Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2003-2013 Altera Corporation |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 17 | */ |
| 18 | |
| 19 | |
| 20 | #include <linux/linkage.h> |
| 21 | #include <asm/entry.h> |
| 22 | |
| 23 | .set noat |
| 24 | .set nobreak |
| 25 | |
| 26 | /* |
| 27 | * Explicitly allow the use of r1 (the assembler temporary register) |
| 28 | * within this code. This register is normally reserved for the use of |
| 29 | * the compiler. |
| 30 | */ |
| 31 | |
| 32 | ENTRY(instruction_trap) |
| 33 | ldw r1, PT_R1(sp) // Restore registers |
| 34 | ldw r2, PT_R2(sp) |
| 35 | ldw r3, PT_R3(sp) |
| 36 | ldw r4, PT_R4(sp) |
| 37 | ldw r5, PT_R5(sp) |
| 38 | ldw r6, PT_R6(sp) |
| 39 | ldw r7, PT_R7(sp) |
| 40 | ldw r8, PT_R8(sp) |
| 41 | ldw r9, PT_R9(sp) |
| 42 | ldw r10, PT_R10(sp) |
| 43 | ldw r11, PT_R11(sp) |
| 44 | ldw r12, PT_R12(sp) |
| 45 | ldw r13, PT_R13(sp) |
| 46 | ldw r14, PT_R14(sp) |
| 47 | ldw r15, PT_R15(sp) |
| 48 | ldw ra, PT_RA(sp) |
| 49 | ldw fp, PT_FP(sp) |
| 50 | ldw gp, PT_GP(sp) |
| 51 | ldw et, PT_ESTATUS(sp) |
| 52 | wrctl estatus, et |
| 53 | ldw ea, PT_EA(sp) |
| 54 | ldw et, PT_SP(sp) /* backup sp in et */ |
| 55 | |
| 56 | addi sp, sp, PT_REGS_SIZE |
| 57 | |
| 58 | /* INSTRUCTION EMULATION |
| 59 | * --------------------- |
| 60 | * |
| 61 | * Nios II processors generate exceptions for unimplemented instructions. |
| 62 | * The routines below emulate these instructions. Depending on the |
| 63 | * processor core, the only instructions that might need to be emulated |
| 64 | * are div, divu, mul, muli, mulxss, mulxsu, and mulxuu. |
| 65 | * |
| 66 | * The emulations match the instructions, except for the following |
| 67 | * limitations: |
| 68 | * |
| 69 | * 1) The emulation routines do not emulate the use of the exception |
| 70 | * temporary register (et) as a source operand because the exception |
| 71 | * handler already has modified it. |
| 72 | * |
| 73 | * 2) The routines do not emulate the use of the stack pointer (sp) or |
| 74 | * the exception return address register (ea) as a destination because |
| 75 | * modifying these registers crashes the exception handler or the |
| 76 | * interrupted routine. |
| 77 | * |
| 78 | * Detailed Design |
| 79 | * --------------- |
| 80 | * |
| 81 | * The emulation routines expect the contents of integer registers r0-r31 |
| 82 | * to be on the stack at addresses sp, 4(sp), 8(sp), ... 124(sp). The |
| 83 | * routines retrieve source operands from the stack and modify the |
| 84 | * destination register's value on the stack prior to the end of the |
| 85 | * exception handler. Then all registers except the destination register |
| 86 | * are restored to their previous values. |
| 87 | * |
| 88 | * The instruction that causes the exception is found at address -4(ea). |
| 89 | * The instruction's OP and OPX fields identify the operation to be |
| 90 | * performed. |
| 91 | * |
| 92 | * One instruction, muli, is an I-type instruction that is identified by |
| 93 | * an OP field of 0x24. |
| 94 | * |
| 95 | * muli AAAAA,BBBBB,IIIIIIIIIIIIIIII,-0x24- |
| 96 | * 27 22 6 0 <-- LSB of field |
