blob: 80ec587d510efeeeb758d8566db3cfbe9ec2acb1 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/vmalloc.h>
29#include <linux/pagemap.h>
30#include <linux/delay.h>
31#include <linux/netdevice.h>
32#include <linux/interrupt.h>
33#include <linux/tcp.h>
34#include <linux/ipv6.h>
35#include <linux/slab.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/cpu.h>
41#include <linux/smp.h>
42#include <linux/pm_qos.h>
43#include <linux/pm_runtime.h>
44#include <linux/aer.h>
45#include <linux/prefetch.h>
46
47#include "e1000.h"
48
49#define DRV_EXTRAVERSION "-k"
50
51#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52char e1000e_driver_name[] = "e1000e";
53const char e1000e_driver_version[] = DRV_VERSION;
54
55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56static int debug = -1;
57module_param(debug, int, 0);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
74};
75
76struct e1000_reg_info {
77 u32 ofs;
78 char *name;
79};
80
81static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 /* General Registers */
83 {E1000_CTRL, "CTRL"},
84 {E1000_STATUS, "STATUS"},
85 {E1000_CTRL_EXT, "CTRL_EXT"},
86
87 /* Interrupt Registers */
88 {E1000_ICR, "ICR"},
89
90 /* Rx Registers */
91 {E1000_RCTL, "RCTL"},
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
95 {E1000_RDTR, "RDTR"},
96 {E1000_RXDCTL(0), "RXDCTL"},
97 {E1000_ERT, "ERT"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH, "RDFH"},
101 {E1000_RDFT, "RDFT"},
102 {E1000_RDFHS, "RDFHS"},
103 {E1000_RDFTS, "RDFTS"},
104 {E1000_RDFPC, "RDFPC"},
105
106 /* Tx Registers */
107 {E1000_TCTL, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH, "TDFH"},
118 {E1000_TDFT, "TDFT"},
119 {E1000_TDFHS, "TDFHS"},
120 {E1000_TDFTS, "TDFTS"},
121 {E1000_TDFPC, "TDFPC"},
122
123 /* List Terminator */
124 {0, NULL}
125};
126
127/**
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
130 *
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
138 **/
139s32 __ew32_prepare(struct e1000_hw *hw)
140{
141 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 udelay(50);
145
146 return i;
147}
148
149void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150{
151 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 __ew32_prepare(hw);
153
154 writel(val, hw->hw_addr + reg);
155}
156
157/**
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
161 **/
162static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163{
164 int n = 0;
165 char rname[16];
166 u32 regs[8];
167
168 switch (reginfo->ofs) {
169 case E1000_RXDCTL(0):
170 for (n = 0; n < 2; n++)
171 regs[n] = __er32(hw, E1000_RXDCTL(n));
172 break;
173 case E1000_TXDCTL(0):
174 for (n = 0; n < 2; n++)
175 regs[n] = __er32(hw, E1000_TXDCTL(n));
176 break;
177 case E1000_TARC(0):
178 for (n = 0; n < 2; n++)
179 regs[n] = __er32(hw, E1000_TARC(n));
180 break;
181 default:
182 pr_info("%-15s %08x\n",
183 reginfo->name, __er32(hw, reginfo->ofs));
184 return;
185 }
186
187 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189}
190
191static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 struct e1000_buffer *bi)
193{
194 int i;
195 struct e1000_ps_page *ps_page;
196
197 for (i = 0; i < adapter->rx_ps_pages; i++) {
198 ps_page = &bi->ps_pages[i];
199
200 if (ps_page->page) {
201 pr_info("packet dump for ps_page %d:\n", i);
202 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 16, 1, page_address(ps_page->page),
204 PAGE_SIZE, true);
205 }
206 }
207}
208
209/**
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
212 **/
213static void e1000e_dump(struct e1000_adapter *adapter)
214{
215 struct net_device *netdev = adapter->netdev;
216 struct e1000_hw *hw = &adapter->hw;
217 struct e1000_reg_info *reginfo;
218 struct e1000_ring *tx_ring = adapter->tx_ring;
219 struct e1000_tx_desc *tx_desc;
220 struct my_u0 {
221 __le64 a;
222 __le64 b;
223 } *u0;
224 struct e1000_buffer *buffer_info;
225 struct e1000_ring *rx_ring = adapter->rx_ring;
226 union e1000_rx_desc_packet_split *rx_desc_ps;
227 union e1000_rx_desc_extended *rx_desc;
228 struct my_u1 {
229 __le64 a;
230 __le64 b;
231 __le64 c;
232 __le64 d;
233 } *u1;
234 u32 staterr;
235 int i = 0;
236
237 if (!netif_msg_hw(adapter))
238 return;
239
240 /* Print netdevice Info */
241 if (netdev) {
242 dev_info(&adapter->pdev->dev, "Net device Info\n");
243 pr_info("Device Name state trans_start last_rx\n");
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 netdev->state, netdev->trans_start, netdev->last_rx);
246 }
247
248 /* Print Registers */
249 dev_info(&adapter->pdev->dev, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 reginfo->name; reginfo++) {
253 e1000_regdump(hw, reginfo);
254 }
255
256 /* Print Tx Ring Summary */
257 if (!netdev || !netif_running(netdev))
258 return;
259
260 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 (unsigned long long)buffer_info->dma,
266 buffer_info->length,
267 buffer_info->next_to_watch,
268 (unsigned long long)buffer_info->time_stamp);
269
270 /* Print Tx Ring */
271 if (!netif_msg_tx_done(adapter))
272 goto rx_ring_summary;
273
274 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277 *
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
285 *
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
294 *
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
302 */
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307 const char *next_desc;
308 tx_desc = E1000_TX_DESC(*tx_ring, i);
309 buffer_info = &tx_ring->buffer_info[i];
310 u0 = (struct my_u0 *)tx_desc;
311 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312 next_desc = " NTC/U";
313 else if (i == tx_ring->next_to_use)
314 next_desc = " NTU";
315 else if (i == tx_ring->next_to_clean)
316 next_desc = " NTC";
317 else
318 next_desc = "";
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322 i,
323 (unsigned long long)le64_to_cpu(u0->a),
324 (unsigned long long)le64_to_cpu(u0->b),
325 (unsigned long long)buffer_info->dma,
326 buffer_info->length, buffer_info->next_to_watch,
327 (unsigned long long)buffer_info->time_stamp,
328 buffer_info->skb, next_desc);
329
330 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332 16, 1, buffer_info->skb->data,
333 buffer_info->skb->len, true);
334 }
335
336 /* Print Rx Ring Summary */
337rx_ring_summary:
338 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343 /* Print Rx Ring */
344 if (!netif_msg_rx_status(adapter))
345 return;
346
347 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348 switch (adapter->rx_ps_pages) {
349 case 1:
350 case 2:
351 case 3:
352 /* [Extended] Packet Split Receive Descriptor Format
353 *
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
363 */
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
366 *
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
375 */
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i = 0; i < rx_ring->count; i++) {
378 const char *next_desc;
379 buffer_info = &rx_ring->buffer_info[i];
380 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 u1 = (struct my_u1 *)rx_desc_ps;
382 staterr =
383 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385 if (i == rx_ring->next_to_use)
386 next_desc = " NTU";
387 else if (i == rx_ring->next_to_clean)
388 next_desc = " NTC";
389 else
390 next_desc = "";
391
392 if (staterr & E1000_RXD_STAT_DD) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395 "RWB", i,
