Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Compressed RAM block device |
| 3 | * |
| 4 | * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| 5 | * 2012, 2013 Minchan Kim |
| 6 | * |
| 7 | * This code is released using a dual license strategy: BSD/GPL |
| 8 | * You can choose the licence that better fits your requirements. |
| 9 | * |
| 10 | * Released under the terms of 3-clause BSD License |
| 11 | * Released under the terms of GNU General Public License Version 2.0 |
| 12 | * |
| 13 | */ |
| 14 | |
| 15 | #define KMSG_COMPONENT "zram" |
| 16 | #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| 17 | |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/bio.h> |
| 21 | #include <linux/bitops.h> |
| 22 | #include <linux/blkdev.h> |
| 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/device.h> |
| 25 | #include <linux/genhd.h> |
| 26 | #include <linux/highmem.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/vmalloc.h> |
| 30 | #include <linux/err.h> |
| 31 | #include <linux/idr.h> |
| 32 | #include <linux/sysfs.h> |
| 33 | |
| 34 | #include "zram_drv.h" |
| 35 | |
| 36 | static DEFINE_IDR(zram_index_idr); |
| 37 | /* idr index must be protected */ |
| 38 | static DEFINE_MUTEX(zram_index_mutex); |
| 39 | |
| 40 | static int zram_major; |
| 41 | static const char *default_compressor = "lzo"; |
| 42 | |
| 43 | /* Module params (documentation at end) */ |
| 44 | static unsigned int num_devices = 1; |
| 45 | |
| 46 | static inline void deprecated_attr_warn(const char *name) |
| 47 | { |
| 48 | pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n", |
| 49 | task_pid_nr(current), |
| 50 | current->comm, |
| 51 | name, |
| 52 | "See zram documentation."); |
| 53 | } |
| 54 | |
| 55 | #define ZRAM_ATTR_RO(name) \ |
| 56 | static ssize_t name##_show(struct device *d, \ |
| 57 | struct device_attribute *attr, char *b) \ |
| 58 | { \ |
| 59 | struct zram *zram = dev_to_zram(d); \ |
| 60 | \ |
| 61 | deprecated_attr_warn(__stringify(name)); \ |
| 62 | return scnprintf(b, PAGE_SIZE, "%llu\n", \ |
| 63 | (u64)atomic64_read(&zram->stats.name)); \ |
| 64 | } \ |
| 65 | static DEVICE_ATTR_RO(name); |
| 66 | |
| 67 | static inline bool init_done(struct zram *zram) |
| 68 | { |
| 69 | return zram->disksize; |
| 70 | } |
| 71 | |
| 72 | static inline struct zram *dev_to_zram(struct device *dev) |
| 73 | { |
| 74 | return (struct zram *)dev_to_disk(dev)->private_data; |
| 75 | } |
| 76 | |
| 77 | /* flag operations require table entry bit_spin_lock() being held */ |
| 78 | static int zram_test_flag(struct zram_meta *meta, u32 index, |
| 79 | enum zram_pageflags flag) |
| 80 | { |
| 81 | return meta->table[index].value & BIT(flag); |
| 82 | } |
| 83 | |
| 84 | static void zram_set_flag(struct zram_meta *meta, u32 index, |
| 85 | enum zram_pageflags flag) |
| 86 | { |
| 87 | meta->table[index].value |= BIT(flag); |
| 88 | } |
| 89 | |
| 90 | static void zram_clear_flag(struct zram_meta *meta, u32 index, |
| 91 | enum zram_pageflags flag) |
| 92 | { |
| 93 | meta->table[index].value &= ~BIT(flag); |
| 94 | } |
| 95 | |
| 96 | static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) |
| 97 | { |
| 98 | return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| 99 | } |
| 100 | |
| 101 | static void zram_set_obj_size(struct zram_meta *meta, |
| 102 | u32 index, size_t size) |
| 103 | { |
| 104 | unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; |
| 105 | |
| 106 | meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; |
| 107 | } |
| 108 | |
| 109 | static inline bool is_partial_io(struct bio_vec *bvec) |
| 110 | { |
| 111 | return bvec->bv_len != PAGE_SIZE; |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * Check if request is within bounds and aligned on zram logical blocks. |
| 116 | */ |
| 117 | static inline bool valid_io_request(struct zram *zram, |
| 118 | sector_t start, unsigned int size) |
| 119 | { |
| 120 | u64 end, bound; |
| 121 | |
| 122 | /* unaligned request */ |
| 123 | if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) |
| 124 | return false; |
| 125 | if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) |
| 126 | return false; |
| 127 | |
| 128 | end = start + (size >> SECTOR_SHIFT); |
| 129 | bound = zram->disksize >> SECTOR_SHIFT; |
| 130 | /* out of range range */ |
| 131 | if (unlikely(start >= bound || end > bound || start > end)) |
| 132 | return false; |
| 133 | |
| 134 | /* I/O request is valid */ |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | static void update_position(u32 *index, int *offset, struct bio_vec *bvec) |
| 139 | { |
| 140 | if (*offset + bvec->bv_len >= PAGE_SIZE) |
| 141 | (*index)++; |
| 142 | *offset = (*offset + bvec->bv_len) % PAGE_SIZE; |
| 143 | } |
| 144 | |
| 145 | static inline void update_used_max(struct zram *zram, |
| 146 | const unsigned long pages) |
| 147 | { |
| 148 | unsigned long old_max, cur_max; |
| 149 | |
| 150 | old_max = atomic_long_read(&zram->stats.max_used_pages); |
| 151 | |
| 152 | do { |
| 153 | cur_max = old_max; |
| 154 | if (pages > cur_max) |
| 155 | old_max = atomic_long_cmpxchg( |
| 156 | &zram->stats.max_used_pages, cur_max, pages); |
| 157 | } while (old_max != cur_max); |
| 158 | } |
| 159 | |
| 160 | static bool page_zero_filled(void *ptr) |
| 161 | { |
| 162 | unsigned int pos; |
| 163 | unsigned long *page; |
| 164 | |
| 165 | page = (unsigned long *)ptr; |
| 166 | |
| 167 | for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) { |
| 168 | if (page[pos]) |
| 169 | return false; |
| 170 | } |
| 171 | |
| 172 | return true; |
| 173 | } |
| 174 | |
| 175 | static void handle_zero_page(struct bio_vec *bvec) |
| 176 | { |
| 177 | struct page *page = bvec->bv_page; |
| 178 | void *user_mem; |
| 179 | |
| 180 | user_mem = kmap_atomic(page); |
| 181 | if (is_partial_io(bvec)) |
| 182 | memset(user_mem + bvec->bv_offset, 0, bvec->bv_len); |
| 183 | else |
| 184 | clear_page(user_mem); |
| 185 | kunmap_atomic(user_mem); |
| 186 | |
| 187 | flush_dcache_page(page); |
| 188 | } |