| 97 | * |
| 98 | * The remaining emulated instructions are R-type and have an OP field |
| 99 | * of 0x3a. Their OPX fields identify them. |
| 100 | * |
| 101 | * R-type AAAAA,BBBBB,CCCCC,XXXXXX,NNNNN,-0x3a- |
| 102 | * 27 22 17 11 6 0 <-- LSB of field |
| 103 | * |
| 104 | * |
| 105 | * Opcode Encoding. muli is identified by its OP value. Then OPX & 0x02 |
| 106 | * is used to differentiate between the division opcodes and the |
| 107 | * remaining multiplication opcodes. |
| 108 | * |
| 109 | * Instruction OP OPX OPX & 0x02 |
| 110 | * ----------- ---- ---- ---------- |
| 111 | * muli 0x24 |
| 112 | * divu 0x3a 0x24 0 |
| 113 | * div 0x3a 0x25 0 |
| 114 | * mul 0x3a 0x27 != 0 |
| 115 | * mulxuu 0x3a 0x07 != 0 |
| 116 | * mulxsu 0x3a 0x17 != 0 |
| 117 | * mulxss 0x3a 0x1f != 0 |
| 118 | */ |
| 119 | |
| 120 | |
| 121 | /* |
| 122 | * Save everything on the stack to make it easy for the emulation |
| 123 | * routines to retrieve the source register operands. |
| 124 | */ |
| 125 | |
| 126 | addi sp, sp, -128 |
| 127 | stw zero, 0(sp) /* Save zero on stack to avoid special case for r0. */ |
| 128 | stw r1, 4(sp) |
| 129 | stw r2, 8(sp) |
| 130 | stw r3, 12(sp) |
| 131 | stw r4, 16(sp) |
| 132 | stw r5, 20(sp) |
| 133 | stw r6, 24(sp) |
| 134 | stw r7, 28(sp) |
| 135 | stw r8, 32(sp) |
| 136 | stw r9, 36(sp) |
| 137 | stw r10, 40(sp) |
| 138 | stw r11, 44(sp) |
| 139 | stw r12, 48(sp) |
| 140 | stw r13, 52(sp) |
| 141 | stw r14, 56(sp) |
| 142 | stw r15, 60(sp) |
| 143 | stw r16, 64(sp) |
| 144 | stw r17, 68(sp) |
| 145 | stw r18, 72(sp) |
| 146 | stw r19, 76(sp) |
| 147 | stw r20, 80(sp) |
| 148 | stw r21, 84(sp) |
| 149 | stw r22, 88(sp) |
| 150 | stw r23, 92(sp) |
| 151 | /* Don't bother to save et. It's already been changed. */ |
| 152 | rdctl r5, estatus |
| 153 | stw r5, 100(sp) |
| 154 | |
| 155 | stw gp, 104(sp) |
| 156 | stw et, 108(sp) /* et contains previous sp value. */ |
| 157 | stw fp, 112(sp) |
| 158 | stw ea, 116(sp) |
| 159 | stw ra, 120(sp) |
| 160 | |
| 161 | |
| 162 | /* |
| 163 | * Split the instruction into its fields. We need 4*A, 4*B, and 4*C as |
| 164 | * offsets to the stack pointer for access to the stored register values. |
| 165 | */ |
| 166 | ldw r2,-4(ea) /* r2 = AAAAA,BBBBB,IIIIIIIIIIIIIIII,PPPPPP */ |
| 167 | roli r3, r2, 7 /* r3 = BBB,IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BB */ |
| 168 | roli r4, r3, 3 /* r4 = IIIIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB */ |
| 169 | roli r5, r4, 2 /* r5 = IIIIIIIIIIIIII,PPPPPP,AAAAA,BBBBB,II */ |
| 170 | srai r4, r4, 16 /* r4 = (sign-extended) IMM16 */ |
| 171 | roli r6, r5, 5 /* r6 = XXXX,NNNNN,PPPPPP,AAAAA,BBBBB,CCCCC,XX */ |
| 172 | andi r2, r2, 0x3f /* r2 = 00000000000000000000000000,PPPPPP */ |
| 173 | andi r3, r3, 0x7c /* r3 = 0000000000000000000000000,AAAAA,00 */ |
| 174 | andi r5, r5, 0x7c /* r5 = 0000000000000000000000000,BBBBB,00 */ |
| 175 | andi r6, r6, 0x7c /* r6 = 0000000000000000000000000,CCCCC,00 */ |
| 176 | |
| 177 | /* Now |
| 178 | * r2 = OP |
| 179 | * r3 = 4*A |
| 180 | * r4 = IMM16 (sign extended) |
| 181 | * r5 = 4*B |
| 182 | * r6 = 4*C |
| 183 | */ |
| 184 | |