396 (unsigned long long)le64_to_cpu(u1->a),
397 (unsigned long long)le64_to_cpu(u1->b),
398 (unsigned long long)le64_to_cpu(u1->c),
399 (unsigned long long)le64_to_cpu(u1->d),
400 buffer_info->skb, next_desc);
401 } else {
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
403 "R ", i,
404 (unsigned long long)le64_to_cpu(u1->a),
405 (unsigned long long)le64_to_cpu(u1->b),
406 (unsigned long long)le64_to_cpu(u1->c),
407 (unsigned long long)le64_to_cpu(u1->d),
408 (unsigned long long)buffer_info->dma,
409 buffer_info->skb, next_desc);
410
411 if (netif_msg_pktdata(adapter))
412 e1000e_dump_ps_pages(adapter,
413 buffer_info);
414 }
415 }
416 break;
417 default:
418 case 0:
419 /* Extended Receive Descriptor (Read) Format
420 *
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
424 * 8 | Reserved |
425 * +-----------------------------------------------------+
426 */
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
429 *
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
432 * | RSS Hash | | | |
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
440 */
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443 for (i = 0; i < rx_ring->count; i++) {
444 const char *next_desc;
445
446 buffer_info = &rx_ring->buffer_info[i];
447 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 u1 = (struct my_u1 *)rx_desc;
449 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451 if (i == rx_ring->next_to_use)
452 next_desc = " NTU";
453 else if (i == rx_ring->next_to_clean)
454 next_desc = " NTC";
455 else
456 next_desc = "";
457
458 if (staterr & E1000_RXD_STAT_DD) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
461 "RWB", i,
462 (unsigned long long)le64_to_cpu(u1->a),
463 (unsigned long long)le64_to_cpu(u1->b),
464 buffer_info->skb, next_desc);
465 } else {
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
467 "R ", i,
468 (unsigned long long)le64_to_cpu(u1->a),
469 (unsigned long long)le64_to_cpu(u1->b),
470 (unsigned long long)buffer_info->dma,
471 buffer_info->skb, next_desc);
472
473 if (netif_msg_pktdata(adapter) &&
474 buffer_info->skb)
475 print_hex_dump(KERN_INFO, "",
476 DUMP_PREFIX_ADDRESS, 16,
477 1,
478 buffer_info->skb->data,
479 adapter->rx_buffer_len,
480 true);
481 }
482 }
483 }
484}
485
486/**
487 * e1000_desc_unused - calculate if we have unused descriptors
488 **/
489static int e1000_desc_unused(struct e1000_ring *ring)
490{
491 if (ring->next_to_clean > ring->next_to_use)
492 return ring->next_to_clean - ring->next_to_use - 1;
493
494 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495}
496
497/**
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
502 *
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
505 *
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
509 * value.
510 **/
511static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 struct skb_shared_hwtstamps *hwtstamps,
513 u64 systim)
514{
515 u64 ns;
516 unsigned long flags;
517
518 spin_lock_irqsave(&adapter->systim_lock, flags);
519 ns = timecounter_cyc2time(&adapter->tc, systim);
520 spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522 memset(hwtstamps, 0, sizeof(*hwtstamps));
523 hwtstamps->hwtstamp = ns_to_ktime(ns);
524}
525
526/**
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
531 *
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
535 **/
536static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537 struct sk_buff *skb)
538{
539 struct e1000_hw *hw = &adapter->hw;
540 u64 rxstmp;
541
542 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 !(status & E1000_RXDEXT_STATERR_TST) ||
544 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545 return;
546
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
552 * compared.
553 */
554 rxstmp = (u64)er32(RXSTMPL);
555 rxstmp |= (u64)er32(RXSTMPH) << 32;
556 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559}
560
561/**
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
567 **/
568static void e1000_receive_skb(struct e1000_adapter *adapter,
569 struct net_device *netdev, struct sk_buff *skb,
570 u32 staterr, __le16 vlan)
571{
572 u16 tag = le16_to_cpu(vlan);
573
574 e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576 skb->protocol = eth_type_trans(skb, netdev);
577
578 if (staterr & E1000_RXD_STAT_VP)
579 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581 napi_gro_receive(&adapter->napi, skb);
582}
583
584/**
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
590 **/
591static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592 struct sk_buff *skb)
593{
594 u16 status = (u16)status_err;
595 u8 errors = (u8)(status_err >> 24);
596
597 skb_checksum_none_assert(skb);
598
599 /* Rx checksum disabled */
600 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601 return;
602
603 /* Ignore Checksum bit is set */
604 if (status & E1000_RXD_STAT_IXSM)
605 return;
606
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609 /* let the stack verify checksum errors */
610 adapter->hw_csum_err++;
611 return;
612 }
613
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616 return;
617
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb->ip_summed = CHECKSUM_UNNECESSARY;
620 adapter->hw_csum_good++;
621}
622
623static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624{
625 struct e1000_adapter *adapter = rx_ring->adapter;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 ret_val = __ew32_prepare(hw);
628
629 writel(i, rx_ring->tail);
630
631 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632 u32 rctl = er32(RCTL);
633
634 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter->reset_task);
637 }
638}
639
640static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641{
642 struct e1000_adapter *adapter = tx_ring->adapter;
643 struct e1000_hw *hw = &adapter->hw;
644 s32 ret_val = __ew32_prepare(hw);
645
646 writel(i, tx_ring->tail);
647
648 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649 u32 tctl = er32(TCTL);
650
651 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter->reset_task);
654 }
655}
656
657/**
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
660 **/
661static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662 int cleaned_count, gfp_t gfp)
663{
664 struct e1000_adapter *adapter = rx_ring->adapter;
665 struct net_device *netdev = adapter->netdev;
666 struct pci_dev *pdev = adapter->pdev;
667 union e1000_rx_desc_extended *rx_desc;
668 struct e1000_buffer *buffer_info;
669 struct sk_buff *skb;
670 unsigned int i;
671 unsigned int bufsz = adapter->rx_buffer_len;
672
673 i = rx_ring->next_to_use;
674 buffer_info = &rx_ring->buffer_info[i];
675
676 while (cleaned_count--) {
677 skb = buffer_info->skb;
678 if (skb) {
679 skb_trim(skb, 0);
680 goto map_skb;
681 }
682
683 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684 if (!skb) {
685 /* Better luck next round */
686 adapter->alloc_rx_buff_failed++;
687 break;
688 }
689
690 buffer_info->skb = skb;
691map_skb:
692 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693 adapter->rx_buffer_len,
694 DMA_FROM_DEVICE);
695 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696 dev_err(&pdev->dev, "Rx DMA map failed\n");
697 adapter->rx_dma_failed++;
698 break;
699 }
700
701 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
708 * such as IA-64).