| 189 | |
| 190 | static ssize_t initstate_show(struct device *dev, |
| 191 | struct device_attribute *attr, char *buf) |
| 192 | { |
| 193 | u32 val; |
| 194 | struct zram *zram = dev_to_zram(dev); |
| 195 | |
| 196 | down_read(&zram->init_lock); |
| 197 | val = init_done(zram); |
| 198 | up_read(&zram->init_lock); |
| 199 | |
| 200 | return scnprintf(buf, PAGE_SIZE, "%u\n", val); |
| 201 | } |
| 202 | |
| 203 | static ssize_t disksize_show(struct device *dev, |
| 204 | struct device_attribute *attr, char *buf) |
| 205 | { |
| 206 | struct zram *zram = dev_to_zram(dev); |
| 207 | |
| 208 | return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); |
| 209 | } |
| 210 | |
| 211 | static ssize_t orig_data_size_show(struct device *dev, |
| 212 | struct device_attribute *attr, char *buf) |
| 213 | { |
| 214 | struct zram *zram = dev_to_zram(dev); |
| 215 | |
| 216 | deprecated_attr_warn("orig_data_size"); |
| 217 | return scnprintf(buf, PAGE_SIZE, "%llu\n", |
| 218 | (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT); |
| 219 | } |
| 220 | |
| 221 | static ssize_t mem_used_total_show(struct device *dev, |
| 222 | struct device_attribute *attr, char *buf) |
| 223 | { |
| 224 | u64 val = 0; |
| 225 | struct zram *zram = dev_to_zram(dev); |
| 226 | |
| 227 | deprecated_attr_warn("mem_used_total"); |
| 228 | down_read(&zram->init_lock); |
| 229 | if (init_done(zram)) { |
| 230 | struct zram_meta *meta = zram->meta; |
| 231 | val = zs_get_total_pages(meta->mem_pool); |
| 232 | } |
| 233 | up_read(&zram->init_lock); |
| 234 | |
| 235 | return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); |
| 236 | } |
| 237 | |
| 238 | static ssize_t mem_limit_show(struct device *dev, |
| 239 | struct device_attribute *attr, char *buf) |
| 240 | { |
| 241 | u64 val; |
| 242 | struct zram *zram = dev_to_zram(dev); |
| 243 | |
| 244 | deprecated_attr_warn("mem_limit"); |
| 245 | down_read(&zram->init_lock); |
| 246 | val = zram->limit_pages; |
| 247 | up_read(&zram->init_lock); |
| 248 | |
| 249 | return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); |
| 250 | } |
| 251 | |
| 252 | static ssize_t mem_limit_store(struct device *dev, |
| 253 | struct device_attribute *attr, const char *buf, size_t len) |
| 254 | { |
| 255 | u64 limit; |
| 256 | char *tmp; |
| 257 | struct zram *zram = dev_to_zram(dev); |
| 258 | |
| 259 | limit = memparse(buf, &tmp); |
| 260 | if (buf == tmp) /* no chars parsed, invalid input */ |
| 261 | return -EINVAL; |
| 262 | |
| 263 | down_write(&zram->init_lock); |
| 264 | zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; |
| 265 | up_write(&zram->init_lock); |
| 266 | |
| 267 | return len; |
| 268 | } |
| 269 | |
| 270 | static ssize_t mem_used_max_show(struct device *dev, |
| 271 | struct device_attribute *attr, char *buf) |
| 272 | { |
| 273 | u64 val = 0; |
| 274 | struct zram *zram = dev_to_zram(dev); |
| 275 | |
| 276 | deprecated_attr_warn("mem_used_max"); |
| 277 | down_read(&zram->init_lock); |
| 278 | if (init_done(zram)) |
| 279 | val = atomic_long_read(&zram->stats.max_used_pages); |
| 280 | up_read(&zram->init_lock); |
| 281 | |
| 282 | return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT); |
| 283 | } |
| 284 | |
| 285 | static ssize_t mem_used_max_store(struct device *dev, |
| 286 | struct device_attribute *attr, const char *buf, size_t len) |
| 287 | { |
| 288 | int err; |
| 289 | unsigned long val; |
| 290 | struct zram *zram = dev_to_zram(dev); |
| 291 | |
| 292 | err = kstrtoul(buf, 10, &val); |
| 293 | if (err || val != 0) |
| 294 | return -EINVAL; |
| 295 | |
| 296 | down_read(&zram->init_lock); |
| 297 | if (init_done(zram)) { |
| 298 | struct zram_meta *meta = zram->meta; |
| 299 | atomic_long_set(&zram->stats.max_used_pages, |
| 300 | zs_get_total_pages(meta->mem_pool)); |
| 301 | } |
| 302 | up_read(&zram->init_lock); |
| 303 | |
| 304 | return len; |
| 305 | } |
| 306 | |
| 307 | static ssize_t max_comp_streams_show(struct device *dev, |
| 308 | struct device_attribute *attr, char *buf) |
| 309 | { |
| 310 | int val; |
| 311 | struct zram *zram = dev_to_zram(dev); |
| 312 | |
| 313 | down_read(&zram->init_lock); |
| 314 | val = zram->max_comp_streams; |
| 315 | up_read(&zram->init_lock); |
| 316 | |
| 317 | return scnprintf(buf, PAGE_SIZE, "%d\n", val); |
| 318 | } |
| 319 | |
| 320 | static ssize_t max_comp_streams_store(struct device *dev, |
| 321 | struct device_attribute *attr, const char *buf, size_t len) |
| 322 | { |
| 323 | int num; |
| 324 | struct zram *zram = dev_to_zram(dev); |
| 325 | int ret; |
| 326 | |
| 327 | ret = kstrtoint(buf, 0, &num); |
| 328 | if (ret < 0) |
| 329 | return ret; |
| 330 | if (num < 1) |
| 331 | return -EINVAL; |
| 332 | |
| 333 | down_write(&zram->init_lock); |
| 334 | if (init_done(zram)) { |
| 335 | if (!zcomp_set_max_streams(zram->comp, num)) { |
| 336 | pr_info("Cannot change max compression streams\n"); |
| 337 | ret = -EINVAL; |
| 338 | goto out; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | zram->max_comp_streams = num; |
| 343 | ret = len; |
| 344 | out: |
| 345 | up_write(&zram->init_lock); |
| 346 | return ret; |
| 347 | } |
| 348 | |
| 349 | static ssize_t comp_algorithm_show(struct device *dev, |
| 350 | struct device_attribute *attr, char *buf) |
| 351 | { |
| 352 | size_t sz; |
| 353 | struct zram *zram = dev_to_zram(dev); |
| 354 | |
| 355 | down_read(&zram->init_lock); |
| 356 | sz = zcomp_available_show(zram->compressor, buf); |
| 357 | up_read(&zram->init_lock); |
| 358 | |
| 359 | return sz; |
| 360 | } |
| 361 | |
| 362 | static ssize_t comp_algorithm_store(struct device *dev, |
| 363 | struct device_attribute *attr, const char *buf, size_t len) |
| 364 | { |
| 365 | struct zram *zram = dev_to_zram(dev); |
| 366 | size_t sz; |
| 367 | |
| 368 | if (!zcomp_available_algorithm(buf)) |
| 369 | return -EINVAL; |
| 370 | |
| 371 | down_write(&zram->init_lock); |
| 372 | if (init_done(zram)) { |
| 373 | up_write(&zram->init_lock); |
| 374 | pr_info("Can't change algorithm for initialized device\n"); |
