blob: 62a93b685c5427b10dc24e784b02c5729a1af773 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15#define KMSG_COMPONENT "zram"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/vmalloc.h>
30#include <linux/err.h>
31#include <linux/idr.h>
32#include <linux/sysfs.h>
33
34#include "zram_drv.h"
35
36static DEFINE_IDR(zram_index_idr);
37/* idr index must be protected */
38static DEFINE_MUTEX(zram_index_mutex);
39
40static int zram_major;
41static const char *default_compressor = "lzo";
42
43/* Module params (documentation at end) */
44static unsigned int num_devices = 1;
45
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
55#define ZRAM_ATTR_RO(name) \
56static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
60 \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
65static DEVICE_ATTR_RO(name);
66
67static inline bool init_done(struct zram *zram)
68{
69 return zram->disksize;
70}
71
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
77/* flag operations require table entry bit_spin_lock() being held */
78static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
80{
81 return meta->table[index].value & BIT(flag);
82}
83
84static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86{
87 meta->table[index].value |= BIT(flag);
88}
89
90static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92{
93 meta->table[index].value &= ~BIT(flag);
94}
95
96static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97{
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99}
100
101static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
103{
104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107}
108
109static inline bool is_partial_io(struct bio_vec *bvec)
110{
111 return bvec->bv_len != PAGE_SIZE;
112}
113
114/*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117static inline bool valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119{
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return false;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return false;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return false;
133
134 /* I/O request is valid */
135 return true;
136}
137
138static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139{
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143}
144
145static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147{
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158}
159
160static bool page_zero_filled(void *ptr)
161{
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return false;
170 }
171
172 return true;
173}
174
175static void handle_zero_page(struct bio_vec *bvec)
176{
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
188}
189
190static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
193 u32 val;
194 struct zram *zram = dev_to_zram(dev);
195
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
199
200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201}
202
203static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209}
210
211static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct zram *zram = dev_to_zram(dev);
215
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219}
220
221static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
226
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram->init_lock);
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
231 val = zs_get_total_pages(meta->mem_pool);
232 }
233 up_read(&zram->init_lock);
234
235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236}
237
238static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250}
251
252static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268}
269
270static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283}
284
285static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287{
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
301 }
302 up_read(&zram->init_lock);
303
304 return len;
305}
306
307static ssize_t max_comp_streams_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309{
310 int val;
311 struct zram *zram = dev_to_zram(dev);
312
313 down_read(&zram->init_lock);
314 val = zram->max_comp_streams;
315 up_read(&zram->init_lock);
316
317 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318}
319
320static ssize_t max_comp_streams_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
322{
323 int num;
324 struct zram *zram = dev_to_zram(dev);
325 int ret;
326
327 ret = kstrtoint(buf, 0, &num);
328 if (ret < 0)
329 return ret;
330 if (num < 1)
331 return -EINVAL;
332
333 down_write(&zram->init_lock);
334 if (init_done(zram)) {
335 if (!zcomp_set_max_streams(zram->comp, num)) {
336 pr_info("Cannot change max compression streams\n");
337 ret = -EINVAL;
338 goto out;
339 }
340 }
341
342 zram->max_comp_streams = num;
343 ret = len;
344out:
345 up_write(&zram->init_lock);
346 return ret;
347}
348
349static ssize_t comp_algorithm_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351{
352 size_t sz;
353 struct zram *zram = dev_to_zram(dev);