709 */
710 wmb();
711 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712 e1000e_update_rdt_wa(rx_ring, i);
713 else
714 writel(i, rx_ring->tail);
715 }
716 i++;
717 if (i == rx_ring->count)
718 i = 0;
719 buffer_info = &rx_ring->buffer_info[i];
720 }
721
722 rx_ring->next_to_use = i;
723}
724
725/**
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
728 **/
729static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730 int cleaned_count, gfp_t gfp)
731{
732 struct e1000_adapter *adapter = rx_ring->adapter;
733 struct net_device *netdev = adapter->netdev;
734 struct pci_dev *pdev = adapter->pdev;
735 union e1000_rx_desc_packet_split *rx_desc;
736 struct e1000_buffer *buffer_info;
737 struct e1000_ps_page *ps_page;
738 struct sk_buff *skb;
739 unsigned int i, j;
740
741 i = rx_ring->next_to_use;
742 buffer_info = &rx_ring->buffer_info[i];
743
744 while (cleaned_count--) {
745 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748 ps_page = &buffer_info->ps_pages[j];
749 if (j >= adapter->rx_ps_pages) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc->read.buffer_addr[j + 1] =
752 ~cpu_to_le64(0);
753 continue;
754 }
755 if (!ps_page->page) {
756 ps_page->page = alloc_page(gfp);
757 if (!ps_page->page) {
758 adapter->alloc_rx_buff_failed++;
759 goto no_buffers;
760 }
761 ps_page->dma = dma_map_page(&pdev->dev,
762 ps_page->page,
763 0, PAGE_SIZE,
764 DMA_FROM_DEVICE);
765 if (dma_mapping_error(&pdev->dev,
766 ps_page->dma)) {
767 dev_err(&adapter->pdev->dev,
768 "Rx DMA page map failed\n");
769 adapter->rx_dma_failed++;
770 goto no_buffers;
771 }
772 }
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
775 * erases this info.
776 */
777 rx_desc->read.buffer_addr[j + 1] =
778 cpu_to_le64(ps_page->dma);
779 }
780
781 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782 gfp);
783
784 if (!skb) {
785 adapter->alloc_rx_buff_failed++;
786 break;
787 }
788
789 buffer_info->skb = skb;
790 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791 adapter->rx_ps_bsize0,
792 DMA_FROM_DEVICE);
793 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794 dev_err(&pdev->dev, "Rx DMA map failed\n");
795 adapter->rx_dma_failed++;
796 /* cleanup skb */
797 dev_kfree_skb_any(skb);
798 buffer_info->skb = NULL;
799 break;
800 }
801
802 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
808 * such as IA-64).
809 */
810 wmb();
811 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812 e1000e_update_rdt_wa(rx_ring, i << 1);
813 else
814 writel(i << 1, rx_ring->tail);
815 }
816
817 i++;
818 if (i == rx_ring->count)
819 i = 0;
820 buffer_info = &rx_ring->buffer_info[i];
821 }
822
823no_buffers:
824 rx_ring->next_to_use = i;
825}
826
827/**
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
831 **/
832
833static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834 int cleaned_count, gfp_t gfp)
835{
836 struct e1000_adapter *adapter = rx_ring->adapter;
837 struct net_device *netdev = adapter->netdev;
838 struct pci_dev *pdev = adapter->pdev;
839 union e1000_rx_desc_extended *rx_desc;
840 struct e1000_buffer *buffer_info;
841 struct sk_buff *skb;
842 unsigned int i;
843 unsigned int bufsz = 256 - 16; /* for skb_reserve */
844
845 i = rx_ring->next_to_use;
846 buffer_info = &rx_ring->buffer_info[i];
847
848 while (cleaned_count--) {
849 skb = buffer_info->skb;
850 if (skb) {
851 skb_trim(skb, 0);
852 goto check_page;
853 }
854
855 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856 if (unlikely(!skb)) {
857 /* Better luck next round */
858 adapter->alloc_rx_buff_failed++;
859 break;
860 }
861
862 buffer_info->skb = skb;
863check_page:
864 /* allocate a new page if necessary */
865 if (!buffer_info->page) {
866 buffer_info->page = alloc_page(gfp);
867 if (unlikely(!buffer_info->page)) {
868 adapter->alloc_rx_buff_failed++;
869 break;
870 }
871 }
872
873 if (!buffer_info->dma) {
874 buffer_info->dma = dma_map_page(&pdev->dev,
875 buffer_info->page, 0,
876 PAGE_SIZE,
877 DMA_FROM_DEVICE);
878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 adapter->alloc_rx_buff_failed++;
880 break;
881 }
882 }
883
884 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887 if (unlikely(++i == rx_ring->count))
888 i = 0;
889 buffer_info = &rx_ring->buffer_info[i];
890 }
891
892 if (likely(rx_ring->next_to_use != i)) {
893 rx_ring->next_to_use = i;
894 if (unlikely(i-- == 0))
895 i = (rx_ring->count - 1);
896
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
900 * such as IA-64).
901 */
902 wmb();
903 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904 e1000e_update_rdt_wa(rx_ring, i);
905 else
906 writel(i, rx_ring->tail);
907 }
908}
909
910static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911 struct sk_buff *skb)
912{
913 if (netdev->features & NETIF_F_RXHASH)
914 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915}
916
917/**
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
920 *
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
923 **/
924static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925 int work_to_do)
926{
927 struct e1000_adapter *adapter = rx_ring->adapter;
928 struct net_device *netdev = adapter->netdev;
929 struct pci_dev *pdev = adapter->pdev;
930 struct e1000_hw *hw = &adapter->hw;
931 union e1000_rx_desc_extended *rx_desc, *next_rxd;
932 struct e1000_buffer *buffer_info, *next_buffer;
933 u32 length, staterr;
934 unsigned int i;
935 int cleaned_count = 0;
936 bool cleaned = false;
937 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939 i = rx_ring->next_to_clean;
940 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942 buffer_info = &rx_ring->buffer_info[i];
943
944 while (staterr & E1000_RXD_STAT_DD) {
945 struct sk_buff *skb;
946
947 if (*work_done >= work_to_do)
948 break;
949 (*work_done)++;
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
951
952 skb = buffer_info->skb;
953 buffer_info->skb = NULL;
954
955 prefetch(skb->data - NET_IP_ALIGN);
956
957 i++;
958 if (i == rx_ring->count)
959 i = 0;
960 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961 prefetch(next_rxd);
962
963 next_buffer = &rx_ring->buffer_info[i];
964
965 cleaned = true;
966 cleaned_count++;
967 dma_unmap_single(&pdev->dev, buffer_info->dma,
968 adapter->rx_buffer_len, DMA_FROM_DEVICE);
969 buffer_info->dma = 0;
970
971 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
978 */
979 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980 adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
985 /* recycle */
986 buffer_info->skb = skb;
987 if (staterr & E1000_RXD_STAT_EOP)
988 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989 goto next_desc;
990 }
991
992 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 !(netdev->features & NETIF_F_RXALL))) {
994 /* recycle */
995 buffer_info->skb = skb;
996 goto next_desc;
997 }
998
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1003 * counter
1004 */
1005 if (netdev->features & NETIF_F_RXFCS)
1006 total_rx_bytes -= 4;
1007 else
1008 length -= 4;
1009 }
1010
1011 total_rx_bytes += length;
1012 total_rx_packets++;
1013
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1017 */
1018 if (length < copybreak) {
1019 struct sk_buff *new_skb =
1020 napi_alloc_skb(&adapter->napi, length);
1021 if (new_skb) {
1022 skb_copy_to_linear_data_offset(new_skb,
1023 -NET_IP_ALIGN,
1024 (skb->data -
1025 NET_IP_ALIGN),
1026 (length +
1027 NET_IP_ALIGN));
1028 /* save the skb in buffer_info as good */
1029 buffer_info->skb = skb;
1030 skb = new_skb;
1031 }
1032 /* else just continue with the old one */
1033 }
1034 /* end copybreak code */
1035 skb_put(skb, length);
1036
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter, staterr, skb);
1039
