blob: d10fd80dbb7e96b898d2230c2d0f5112d02c3bc1 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/irqflags.h>
19
20#include <asm/addrspace.h>
21#include <asm/bug.h>
22#include <asm/byteorder.h>
23#include <asm/cpu.h>
24#include <asm/cpu-features.h>
25#include <asm-generic/iomap.h>
26#include <asm/page.h>
27#include <asm/pgtable-bits.h>
28#include <asm/processor.h>
29#include <asm/string.h>
30
31#include <ioremap.h>
32#include <mangle-port.h>
33
34/*
35 * Slowdown I/O port space accesses for antique hardware.
36 */
37#undef CONF_SLOWDOWN_IO
38
39/*
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
43 * execute in place.
44 */
45# define __raw_ioswabb(a, x) (x)
46# define __raw_ioswabw(a, x) (x)
47# define __raw_ioswabl(a, x) (x)
48# define __raw_ioswabq(a, x) (x)
49# define ____raw_ioswabq(a, x) (x)
50
51/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52
53#define IO_SPACE_LIMIT 0xffff
54
55/*
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
62 */
63extern const unsigned long mips_io_port_base;
64
65/*
66 * Gcc will generate code to load the value of mips_io_port_base after each
67 * function call which may be fairly wasteful in some cases. So we don't
68 * play quite by the book. We tell gcc mips_io_port_base is a long variable
69 * which solves the code generation issue. Now we need to violate the
70 * aliasing rules a little to make initialization possible and finally we
71 * will need the barrier() to fight side effects of the aliasing chat.
72 * This trickery will eventually collapse under gcc's optimizer. Oh well.
73 */
74static inline void set_io_port_base(unsigned long base)
75{
76 * (unsigned long *) &mips_io_port_base = base;
77 barrier();
78}
79
80/*
81 * Thanks to James van Artsdalen for a better timing-fix than
82 * the two short jumps: using outb's to a nonexistent port seems
83 * to guarantee better timings even on fast machines.
84 *
85 * On the other hand, I'd like to be sure of a non-existent port:
86 * I feel a bit unsafe about using 0x80 (should be safe, though)
87 *
88 * Linus
89 *
90 */
91
92#define __SLOW_DOWN_IO \
93 __asm__ __volatile__( \
94 "sb\t$0,0x80(%0)" \
95 : : "r" (mips_io_port_base));
96
97#ifdef CONF_SLOWDOWN_IO
98#ifdef REALLY_SLOW_IO
99#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100#else
101#define SLOW_DOWN_IO __SLOW_DOWN_IO
102#endif
103#else
104#define SLOW_DOWN_IO
105#endif
106
107/*
108 * virt_to_phys - map virtual addresses to physical
109 * @address: address to remap
110 *
111 * The returned physical address is the physical (CPU) mapping for
112 * the memory address given. It is only valid to use this function on
113 * addresses directly mapped or allocated via kmalloc.
114 *
115 * This function does not give bus mappings for DMA transfers. In
116 * almost all conceivable cases a device driver should not be using
117 * this function
118 */
119static inline unsigned long virt_to_phys(volatile const void *address)
120{
121 return __pa(address);
122}
123
124/*
125 * phys_to_virt - map physical address to virtual
126 * @address: address to remap
127 *
128 * The returned virtual address is a current CPU mapping for
129 * the memory address given. It is only valid to use this function on
130 * addresses that have a kernel mapping
131 *
132 * This function does not handle bus mappings for DMA transfers. In
133 * almost all conceivable cases a device driver should not be using
134 * this function
135 */
136static inline void * phys_to_virt(unsigned long address)
137{
138 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139}
140
141/*
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
143 */
144static inline unsigned long isa_virt_to_bus(volatile void * address)
145{
146 return (unsigned long)address - PAGE_OFFSET;
147}
148
149static inline void * isa_bus_to_virt(unsigned long address)
150{
151 return (void *)(address + PAGE_OFFSET);
152}
153
154#define isa_page_to_bus page_to_phys
155
156/*
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
159 *
160 * Allow them for x86 for legacy drivers, though.