354
355 down_read(&zram->init_lock);
356 sz = zcomp_available_show(zram->compressor, buf);
357 up_read(&zram->init_lock);
358
359 return sz;
360}
361
362static ssize_t comp_algorithm_store(struct device *dev,
363 struct device_attribute *attr, const char *buf, size_t len)
364{
365 struct zram *zram = dev_to_zram(dev);
366 size_t sz;
367
368 if (!zcomp_available_algorithm(buf))
369 return -EINVAL;
370
371 down_write(&zram->init_lock);
372 if (init_done(zram)) {
373 up_write(&zram->init_lock);
374 pr_info("Can't change algorithm for initialized device\n");
375 return -EBUSY;
376 }
377 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
378
379 /* ignore trailing newline */
380 sz = strlen(zram->compressor);
381 if (sz > 0 && zram->compressor[sz - 1] == '\n')
382 zram->compressor[sz - 1] = 0x00;
383
384 up_write(&zram->init_lock);
385 return len;
386}
387
388static ssize_t compact_store(struct device *dev,
389 struct device_attribute *attr, const char *buf, size_t len)
390{
391 struct zram *zram = dev_to_zram(dev);
392 struct zram_meta *meta;
393
394 down_read(&zram->init_lock);
395 if (!init_done(zram)) {
396 up_read(&zram->init_lock);
397 return -EINVAL;
398 }
399
400 meta = zram->meta;
401 zs_compact(meta->mem_pool);
402 up_read(&zram->init_lock);
403
404 return len;
405}
406
407static ssize_t io_stat_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
409{
410 struct zram *zram = dev_to_zram(dev);
411 ssize_t ret;
412
413 down_read(&zram->init_lock);
414 ret = scnprintf(buf, PAGE_SIZE,
415 "%8llu %8llu %8llu %8llu\n",
416 (u64)atomic64_read(&zram->stats.failed_reads),
417 (u64)atomic64_read(&zram->stats.failed_writes),
418 (u64)atomic64_read(&zram->stats.invalid_io),
419 (u64)atomic64_read(&zram->stats.notify_free));
420 up_read(&zram->init_lock);
421
422 return ret;
423}
424
425static ssize_t mm_stat_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 struct zram *zram = dev_to_zram(dev);
429 struct zs_pool_stats pool_stats;
430 u64 orig_size, mem_used = 0;
431 long max_used;
432 ssize_t ret;
433
434 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
435
436 down_read(&zram->init_lock);
437 if (init_done(zram)) {
438 mem_used = zs_get_total_pages(zram->meta->mem_pool);
439 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
440 }
441
442 orig_size = atomic64_read(&zram->stats.pages_stored);
443 max_used = atomic_long_read(&zram->stats.max_used_pages);
444
445 ret = scnprintf(buf, PAGE_SIZE,
446 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
447 orig_size << PAGE_SHIFT,
448 (u64)atomic64_read(&zram->stats.compr_data_size),
449 mem_used << PAGE_SHIFT,
450 zram->limit_pages << PAGE_SHIFT,
451 max_used << PAGE_SHIFT,
452 (u64)atomic64_read(&zram->stats.zero_pages),
453 pool_stats.pages_compacted);
454 up_read(&zram->init_lock);
455
456 return ret;
457}
458
459static DEVICE_ATTR_RO(io_stat);
460static DEVICE_ATTR_RO(mm_stat);
461ZRAM_ATTR_RO(num_reads);
462ZRAM_ATTR_RO(num_writes);
463ZRAM_ATTR_RO(failed_reads);
464ZRAM_ATTR_RO(failed_writes);
465ZRAM_ATTR_RO(invalid_io);
466ZRAM_ATTR_RO(notify_free);
467ZRAM_ATTR_RO(zero_pages);
468ZRAM_ATTR_RO(compr_data_size);
469
470static inline bool zram_meta_get(struct zram *zram)
471{
472 if (atomic_inc_not_zero(&zram->refcount))
473 return true;
474 return false;
475}
476
477static inline void zram_meta_put(struct zram *zram)
478{
479 atomic_dec(&zram->refcount);
480}
481
482static void zram_meta_free(struct zram_meta *meta, u64 disksize)
483{
484 size_t num_pages = disksize >> PAGE_SHIFT;
485 size_t index;
486
487 /* Free all pages that are still in this zram device */
488 for (index = 0; index < num_pages; index++) {
489 unsigned long handle = meta->table[index].handle;
490
491 if (!handle)
492 continue;
493
494 zs_free(meta->mem_pool, handle);
495 }
496
497 zs_destroy_pool(meta->mem_pool);
498 vfree(meta->table);
499 kfree(meta);
500}
501
502static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
503{
504 size_t num_pages;
505 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
506
507 if (!meta)
508 return NULL;
509
510 num_pages = disksize >> PAGE_SHIFT;
511 meta->table = vzalloc(num_pages * sizeof(*meta->table));
512 if (!meta->table) {
513 pr_err("Error allocating zram address table\n");
514 goto out_error;
515 }
516
517 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
518 if (!meta->mem_pool) {
519 pr_err("Error creating memory pool\n");
520 goto out_error;
521 }
522
523 return meta;
524
525out_error:
526 vfree(meta->table);
527 kfree(meta);
528 return NULL;
529}
530
531/*
532 * To protect concurrent access to the same index entry,
533 * caller should hold this table index entry's bit_spinlock to
534 * indicate this index entry is accessing.
535 */
536static void zram_free_page(struct zram *zram, size_t index)
537{
538 struct zram_meta *meta = zram->meta;
539 unsigned long handle = meta->table[index].handle;
540
541 if (unlikely(!handle)) {
542 /*
543 * No memory is allocated for zero filled pages.