1040 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042 e1000_receive_skb(adapter, netdev, skb, staterr,
1043 rx_desc->wb.upper.vlan);
1044
1045next_desc:
1046 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051 GFP_ATOMIC);
1052 cleaned_count = 0;
1053 }
1054
1055 /* use prefetched values */
1056 rx_desc = next_rxd;
1057 buffer_info = next_buffer;
1058
1059 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060 }
1061 rx_ring->next_to_clean = i;
1062
1063 cleaned_count = e1000_desc_unused(rx_ring);
1064 if (cleaned_count)
1065 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067 adapter->total_rx_bytes += total_rx_bytes;
1068 adapter->total_rx_packets += total_rx_packets;
1069 return cleaned;
1070}
1071
1072static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 struct e1000_buffer *buffer_info)
1074{
1075 struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077 if (buffer_info->dma) {
1078 if (buffer_info->mapped_as_page)
1079 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 buffer_info->length, DMA_TO_DEVICE);
1081 else
1082 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 buffer_info->length, DMA_TO_DEVICE);
1084 buffer_info->dma = 0;
1085 }
1086 if (buffer_info->skb) {
1087 dev_kfree_skb_any(buffer_info->skb);
1088 buffer_info->skb = NULL;
1089 }
1090 buffer_info->time_stamp = 0;
1091}
1092
1093static void e1000_print_hw_hang(struct work_struct *work)
1094{
1095 struct e1000_adapter *adapter = container_of(work,
1096 struct e1000_adapter,
1097 print_hang_task);
1098 struct net_device *netdev = adapter->netdev;
1099 struct e1000_ring *tx_ring = adapter->tx_ring;
1100 unsigned int i = tx_ring->next_to_clean;
1101 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 struct e1000_hw *hw = &adapter->hw;
1104 u16 phy_status, phy_1000t_status, phy_ext_status;
1105 u16 pci_status;
1106
1107 if (test_bit(__E1000_DOWN, &adapter->state))
1108 return;
1109
1110 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1113 */
1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 /* execute the writes immediately */
1116 e1e_flush();
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1119 */
1120 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 /* execute the writes immediately */
1122 e1e_flush();
1123 adapter->tx_hang_recheck = true;
1124 return;
1125 }
1126 adapter->tx_hang_recheck = false;
1127
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1130 return;
1131 }
1132
1133 /* Real hang detected */
1134 netif_stop_queue(netdev);
1135
1136 e1e_rphy(hw, MII_BMSR, &phy_status);
1137 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1144 " TDH <%x>\n"
1145 " TDT <%x>\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1151 " jiffies <%lx>\n"
1152 " next_to_watch.status <%x>\n"
1153 "MAC Status <%x>\n"
1154 "PHY Status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163 e1000e_dump(adapter);
1164
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168}
1169
1170/**
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1173 *
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1177 */
1178static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179{
1180 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181 tx_hwtstamp_work);
1182 struct e1000_hw *hw = &adapter->hw;
1183
1184 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 struct skb_shared_hwtstamps shhwtstamps;
1186 u64 txstmp;
1187
1188 txstmp = er32(TXSTMPL);
1189 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 adapter->tx_hwtstamp_skb = NULL;
1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 + adapter->tx_timeout_factor * HZ)) {
1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 adapter->tx_hwtstamp_skb = NULL;
1200 adapter->tx_hwtstamp_timeouts++;
1201 e_warn("clearing Tx timestamp hang\n");
1202 } else {
1203 /* reschedule to check later */
1204 schedule_work(&adapter->tx_hwtstamp_work);
1205 }
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217 struct e1000_adapter *adapter = tx_ring->adapter;
1218 struct net_device *netdev = adapter->netdev;
1219 struct e1000_hw *hw = &adapter->hw;
1220 struct e1000_tx_desc *tx_desc, *eop_desc;
1221 struct e1000_buffer *buffer_info;
1222 unsigned int i, eop;
1223 unsigned int count = 0;
1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227 i = tx_ring->next_to_clean;
1228 eop = tx_ring->buffer_info[i].next_to_watch;
1229 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 (count < tx_ring->count)) {
1233 bool cleaned = false;
1234
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned; count++) {
1237 tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 buffer_info = &tx_ring->buffer_info[i];
1239 cleaned = (i == eop);
1240
1241 if (cleaned) {
1242 total_tx_packets += buffer_info->segs;
1243 total_tx_bytes += buffer_info->bytecount;
1244 if (buffer_info->skb) {
1245 bytes_compl += buffer_info->skb->len;
1246 pkts_compl++;
1247 }
1248 }
1249
1250 e1000_put_txbuf(tx_ring, buffer_info);
1251 tx_desc->upper.data = 0;
1252
1253 i++;
1254 if (i == tx_ring->count)
1255 i = 0;
1256 }
1257
1258 if (i == tx_ring->next_to_use)
1259 break;
1260 eop = tx_ring->buffer_info[i].next_to_watch;
1261 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 }
1263
1264 tx_ring->next_to_clean = i;
1265
1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269 if (count && netif_carrier_ok(netdev) &&
1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1273 */
1274 smp_mb();
1275
1276 if (netif_queue_stopped(netdev) &&
1277 !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 netif_wake_queue(netdev);
1279 ++adapter->restart_queue;
1280 }
1281 }
1282
1283 if (adapter->detect_tx_hung) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1286 */
1287 adapter->detect_tx_hung = false;
1288 if (tx_ring->buffer_info[i].time_stamp &&
1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 + (adapter->tx_timeout_factor * HZ)) &&
1291 !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 schedule_work(&adapter->print_hang_task);
1293 else
1294 adapter->tx_hang_recheck = false;
1295 }
1296 adapter->total_tx_bytes += total_tx_bytes;
1297 adapter->total_tx_packets += total_tx_packets;
1298 return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
1308static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 int work_to_do)
1310{
1311 struct e1000_adapter *adapter = rx_ring->adapter;
1312 struct e1000_hw *hw = &adapter->hw;
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1319 unsigned int i, j;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
1322 bool cleaned = false;
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1329
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1332 break;
1333 (*work_done)++;
1334 skb = buffer_info->skb;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1336
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1339
1340 i++;
1341 if (i == rx_ring->count)
1342 i = 0;
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 prefetch(next_rxd);
1345
1346 next_buffer = &rx_ring->buffer_info[i];
1347
1348 cleaned = true;
1349 cleaned_count++;
1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 buffer_info->dma = 0;
1353
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb);
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 goto next_desc;
1364 }
1365
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
1368 dev_kfree_skb_irq(skb);
1369 goto next_desc;
1370 }
1371
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374 if (!length) {
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb);
1377 goto next_desc;
1378 }
1379
1380 /* Good Receive */
1381 skb_put(skb, length);
1382
1383 {
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1386 */