| 375 | return -EBUSY; |
| 376 | } |
| 377 | strlcpy(zram->compressor, buf, sizeof(zram->compressor)); |
| 378 | |
| 379 | /* ignore trailing newline */ |
| 380 | sz = strlen(zram->compressor); |
| 381 | if (sz > 0 && zram->compressor[sz - 1] == '\n') |
| 382 | zram->compressor[sz - 1] = 0x00; |
| 383 | |
| 384 | up_write(&zram->init_lock); |
| 385 | return len; |
| 386 | } |
| 387 | |
| 388 | static ssize_t compact_store(struct device *dev, |
| 389 | struct device_attribute *attr, const char *buf, size_t len) |
| 390 | { |
| 391 | struct zram *zram = dev_to_zram(dev); |
| 392 | struct zram_meta *meta; |
| 393 | |
| 394 | down_read(&zram->init_lock); |
| 395 | if (!init_done(zram)) { |
| 396 | up_read(&zram->init_lock); |
| 397 | return -EINVAL; |
| 398 | } |
| 399 | |
| 400 | meta = zram->meta; |
| 401 | zs_compact(meta->mem_pool); |
| 402 | up_read(&zram->init_lock); |
| 403 | |
| 404 | return len; |
| 405 | } |
| 406 | |
| 407 | static ssize_t io_stat_show(struct device *dev, |
| 408 | struct device_attribute *attr, char *buf) |
| 409 | { |
| 410 | struct zram *zram = dev_to_zram(dev); |
| 411 | ssize_t ret; |
| 412 | |
| 413 | down_read(&zram->init_lock); |
| 414 | ret = scnprintf(buf, PAGE_SIZE, |
| 415 | "%8llu %8llu %8llu %8llu\n", |
| 416 | (u64)atomic64_read(&zram->stats.failed_reads), |
| 417 | (u64)atomic64_read(&zram->stats.failed_writes), |
| 418 | (u64)atomic64_read(&zram->stats.invalid_io), |
| 419 | (u64)atomic64_read(&zram->stats.notify_free)); |
| 420 | up_read(&zram->init_lock); |
| 421 | |
| 422 | return ret; |
| 423 | } |
| 424 | |
| 425 | static ssize_t mm_stat_show(struct device *dev, |
| 426 | struct device_attribute *attr, char *buf) |
| 427 | { |
| 428 | struct zram *zram = dev_to_zram(dev); |
| 429 | struct zs_pool_stats pool_stats; |
| 430 | u64 orig_size, mem_used = 0; |
| 431 | long max_used; |
| 432 | ssize_t ret; |
| 433 | |
| 434 | memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); |
| 435 | |
| 436 | down_read(&zram->init_lock); |
| 437 | if (init_done(zram)) { |
| 438 | mem_used = zs_get_total_pages(zram->meta->mem_pool); |
| 439 | zs_pool_stats(zram->meta->mem_pool, &pool_stats); |
| 440 | } |
| 441 | |
| 442 | orig_size = atomic64_read(&zram->stats.pages_stored); |
| 443 | max_used = atomic_long_read(&zram->stats.max_used_pages); |
| 444 | |
| 445 | ret = scnprintf(buf, PAGE_SIZE, |
| 446 | "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n", |
| 447 | orig_size << PAGE_SHIFT, |
| 448 | (u64)atomic64_read(&zram->stats.compr_data_size), |
| 449 | mem_used << PAGE_SHIFT, |
| 450 | zram->limit_pages << PAGE_SHIFT, |
| 451 | max_used << PAGE_SHIFT, |
| 452 | (u64)atomic64_read(&zram->stats.zero_pages), |
| 453 | pool_stats.pages_compacted); |
| 454 | up_read(&zram->init_lock); |
| 455 | |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | static DEVICE_ATTR_RO(io_stat); |
| 460 | static DEVICE_ATTR_RO(mm_stat); |
| 461 | ZRAM_ATTR_RO(num_reads); |
| 462 | ZRAM_ATTR_RO(num_writes); |
| 463 | ZRAM_ATTR_RO(failed_reads); |
| 464 | ZRAM_ATTR_RO(failed_writes); |
| 465 | ZRAM_ATTR_RO(invalid_io); |
| 466 | ZRAM_ATTR_RO(notify_free); |
| 467 | ZRAM_ATTR_RO(zero_pages); |
| 468 | ZRAM_ATTR_RO(compr_data_size); |
| 469 | |
| 470 | static inline bool zram_meta_get(struct zram *zram) |
| 471 | { |
| 472 | if (atomic_inc_not_zero(&zram->refcount)) |
| 473 | return true; |
| 474 | return false; |
| 475 | } |
| 476 | |
| 477 | static inline void zram_meta_put(struct zram *zram) |
| 478 | { |
| 479 | atomic_dec(&zram->refcount); |
| 480 | } |
| 481 | |
| 482 | static void zram_meta_free(struct zram_meta *meta, u64 disksize) |
| 483 | { |
| 484 | size_t num_pages = disksize >> PAGE_SHIFT; |
| 485 | size_t index; |
| 486 | |
| 487 | /* Free all pages that are still in this zram device */ |
| 488 | for (index = 0; index < num_pages; index++) { |
| 489 | unsigned long handle = meta->table[index].handle; |
| 490 | |
| 491 | if (!handle) |
| 492 | continue; |
| 493 | |
| 494 | zs_free(meta->mem_pool, handle); |
| 495 | } |
| 496 | |
| 497 | zs_destroy_pool(meta->mem_pool); |
| 498 | vfree(meta->table); |
| 499 | kfree(meta); |
| 500 | } |
| 501 | |
| 502 | static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize) |
| 503 | { |
| 504 | size_t num_pages; |
| 505 | struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); |
| 506 | |
| 507 | if (!meta) |
| 508 | return NULL; |
| 509 | |
| 510 | num_pages = disksize >> PAGE_SHIFT; |
| 511 | meta->table = vzalloc(num_pages * sizeof(*meta->table)); |
| 512 | if (!meta->table) { |
| 513 | pr_err("Error allocating zram address table\n"); |
| 514 | goto out_error; |
| 515 | } |
| 516 | |
| 517 | meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM); |
| 518 | if (!meta->mem_pool) { |
| 519 | pr_err("Error creating memory pool\n"); |
| 520 | goto out_error; |
| 521 | } |
| 522 | |
| 523 | return meta; |
| 524 | |
| 525 | out_error: |
| 526 | vfree(meta->table); |
| 527 | kfree(meta); |
| 528 | return NULL; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * To protect concurrent access to the same index entry, |
| 533 | * caller should hold this table index entry's bit_spinlock to |
| 534 | * indicate this index entry is accessing. |
| 535 | */ |
| 536 | static void zram_free_page(struct zram *zram, size_t index) |
| 537 | { |
| 538 | struct zram_meta *meta = zram->meta; |
| 539 | unsigned long handle = meta->table[index].handle; |
| 540 | |
| 541 | if (unlikely(!handle)) { |
| 542 | /* |
| 543 | * No memory is allocated for zero filled pages. |
| 544 | * Simply clear zero page flag. |
| 545 | */ |
| 546 | if (zram_test_flag(meta, index, ZRAM_ZERO)) { |
| 547 | zram_clear_flag(meta, index, ZRAM_ZERO); |
| 548 | atomic64_dec(&zram->stats.zero_pages); |
| 549 | } |
| 550 | return; |
| 551 | } |
| 552 | |
| 553 | zs_free(meta->mem_pool, handle); |
| 554 | |
| 555 | atomic64_sub(zram_get_obj_size(meta, index), |
| 556 | &zram->stats.compr_data_size); |
| 557 | atomic64_dec(&zram->stats.pages_stored); |