544 * Simply clear zero page flag.
545 */
546 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
547 zram_clear_flag(meta, index, ZRAM_ZERO);
548 atomic64_dec(&zram->stats.zero_pages);
549 }
550 return;
551 }
552
553 zs_free(meta->mem_pool, handle);
554
555 atomic64_sub(zram_get_obj_size(meta, index),
556 &zram->stats.compr_data_size);
557 atomic64_dec(&zram->stats.pages_stored);
558
559 meta->table[index].handle = 0;
560 zram_set_obj_size(meta, index, 0);
561}
562
563static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
564{
565 int ret = 0;
566 unsigned char *cmem;
567 struct zram_meta *meta = zram->meta;
568 unsigned long handle;
569 size_t size;
570
571 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
572 handle = meta->table[index].handle;
573 size = zram_get_obj_size(meta, index);
574
575 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
576 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
577 memset(mem, 0, PAGE_SIZE);
578 return 0;
579 }
580
581 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
582 if (size == PAGE_SIZE)
583 memcpy(mem, cmem, PAGE_SIZE);
584 else
585 ret = zcomp_decompress(zram->comp, cmem, size, mem);
586 zs_unmap_object(meta->mem_pool, handle);
587 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
588
589 /* Should NEVER happen. Return bio error if it does. */
590 if (unlikely(ret)) {
591 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
592 return ret;
593 }
594
595 return 0;
596}
597
598static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
599 u32 index, int offset)
600{
601 int ret;
602 struct page *page;
603 unsigned char *user_mem, *uncmem = NULL;
604 struct zram_meta *meta = zram->meta;
605 page = bvec->bv_page;
606
607 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
608 if (unlikely(!meta->table[index].handle) ||
609 zram_test_flag(meta, index, ZRAM_ZERO)) {
610 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
611 handle_zero_page(bvec);
612 return 0;
613 }
614 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
615
616 if (is_partial_io(bvec))
617 /* Use a temporary buffer to decompress the page */
618 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
619
620 user_mem = kmap_atomic(page);
621 if (!is_partial_io(bvec))
622 uncmem = user_mem;
623
624 if (!uncmem) {
625 pr_err("Unable to allocate temp memory\n");
626 ret = -ENOMEM;
627 goto out_cleanup;
628 }
629
630 ret = zram_decompress_page(zram, uncmem, index);
631 /* Should NEVER happen. Return bio error if it does. */
632 if (unlikely(ret))
633 goto out_cleanup;
634
635 if (is_partial_io(bvec))
636 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
637 bvec->bv_len);
638
639 flush_dcache_page(page);
640 ret = 0;
641out_cleanup:
642 kunmap_atomic(user_mem);
643 if (is_partial_io(bvec))
644 kfree(uncmem);
645 return ret;
646}
647
648static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
649 int offset)
650{
651 int ret = 0;
652 size_t clen;
653 unsigned long handle;
654 struct page *page;
655 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
656 struct zram_meta *meta = zram->meta;
657 struct zcomp_strm *zstrm = NULL;
658 unsigned long alloced_pages;
659
660 page = bvec->bv_page;
661 if (is_partial_io(bvec)) {
662 /*
663 * This is a partial IO. We need to read the full page
664 * before to write the changes.
665 */
666 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
667 if (!uncmem) {
668 ret = -ENOMEM;
669 goto out;
670 }
671 ret = zram_decompress_page(zram, uncmem, index);
672 if (ret)
673 goto out;
674 }
675
676 zstrm = zcomp_strm_find(zram->comp);
677 user_mem = kmap_atomic(page);
678
679 if (is_partial_io(bvec)) {
680 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
681 bvec->bv_len);
682 kunmap_atomic(user_mem);
683 user_mem = NULL;
684 } else {
685 uncmem = user_mem;
686 }
687
688 if (page_zero_filled(uncmem)) {
689 if (user_mem)
690 kunmap_atomic(user_mem);
691 /* Free memory associated with this sector now. */
692 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
693 zram_free_page(zram, index);
694 zram_set_flag(meta, index, ZRAM_ZERO);
695 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
696
697 atomic64_inc(&zram->stats.zero_pages);
698 ret = 0;
699 goto out;
700 }
701
702 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
703 if (!is_partial_io(bvec)) {
704 kunmap_atomic(user_mem);
705 user_mem = NULL;
706 uncmem = NULL;
707 }
708
709 if (unlikely(ret)) {
710 pr_err("Compression failed! err=%d\n", ret);
711 goto out;
712 }
713 src = zstrm->buffer;
714 if (unlikely(clen > max_zpage_size)) {
715 clen = PAGE_SIZE;
716 if (is_partial_io(bvec))
717 src = uncmem;
718 }
719
720 handle = zs_malloc(meta->mem_pool, clen);
721 if (!handle) {
722 pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
723 index, clen);
724 ret = -ENOMEM;
725 goto out;
726 }
727
728 alloced_pages = zs_get_total_pages(meta->mem_pool);
729 update_used_max(zram, alloced_pages);
730
731 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
732 zs_free(meta->mem_pool, handle);
733 ret = -ENOMEM;
734 goto out;
735 }
736
737 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
738
739 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
740 src = kmap_atomic(page);
741 memcpy(cmem, src, PAGE_SIZE);
742 kunmap_atomic(src);
743 } else {
744 memcpy(cmem, src, clen);
745 }
746
747 zcomp_strm_release(zram->comp, zstrm);
748 zstrm = NULL;
749 zs_unmap_object(meta->mem_pool, handle);
750
751 /*
752 * Free memory associated with this sector
753 * before overwriting unused sectors.