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1393 */
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 u8 *vaddr;
1397
1398 ps_page = &buffer_info->ps_pages[0];
1399
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1402 * very long
1403 */
1404 dma_sync_single_for_cpu(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
1408 vaddr = kmap_atomic(ps_page->page);
1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 kunmap_atomic(vaddr);
1411 dma_sync_single_for_device(&pdev->dev,
1412 ps_page->dma,
1413 PAGE_SIZE,
1414 DMA_FROM_DEVICE);
1415
1416 /* remove the CRC */
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1419 l1 -= 4;
1420 }
1421
1422 skb_put(skb, l1);
1423 goto copydone;
1424 } /* if */
1425 }
1426
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 if (!length)
1430 break;
1431
1432 ps_page = &buffer_info->ps_pages[j];
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 DMA_FROM_DEVICE);
1435 ps_page->dma = 0;
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1438 skb->len += length;
1439 skb->data_len += length;
1440 skb->truesize += PAGE_SIZE;
1441 }
1442
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1445 */
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1449 }
1450
1451copydone:
1452 total_rx_bytes += skb->len;
1453 total_rx_packets++;
1454
1455 e1000_rx_checksum(adapter, staterr, skb);
1456
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459 if (rx_desc->wb.upper.header_status &
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 adapter->rx_hdr_split++;
1462
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
1465
1466next_desc:
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1469
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 GFP_ATOMIC);
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 buffer_info = next_buffer;
1480
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 }
1483 rx_ring->next_to_clean = i;
1484
1485 cleaned_count = e1000_desc_unused(rx_ring);
1486 if (cleaned_count)
1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489 adapter->total_rx_bytes += total_rx_bytes;
1490 adapter->total_rx_packets += total_rx_packets;
1491 return cleaned;
1492}
1493
1494/**
1495 * e1000_consume_page - helper function
1496 **/
1497static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498 u16 length)
1499{
1500 bi->page = NULL;
1501 skb->len += length;
1502 skb->data_len += length;
1503 skb->truesize += PAGE_SIZE;
1504}
1505
1506/**
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1509 *
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1512 **/
1513static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514 int work_to_do)
1515{
1516 struct e1000_adapter *adapter = rx_ring->adapter;
1517 struct net_device *netdev = adapter->netdev;
1518 struct pci_dev *pdev = adapter->pdev;
1519 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520 struct e1000_buffer *buffer_info, *next_buffer;
1521 u32 length, staterr;
1522 unsigned int i;
1523 int cleaned_count = 0;
1524 bool cleaned = false;
1525 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526 struct skb_shared_info *shinfo;
1527
1528 i = rx_ring->next_to_clean;
1529 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531 buffer_info = &rx_ring->buffer_info[i];
1532
1533 while (staterr & E1000_RXD_STAT_DD) {
1534 struct sk_buff *skb;
1535
1536 if (*work_done >= work_to_do)
1537 break;
1538 (*work_done)++;
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1540
1541 skb = buffer_info->skb;
1542 buffer_info->skb = NULL;
1543
1544 ++i;
1545 if (i == rx_ring->count)
1546 i = 0;
1547 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548 prefetch(next_rxd);
1549
1550 next_buffer = &rx_ring->buffer_info[i];
1551
1552 cleaned = true;
1553 cleaned_count++;
1554 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555 DMA_FROM_DEVICE);
1556 buffer_info->dma = 0;
1557
1558 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 !(netdev->features & NETIF_F_RXALL)))) {
1564 /* recycle both page and skb */
1565 buffer_info->skb = skb;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring->rx_skb_top)
1568 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 rx_ring->rx_skb_top = NULL;
1570 goto next_desc;
1571 }
1572#define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574 /* this descriptor is only the beginning (or middle) */
1575 if (!rxtop) {
1576 /* this is the beginning of a chain */
1577 rxtop = skb;
1578 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579 0, length);
1580 } else {
1581 /* this is the middle of a chain */
1582 shinfo = skb_shinfo(rxtop);
1583 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 buffer_info->page, 0,
1585 length);
1586 /* re-use the skb, only consumed the page */
1587 buffer_info->skb = skb;
1588 }
1589 e1000_consume_page(buffer_info, rxtop, length);
1590 goto next_desc;
1591 } else {
1592 if (rxtop) {
1593 /* end of the chain */
1594 shinfo = skb_shinfo(rxtop);
1595 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 buffer_info->page, 0,
1597 length);
1598 /* re-use the current skb, we only consumed the
1599 * page
1600 */
1601 buffer_info->skb = skb;
1602 skb = rxtop;
1603 rxtop = NULL;
1604 e1000_consume_page(buffer_info, skb, length);
1605 } else {
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1608 */
1609 if (length <= copybreak &&
1610 skb_tailroom(skb) >= length) {
1611 u8 *vaddr;
1612 vaddr = kmap_atomic(buffer_info->page);
1613 memcpy(skb_tail_pointer(skb), vaddr,
1614 length);
1615 kunmap_atomic(vaddr);
1616 /* re-use the page, so don't erase
1617 * buffer_info->page
1618 */
1619 skb_put(skb, length);
1620 } else {
1621 skb_fill_page_desc(skb, 0,
1622 buffer_info->page, 0,
1623 length);
1624 e1000_consume_page(buffer_info, skb,
1625 length);
1626 }
1627 }
1628 }
1629
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter, staterr, skb);
1632
1633 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes += skb->len;
1637 total_rx_packets++;
1638
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb);
1643 goto next_desc;
1644 }
1645
1646 e1000_receive_skb(adapter, netdev, skb, staterr,
1647 rx_desc->wb.upper.vlan);
1648
1649next_desc:
1650 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655 GFP_ATOMIC);
1656 cleaned_count = 0;
1657 }
1658
1659 /* use prefetched values */
1660 rx_desc = next_rxd;
1661 buffer_info = next_buffer;
1662
1663 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664 }
1665 rx_ring->next_to_clean = i;
1666
1667 cleaned_count = e1000_desc_unused(rx_ring);
1668 if (cleaned_count)
1669 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671 adapter->total_rx_bytes += total_rx_bytes;
1672 adapter->total_rx_packets += total_rx_packets;
1673 return cleaned;
1674}
1675
1676/**
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1679 **/
1680static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681{
1682 struct e1000_adapter *adapter = rx_ring->adapter;
1683 struct e1000_buffer *buffer_info;
1684 struct e1000_ps_page *ps_page;
1685 struct pci_dev *pdev = adapter->pdev;
1686 unsigned int i, j;
1687
1688 /* Free all the Rx ring sk_buffs */
1689 for (i = 0; i < rx_ring->count; i++) {
1690 buffer_info = &rx_ring->buffer_info[i];
1691 if (buffer_info->dma) {
1692 if (adapter->clean_rx == e1000_clean_rx_irq)
1693 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 adapter->rx_buffer_len,
1695 DMA_FROM_DEVICE);
1696 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698 PAGE_SIZE, DMA_FROM_DEVICE);
1699 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 adapter->rx_ps_bsize0,
1702 DMA_FROM_DEVICE);
1703 buffer_info->dma = 0;
1704 }
1705
1706 if (buffer_info->page) {
1707 put_page(buffer_info->page);