| 558 | |
| 559 | meta->table[index].handle = 0; |
| 560 | zram_set_obj_size(meta, index, 0); |
| 561 | } |
| 562 | |
| 563 | static int zram_decompress_page(struct zram *zram, char *mem, u32 index) |
| 564 | { |
| 565 | int ret = 0; |
| 566 | unsigned char *cmem; |
| 567 | struct zram_meta *meta = zram->meta; |
| 568 | unsigned long handle; |
| 569 | size_t size; |
| 570 | |
| 571 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 572 | handle = meta->table[index].handle; |
| 573 | size = zram_get_obj_size(meta, index); |
| 574 | |
| 575 | if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) { |
| 576 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 577 | memset(mem, 0, PAGE_SIZE); |
| 578 | return 0; |
| 579 | } |
| 580 | |
| 581 | cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); |
| 582 | if (size == PAGE_SIZE) |
| 583 | memcpy(mem, cmem, PAGE_SIZE); |
| 584 | else |
| 585 | ret = zcomp_decompress(zram->comp, cmem, size, mem); |
| 586 | zs_unmap_object(meta->mem_pool, handle); |
| 587 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 588 | |
| 589 | /* Should NEVER happen. Return bio error if it does. */ |
| 590 | if (unlikely(ret)) { |
| 591 | pr_err("Decompression failed! err=%d, page=%u\n", ret, index); |
| 592 | return ret; |
| 593 | } |
| 594 | |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| 599 | u32 index, int offset) |
| 600 | { |
| 601 | int ret; |
| 602 | struct page *page; |
| 603 | unsigned char *user_mem, *uncmem = NULL; |
| 604 | struct zram_meta *meta = zram->meta; |
| 605 | page = bvec->bv_page; |
| 606 | |
| 607 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 608 | if (unlikely(!meta->table[index].handle) || |
| 609 | zram_test_flag(meta, index, ZRAM_ZERO)) { |
| 610 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 611 | handle_zero_page(bvec); |
| 612 | return 0; |
| 613 | } |
| 614 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 615 | |
| 616 | if (is_partial_io(bvec)) |
| 617 | /* Use a temporary buffer to decompress the page */ |
| 618 | uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| 619 | |
| 620 | user_mem = kmap_atomic(page); |
| 621 | if (!is_partial_io(bvec)) |
| 622 | uncmem = user_mem; |
| 623 | |
| 624 | if (!uncmem) { |
| 625 | pr_err("Unable to allocate temp memory\n"); |
| 626 | ret = -ENOMEM; |
| 627 | goto out_cleanup; |
| 628 | } |
| 629 | |
| 630 | ret = zram_decompress_page(zram, uncmem, index); |
| 631 | /* Should NEVER happen. Return bio error if it does. */ |
| 632 | if (unlikely(ret)) |
| 633 | goto out_cleanup; |
| 634 | |
| 635 | if (is_partial_io(bvec)) |
| 636 | memcpy(user_mem + bvec->bv_offset, uncmem + offset, |
| 637 | bvec->bv_len); |
| 638 | |
| 639 | flush_dcache_page(page); |
| 640 | ret = 0; |
| 641 | out_cleanup: |
| 642 | kunmap_atomic(user_mem); |
| 643 | if (is_partial_io(bvec)) |
| 644 | kfree(uncmem); |
| 645 | return ret; |
| 646 | } |
| 647 | |
| 648 | static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, |
| 649 | int offset) |
| 650 | { |
| 651 | int ret = 0; |
| 652 | size_t clen; |
| 653 | unsigned long handle; |
| 654 | struct page *page; |
| 655 | unsigned char *user_mem, *cmem, *src, *uncmem = NULL; |
| 656 | struct zram_meta *meta = zram->meta; |
| 657 | struct zcomp_strm *zstrm = NULL; |
| 658 | unsigned long alloced_pages; |
| 659 | |
| 660 | page = bvec->bv_page; |
| 661 | if (is_partial_io(bvec)) { |
| 662 | /* |
| 663 | * This is a partial IO. We need to read the full page |
| 664 | * before to write the changes. |
| 665 | */ |
| 666 | uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| 667 | if (!uncmem) { |
| 668 | ret = -ENOMEM; |
| 669 | goto out; |
| 670 | } |
| 671 | ret = zram_decompress_page(zram, uncmem, index); |
| 672 | if (ret) |
| 673 | goto out; |
| 674 | } |
| 675 | |
| 676 | zstrm = zcomp_strm_find(zram->comp); |
| 677 | user_mem = kmap_atomic(page); |
| 678 | |
| 679 | if (is_partial_io(bvec)) { |
| 680 | memcpy(uncmem + offset, user_mem + bvec->bv_offset, |
| 681 | bvec->bv_len); |
| 682 | kunmap_atomic(user_mem); |
| 683 | user_mem = NULL; |
| 684 | } else { |
| 685 | uncmem = user_mem; |
| 686 | } |
| 687 | |
| 688 | if (page_zero_filled(uncmem)) { |
| 689 | if (user_mem) |
| 690 | kunmap_atomic(user_mem); |
| 691 | /* Free memory associated with this sector now. */ |
| 692 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 693 | zram_free_page(zram, index); |
| 694 | zram_set_flag(meta, index, ZRAM_ZERO); |
| 695 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 696 | |
| 697 | atomic64_inc(&zram->stats.zero_pages); |
| 698 | ret = 0; |
| 699 | goto out; |
| 700 | } |
| 701 | |
| 702 | ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen); |
| 703 | if (!is_partial_io(bvec)) { |
| 704 | kunmap_atomic(user_mem); |
| 705 | user_mem = NULL; |
| 706 | uncmem = NULL; |
| 707 | } |
| 708 | |
| 709 | if (unlikely(ret)) { |
| 710 | pr_err("Compression failed! err=%d\n", ret); |
| 711 | goto out; |
| 712 | } |
| 713 | src = zstrm->buffer; |
| 714 | if (unlikely(clen > max_zpage_size)) { |
| 715 | clen = PAGE_SIZE; |
| 716 | if (is_partial_io(bvec)) |
| 717 | src = uncmem; |
| 718 | } |
| 719 | |
| 720 | handle = zs_malloc(meta->mem_pool, clen); |
| 721 | if (!handle) { |
| 722 | pr_err("Error allocating memory for compressed page: %u, size=%zu\n", |
| 723 | index, clen); |
| 724 | ret = -ENOMEM; |
| 725 | goto out; |
| 726 | } |
| 727 | |
| 728 | alloced_pages = zs_get_total_pages(meta->mem_pool); |
| 729 | update_used_max(zram, alloced_pages); |
| 730 | |
| 731 | if (zram->limit_pages && alloced_pages > zram->limit_pages) { |
| 732 | zs_free(meta->mem_pool, handle); |
| 733 | ret = -ENOMEM; |
| 734 | goto out; |
| 735 | } |
| 736 | |
| 737 | cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); |
| 738 | |
| 739 | if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { |
| 740 | src = kmap_atomic(page); |
| 741 | memcpy(cmem, src, PAGE_SIZE); |
| 742 | kunmap_atomic(src); |
| 743 | } else { |
| 744 | memcpy(cmem, src, clen); |