161 */
162#define virt_to_bus virt_to_phys
163#define bus_to_virt phys_to_virt
164
165/*
166 * Change "struct page" to physical address.
167 */
168#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169
170extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
171extern void __iounmap(const volatile void __iomem *addr);
172
173#ifndef CONFIG_PCI
174struct pci_dev;
175static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
176#endif
177
178static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
179 unsigned long flags)
180{
181 void __iomem *addr = plat_ioremap(offset, size, flags);
182
183 if (addr)
184 return addr;
185
186#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
187
188 if (cpu_has_64bit_addresses) {
189 u64 base = UNCAC_BASE;
190
191 /*
192 * R10000 supports a 2 bit uncached attribute therefore
193 * UNCAC_BASE may not equal IO_BASE.
194 */
195 if (flags == _CACHE_UNCACHED)
196 base = (u64) IO_BASE;
197 return (void __iomem *) (unsigned long) (base + offset);
198 } else if (__builtin_constant_p(offset) &&
199 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
200 phys_addr_t phys_addr, last_addr;
201
202 phys_addr = fixup_bigphys_addr(offset, size);
203
204 /* Don't allow wraparound or zero size. */
205 last_addr = phys_addr + size - 1;
206 if (!size || last_addr < phys_addr)
207 return NULL;
208
209 /*
210 * Map uncached objects in the low 512MB of address
211 * space using KSEG1.
212 */
213 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
214 flags == _CACHE_UNCACHED)
215 return (void __iomem *)
216 (unsigned long)CKSEG1ADDR(phys_addr);
217 }
218
219 return __ioremap(offset, size, flags);
220
221#undef __IS_LOW512
222}
223
224/*
225 * ioremap - map bus memory into CPU space
226 * @offset: bus address of the memory
227 * @size: size of the resource to map
228 *
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
233 * address.
234 */
235#define ioremap(offset, size) \
236 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
237
238/*
239 * ioremap_nocache - map bus memory into CPU space
240 * @offset: bus address of the memory
241 * @size: size of the resource to map
242 *
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
247 * address.
248 *
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
253 *
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
256 */
257#define ioremap_nocache(offset, size) \
258 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
259#define ioremap_uc ioremap_nocache
260
261/*
262 * ioremap_cachable - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
265 *
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
270 * address.
271 *
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU. Also enables full write-combining. Useful for some
274 * memory-like regions on I/O busses.
275 */
276#define ioremap_cachable(offset, size) \
277 __ioremap_mode((offset), (size), _page_cachable_default)
278
279/*
280 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
281 * requests a cachable mapping, ioremap_uncached_accelerated requests a
282 * mapping using the uncached accelerated mode which isn't supported on
283 * all processors.
284 */
285#define ioremap_cacheable_cow(offset, size) \
286 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
287#define ioremap_uncached_accelerated(offset, size) \
288 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
289
290static inline void iounmap(const volatile void __iomem *addr)
291{
292 if (plat_iounmap(addr))
293 return;
294
295#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
296
297 if (cpu_has_64bit_addresses ||
298 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
299 return;
300
301 __iounmap(addr);
302
303#undef __IS_KSEG1
304}
305
306#ifdef CONFIG_CPU_CAVIUM_OCTEON
307#define war_octeon_io_reorder_wmb() wmb()
308#else
309#define war_octeon_io_reorder_wmb() do { } while (0)
310#endif
311
312#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
313 \
314static inline void pfx##write##bwlq(type val, \
315 volatile void __iomem *mem) \
316{ \
317 volatile type *__mem; \
318 type __val; \
319 \
320 war_octeon_io_reorder_wmb(); \
321 \
322 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
323 \
324 __val = pfx##ioswab##bwlq(__mem, val); \
325 \
326 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
327 *__mem = __val; \