1708 buffer_info->page = NULL;
1709 }
1710
1711 if (buffer_info->skb) {
1712 dev_kfree_skb(buffer_info->skb);
1713 buffer_info->skb = NULL;
1714 }
1715
1716 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717 ps_page = &buffer_info->ps_pages[j];
1718 if (!ps_page->page)
1719 break;
1720 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721 DMA_FROM_DEVICE);
1722 ps_page->dma = 0;
1723 put_page(ps_page->page);
1724 ps_page->page = NULL;
1725 }
1726 }
1727
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring->rx_skb_top) {
1730 dev_kfree_skb(rx_ring->rx_skb_top);
1731 rx_ring->rx_skb_top = NULL;
1732 }
1733
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring->desc, 0, rx_ring->size);
1736
1737 rx_ring->next_to_clean = 0;
1738 rx_ring->next_to_use = 0;
1739 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740}
1741
1742static void e1000e_downshift_workaround(struct work_struct *work)
1743{
1744 struct e1000_adapter *adapter = container_of(work,
1745 struct e1000_adapter,
1746 downshift_task);
1747
1748 if (test_bit(__E1000_DOWN, &adapter->state))
1749 return;
1750
1751 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752}
1753
1754/**
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1758 **/
1759static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1760{
1761 struct net_device *netdev = data;
1762 struct e1000_adapter *adapter = netdev_priv(netdev);
1763 struct e1000_hw *hw = &adapter->hw;
1764 u32 icr = er32(ICR);
1765
1766 /* read ICR disables interrupts using IAM */
1767 if (icr & E1000_ICR_LSC) {
1768 hw->mac.get_link_status = true;
1769 /* ICH8 workaround-- Call gig speed drop workaround on cable
1770 * disconnect (LSC) before accessing any PHY registers
1771 */
1772 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773 (!(er32(STATUS) & E1000_STATUS_LU)))
1774 schedule_work(&adapter->downshift_task);
1775
1776 /* 80003ES2LAN workaround-- For packet buffer work-around on
1777 * link down event; disable receives here in the ISR and reset
1778 * adapter in watchdog
1779 */
1780 if (netif_carrier_ok(netdev) &&
1781 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782 /* disable receives */
1783 u32 rctl = er32(RCTL);
1784
1785 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786 adapter->flags |= FLAG_RESTART_NOW;
1787 }
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN, &adapter->state))
1790 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791 }
1792
1793 /* Reset on uncorrectable ECC error */
1794 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795 (hw->mac.type == e1000_pch_spt))) {
1796 u32 pbeccsts = er32(PBECCSTS);
1797
1798 adapter->corr_errors +=
1799 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800 adapter->uncorr_errors +=
1801 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1803
1804 /* Do the reset outside of interrupt context */
1805 schedule_work(&adapter->reset_task);
1806
1807 /* return immediately since reset is imminent */
1808 return IRQ_HANDLED;
1809 }
1810
1811 if (napi_schedule_prep(&adapter->napi)) {
1812 adapter->total_tx_bytes = 0;
1813 adapter->total_tx_packets = 0;
1814 adapter->total_rx_bytes = 0;
1815 adapter->total_rx_packets = 0;
1816 __napi_schedule(&adapter->napi);
1817 }
1818
1819 return IRQ_HANDLED;
1820}
1821
1822/**
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1826 **/
1827static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1828{
1829 struct net_device *netdev = data;
1830 struct e1000_adapter *adapter = netdev_priv(netdev);
1831 struct e1000_hw *hw = &adapter->hw;
1832 u32 rctl, icr = er32(ICR);
1833
1834 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835 return IRQ_NONE; /* Not our interrupt */
1836
1837 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1838 * not set, then the adapter didn't send an interrupt
1839 */
1840 if (!(icr & E1000_ICR_INT_ASSERTED))
1841 return IRQ_NONE;
1842
1843 /* Interrupt Auto-Mask...upon reading ICR,
1844 * interrupts are masked. No need for the
1845 * IMC write
1846 */
1847
1848 if (icr & E1000_ICR_LSC) {
1849 hw->mac.get_link_status = true;
1850 /* ICH8 workaround-- Call gig speed drop workaround on cable
1851 * disconnect (LSC) before accessing any PHY registers
1852 */
1853 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854 (!(er32(STATUS) & E1000_STATUS_LU)))
1855 schedule_work(&adapter->downshift_task);
1856
1857 /* 80003ES2LAN workaround--
1858 * For packet buffer work-around on link down event;
1859 * disable receives here in the ISR and
1860 * reset adapter in watchdog
1861 */
1862 if (netif_carrier_ok(netdev) &&
1863 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864 /* disable receives */
1865 rctl = er32(RCTL);
1866 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867 adapter->flags |= FLAG_RESTART_NOW;
1868 }
1869 /* guard against interrupt when we're going down */
1870 if (!test_bit(__E1000_DOWN, &adapter->state))
1871 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1872 }
1873
1874 /* Reset on uncorrectable ECC error */
1875 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876 (hw->mac.type == e1000_pch_spt))) {
1877 u32 pbeccsts = er32(PBECCSTS);
1878
1879 adapter->corr_errors +=
1880 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881 adapter->uncorr_errors +=
1882 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1884
1885 /* Do the reset outside of interrupt context */
1886 schedule_work(&adapter->reset_task);
1887
1888 /* return immediately since reset is imminent */
1889 return IRQ_HANDLED;
1890 }
1891
1892 if (napi_schedule_prep(&adapter->napi)) {
1893 adapter->total_tx_bytes = 0;
1894 adapter->total_tx_packets = 0;
1895 adapter->total_rx_bytes = 0;
1896 adapter->total_rx_packets = 0;
1897 __napi_schedule(&adapter->napi);
1898 }
1899
1900 return IRQ_HANDLED;
1901}
1902
1903static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1904{
1905 struct net_device *netdev = data;
1906 struct e1000_adapter *adapter = netdev_priv(netdev);
1907 struct e1000_hw *hw = &adapter->hw;
1908 u32 icr = er32(ICR);
1909
1910 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1911 if (!test_bit(__E1000_DOWN, &adapter->state))
1912 ew32(IMS, E1000_IMS_OTHER);
1913 return IRQ_NONE;
1914 }
1915
1916 if (icr & adapter->eiac_mask)
1917 ew32(ICS, (icr & adapter->eiac_mask));
1918
1919 if (icr & E1000_ICR_OTHER) {
1920 if (!(icr & E1000_ICR_LSC))
1921 goto no_link_interrupt;
1922 hw->mac.get_link_status = true;
1923 /* guard against interrupt when we're going down */
1924 if (!test_bit(__E1000_DOWN, &adapter->state))
1925 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1926 }
1927
1928no_link_interrupt:
1929 if (!test_bit(__E1000_DOWN, &adapter->state))
1930 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1931
1932 return IRQ_HANDLED;
1933}
1934
1935static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1936{
1937 struct net_device *netdev = data;
1938 struct e1000_adapter *adapter = netdev_priv(netdev);
1939 struct e1000_hw *hw = &adapter->hw;
1940 struct e1000_ring *tx_ring = adapter->tx_ring;
1941
1942 adapter->total_tx_bytes = 0;
1943 adapter->total_tx_packets = 0;
1944
1945 if (!e1000_clean_tx_irq(tx_ring))
1946 /* Ring was not completely cleaned, so fire another interrupt */
1947 ew32(ICS, tx_ring->ims_val);
1948
1949 return IRQ_HANDLED;
1950}
1951
1952static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1953{
1954 struct net_device *netdev = data;
1955 struct e1000_adapter *adapter = netdev_priv(netdev);
1956 struct e1000_ring *rx_ring = adapter->rx_ring;
1957
1958 /* Write the ITR value calculated at the end of the
1959 * previous interrupt.
1960 */
1961 if (rx_ring->set_itr) {
1962 u32 itr = rx_ring->itr_val ?