| 745 | } |
| 746 | |
| 747 | zcomp_strm_release(zram->comp, zstrm); |
| 748 | zstrm = NULL; |
| 749 | zs_unmap_object(meta->mem_pool, handle); |
| 750 | |
| 751 | /* |
| 752 | * Free memory associated with this sector |
| 753 | * before overwriting unused sectors. |
| 754 | */ |
| 755 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 756 | zram_free_page(zram, index); |
| 757 | |
| 758 | meta->table[index].handle = handle; |
| 759 | zram_set_obj_size(meta, index, clen); |
| 760 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 761 | |
| 762 | /* Update stats */ |
| 763 | atomic64_add(clen, &zram->stats.compr_data_size); |
| 764 | atomic64_inc(&zram->stats.pages_stored); |
| 765 | out: |
| 766 | if (zstrm) |
| 767 | zcomp_strm_release(zram->comp, zstrm); |
| 768 | if (is_partial_io(bvec)) |
| 769 | kfree(uncmem); |
| 770 | return ret; |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * zram_bio_discard - handler on discard request |
| 775 | * @index: physical block index in PAGE_SIZE units |
| 776 | * @offset: byte offset within physical block |
| 777 | */ |
| 778 | static void zram_bio_discard(struct zram *zram, u32 index, |
| 779 | int offset, struct bio *bio) |
| 780 | { |
| 781 | size_t n = bio->bi_iter.bi_size; |
| 782 | struct zram_meta *meta = zram->meta; |
| 783 | |
| 784 | /* |
| 785 | * zram manages data in physical block size units. Because logical block |
| 786 | * size isn't identical with physical block size on some arch, we |
| 787 | * could get a discard request pointing to a specific offset within a |
| 788 | * certain physical block. Although we can handle this request by |
| 789 | * reading that physiclal block and decompressing and partially zeroing |
| 790 | * and re-compressing and then re-storing it, this isn't reasonable |
| 791 | * because our intent with a discard request is to save memory. So |
| 792 | * skipping this logical block is appropriate here. |
| 793 | */ |
| 794 | if (offset) { |
| 795 | if (n <= (PAGE_SIZE - offset)) |
| 796 | return; |
| 797 | |
| 798 | n -= (PAGE_SIZE - offset); |
| 799 | index++; |
| 800 | } |
| 801 | |
| 802 | while (n >= PAGE_SIZE) { |
| 803 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 804 | zram_free_page(zram, index); |
| 805 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 806 | atomic64_inc(&zram->stats.notify_free); |
| 807 | index++; |
| 808 | n -= PAGE_SIZE; |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, |
| 813 | int offset, int rw) |
| 814 | { |
| 815 | unsigned long start_time = jiffies; |
| 816 | int ret; |
| 817 | |
| 818 | generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT, |
| 819 | &zram->disk->part0); |
| 820 | |
| 821 | if (rw == READ) { |
| 822 | atomic64_inc(&zram->stats.num_reads); |
| 823 | ret = zram_bvec_read(zram, bvec, index, offset); |
| 824 | } else { |
| 825 | atomic64_inc(&zram->stats.num_writes); |
| 826 | ret = zram_bvec_write(zram, bvec, index, offset); |
| 827 | } |
| 828 | |
| 829 | generic_end_io_acct(rw, &zram->disk->part0, start_time); |
| 830 | |
| 831 | if (unlikely(ret)) { |
| 832 | if (rw == READ) |
| 833 | atomic64_inc(&zram->stats.failed_reads); |
| 834 | else |
| 835 | atomic64_inc(&zram->stats.failed_writes); |
| 836 | } |
| 837 | |
| 838 | return ret; |
| 839 | } |
| 840 | |
| 841 | static void __zram_make_request(struct zram *zram, struct bio *bio) |
| 842 | { |
| 843 | int offset, rw; |
| 844 | u32 index; |
| 845 | struct bio_vec bvec; |
| 846 | struct bvec_iter iter; |
| 847 | |
| 848 | index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| 849 | offset = (bio->bi_iter.bi_sector & |
| 850 | (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; |
| 851 | |
| 852 | if (unlikely(bio->bi_rw & REQ_DISCARD)) { |
| 853 | zram_bio_discard(zram, index, offset, bio); |
| 854 | bio_endio(bio); |
| 855 | return; |
| 856 | } |
| 857 | |
| 858 | rw = bio_data_dir(bio); |
| 859 | bio_for_each_segment(bvec, bio, iter) { |
| 860 | int max_transfer_size = PAGE_SIZE - offset; |
| 861 | |
| 862 | if (bvec.bv_len > max_transfer_size) { |
| 863 | /* |
| 864 | * zram_bvec_rw() can only make operation on a single |
| 865 | * zram page. Split the bio vector. |
| 866 | */ |
| 867 | struct bio_vec bv; |
| 868 | |
| 869 | bv.bv_page = bvec.bv_page; |
| 870 | bv.bv_len = max_transfer_size; |
| 871 | bv.bv_offset = bvec.bv_offset; |
| 872 | |
| 873 | if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0) |
| 874 | goto out; |
| 875 | |
| 876 | bv.bv_len = bvec.bv_len - max_transfer_size; |
| 877 | bv.bv_offset += max_transfer_size; |
| 878 | if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0) |
| 879 | goto out; |
| 880 | } else |
| 881 | if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0) |
| 882 | goto out; |
| 883 | |
| 884 | update_position(&index, &offset, &bvec); |
| 885 | } |
| 886 | |
| 887 | bio_endio(bio); |
| 888 | return; |
| 889 | |
| 890 | out: |
| 891 | bio_io_error(bio); |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * Handler function for all zram I/O requests. |
| 896 | */ |
| 897 | static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) |
| 898 | { |
| 899 | struct zram *zram = queue->queuedata; |
| 900 | |
| 901 | if (unlikely(!zram_meta_get(zram))) |
| 902 | goto error; |
| 903 | |
| 904 | blk_queue_split(queue, &bio, queue->bio_split); |
| 905 | |
| 906 | if (!valid_io_request(zram, bio->bi_iter.bi_sector, |
| 907 | bio->bi_iter.bi_size)) { |
| 908 | atomic64_inc(&zram->stats.invalid_io); |
| 909 | goto put_zram; |
| 910 | } |
| 911 | |
| 912 | __zram_make_request(zram, bio); |
| 913 | zram_meta_put(zram); |
| 914 | return BLK_QC_T_NONE; |
| 915 | put_zram: |
| 916 | zram_meta_put(zram); |
| 917 | error: |
| 918 | bio_io_error(bio); |
| 919 | return BLK_QC_T_NONE; |
| 920 | } |
| 921 | |
| 922 | static void zram_slot_free_notify(struct block_device *bdev, |
| 923 | unsigned long index) |
| 924 | { |
| 925 | struct zram *zram; |
| 926 | struct zram_meta *meta; |
| 927 | |
| 928 | zram = bdev->bd_disk->private_data; |