| 185 | /* |
| 186 | * Get the operands. |
| 187 | * |
| 188 | * It is necessary to check for muli because it uses an I-type |
| 189 | * instruction format, while the other instructions are have an R-type |
| 190 | * format. |
| 191 | * |
| 192 | * Prepare for either multiplication or division loop. |
| 193 | * They both loop 32 times. |
| 194 | */ |
| 195 | movi r14, 32 |
| 196 | |
| 197 | add r3, r3, sp /* r3 = address of A-operand. */ |
| 198 | ldw r3, 0(r3) /* r3 = A-operand. */ |
| 199 | movi r7, 0x24 /* muli opcode (I-type instruction format) */ |
| 200 | beq r2, r7, mul_immed /* muli doesn't use the B register as a source */ |
| 201 | |
| 202 | add r5, r5, sp /* r5 = address of B-operand. */ |
| 203 | ldw r5, 0(r5) /* r5 = B-operand. */ |
| 204 | /* r4 = SSSSSSSSSSSSSSSS,-----IMM16------ */ |
| 205 | /* IMM16 not needed, align OPX portion */ |
| 206 | /* r4 = SSSSSSSSSSSSSSSS,CCCCC,-OPX--,00000 */ |
| 207 | srli r4, r4, 5 /* r4 = 00000,SSSSSSSSSSSSSSSS,CCCCC,-OPX-- */ |
| 208 | andi r4, r4, 0x3f /* r4 = 00000000000000000000000000,-OPX-- */ |
| 209 | |
| 210 | /* Now |
| 211 | * r2 = OP |
| 212 | * r3 = src1 |
| 213 | * r5 = src2 |
| 214 | * r4 = OPX (no longer can be muli) |
| 215 | * r6 = 4*C |
| 216 | */ |
| 217 | |
| 218 | |
| 219 | /* |
| 220 | * Multiply or Divide? |
| 221 | */ |
| 222 | andi r7, r4, 0x02 /* For R-type multiply instructions, |
| 223 | OPX & 0x02 != 0 */ |
| 224 | bne r7, zero, multiply |
| 225 | |
| 226 | |
| 227 | /* DIVISION |
| 228 | * |
| 229 | * Divide an unsigned dividend by an unsigned divisor using |
| 230 | * a shift-and-subtract algorithm. The example below shows |
| 231 | * 43 div 7 = 6 for 8-bit integers. This classic algorithm uses a |
| 232 | * single register to store both the dividend and the quotient, |
| 233 | * allowing both values to be shifted with a single instruction. |
| 234 | * |
| 235 | * remainder dividend:quotient |
| 236 | * --------- ----------------- |
| 237 | * initialize 00000000 00101011: |
| 238 | * shift 00000000 0101011:_ |
| 239 | * remainder >= divisor? no 00000000 0101011:0 |
| 240 | * shift 00000000 101011:0_ |
| 241 | * remainder >= divisor? no 00000000 101011:00 |
| 242 | * shift 00000001 01011:00_ |
| 243 | * remainder >= divisor? no 00000001 01011:000 |
| 244 | * shift 00000010 1011:000_ |
| 245 | * remainder >= divisor? no 00000010 1011:0000 |
| 246 | * shift 00000101 011:0000_ |
| 247 | * remainder >= divisor? no 00000101 011:00000 |
| 248 | * shift 00001010 11:00000_ |
| 249 | * remainder >= divisor? yes 00001010 11:000001 |
| 250 | * remainder -= divisor - 00000111 |
| 251 | * ---------- |
| 252 | * 00000011 11:000001 |
| 253 | * shift 00000111 1:000001_ |
| 254 | * remainder >= divisor? yes 00000111 1:0000011 |
| 255 | * remainder -= divisor - 00000111 |
| 256 | * ---------- |
| 257 | * 00000000 1:0000011 |
| 258 | * shift 00000001 :0000011_ |
| 259 | * remainder >= divisor? no 00000001 :00000110 |
| 260 | * |
| 261 | * The quotient is 00000110. |
| 262 | */ |
| 263 | |
| 264 | divide: |
| 265 | /* |
| 266 | * Prepare for division by assuming the result |
| 267 | * is unsigned, and storing its "sign" as 0. |
| 268 | */ |