1963 1000000000 / (rx_ring->itr_val * 256) : 0;
1964
1965 writel(itr, rx_ring->itr_register);
1966 rx_ring->set_itr = 0;
1967 }
1968
1969 if (napi_schedule_prep(&adapter->napi)) {
1970 adapter->total_rx_bytes = 0;
1971 adapter->total_rx_packets = 0;
1972 __napi_schedule(&adapter->napi);
1973 }
1974 return IRQ_HANDLED;
1975}
1976
1977/**
1978 * e1000_configure_msix - Configure MSI-X hardware
1979 *
1980 * e1000_configure_msix sets up the hardware to properly
1981 * generate MSI-X interrupts.
1982 **/
1983static void e1000_configure_msix(struct e1000_adapter *adapter)
1984{
1985 struct e1000_hw *hw = &adapter->hw;
1986 struct e1000_ring *rx_ring = adapter->rx_ring;
1987 struct e1000_ring *tx_ring = adapter->tx_ring;
1988 int vector = 0;
1989 u32 ctrl_ext, ivar = 0;
1990
1991 adapter->eiac_mask = 0;
1992
1993 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1994 if (hw->mac.type == e1000_82574) {
1995 u32 rfctl = er32(RFCTL);
1996
1997 rfctl |= E1000_RFCTL_ACK_DIS;
1998 ew32(RFCTL, rfctl);
1999 }
2000
2001 /* Configure Rx vector */
2002 rx_ring->ims_val = E1000_IMS_RXQ0;
2003 adapter->eiac_mask |= rx_ring->ims_val;
2004 if (rx_ring->itr_val)
2005 writel(1000000000 / (rx_ring->itr_val * 256),
2006 rx_ring->itr_register);
2007 else
2008 writel(1, rx_ring->itr_register);
2009 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2010
2011 /* Configure Tx vector */
2012 tx_ring->ims_val = E1000_IMS_TXQ0;
2013 vector++;
2014 if (tx_ring->itr_val)
2015 writel(1000000000 / (tx_ring->itr_val * 256),
2016 tx_ring->itr_register);
2017 else
2018 writel(1, tx_ring->itr_register);
2019 adapter->eiac_mask |= tx_ring->ims_val;
2020 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2021
2022 /* set vector for Other Causes, e.g. link changes */
2023 vector++;
2024 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2025 if (rx_ring->itr_val)
2026 writel(1000000000 / (rx_ring->itr_val * 256),
2027 hw->hw_addr + E1000_EITR_82574(vector));
2028 else
2029 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2030
2031 /* Cause Tx interrupts on every write back */
2032 ivar |= (1 << 31);
2033
2034 ew32(IVAR, ivar);
2035
2036 /* enable MSI-X PBA support */
2037 ctrl_ext = er32(CTRL_EXT);
2038 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2039
2040 /* Auto-Mask Other interrupts upon ICR read */
2041 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2042 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2043 ew32(CTRL_EXT, ctrl_ext);
2044 e1e_flush();
2045}
2046
2047void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049 if (adapter->msix_entries) {
2050 pci_disable_msix(adapter->pdev);
2051 kfree(adapter->msix_entries);
2052 adapter->msix_entries = NULL;
2053 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2054 pci_disable_msi(adapter->pdev);
2055 adapter->flags &= ~FLAG_MSI_ENABLED;
2056 }
2057}
2058
2059/**
2060 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2061 *
2062 * Attempt to configure interrupts using the best available
2063 * capabilities of the hardware and kernel.
2064 **/
2065void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2066{
2067 int err;
2068 int i;
2069
2070 switch (adapter->int_mode) {
2071 case E1000E_INT_MODE_MSIX:
2072 if (adapter->flags & FLAG_HAS_MSIX) {
2073 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2074 adapter->msix_entries = kcalloc(adapter->num_vectors,
2075 sizeof(struct
2076 msix_entry),
2077 GFP_KERNEL);
2078 if (adapter->msix_entries) {
2079 struct e1000_adapter *a = adapter;
2080
2081 for (i = 0; i < adapter->num_vectors; i++)
2082 adapter->msix_entries[i].entry = i;
2083
2084 err = pci_enable_msix_range(a->pdev,
2085 a->msix_entries,
2086 a->num_vectors,
2087 a->num_vectors);
2088 if (err > 0)
2089 return;
2090 }
2091 /* MSI-X failed, so fall through and try MSI */
2092 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2093 e1000e_reset_interrupt_capability(adapter);
2094 }
2095 adapter->int_mode = E1000E_INT_MODE_MSI;
2096 /* Fall through */
2097 case E1000E_INT_MODE_MSI:
2098 if (!pci_enable_msi(adapter->pdev)) {
2099 adapter->flags |= FLAG_MSI_ENABLED;
2100 } else {
2101 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2102 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2103 }
2104 /* Fall through */
2105 case E1000E_INT_MODE_LEGACY:
2106 /* Don't do anything; this is the system default */
2107 break;
2108 }
2109
2110 /* store the number of vectors being used */
2111 adapter->num_vectors = 1;
2112}
2113
2114/**
2115 * e1000_request_msix - Initialize MSI-X interrupts
2116 *
2117 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 * kernel.
2119 **/
2120static int e1000_request_msix(struct e1000_adapter *adapter)
2121{
2122 struct net_device *netdev = adapter->netdev;
2123 int err = 0, vector = 0;
2124
2125 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2126 snprintf(adapter->rx_ring->name,
2127 sizeof(adapter->rx_ring->name) - 1,
2128 "%s-rx-0", netdev->name);
2129 else
2130 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2131 err = request_irq(adapter->msix_entries[vector].vector,
2132 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2133 netdev);
2134 if (err)
2135 return err;
2136 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2137 E1000_EITR_82574(vector);
2138 adapter->rx_ring->itr_val = adapter->itr;
2139 vector++;
2140
2141 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2142 snprintf(adapter->tx_ring->name,
2143 sizeof(adapter->tx_ring->name) - 1,
2144 "%s-tx-0", netdev->name);
2145 else
2146 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2147 err = request_irq(adapter->msix_entries[vector].vector,
2148 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2149 netdev);
2150 if (err)
2151 return err;
2152 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2153 E1000_EITR_82574(vector);
2154 adapter->tx_ring->itr_val = adapter->itr;
2155 vector++;
2156
2157 err = request_irq(adapter->msix_entries[vector].vector,
2158 e1000_msix_other, 0, netdev->name, netdev);
2159 if (err)
2160 return err;
2161
2162 e1000_configure_msix(adapter);
2163
2164 return 0;
2165}
2166
2167/**
2168 * e1000_request_irq - initialize interrupts
2169 *
2170 * Attempts to configure interrupts using the best available
2171 * capabilities of the hardware and kernel.