| 929 | meta = zram->meta; |
| 930 | |
| 931 | bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| 932 | zram_free_page(zram, index); |
| 933 | bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| 934 | atomic64_inc(&zram->stats.notify_free); |
| 935 | } |
| 936 | |
| 937 | static int zram_rw_page(struct block_device *bdev, sector_t sector, |
| 938 | struct page *page, int rw) |
| 939 | { |
| 940 | int offset, err = -EIO; |
| 941 | u32 index; |
| 942 | struct zram *zram; |
| 943 | struct bio_vec bv; |
| 944 | |
| 945 | zram = bdev->bd_disk->private_data; |
| 946 | if (unlikely(!zram_meta_get(zram))) |
| 947 | goto out; |
| 948 | |
| 949 | if (!valid_io_request(zram, sector, PAGE_SIZE)) { |
| 950 | atomic64_inc(&zram->stats.invalid_io); |
| 951 | err = -EINVAL; |
| 952 | goto put_zram; |
| 953 | } |
| 954 | |
| 955 | index = sector >> SECTORS_PER_PAGE_SHIFT; |
| 956 | offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; |
| 957 | |
| 958 | bv.bv_page = page; |
| 959 | bv.bv_len = PAGE_SIZE; |
| 960 | bv.bv_offset = 0; |
| 961 | |
| 962 | err = zram_bvec_rw(zram, &bv, index, offset, rw); |
| 963 | put_zram: |
| 964 | zram_meta_put(zram); |
| 965 | out: |
| 966 | /* |
| 967 | * If I/O fails, just return error(ie, non-zero) without |
| 968 | * calling page_endio. |
| 969 | * It causes resubmit the I/O with bio request by upper functions |
| 970 | * of rw_page(e.g., swap_readpage, __swap_writepage) and |
| 971 | * bio->bi_end_io does things to handle the error |
| 972 | * (e.g., SetPageError, set_page_dirty and extra works). |
| 973 | */ |
| 974 | if (err == 0) |
| 975 | page_endio(page, rw, 0); |
| 976 | return err; |
| 977 | } |
| 978 | |
| 979 | static void zram_reset_device(struct zram *zram) |
| 980 | { |
| 981 | struct zram_meta *meta; |
| 982 | struct zcomp *comp; |
| 983 | u64 disksize; |
| 984 | |
| 985 | down_write(&zram->init_lock); |
| 986 | |
| 987 | zram->limit_pages = 0; |
| 988 | |
| 989 | if (!init_done(zram)) { |
| 990 | up_write(&zram->init_lock); |
| 991 | return; |
| 992 | } |
| 993 | |
| 994 | meta = zram->meta; |
| 995 | comp = zram->comp; |
| 996 | disksize = zram->disksize; |
| 997 | /* |
| 998 | * Refcount will go down to 0 eventually and r/w handler |
| 999 | * cannot handle further I/O so it will bail out by |
| 1000 | * check zram_meta_get. |
| 1001 | */ |
| 1002 | zram_meta_put(zram); |
| 1003 | /* |
| 1004 | * We want to free zram_meta in process context to avoid |
| 1005 | * deadlock between reclaim path and any other locks. |
| 1006 | */ |
| 1007 | wait_event(zram->io_done, atomic_read(&zram->refcount) == 0); |
| 1008 | |
| 1009 | /* Reset stats */ |
| 1010 | memset(&zram->stats, 0, sizeof(zram->stats)); |
| 1011 | zram->disksize = 0; |
| 1012 | zram->max_comp_streams = 1; |
| 1013 | |
| 1014 | set_capacity(zram->disk, 0); |
| 1015 | part_stat_set_all(&zram->disk->part0, 0); |
| 1016 | |
| 1017 | up_write(&zram->init_lock); |
| 1018 | /* I/O operation under all of CPU are done so let's free */ |
| 1019 | zram_meta_free(meta, disksize); |
| 1020 | zcomp_destroy(comp); |
| 1021 | } |
| 1022 | |
| 1023 | static ssize_t disksize_store(struct device *dev, |
| 1024 | struct device_attribute *attr, const char *buf, size_t len) |
| 1025 | { |
| 1026 | u64 disksize; |
| 1027 | struct zcomp *comp; |
| 1028 | struct zram_meta *meta; |
| 1029 | struct zram *zram = dev_to_zram(dev); |
| 1030 | int err; |
| 1031 | |
| 1032 | disksize = memparse(buf, NULL); |
| 1033 | if (!disksize) |
| 1034 | return -EINVAL; |
| 1035 | |
| 1036 | disksize = PAGE_ALIGN(disksize); |
| 1037 | meta = zram_meta_alloc(zram->disk->disk_name, disksize); |
| 1038 | if (!meta) |
| 1039 | return -ENOMEM; |
| 1040 | |
| 1041 | comp = zcomp_create(zram->compressor, zram->max_comp_streams); |
| 1042 | if (IS_ERR(comp)) { |
| 1043 | pr_err("Cannot initialise %s compressing backend\n", |
| 1044 | zram->compressor); |
| 1045 | err = PTR_ERR(comp); |
| 1046 | goto out_free_meta; |
| 1047 | } |
| 1048 | |
| 1049 | down_write(&zram->init_lock); |
| 1050 | if (init_done(zram)) { |
| 1051 | pr_info("Cannot change disksize for initialized device\n"); |
| 1052 | err = -EBUSY; |
| 1053 | goto out_destroy_comp; |
| 1054 | } |
| 1055 | |
| 1056 | init_waitqueue_head(&zram->io_done); |
| 1057 | atomic_set(&zram->refcount, 1); |
| 1058 | zram->meta = meta; |
| 1059 | zram->comp = comp; |
| 1060 | zram->disksize = disksize; |
| 1061 | set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); |
| 1062 | up_write(&zram->init_lock); |
| 1063 | |
| 1064 | /* |
| 1065 | * Revalidate disk out of the init_lock to avoid lockdep splat. |
| 1066 | * It's okay because disk's capacity is protected by init_lock |
| 1067 | * so that revalidate_disk always sees up-to-date capacity. |
| 1068 | */ |
| 1069 | revalidate_disk(zram->disk); |
| 1070 | |
| 1071 | return len; |
| 1072 | |
| 1073 | out_destroy_comp: |
| 1074 | up_write(&zram->init_lock); |
| 1075 | zcomp_destroy(comp); |
| 1076 | out_free_meta: |
| 1077 | zram_meta_free(meta, disksize); |
| 1078 | return err; |
| 1079 | } |
| 1080 | |
| 1081 | static ssize_t reset_store(struct device *dev, |
| 1082 | struct device_attribute *attr, const char *buf, size_t len) |
| 1083 | { |
| 1084 | int ret; |
| 1085 | unsigned short do_reset; |
| 1086 | struct zram *zram; |
| 1087 | struct block_device *bdev; |
| 1088 | |
| 1089 | ret = kstrtou16(buf, 10, &do_reset); |
| 1090 | if (ret) |
| 1091 | return ret; |
| 1092 | |
| 1093 | if (!do_reset) |
| 1094 | return -EINVAL; |
| 1095 | |
| 1096 | zram = dev_to_zram(dev); |
| 1097 | bdev = bdget_disk(zram->disk, 0); |
| 1098 | if (!bdev) |
| 1099 | return -ENOMEM; |
| 1100 | |
| 1101 | mutex_lock(&bdev->bd_mutex); |
| 1102 | /* Do not reset an active device or claimed device */ |
| 1103 | if (bdev->bd_openers || zram->claim) { |
| 1104 | mutex_unlock(&bdev->bd_mutex); |
| 1105 | bdput(bdev); |
| 1106 | return -EBUSY; |
| 1107 | } |
| 1108 | |
| 1109 | /* From now on, anyone can't open /dev/zram[0-9] */ |
| 1110 | zram->claim = true; |