| 269 | movi r17, 0 |
| 270 | |
| 271 | |
| 272 | /* Which division opcode? */ |
| 273 | xori r7, r4, 0x25 /* OPX of div */ |
| 274 | bne r7, zero, unsigned_division |
| 275 | |
| 276 | |
| 277 | /* |
| 278 | * OPX is div. Determine and store the sign of the quotient. |
| 279 | * Then take the absolute value of both operands. |
| 280 | */ |
| 281 | xor r17, r3, r5 /* MSB contains sign of quotient */ |
| 282 | bge r3,zero,dividend_is_nonnegative |
| 283 | sub r3, zero, r3 /* -r3 */ |
| 284 | dividend_is_nonnegative: |
| 285 | bge r5, zero, divisor_is_nonnegative |
| 286 | sub r5, zero, r5 /* -r5 */ |
| 287 | divisor_is_nonnegative: |
| 288 | |
| 289 | |
| 290 | unsigned_division: |
| 291 | /* Initialize the unsigned-division loop. */ |
| 292 | movi r13, 0 /* remainder = 0 */ |
| 293 | |
| 294 | /* Now |
| 295 | * r3 = dividend : quotient |
| 296 | * r4 = 0x25 for div, 0x24 for divu |
| 297 | * r5 = divisor |
| 298 | * r13 = remainder |
| 299 | * r14 = loop counter (already initialized to 32) |
| 300 | * r17 = MSB contains sign of quotient |
| 301 | */ |
| 302 | |
| 303 | |
| 304 | /* |
| 305 | * for (count = 32; count > 0; --count) |
| 306 | * { |
| 307 | */ |
| 308 | divide_loop: |
| 309 | |
| 310 | /* |
| 311 | * Division: |
| 312 | * |
| 313 | * (remainder:dividend:quotient) <<= 1; |
| 314 | */ |
| 315 | slli r13, r13, 1 |
| 316 | cmplt r7, r3, zero /* r7 = MSB of r3 */ |
| 317 | or r13, r13, r7 |
| 318 | slli r3, r3, 1 |
| 319 | |
| 320 | |
| 321 | /* |
| 322 | * if (remainder >= divisor) |
| 323 | * { |
| 324 | * set LSB of quotient |
| 325 | * remainder -= divisor; |
| 326 | * } |
| 327 | */ |
| 328 | bltu r13, r5, div_skip |
| 329 | ori r3, r3, 1 |
| 330 | sub r13, r13, r5 |
| 331 | div_skip: |
| 332 | |
| 333 | /* |
| 334 | * } |
| 335 | */ |
| 336 | subi r14, r14, 1 |
| 337 | bne r14, zero, divide_loop |
| 338 | |
| 339 | |
| 340 | /* Now |
| 341 | * r3 = quotient |
| 342 | * r4 = 0x25 for div, 0x24 for divu |
| 343 | * r6 = 4*C |
| 344 | * r17 = MSB contains sign of quotient |
| 345 | */ |
| 346 | |
| 347 | |
| 348 | /* |
| 349 | * Conditionally negate signed quotient. If quotient is unsigned, |
| 350 | * the sign already is initialized to 0. |
| 351 | */ |
| 352 | bge r17, zero, quotient_is_nonnegative |
| 353 | sub r3, zero, r3 /* -r3 */ |
| 354 | quotient_is_nonnegative: |
| 355 | |
| 356 | |
| 357 | /* |
| 358 | * Final quotient is in r3. |
| 359 | */ |
| 360 | add r6, r6, sp |
| 361 | stw r3, 0(r6) /* write quotient to stack */ |
| 362 | br restore_registers |
| 363 | |
| 364 | |
| 365 | |
| 366 | |
| 367 | /* MULTIPLICATION |
| 368 | * |
| 369 | * A "product" is the number that one gets by summing a "multiplicand" |
| 370 | * several times. The "multiplier" specifies the number of copies of the |
| 371 | * multiplicand that are summed. |
| 372 | * |
| 373 | * Actual multiplication algorithms don't use repeated addition, however. |
| 374 | * Shift-and-add algorithms get the same answer as repeated addition, and |
| 375 | * they are faster. To compute the lower half of a product (pppp below) |
| 376 | * one shifts the product left before adding in each of the partial |