328 else if (cpu_has_64bits) { \
329 unsigned long __flags; \
330 type __tmp; \
331 \
332 if (irq) \
333 local_irq_save(__flags); \
334 __asm__ __volatile__( \
335 ".set arch=r4000" "\t\t# __writeq""\n\t" \
336 "dsll32 %L0, %L0, 0" "\n\t" \
337 "dsrl32 %L0, %L0, 0" "\n\t" \
338 "dsll32 %M0, %M0, 0" "\n\t" \
339 "or %L0, %L0, %M0" "\n\t" \
340 "sd %L0, %2" "\n\t" \
341 ".set mips0" "\n" \
342 : "=r" (__tmp) \
343 : "0" (__val), "m" (*__mem)); \
344 if (irq) \
345 local_irq_restore(__flags); \
346 } else \
347 BUG(); \
348} \
349 \
350static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
351{ \
352 volatile type *__mem; \
353 type __val; \
354 \
355 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
356 \
357 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
358 __val = *__mem; \
359 else if (cpu_has_64bits) { \
360 unsigned long __flags; \
361 \
362 if (irq) \
363 local_irq_save(__flags); \
364 __asm__ __volatile__( \
365 ".set arch=r4000" "\t\t# __readq" "\n\t" \
366 "ld %L0, %1" "\n\t" \
367 "dsra32 %M0, %L0, 0" "\n\t" \
368 "sll %L0, %L0, 0" "\n\t" \
369 ".set mips0" "\n" \
370 : "=r" (__val) \
371 : "m" (*__mem)); \
372 if (irq) \
373 local_irq_restore(__flags); \
374 } else { \
375 __val = 0; \
376 BUG(); \
377 } \
378 \
379 return pfx##ioswab##bwlq(__mem, __val); \
380}
381
382#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
383 \
384static inline void pfx##out##bwlq##p(type val, unsigned long port) \
385{ \
386 volatile type *__addr; \
387 type __val; \
388 \
389 war_octeon_io_reorder_wmb(); \
390 \
391 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
392 \
393 __val = pfx##ioswab##bwlq(__addr, val); \
394 \
395 /* Really, we want this to be atomic */ \
396 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
397 \
398 *__addr = __val; \
399 slow; \
400} \
401 \
402static inline type pfx##in##bwlq##p(unsigned long port) \
403{ \
404 volatile type *__addr; \
405 type __val; \
406 \
407 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
408 \
409 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
410 \
411 __val = *__addr; \
412 slow; \
413 \
414 return pfx##ioswab##bwlq(__addr, __val); \
415}
416
417#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
418 \
419__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
420
421#define BUILDIO_MEM(bwlq, type) \
422 \
423__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
424__BUILD_MEMORY_PFX(, bwlq, type) \
425__BUILD_MEMORY_PFX(__mem_, bwlq, type) \
426
427BUILDIO_MEM(b, u8)
428BUILDIO_MEM(w, u16)
429BUILDIO_MEM(l, u32)
430BUILDIO_MEM(q, u64)
431
432#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
433 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
434 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
435
436#define BUILDIO_IOPORT(bwlq, type) \
437 __BUILD_IOPORT_PFX(, bwlq, type) \
438 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
439
440BUILDIO_IOPORT(b, u8)
441BUILDIO_IOPORT(w, u16)
442BUILDIO_IOPORT(l, u32)
443#ifdef CONFIG_64BIT
444BUILDIO_IOPORT(q, u64)
445#endif
446
447#define __BUILDIO(bwlq, type) \
448 \
449__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
450
451__BUILDIO(q, u64)
452
453#define readb_relaxed readb
454#define readw_relaxed readw
455#define readl_relaxed readl
456#define readq_relaxed readq
457
458#define writeb_relaxed writeb
459#define writew_relaxed writew
460#define writel_relaxed writel
461#define writeq_relaxed writeq
462
463#define readb_be(addr) \
464 __raw_readb((__force unsigned *)(addr))
465#define readw_be(addr) \
466 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
467#define readl_be(addr) \
468 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
469#define readq_be(addr) \
470 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
471
472#define writeb_be(val, addr) \
473 __raw_writeb((val), (__force unsigned *)(addr))
474#define writew_be(val, addr) \
475 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
476#define writel_be(val, addr) \
477 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
478#define writeq_be(val, addr) \
479 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
480
481/*
482 * Some code tests for these symbols
483 */
484#define readq readq
485#define writeq writeq
486
487#define __BUILD_MEMORY_STRING(bwlq, type) \
488 \
489static inline void writes##bwlq(volatile void __iomem *mem, \