| 1111 | mutex_unlock(&bdev->bd_mutex); |
| 1112 | |
| 1113 | /* Make sure all the pending I/O are finished */ |
| 1114 | fsync_bdev(bdev); |
| 1115 | zram_reset_device(zram); |
| 1116 | revalidate_disk(zram->disk); |
| 1117 | bdput(bdev); |
| 1118 | |
| 1119 | mutex_lock(&bdev->bd_mutex); |
| 1120 | zram->claim = false; |
| 1121 | mutex_unlock(&bdev->bd_mutex); |
| 1122 | |
| 1123 | return len; |
| 1124 | } |
| 1125 | |
| 1126 | static int zram_open(struct block_device *bdev, fmode_t mode) |
| 1127 | { |
| 1128 | int ret = 0; |
| 1129 | struct zram *zram; |
| 1130 | |
| 1131 | WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); |
| 1132 | |
| 1133 | zram = bdev->bd_disk->private_data; |
| 1134 | /* zram was claimed to reset so open request fails */ |
| 1135 | if (zram->claim) |
| 1136 | ret = -EBUSY; |
| 1137 | |
| 1138 | return ret; |
| 1139 | } |
| 1140 | |
| 1141 | static const struct block_device_operations zram_devops = { |
| 1142 | .open = zram_open, |
| 1143 | .swap_slot_free_notify = zram_slot_free_notify, |
| 1144 | .rw_page = zram_rw_page, |
| 1145 | .owner = THIS_MODULE |
| 1146 | }; |
| 1147 | |
| 1148 | static DEVICE_ATTR_WO(compact); |
| 1149 | static DEVICE_ATTR_RW(disksize); |
| 1150 | static DEVICE_ATTR_RO(initstate); |
| 1151 | static DEVICE_ATTR_WO(reset); |
| 1152 | static DEVICE_ATTR_RO(orig_data_size); |
| 1153 | static DEVICE_ATTR_RO(mem_used_total); |
| 1154 | static DEVICE_ATTR_RW(mem_limit); |
| 1155 | static DEVICE_ATTR_RW(mem_used_max); |
| 1156 | static DEVICE_ATTR_RW(max_comp_streams); |
| 1157 | static DEVICE_ATTR_RW(comp_algorithm); |
| 1158 | |
| 1159 | static struct attribute *zram_disk_attrs[] = { |
| 1160 | &dev_attr_disksize.attr, |
| 1161 | &dev_attr_initstate.attr, |
| 1162 | &dev_attr_reset.attr, |
| 1163 | &dev_attr_num_reads.attr, |
| 1164 | &dev_attr_num_writes.attr, |
| 1165 | &dev_attr_failed_reads.attr, |
| 1166 | &dev_attr_failed_writes.attr, |
| 1167 | &dev_attr_compact.attr, |
| 1168 | &dev_attr_invalid_io.attr, |
| 1169 | &dev_attr_notify_free.attr, |
| 1170 | &dev_attr_zero_pages.attr, |
| 1171 | &dev_attr_orig_data_size.attr, |
| 1172 | &dev_attr_compr_data_size.attr, |
| 1173 | &dev_attr_mem_used_total.attr, |
| 1174 | &dev_attr_mem_limit.attr, |
| 1175 | &dev_attr_mem_used_max.attr, |
| 1176 | &dev_attr_max_comp_streams.attr, |
| 1177 | &dev_attr_comp_algorithm.attr, |
| 1178 | &dev_attr_io_stat.attr, |
| 1179 | &dev_attr_mm_stat.attr, |
| 1180 | NULL, |
| 1181 | }; |
| 1182 | |
| 1183 | static struct attribute_group zram_disk_attr_group = { |
| 1184 | .attrs = zram_disk_attrs, |
| 1185 | }; |
| 1186 | |
| 1187 | /* |
| 1188 | * Allocate and initialize new zram device. the function returns |
| 1189 | * '>= 0' device_id upon success, and negative value otherwise. |
| 1190 | */ |
| 1191 | static int zram_add(void) |
| 1192 | { |
| 1193 | struct zram *zram; |
| 1194 | struct request_queue *queue; |
| 1195 | int ret, device_id; |
| 1196 | |
| 1197 | zram = kzalloc(sizeof(struct zram), GFP_KERNEL); |
| 1198 | if (!zram) |
| 1199 | return -ENOMEM; |
| 1200 | |
| 1201 | ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); |
| 1202 | if (ret < 0) |
| 1203 | goto out_free_dev; |
| 1204 | device_id = ret; |
| 1205 | |
| 1206 | init_rwsem(&zram->init_lock); |
| 1207 | |
| 1208 | queue = blk_alloc_queue(GFP_KERNEL); |
| 1209 | if (!queue) { |
| 1210 | pr_err("Error allocating disk queue for device %d\n", |
| 1211 | device_id); |
| 1212 | ret = -ENOMEM; |
| 1213 | goto out_free_idr; |
| 1214 | } |
| 1215 | |
| 1216 | blk_queue_make_request(queue, zram_make_request); |
| 1217 | |
| 1218 | /* gendisk structure */ |
| 1219 | zram->disk = alloc_disk(1); |
| 1220 | if (!zram->disk) { |
| 1221 | pr_err("Error allocating disk structure for device %d\n", |
| 1222 | device_id); |
| 1223 | ret = -ENOMEM; |
| 1224 | goto out_free_queue; |
| 1225 | } |
| 1226 | |
| 1227 | zram->disk->major = zram_major; |
| 1228 | zram->disk->first_minor = device_id; |
| 1229 | zram->disk->fops = &zram_devops; |
| 1230 | zram->disk->queue = queue; |
| 1231 | zram->disk->queue->queuedata = zram; |
| 1232 | zram->disk->private_data = zram; |
| 1233 | snprintf(zram->disk->disk_name, 16, "zram%d", device_id); |
| 1234 | |
| 1235 | /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ |
| 1236 | set_capacity(zram->disk, 0); |
| 1237 | /* zram devices sort of resembles non-rotational disks */ |
| 1238 | queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); |
| 1239 | queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); |
| 1240 | /* |
| 1241 | * To ensure that we always get PAGE_SIZE aligned |
| 1242 | * and n*PAGE_SIZED sized I/O requests. |
| 1243 | */ |
| 1244 | blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); |
| 1245 | blk_queue_logical_block_size(zram->disk->queue, |
| 1246 | ZRAM_LOGICAL_BLOCK_SIZE); |
| 1247 | blk_queue_io_min(zram->disk->queue, PAGE_SIZE); |
| 1248 | blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); |
| 1249 | zram->disk->queue->limits.discard_granularity = PAGE_SIZE; |
| 1250 | blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); |
| 1251 | /* |
| 1252 | * zram_bio_discard() will clear all logical blocks if logical block |
| 1253 | * size is identical with physical block size(PAGE_SIZE). But if it is |
| 1254 | * different, we will skip discarding some parts of logical blocks in |
| 1255 | * the part of the request range which isn't aligned to physical block |
| 1256 | * size. So we can't ensure that all discarded logical blocks are |
| 1257 | * zeroed. |
| 1258 | */ |
| 1259 | if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) |
| 1260 | zram->disk->queue->limits.discard_zeroes_data = 1; |
| 1261 | else |
| 1262 | zram->disk->queue->limits.discard_zeroes_data = 0; |
| 1263 | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); |
| 1264 | |
| 1265 | add_disk(zram->disk); |
| 1266 | |
| 1267 | ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, |
| 1268 | &zram_disk_attr_group); |
| 1269 | if (ret < 0) { |