754 */
755 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
756 zram_free_page(zram, index);
757
758 meta->table[index].handle = handle;
759 zram_set_obj_size(meta, index, clen);
760 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
761
762 /* Update stats */
763 atomic64_add(clen, &zram->stats.compr_data_size);
764 atomic64_inc(&zram->stats.pages_stored);
765out:
766 if (zstrm)
767 zcomp_strm_release(zram->comp, zstrm);
768 if (is_partial_io(bvec))
769 kfree(uncmem);
770 return ret;
771}
772
773/*
774 * zram_bio_discard - handler on discard request
775 * @index: physical block index in PAGE_SIZE units
776 * @offset: byte offset within physical block
777 */
778static void zram_bio_discard(struct zram *zram, u32 index,
779 int offset, struct bio *bio)
780{
781 size_t n = bio->bi_iter.bi_size;
782 struct zram_meta *meta = zram->meta;
783
784 /*
785 * zram manages data in physical block size units. Because logical block
786 * size isn't identical with physical block size on some arch, we
787 * could get a discard request pointing to a specific offset within a
788 * certain physical block. Although we can handle this request by
789 * reading that physiclal block and decompressing and partially zeroing
790 * and re-compressing and then re-storing it, this isn't reasonable
791 * because our intent with a discard request is to save memory. So
792 * skipping this logical block is appropriate here.
793 */
794 if (offset) {
795 if (n <= (PAGE_SIZE - offset))
796 return;
797
798 n -= (PAGE_SIZE - offset);
799 index++;
800 }
801
802 while (n >= PAGE_SIZE) {
803 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
804 zram_free_page(zram, index);
805 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
806 atomic64_inc(&zram->stats.notify_free);
807 index++;
808 n -= PAGE_SIZE;
809 }
810}
811
812static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
813 int offset, int rw)
814{
815 unsigned long start_time = jiffies;
816 int ret;
817
818 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
819 &zram->disk->part0);
820
821 if (rw == READ) {
822 atomic64_inc(&zram->stats.num_reads);
823 ret = zram_bvec_read(zram, bvec, index, offset);
824 } else {
825 atomic64_inc(&zram->stats.num_writes);
826 ret = zram_bvec_write(zram, bvec, index, offset);
827 }
828
829 generic_end_io_acct(rw, &zram->disk->part0, start_time);
830
831 if (unlikely(ret)) {
832 if (rw == READ)
833 atomic64_inc(&zram->stats.failed_reads);
834 else
835 atomic64_inc(&zram->stats.failed_writes);
836 }
837
838 return ret;
839}
840
841static void __zram_make_request(struct zram *zram, struct bio *bio)
842{
843 int offset, rw;
844 u32 index;
845 struct bio_vec bvec;
846 struct bvec_iter iter;
847
848 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
849 offset = (bio->bi_iter.bi_sector &
850 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
851
852 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
853 zram_bio_discard(zram, index, offset, bio);
854 bio_endio(bio);
855 return;
856 }
857
858 rw = bio_data_dir(bio);
859 bio_for_each_segment(bvec, bio, iter) {
860 int max_transfer_size = PAGE_SIZE - offset;
861
862 if (bvec.bv_len > max_transfer_size) {
863 /*
864 * zram_bvec_rw() can only make operation on a single
865 * zram page. Split the bio vector.
