 175 | (p9) and word2[0]=lastval,tmask // mask last it as appropriate |
| 176 | shr.u count=count,3 // how many 8-byte? |
| 177 | ;; |
| 178 | // If count is odd, finish this 8-byte word so that we can |
| 179 | // load two back-to-back 8-byte words per loop thereafter. |
| 180 | and word1[0]=firstval,hmask // and mask it as appropriate |
| 181 | tbit.nz p10,p11=count,0 // if (count is odd) |
| 182 | ;; |
| 183 | (p8) mov result1[0]=word1[0] |
| 184 | (p9) add result1[0]=word1[0],word2[0] |
| 185 | ;; |
| 186 | cmp.ltu p6,p0=result1[0],word1[0] // check the carry |
| 187 | cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte |
| 188 | ;; |
| 189 | (p6) adds result1[0]=1,result1[0] |
| 190 | (p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word) |
| 191 | (p11) br.cond.dptk .do_csum16 // if (count is even) |
| 192 | |
| 193 | // Here count is odd. |
| 194 | ld8 word1[1]=[first1],8 // load an 8-byte word |
| 195 | cmp.eq p9,p10=1,count // if (count == 1) |
| 196 | adds count=-1,count // loaded an 8-byte word |
| 197 | ;; |
| 198 | add result1[0]=result1[0],word1[1] |
| 199 | ;; |
| 200 | cmp.ltu p6,p0=result1[0],word1[1] |
| 201 | ;; |
| 202 | (p6) adds result1[0]=1,result1[0] |
| 203 | (p9) br.cond.sptk .do_csum_exit // if (count == 1) exit |
| 204 | // Fall through to calculate the checksum, feeding result1[0] as |
| 205 | // the initial value in result1[0]. |
| 206 | // |
| 207 | // Calculate the checksum loading two 8-byte words per loop. |
| 208 | // |
| 209 | .do_csum16: |
| 210 | add first2=8,first1 |
| 211 | shr.u count=count,1 // we do 16 bytes per loop |
| 212 | ;; |
| 213 | adds count=-1,count |
| 214 | mov carry1=r0 |
| 215 | mov carry2=r0 |
| 216 | brp.loop.imp 1f,2f |
| 217 | ;; |
| 218 | mov ar.ec=PIPE_DEPTH |
| 219 | mov ar.lc=count // set lc |
| 220 | mov pr.rot=1<<16 |
| 221 | // result1[0] must be initialized in advance. |
| 222 | mov result2[0]=r0 |
| 223 | ;; |
| 224 | .align 32 |
| 225 | 1: |
| 226 | (ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1] |
| 227 | (pC1[1])adds carry1=1,carry1 |
| 228 | (ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1] |
| 229 | (pC2[1])adds carry2=1,carry2 |
| 230 | (ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY] |
| 231 | (ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY] |
| 232 | 2: |
| 233 | (p[0]) ld8 word1[0]=[first1],16 |
| 234 | (p[0]) ld8 word2[0]=[first2],16 |
| 235 | br.ctop.sptk 1b |
| 236 | ;; |
| 237 | // Since len is a 32-bit value, carry cannot be larger than a 64-bit value. |
| 238 | (pC1[1])adds carry1=1,carry1 // since we miss the last one |
| 239 | (pC2[1])adds carry2=1,carry2 |
| 240 | ;; |
| 241 | add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1 |
| 242 | add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2 |
| 243 | ;; |
| 244 | cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1 |
| 245 | cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2 |
| 246 | ;; |
| 247 | (p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1] |
| 248 | (p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1] |
| 249 | ;; |
| 250 | add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1] |
| 251 | ;; |
| 252 | cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1] |
| 253 | ;; |
| 254 | (p6) adds result1[0]=1,result1[0] |
| 255 | ;; |
| 256 | .do_csum_exit: |
| 257 | // |
| 258 | // now fold 64 into 16 bits taking care of carry |
| 259 | // that's not very good because it has lots of sequentiality |
| 260 | // |
| 261 | mov tmp3=0xffff |
| 262 | zxt4 tmp1=result1[0] |
| 263 | shr.u tmp2=result1[0],32 |
| 264 | ;; |
| 265 | add result1[0]=tmp1,tmp2 |
| 266 | ;; |
| 267 | and tmp1=result1[0],tmp3 |
| 268 | shr.u tmp2=result1[0],16 |
| 269 | ;; |
| 270 | add result1[0]=tmp1,tmp2 |
| 271 | ;; |
| 272 | and tmp1=result1[0],tmp3 |
| 273 | shr.u tmp2=result1[0],16 |
| 274 | ;; |
| 275 | add result1[0]=tmp1,tmp2 |
| 276 | ;; |
| 277 | and tmp1=result1[0],tmp3 |
| 278 | shr.u tmp2=result1[0],16 |
| 279 | ;; |
| 280 | add ret0=tmp1,tmp2 |
| 281 | mov pr=saved_pr,0xffffffffffff0000 |
| 282 | ;; |
| 283 | // if buf was odd then swap bytes |
| 284 | mov ar.pfs=saved_pfs // restore ar.ec |
| 285 | (p15) mux1 ret0=ret0,@rev // reverse word |
| 286 | ;; |
| 287 | mov ar.lc=saved_lc |
| 288 | (p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes |
| 289 | br.ret.sptk.many rp |
| 290 | |
| 291 | // I (Jun Nakajima) wrote an equivalent code (see below), but it was |
| 292 | // not much better than the original. So keep the original there so that |
| 293 | // someone else can challenge. |
| 294 | // |
| 295 | // shr.u word1[0]=result1[0],32 |
| 296 | // zxt4 result1[0]=result1[0] |
| 297 | // ;; |
| 298 | // add result1[0]=result1[0],word1[0] |
| 299 | // ;; |
| 300 | // zxt2 result2[0]=result1[0] |
| 301 | // extr.u word1[0]=result1[0],16,16 |
| 302 | // shr.u carry1=result1[0],32 |
| 303 | // ;; |
| 304 | // add result2[0]=result2[0],word1[0] |
| 305 | // ;; |
| 306 | // add result2[0]=result2[0],carry1 |
| 307 | // ;; |
| 308 | // extr.u ret0=result2[0],16,16 |
| 309 | // ;; |
| 310 | // add ret0=ret0,result2[0] |
| 311 | // ;; |
| 312 | // zxt2 ret0=ret0 |
| 313 | // mov ar.pfs=saved_pfs // restore ar.ec |
| 314 | // mov pr=saved_pr,0xffffffffffff0000 |
| 315 | // ;; |
| 316 | // // if buf was odd then swap bytes |
| 317 | // mov ar.lc=saved_lc |
| 318 | //(p15) mux1 ret0=ret0,@rev // reverse word |
| 319 | // ;; |
| 320 | //(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes |
| 321 | // br.ret.sptk.many rp |
| 322 | |
| 323 | END(do_csum) |