| 1270 | pr_err("Error creating sysfs group for device %d\n", |
| 1271 | device_id); |
| 1272 | goto out_free_disk; |
| 1273 | } |
| 1274 | strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); |
| 1275 | zram->meta = NULL; |
| 1276 | zram->max_comp_streams = 1; |
| 1277 | |
| 1278 | pr_info("Added device: %s\n", zram->disk->disk_name); |
| 1279 | return device_id; |
| 1280 | |
| 1281 | out_free_disk: |
| 1282 | del_gendisk(zram->disk); |
| 1283 | put_disk(zram->disk); |
| 1284 | out_free_queue: |
| 1285 | blk_cleanup_queue(queue); |
| 1286 | out_free_idr: |
| 1287 | idr_remove(&zram_index_idr, device_id); |
| 1288 | out_free_dev: |
| 1289 | kfree(zram); |
| 1290 | return ret; |
| 1291 | } |
| 1292 | |
| 1293 | static int zram_remove(struct zram *zram) |
| 1294 | { |
| 1295 | struct block_device *bdev; |
| 1296 | |
| 1297 | bdev = bdget_disk(zram->disk, 0); |
| 1298 | if (!bdev) |
| 1299 | return -ENOMEM; |
| 1300 | |
| 1301 | mutex_lock(&bdev->bd_mutex); |
| 1302 | if (bdev->bd_openers || zram->claim) { |
| 1303 | mutex_unlock(&bdev->bd_mutex); |
| 1304 | bdput(bdev); |
| 1305 | return -EBUSY; |
| 1306 | } |
| 1307 | |
| 1308 | zram->claim = true; |
| 1309 | mutex_unlock(&bdev->bd_mutex); |
| 1310 | |
| 1311 | /* |
| 1312 | * Remove sysfs first, so no one will perform a disksize |
| 1313 | * store while we destroy the devices. This also helps during |
| 1314 | * hot_remove -- zram_reset_device() is the last holder of |
| 1315 | * ->init_lock, no later/concurrent disksize_store() or any |
| 1316 | * other sysfs handlers are possible. |
| 1317 | */ |
| 1318 | sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, |
| 1319 | &zram_disk_attr_group); |
| 1320 | |
| 1321 | /* Make sure all the pending I/O are finished */ |
| 1322 | fsync_bdev(bdev); |
| 1323 | zram_reset_device(zram); |
| 1324 | bdput(bdev); |
| 1325 | |
| 1326 | pr_info("Removed device: %s\n", zram->disk->disk_name); |
| 1327 | |
| 1328 | blk_cleanup_queue(zram->disk->queue); |
| 1329 | del_gendisk(zram->disk); |
| 1330 | put_disk(zram->disk); |
| 1331 | kfree(zram); |
| 1332 | return 0; |
| 1333 | } |
| 1334 | |
| 1335 | /* zram-control sysfs attributes */ |
| 1336 | static ssize_t hot_add_show(struct class *class, |
| 1337 | struct class_attribute *attr, |
| 1338 | char *buf) |
| 1339 | { |
| 1340 | int ret; |
| 1341 | |
| 1342 | mutex_lock(&zram_index_mutex); |
| 1343 | ret = zram_add(); |
| 1344 | mutex_unlock(&zram_index_mutex); |
| 1345 | |
| 1346 | if (ret < 0) |
| 1347 | return ret; |
| 1348 | return scnprintf(buf, PAGE_SIZE, "%d\n", ret); |
| 1349 | } |
| 1350 | |
| 1351 | static ssize_t hot_remove_store(struct class *class, |
| 1352 | struct class_attribute *attr, |
| 1353 | const char *buf, |
| 1354 | size_t count) |
| 1355 | { |
| 1356 | struct zram *zram; |
| 1357 | int ret, dev_id; |
| 1358 | |
| 1359 | /* dev_id is gendisk->first_minor, which is `int' */ |
| 1360 | ret = kstrtoint(buf, 10, &dev_id); |
| 1361 | if (ret) |
| 1362 | return ret; |
| 1363 | if (dev_id < 0) |
| 1364 | return -EINVAL; |
| 1365 | |
| 1366 | mutex_lock(&zram_index_mutex); |
| 1367 | |
| 1368 | zram = idr_find(&zram_index_idr, dev_id); |
| 1369 | if (zram) { |
| 1370 | ret = zram_remove(zram); |
| 1371 | if (!ret) |
| 1372 | idr_remove(&zram_index_idr, dev_id); |
| 1373 | } else { |
| 1374 | ret = -ENODEV; |
| 1375 | } |
| 1376 | |
| 1377 | mutex_unlock(&zram_index_mutex); |
| 1378 | return ret ? ret : count; |
| 1379 | } |
| 1380 | |
| 1381 | /* |
| 1382 | * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a |
| 1383 | * sense that reading from this file does alter the state of your system -- it |
| 1384 | * creates a new un-initialized zram device and returns back this device's |
| 1385 | * device_id (or an error code if it fails to create a new device). |
| 1386 | */ |
| 1387 | static struct class_attribute zram_control_class_attrs[] = { |
| 1388 | __ATTR(hot_add, 0400, hot_add_show, NULL), |
| 1389 | __ATTR_WO(hot_remove), |
| 1390 | __ATTR_NULL, |
| 1391 | }; |
| 1392 | |
| 1393 | static struct class zram_control_class = { |
| 1394 | .name = "zram-control", |
| 1395 | .owner = THIS_MODULE, |
| 1396 | .class_attrs = zram_control_class_attrs, |
| 1397 | }; |
| 1398 | |
| 1399 | static int zram_remove_cb(int id, void *ptr, void *data) |
| 1400 | { |
| 1401 | zram_remove(ptr); |
| 1402 | return 0; |
| 1403 | } |
| 1404 | |
| 1405 | static void destroy_devices(void) |
| 1406 | { |
| 1407 | class_unregister(&zram_control_class); |
| 1408 | idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); |
| 1409 | idr_destroy(&zram_index_idr); |
| 1410 | unregister_blkdev(zram_major, "zram"); |
| 1411 | } |
| 1412 | |
| 1413 | static int __init zram_init(void) |
| 1414 | { |
| 1415 | int ret; |
| 1416 | |
| 1417 | ret = class_register(&zram_control_class); |
| 1418 | if (ret) { |
| 1419 | pr_err("Unable to register zram-control class\n"); |
| 1420 | return ret; |
| 1421 | } |
| 1422 | |
| 1423 | zram_major = register_blkdev(0, "zram"); |
| 1424 | if (zram_major <= 0) { |
| 1425 | pr_err("Unable to get major number\n"); |
| 1426 | class_unregister(&zram_control_class); |
| 1427 | return -EBUSY; |
| 1428 | } |
| 1429 | |
| 1430 | while (num_devices != 0) { |
| 1431 | mutex_lock(&zram_index_mutex); |
| 1432 | ret = zram_add(); |
| 1433 | mutex_unlock(&zram_index_mutex); |
| 1434 | if (ret < 0) |
| 1435 | goto out_error; |
| 1436 | num_devices--; |
| 1437 | } |
| 1438 | |
| 1439 | return 0; |
| 1440 | |
| 1441 | out_error: |
| 1442 | destroy_devices(); |
| 1443 | return ret; |
| 1444 | } |
| 1445 | |
| 1446 | static void __exit zram_exit(void) |
| 1447 | { |
| 1448 | destroy_devices(); |
| 1449 | } |
| 1450 | |
| 1451 | module_init(zram_init); |
| 1452 | module_exit(zram_exit); |
| 1453 | |
| 1454 | module_param(num_devices, uint, 0); |
| 1455 | MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); |
| 1456 | |
| 1457 | MODULE_LICENSE("Dual BSD/GPL"); |
| 1458 | MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |
| 1459 | MODULE_DESCRIPTION("Compressed RAM Block Device"); |