866 */
867 struct bio_vec bv;
868
869 bv.bv_page = bvec.bv_page;
870 bv.bv_len = max_transfer_size;
871 bv.bv_offset = bvec.bv_offset;
872
873 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
874 goto out;
875
876 bv.bv_len = bvec.bv_len - max_transfer_size;
877 bv.bv_offset += max_transfer_size;
878 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
879 goto out;
880 } else
881 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
882 goto out;
883
884 update_position(&index, &offset, &bvec);
885 }
886
887 bio_endio(bio);
888 return;
889
890out:
891 bio_io_error(bio);
892}
893
894/*
895 * Handler function for all zram I/O requests.
896 */
897static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
898{
899 struct zram *zram = queue->queuedata;
900
901 if (unlikely(!zram_meta_get(zram)))
902 goto error;
903
904 blk_queue_split(queue, &bio, queue->bio_split);
905
906 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
907 bio->bi_iter.bi_size)) {
908 atomic64_inc(&zram->stats.invalid_io);
909 goto put_zram;
910 }
911
912 __zram_make_request(zram, bio);
913 zram_meta_put(zram);
914 return BLK_QC_T_NONE;
915put_zram:
916 zram_meta_put(zram);
917error:
918 bio_io_error(bio);
919 return BLK_QC_T_NONE;
920}
921
922static void zram_slot_free_notify(struct block_device *bdev,
923 unsigned long index)
924{
925 struct zram *zram;
926 struct zram_meta *meta;
927
928 zram = bdev->bd_disk->private_data;
929 meta = zram->meta;
930
931 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
932 zram_free_page(zram, index);
933 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
934 atomic64_inc(&zram->stats.notify_free);
935}
936
937static int zram_rw_page(struct block_device *bdev, sector_t sector,
938 struct page *page, int rw)
939{
940 int offset, err = -EIO;
941 u32 index;
942 struct zram *zram;
943 struct bio_vec bv;
944
945 zram = bdev->bd_disk->private_data;
946 if (unlikely(!zram_meta_get(zram)))
947 goto out;
948
949 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
950 atomic64_inc(&zram->stats.invalid_io);
951 err = -EINVAL;
952 goto put_zram;
953 }
954
955 index = sector >> SECTORS_PER_PAGE_SHIFT;
956 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
957
958 bv.bv_page = page;
959 bv.bv_len = PAGE_SIZE;
960 bv.bv_offset = 0;
961
962 err = zram_bvec_rw(zram, &bv, index, offset, rw);
963put_zram:
964 zram_meta_put(zram);
965out:
966 /*
967 * If I/O fails, just return error(ie, non-zero) without
968 * calling page_endio.
969 * It causes resubmit the I/O with bio request by upper functions
970 * of rw_page(e.g., swap_readpage, __swap_writepage) and
971 * bio->bi_end_io does things to handle the error
972 * (e.g., SetPageError, set_page_dirty and extra works).
973 */
974 if (err == 0)
975 page_endio(page, rw, 0);
976 return err;
977}
978
979static void zram_reset_device(struct zram *zram)
980{
981 struct zram_meta *meta;
982 struct zcomp *comp;
983 u64 disksize;
984
985 down_write(&zram->init_lock);
986
987 zram->limit_pages = 0;
988
989 if (!init_done(zram)) {
990 up_write(&zram->init_lock);
991 return;
992 }
993
994 meta = zram->meta;
995 comp = zram->comp;
996 disksize = zram->disksize;
997 /*
998 * Refcount will go down to 0 eventually and r/w handler
999 * cannot handle further I/O so it will bail out by
1000 * check zram_meta_get.
1001 */
1002 zram_meta_put(zram);
1003 /*
1004 * We want to free zram_meta in process context to avoid
1005 * deadlock between reclaim path and any other locks.