| 377 | * products (a * mmmm) through (d * mmmm). |
| 378 | * |
| 379 | * To compute the upper half of a product (PPPP below), one adds in the |
| 380 | * partial products (d * mmmm) through (a * mmmm), each time following |
| 381 | * the add by a right shift of the product. |
| 382 | * |
| 383 | * mmmm |
| 384 | * * abcd |
| 385 | * ------ |
| 386 | * #### = d * mmmm |
| 387 | * #### = c * mmmm |
| 388 | * #### = b * mmmm |
| 389 | * #### = a * mmmm |
| 390 | * -------- |
| 391 | * PPPPpppp |
| 392 | * |
| 393 | * The example above shows 4 partial products. Computing actual Nios II |
| 394 | * products requires 32 partials. |
| 395 | * |
| 396 | * It is possible to compute the result of mulxsu from the result of |
| 397 | * mulxuu because the only difference between the results of these two |
| 398 | * opcodes is the value of the partial product associated with the sign |
| 399 | * bit of rA. |
| 400 | * |
| 401 | * mulxsu = mulxuu - (rA < 0) ? rB : 0; |
| 402 | * |
| 403 | * It is possible to compute the result of mulxss from the result of |
| 404 | * mulxsu because the only difference between the results of these two |
| 405 | * opcodes is the value of the partial product associated with the sign |
| 406 | * bit of rB. |
| 407 | * |
| 408 | * mulxss = mulxsu - (rB < 0) ? rA : 0; |
| 409 | * |
| 410 | */ |
| 411 | |
| 412 | mul_immed: |
| 413 | /* Opcode is muli. Change it into mul for remainder of algorithm. */ |
| 414 | mov r6, r5 /* Field B is dest register, not field C. */ |
| 415 | mov r5, r4 /* Field IMM16 is src2, not field B. */ |
| 416 | movi r4, 0x27 /* OPX of mul is 0x27 */ |
| 417 | |
| 418 | multiply: |
| 419 | /* Initialize the multiplication loop. */ |
| 420 | movi r9, 0 /* mul_product = 0 */ |
| 421 | movi r10, 0 /* mulxuu_product = 0 */ |
| 422 | mov r11, r5 /* save original multiplier for mulxsu and mulxss */ |
| 423 | mov r12, r5 /* mulxuu_multiplier (will be shifted) */ |
| 424 | movi r16, 1 /* used to create "rori B,A,1" from "ror B,A,r16" */ |
| 425 | |
| 426 | /* Now |
| 427 | * r3 = multiplicand |
| 428 | * r5 = mul_multiplier |
| 429 | * r6 = 4 * dest_register (used later as offset to sp) |
| 430 | * r7 = temp |
| 431 | * r9 = mul_product |
| 432 | * r10 = mulxuu_product |
| 433 | * r11 = original multiplier |
| 434 | * r12 = mulxuu_multiplier |
| 435 | * r14 = loop counter (already initialized) |
| 436 | * r16 = 1 |
| 437 | */ |
| 438 | |
| 439 | |
| 440 | /* |
| 441 | * for (count = 32; count > 0; --count) |
| 442 | * { |
| 443 | */ |
| 444 | multiply_loop: |
| 445 | |
| 446 | /* |
| 447 | * mul_product <<= 1; |
| 448 | * lsb = multiplier & 1; |
| 449 | */ |
| 450 | slli r9, r9, 1 |
| 451 | andi r7, r12, 1 |
| 452 | |
| 453 | /* |
| 454 | * if (lsb == 1) |
| 455 | * { |
| 456 | * mulxuu_product += multiplicand; |
| 457 | * } |
| 458 | */ |
| 459 | beq r7, zero, mulx_skip |
| 460 | add r10, r10, r3 |
| 461 | cmpltu r7, r10, r3 /* Save the carry from the MSB of mulxuu_product. */ |
| 462 | ror r7, r7, r16 /* r7 = 0x80000000 on carry, or else 0x00000000 */ |
| 463 | mulx_skip: |
| 464 | |
| 465 | /* |
| 466 | * if (MSB of mul_multiplier == 1) |
| 467 | * { |