490 const void *addr, unsigned int count) \
491{ \
492 const volatile type *__addr = addr; \
493 \
494 while (count--) { \
495 __mem_write##bwlq(*__addr, mem); \
496 __addr++; \
497 } \
498} \
499 \
500static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
501 unsigned int count) \
502{ \
503 volatile type *__addr = addr; \
504 \
505 while (count--) { \
506 *__addr = __mem_read##bwlq(mem); \
507 __addr++; \
508 } \
509}
510
511#define __BUILD_IOPORT_STRING(bwlq, type) \
512 \
513static inline void outs##bwlq(unsigned long port, const void *addr, \
514 unsigned int count) \
515{ \
516 const volatile type *__addr = addr; \
517 \
518 while (count--) { \
519 __mem_out##bwlq(*__addr, port); \
520 __addr++; \
521 } \
522} \
523 \
524static inline void ins##bwlq(unsigned long port, void *addr, \
525 unsigned int count) \
526{ \
527 volatile type *__addr = addr; \
528 \
529 while (count--) { \
530 *__addr = __mem_in##bwlq(port); \
531 __addr++; \
532 } \
533}
534
535#define BUILDSTRING(bwlq, type) \
536 \
537__BUILD_MEMORY_STRING(bwlq, type) \
538__BUILD_IOPORT_STRING(bwlq, type)
539
540BUILDSTRING(b, u8)
541BUILDSTRING(w, u16)
542BUILDSTRING(l, u32)
543#ifdef CONFIG_64BIT
544BUILDSTRING(q, u64)
545#endif
546
547
548#ifdef CONFIG_CPU_CAVIUM_OCTEON
549#define mmiowb() wmb()
550#else
551/* Depends on MIPS II instruction set */
552#define mmiowb() asm volatile ("sync" ::: "memory")
553#endif
554
555static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
556{
557 memset((void __force *) addr, val, count);
558}
559static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
560{
561 memcpy(dst, (void __force *) src, count);
562}
563static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
564{
565 memcpy((void __force *) dst, src, count);
566}
567
568/*
569 * The caches on some architectures aren't dma-coherent and have need to
570 * handle this in software. There are three types of operations that
571 * can be applied to dma buffers.
572 *
573 * - dma_cache_wback_inv(start, size) makes caches and coherent by
574 * writing the content of the caches back to memory, if necessary.
575 * The function also invalidates the affected part of the caches as
576 * necessary before DMA transfers from outside to memory.
577 * - dma_cache_wback(start, size) makes caches and coherent by
578 * writing the content of the caches back to memory, if necessary.
579 * The function also invalidates the affected part of the caches as
580 * necessary before DMA transfers from outside to memory.
581 * - dma_cache_inv(start, size) invalidates the affected parts of the
582 * caches. Dirty lines of the caches may be written back or simply
583 * be discarded. This operation is necessary before dma operations
584 * to the memory.
585 *
586 * This API used to be exported; it now is for arch code internal use only.
587 */
588#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
589
590extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
591extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
592extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
593
594#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
595#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
596#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
597
598#else /* Sane hardware */
599
600#define dma_cache_wback_inv(start,size) \
601 do { (void) (start); (void) (size); } while (0)
602#define dma_cache_wback(start,size) \
603 do { (void) (start); (void) (size); } while (0)
604#define dma_cache_inv(start,size) \
605 do { (void) (start); (void) (size); } while (0)
606
607#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
608
609/*
610 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
611 * Avoid interrupt mucking, just adjust the address for 4-byte access.
612 * Assume the addresses are 8-byte aligned.
613 */
614#ifdef __MIPSEB__
615#define __CSR_32_ADJUST 4
616#else
617#define __CSR_32_ADJUST 0
618#endif
619
620#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
621#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
622
623/*
624 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
625 * access
626 */
627#define xlate_dev_mem_ptr(p) __va(p)
628
629/*
630 * Convert a virtual cached pointer to an uncached pointer
631 */
632#define xlate_dev_kmem_ptr(p) p
633
634#endif /* _ASM_IO_H */