1006 */
1007 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1008
1009 /* Reset stats */
1010 memset(&zram->stats, 0, sizeof(zram->stats));
1011 zram->disksize = 0;
1012 zram->max_comp_streams = 1;
1013
1014 set_capacity(zram->disk, 0);
1015 part_stat_set_all(&zram->disk->part0, 0);
1016
1017 up_write(&zram->init_lock);
1018 /* I/O operation under all of CPU are done so let's free */
1019 zram_meta_free(meta, disksize);
1020 zcomp_destroy(comp);
1021}
1022
1023static ssize_t disksize_store(struct device *dev,
1024 struct device_attribute *attr, const char *buf, size_t len)
1025{
1026 u64 disksize;
1027 struct zcomp *comp;
1028 struct zram_meta *meta;
1029 struct zram *zram = dev_to_zram(dev);
1030 int err;
1031
1032 disksize = memparse(buf, NULL);
1033 if (!disksize)
1034 return -EINVAL;
1035
1036 disksize = PAGE_ALIGN(disksize);
1037 meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1038 if (!meta)
1039 return -ENOMEM;
1040
1041 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1042 if (IS_ERR(comp)) {
1043 pr_err("Cannot initialise %s compressing backend\n",
1044 zram->compressor);
1045 err = PTR_ERR(comp);
1046 goto out_free_meta;
1047 }
1048
1049 down_write(&zram->init_lock);
1050 if (init_done(zram)) {
1051 pr_info("Cannot change disksize for initialized device\n");
1052 err = -EBUSY;
1053 goto out_destroy_comp;
1054 }
1055
1056 init_waitqueue_head(&zram->io_done);
1057 atomic_set(&zram->refcount, 1);
1058 zram->meta = meta;
1059 zram->comp = comp;
1060 zram->disksize = disksize;
1061 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1062 up_write(&zram->init_lock);
1063
1064 /*
1065 * Revalidate disk out of the init_lock to avoid lockdep splat.
1066 * It's okay because disk's capacity is protected by init_lock
1067 * so that revalidate_disk always sees up-to-date capacity.
1068 */
1069 revalidate_disk(zram->disk);
1070
1071 return len;
1072
1073out_destroy_comp:
1074 up_write(&zram->init_lock);
1075 zcomp_destroy(comp);
1076out_free_meta:
1077 zram_meta_free(meta, disksize);
1078 return err;
1079}
1080
1081static ssize_t reset_store(struct device *dev,
1082 struct device_attribute *attr, const char *buf, size_t len)
1083{
1084 int ret;
1085 unsigned short do_reset;
1086 struct zram *zram;
1087 struct block_device *bdev;
1088
1089 ret = kstrtou16(buf, 10, &do_reset);
1090 if (ret)
1091 return ret;
1092
1093 if (!do_reset)
1094 return -EINVAL;
1095
1096 zram = dev_to_zram(dev);
1097 bdev = bdget_disk(zram->disk, 0);
1098 if (!bdev)
1099 return -ENOMEM;
1100
1101 mutex_lock(&bdev->bd_mutex);
1102 /* Do not reset an active device or claimed device */
1103 if (bdev->bd_openers || zram->claim) {
1104 mutex_unlock(&bdev->bd_mutex);
1105 bdput(bdev);
1106 return -EBUSY;
1107 }
1108
1109 /* From now on, anyone can't open /dev/zram[0-9] */
1110 zram->claim = true;
1111 mutex_unlock(&bdev->bd_mutex);
1112
1113 /* Make sure all the pending I/O are finished */
1114 fsync_bdev(bdev);
1115 zram_reset_device(zram);
1116 revalidate_disk(zram->disk);
1117 bdput(bdev);
1118
1119 mutex_lock(&bdev->bd_mutex);
1120 zram->claim = false;
1121 mutex_unlock(&bdev->bd_mutex);
1122
1123 return len;
1124}
1125
1126static int zram_open(struct block_device *bdev, fmode_t mode)
1127{
1128 int ret = 0;
1129 struct zram *zram;
1130
1131 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1132
1133 zram = bdev->bd_disk->private_data;
1134 /* zram was claimed to reset so open request fails */
1135 if (zram->claim)
1136 ret = -EBUSY;
1137
1138 return ret;
1139}
1140
1141static const struct block_device_operations zram_devops = {
1142 .open = zram_open,
1143 .swap_slot_free_notify = zram_slot_free_notify,
1144 .rw_page = zram_rw_page,
1145 .owner = THIS_MODULE
1146};
1147
1148static DEVICE_ATTR_WO(compact);
1149static DEVICE_ATTR_RW(disksize);
1150static DEVICE_ATTR_RO(initstate);
1151static DEVICE_ATTR_WO(reset);
1152static DEVICE_ATTR_RO(orig_data_size);
1153static DEVICE_ATTR_RO(mem_used_total);
1154static DEVICE_ATTR_RW(mem_limit);
1155static DEVICE_ATTR_RW(mem_used_max);
1156static DEVICE_ATTR_RW(max_comp_streams);
1157static DEVICE_ATTR_RW(comp_algorithm);
1158
1159static struct attribute *zram_disk_attrs[] = {
1160 &dev_attr_disksize.attr,
1161 &dev_attr_initstate.attr,
1162 &dev_attr_reset.attr,
1163 &dev_attr_num_reads.attr,
1164 &dev_attr_num_writes.attr,
1165 &dev_attr_failed_reads.attr,
1166 &dev_attr_failed_writes.attr,
1167 &dev_attr_compact.attr,
1168 &dev_attr_invalid_io.attr,
1169 &dev_attr_notify_free.attr,
1170 &dev_attr_zero_pages.attr,
1171 &dev_attr_orig_data_size.attr,
1172 &dev_attr_compr_data_size.attr,
1173 &dev_attr_mem_used_total.attr,
1174 &dev_attr_mem_limit.attr,
1175 &dev_attr_mem_used_max.attr,
1176 &dev_attr_max_comp_streams.attr,
1177 &dev_attr_comp_algorithm.attr,
1178 &dev_attr_io_stat.attr,
1179 &dev_attr_mm_stat.attr,
1180 NULL,
1181};
1182
1183static struct attribute_group zram_disk_attr_group = {
1184 .attrs = zram_disk_attrs,
1185};
1186
1187/*
1188 * Allocate and initialize new zram device. the function returns
1189 * '>= 0' device_id upon success, and negative value otherwise.