| 468 | * mul_product += multiplicand; |
| 469 | * } |
| 470 | */ |
| 471 | bge r5, zero, mul_skip |
| 472 | add r9, r9, r3 |
| 473 | mul_skip: |
| 474 | |
| 475 | /* |
| 476 | * mulxuu_product >>= 1; logical shift |
| 477 | * mul_multiplier <<= 1; done with MSB |
| 478 | * mulx_multiplier >>= 1; done with LSB |
| 479 | */ |
| 480 | srli r10, r10, 1 |
| 481 | or r10, r10, r7 /* OR in the saved carry bit. */ |
| 482 | slli r5, r5, 1 |
| 483 | srli r12, r12, 1 |
| 484 | |
| 485 | |
| 486 | /* |
| 487 | * } |
| 488 | */ |
| 489 | subi r14, r14, 1 |
| 490 | bne r14, zero, multiply_loop |
| 491 | |
| 492 | |
| 493 | /* |
| 494 | * Multiply emulation loop done. |
| 495 | */ |
| 496 | |
| 497 | /* Now |
| 498 | * r3 = multiplicand |
| 499 | * r4 = OPX |
| 500 | * r6 = 4 * dest_register (used later as offset to sp) |
| 501 | * r7 = temp |
| 502 | * r9 = mul_product |
| 503 | * r10 = mulxuu_product |
| 504 | * r11 = original multiplier |
| 505 | */ |
| 506 | |
| 507 | |
| 508 | /* Calculate address for result from 4 * dest_register */ |
| 509 | add r6, r6, sp |
| 510 | |
| 511 | |
| 512 | /* |
| 513 | * Select/compute the result based on OPX. |
| 514 | */ |
| 515 | |
| 516 | |
| 517 | /* OPX == mul? Then store. */ |
| 518 | xori r7, r4, 0x27 |
| 519 | beq r7, zero, store_product |
| 520 | |
| 521 | /* It's one of the mulx.. opcodes. Move over the result. */ |
| 522 | mov r9, r10 |
| 523 | |
| 524 | /* OPX == mulxuu? Then store. */ |
| 525 | xori r7, r4, 0x07 |
| 526 | beq r7, zero, store_product |
| 527 | |
| 528 | /* Compute mulxsu |
| 529 | * |
| 530 | * mulxsu = mulxuu - (rA < 0) ? rB : 0; |
| 531 | */ |
| 532 | bge r3, zero, mulxsu_skip |
| 533 | sub r9, r9, r11 |
| 534 | mulxsu_skip: |
| 535 | |
| 536 | /* OPX == mulxsu? Then store. */ |
| 537 | xori r7, r4, 0x17 |
| 538 | beq r7, zero, store_product |
| 539 | |
| 540 | /* Compute mulxss |
| 541 | * |
| 542 | * mulxss = mulxsu - (rB < 0) ? rA : 0; |
| 543 | */ |
| 544 | bge r11,zero,mulxss_skip |
| 545 | sub r9, r9, r3 |
| 546 | mulxss_skip: |
| 547 | /* At this point, assume that OPX is mulxss, so store*/ |
| 548 | |
| 549 | |
| 550 | store_product: |
| 551 | stw r9, 0(r6) |
| 552 | |
| 553 | |
| 554 | restore_registers: |
| 555 | /* No need to restore r0. */ |
| 556 | ldw r5, 100(sp) |
| 557 | wrctl estatus, r5 |
| 558 | |
| 559 | ldw r1, 4(sp) |
| 560 | ldw r2, 8(sp) |
| 561 | ldw r3, 12(sp) |
| 562 | ldw r4, 16(sp) |
| 563 | ldw r5, 20(sp) |
| 564 | ldw r6, 24(sp) |
| 565 | ldw r7, 28(sp) |
| 566 | ldw r8, 32(sp) |
| 567 | ldw r9, 36(sp) |
| 568 | ldw r10, 40(sp) |
| 569 | ldw r11, 44(sp) |
| 570 | ldw r12, 48(sp) |
| 571 | ldw r13, 52(sp) |
| 572 | ldw r14, 56(sp) |
| 573 | ldw r15, 60(sp) |
| 574 | ldw r16, 64(sp) |
| 575 | ldw r17, 68(sp) |
| 576 | ldw r18, 72(sp) |
| 577 | ldw r19, 76(sp) |
| 578 | ldw r20, 80(sp) |
| 579 | ldw r21, 84(sp) |
| 580 | ldw r22, 88(sp) |
| 581 | ldw r23, 92(sp) |
| 582 | /* Does not need to restore et */ |
| 583 | ldw gp, 104(sp) |
| 584 | |
| 585 | ldw fp, 112(sp) |
| 586 | ldw ea, 116(sp) |
| 587 | ldw ra, 120(sp) |
| 588 | ldw sp, 108(sp) /* last restore sp */ |
| 589 | eret |
| 590 | |
| 591 | .set at |
| 592 | .set break |