1190 */
1191static int zram_add(void)
1192{
1193 struct zram *zram;
1194 struct request_queue *queue;
1195 int ret, device_id;
1196
1197 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1198 if (!zram)
1199 return -ENOMEM;
1200
1201 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1202 if (ret < 0)
1203 goto out_free_dev;
1204 device_id = ret;
1205
1206 init_rwsem(&zram->init_lock);
1207
1208 queue = blk_alloc_queue(GFP_KERNEL);
1209 if (!queue) {
1210 pr_err("Error allocating disk queue for device %d\n",
1211 device_id);
1212 ret = -ENOMEM;
1213 goto out_free_idr;
1214 }
1215
1216 blk_queue_make_request(queue, zram_make_request);
1217
1218 /* gendisk structure */
1219 zram->disk = alloc_disk(1);
1220 if (!zram->disk) {
1221 pr_err("Error allocating disk structure for device %d\n",
1222 device_id);
1223 ret = -ENOMEM;
1224 goto out_free_queue;
1225 }
1226
1227 zram->disk->major = zram_major;
1228 zram->disk->first_minor = device_id;
1229 zram->disk->fops = &zram_devops;
1230 zram->disk->queue = queue;
1231 zram->disk->queue->queuedata = zram;
1232 zram->disk->private_data = zram;
1233 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1234
1235 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1236 set_capacity(zram->disk, 0);
1237 /* zram devices sort of resembles non-rotational disks */
1238 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1239 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1240 /*
1241 * To ensure that we always get PAGE_SIZE aligned
1242 * and n*PAGE_SIZED sized I/O requests.
1243 */
1244 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1245 blk_queue_logical_block_size(zram->disk->queue,
1246 ZRAM_LOGICAL_BLOCK_SIZE);
1247 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1248 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1249 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1250 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1251 /*
1252 * zram_bio_discard() will clear all logical blocks if logical block
1253 * size is identical with physical block size(PAGE_SIZE). But if it is
1254 * different, we will skip discarding some parts of logical blocks in
1255 * the part of the request range which isn't aligned to physical block
1256 * size. So we can't ensure that all discarded logical blocks are
1257 * zeroed.
1258 */
1259 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1260 zram->disk->queue->limits.discard_zeroes_data = 1;
1261 else
1262 zram->disk->queue->limits.discard_zeroes_data = 0;
1263 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1264
1265 add_disk(zram->disk);
1266
1267 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1268 &zram_disk_attr_group);
1269 if (ret < 0) {
1270 pr_err("Error creating sysfs group for device %d\n",
1271 device_id);
1272 goto out_free_disk;
1273 }
1274 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1275 zram->meta = NULL;
1276 zram->max_comp_streams = 1;
1277
1278 pr_info("Added device: %s\n", zram->disk->disk_name);
1279 return device_id;
1280
1281out_free_disk:
1282 del_gendisk(zram->disk);
1283 put_disk(zram->disk);
1284out_free_queue:
1285 blk_cleanup_queue(queue);
1286out_free_idr:
1287 idr_remove(&zram_index_idr, device_id);
1288out_free_dev:
1289 kfree(zram);
1290 return ret;
1291}
1292
1293static int zram_remove(struct zram *zram)
1294{
1295 struct block_device *bdev;
1296
1297 bdev = bdget_disk(zram->disk, 0);
1298 if (!bdev)
1299 return -ENOMEM;
1300
1301 mutex_lock(&bdev->bd_mutex);
1302 if (bdev->bd_openers || zram->claim) {
1303 mutex_unlock(&bdev->bd_mutex);
1304 bdput(bdev);
1305 return -EBUSY;
1306 }
1307
1308 zram->claim = true;
1309 mutex_unlock(&bdev->bd_mutex);
1310
1311 /*
1312 * Remove sysfs first, so no one will perform a disksize
1313 * store while we destroy the devices. This also helps during
1314 * hot_remove -- zram_reset_device() is the last holder of
1315 * ->init_lock, no later/concurrent disksize_store() or any
1316 * other sysfs handlers are possible.
1317 */
1318 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1319 &zram_disk_attr_group);
1320
1321 /* Make sure all the pending I/O are finished */
1322 fsync_bdev(bdev);
1323 zram_reset_device(zram);
1324 bdput(bdev);
1325
1326 pr_info("Removed device: %s\n", zram->disk->disk_name);
1327
1328 blk_cleanup_queue(zram->disk->queue);
1329 del_gendisk(zram->disk);
1330 put_disk(zram->disk);
1331 kfree(zram);
1332 return 0;
1333}
1334
1335/* zram-control sysfs attributes */
1336static ssize_t hot_add_show(struct class *class,
1337 struct class_attribute *attr,
1338 char *buf)
1339{
1340 int ret;
1341
1342 mutex_lock(&zram_index_mutex);
1343 ret = zram_add();
1344 mutex_unlock(&zram_index_mutex);
1345
1346 if (ret < 0)
1347 return ret;
1348 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1349}
1350
1351static ssize_t hot_remove_store(struct class *class,
1352 struct class_attribute *attr,
1353 const char *buf,
1354 size_t count)
1355{
1356 struct zram *zram;
1357 int ret, dev_id;
1358
1359 /* dev_id is gendisk->first_minor, which is `int' */
1360 ret = kstrtoint(buf, 10, &dev_id);
1361 if (ret)
1362 return ret;
1363 if (dev_id < 0)
1364 return -EINVAL;
1365
1366 mutex_lock(&zram_index_mutex);
1367
1368 zram = idr_find(&zram_index_idr, dev_id);
1369 if (zram) {
1370 ret = zram_remove(zram);
1371 if (!ret)
1372 idr_remove(&zram_index_idr, dev_id);
1373 } else {
1374 ret = -ENODEV;
1375 }
1376
1377 mutex_unlock(&zram_index_mutex);
1378 return ret ? ret : count;
1379}
1380
1381/*
1382 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1383 * sense that reading from this file does alter the state of your system -- it
1384 * creates a new un-initialized zram device and returns back this device's
1385 * device_id (or an error code if it fails to create a new device).
1386 */
1387static struct class_attribute zram_control_class_attrs[] = {
1388 __ATTR(hot_add, 0400, hot_add_show, NULL),
1389 __ATTR_WO(hot_remove),
1390 __ATTR_NULL,
1391};
1392
1393static struct class zram_control_class = {
1394 .name = "zram-control",
1395 .owner = THIS_MODULE,
1396 .class_attrs = zram_control_class_attrs,
1397};
1398
1399static int zram_remove_cb(int id, void *ptr, void *data)
1400{
1401 zram_remove(ptr);
1402 return 0;
1403}
1404
1405static void destroy_devices(void)
1406{
1407 class_unregister(&zram_control_class);
1408 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1409 idr_destroy(&zram_index_idr);
1410 unregister_blkdev(zram_major, "zram");
1411}
1412
1413static int __init zram_init(void)
1414{
1415 int ret;
1416
1417 ret = class_register(&zram_control_class);
1418 if (ret) {
1419 pr_err("Unable to register zram-control class\n");
1420 return ret;
1421 }
1422
1423 zram_major = register_blkdev(0, "zram");
1424 if (zram_major <= 0) {
1425 pr_err("Unable to get major number\n");
1426 class_unregister(&zram_control_class);
1427 return -EBUSY;
1428 }
1429
1430 while (num_devices != 0) {
1431 mutex_lock(&zram_index_mutex);
1432 ret = zram_add();
1433 mutex_unlock(&zram_index_mutex);
1434 if (ret < 0)
1435 goto out_error;
1436 num_devices--;
1437 }
1438
1439 return 0;
1440
1441out_error:
1442 destroy_devices();
1443 return ret;
1444}
1445
1446static void __exit zram_exit(void)
1447{
1448 destroy_devices();
1449}
1450
1451module_init(zram_init);
1452module_exit(zram_exit);
1453
1454module_param(num_devices, uint, 0);
1455MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1456
1457MODULE_LICENSE("Dual BSD/GPL");
1458MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1459MODULE_DESCRIPTION("Compressed RAM Block Device");