2172 **/
2173static int e1000_request_irq(struct e1000_adapter *adapter)
2174{
2175 struct net_device *netdev = adapter->netdev;
2176 int err;
2177
2178 if (adapter->msix_entries) {
2179 err = e1000_request_msix(adapter);
2180 if (!err)
2181 return err;
2182 /* fall back to MSI */
2183 e1000e_reset_interrupt_capability(adapter);
2184 adapter->int_mode = E1000E_INT_MODE_MSI;
2185 e1000e_set_interrupt_capability(adapter);
2186 }
2187 if (adapter->flags & FLAG_MSI_ENABLED) {
2188 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2189 netdev->name, netdev);
2190 if (!err)
2191 return err;
2192
2193 /* fall back to legacy interrupt */
2194 e1000e_reset_interrupt_capability(adapter);
2195 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2196 }
2197
2198 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2199 netdev->name, netdev);
2200 if (err)
2201 e_err("Unable to allocate interrupt, Error: %d\n", err);
2202
2203 return err;
2204}
2205
2206static void e1000_free_irq(struct e1000_adapter *adapter)
2207{
2208 struct net_device *netdev = adapter->netdev;
2209
2210 if (adapter->msix_entries) {
2211 int vector = 0;
2212
2213 free_irq(adapter->msix_entries[vector].vector, netdev);
2214 vector++;
2215
2216 free_irq(adapter->msix_entries[vector].vector, netdev);
2217 vector++;
2218
2219 /* Other Causes interrupt vector */
2220 free_irq(adapter->msix_entries[vector].vector, netdev);
2221 return;
2222 }
2223
2224 free_irq(adapter->pdev->irq, netdev);
2225}
2226
2227/**
2228 * e1000_irq_disable - Mask off interrupt generation on the NIC
2229 **/
2230static void e1000_irq_disable(struct e1000_adapter *adapter)
2231{
2232 struct e1000_hw *hw = &adapter->hw;
2233
2234 ew32(IMC, ~0);
2235 if (adapter->msix_entries)
2236 ew32(EIAC_82574, 0);
2237 e1e_flush();
2238
2239 if (adapter->msix_entries) {
2240 int i;
2241
2242 for (i = 0; i < adapter->num_vectors; i++)
2243 synchronize_irq(adapter->msix_entries[i].vector);
2244 } else {
2245 synchronize_irq(adapter->pdev->irq);
2246 }
2247}
2248
2249/**
2250 * e1000_irq_enable - Enable default interrupt generation settings
2251 **/
2252static void e1000_irq_enable(struct e1000_adapter *adapter)
2253{
2254 struct e1000_hw *hw = &adapter->hw;
2255
2256 if (adapter->msix_entries) {
2257 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2258 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2259 } else if ((hw->mac.type == e1000_pch_lpt) ||
2260 (hw->mac.type == e1000_pch_spt)) {
2261 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262 } else {
2263 ew32(IMS, IMS_ENABLE_MASK);
2264 }
2265 e1e_flush();
2266}
2267
2268/**
2269 * e1000e_get_hw_control - get control of the h/w from f/w
2270 * @adapter: address of board private structure
2271 *
2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273 * For ASF and Pass Through versions of f/w this means that
2274 * the driver is loaded. For AMT version (only with 82573)
2275 * of the f/w this means that the network i/f is open.
2276 **/
2277void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278{
2279 struct e1000_hw *hw = &adapter->hw;
2280 u32 ctrl_ext;
2281 u32 swsm;
2282
2283 /* Let firmware know the driver has taken over */
2284 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285 swsm = er32(SWSM);
2286 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288 ctrl_ext = er32(CTRL_EXT);
2289 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290 }
2291}
2292
2293/**
2294 * e1000e_release_hw_control - release control of the h/w to f/w
2295 * @adapter: address of board private structure
2296 *
2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298 * For ASF and Pass Through versions of f/w this means that the
2299 * driver is no longer loaded. For AMT version (only with 82573) i
2300 * of the f/w this means that the network i/f is closed.
2301 *
2302 **/
2303void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304{
2305 struct e1000_hw *hw = &adapter->hw;
2306 u32 ctrl_ext;
2307 u32 swsm;
2308
2309 /* Let firmware taken over control of h/w */
2310 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311 swsm = er32(SWSM);
2312 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314 ctrl_ext = er32(CTRL_EXT);
2315 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316 }
2317}
2318
2319/**
2320 * e1000_alloc_ring_dma - allocate memory for a ring structure
2321 **/
2322static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323 struct e1000_ring *ring)
2324{
2325 struct pci_dev *pdev = adapter->pdev;
2326
2327 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328 GFP_KERNEL);
2329 if (!ring->desc)
2330 return -ENOMEM;
2331
2332 return 0;
2333}
2334
2335/**
2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337 * @tx_ring: Tx descriptor ring
2338 *
2339 * Return 0 on success, negative on failure
2340 **/
2341int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342{
2343 struct e1000_adapter *adapter = tx_ring->adapter;
2344 int err = -ENOMEM, size;
2345
2346 size = sizeof(struct e1000_buffer) * tx_ring->count;
2347 tx_ring->buffer_info = vzalloc(size);
2348 if (!tx_ring->buffer_info)
2349 goto err;
2350
2351 /* round up to nearest 4K */
2352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353 tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355 err = e1000_alloc_ring_dma(adapter, tx_ring);
2356 if (err)
2357 goto err;
2358
2359 tx_ring->next_to_use = 0;
2360 tx_ring->next_to_clean = 0;
2361
2362 return 0;
2363err:
2364 vfree(tx_ring->buffer_info);
2365 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366 return err;
2367}
2368
2369/**
2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371 * @rx_ring: Rx descriptor ring
2372 *
2373 * Returns 0 on success, negative on failure
2374 **/
2375int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376{
2377 struct e1000_adapter *adapter = rx_ring->adapter;
2378 struct e1000_buffer *buffer_info;
2379 int i, size, desc_len, err = -ENOMEM;
2380
2381 size = sizeof(struct e1000_buffer) * rx_ring->count;
2382 rx_ring->buffer_info = vzalloc(size);
2383 if (!rx_ring->buffer_info)
2384 goto err;
2385
2386 for (i = 0; i < rx_ring->count; i++) {
2387 buffer_info = &rx_ring->buffer_info[i];
2388 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389 sizeof(struct e1000_ps_page),
2390 GFP_KERNEL);
2391 if (!buffer_info->ps_pages)
2392 goto err_pages;
2393 }
2394
2395 desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397 /* Round up to nearest 4K */
2398 rx_ring->size = rx_ring->count * desc_len;
2399 rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401 err = e1000_alloc_ring_dma(adapter, rx_ring);
2402 if (err)
2403 goto err_pages;
2404
2405 rx_ring->next_to_clean = 0;
2406 rx_ring->next_to_use = 0;
2407 rx_ring->rx_skb_top = NULL;
2408
2409 return 0;
2410
2411err_pages:
2412 for (i = 0; i < rx_ring->count; i++) {
2413 buffer_info = &rx_ring->buffer_info[i];
2414 kfree(buffer_info->ps_pages);
2415 }
2416err:
2417 vfree(rx_ring->buffer_info);
2418 e_err("Unable to allocate memory for the receive descriptor ring\n");
2419 return err;
2420}
2421
2422/**
2423 * e1000_clean_tx_ring - Free Tx Buffers
2424 * @tx_ring: Tx descriptor ring
2425 **/
2426static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427{
2428 struct e1000_adapter *adapter = tx_ring->adapter;
2429 struct e1000_buffer *buffer_info;
2430 unsigned long size;
2431 unsigned int i;
2432
2433 for (i = 0; i < tx_ring->count; i++) {
2434 buffer_info = &tx_ring->buffer_info[i];
2435 e1000_put_txbuf(tx_ring, buffer_info);
2436 }
2437
2438 netdev_reset_queue(adapter->netdev);
2439 size = sizeof(struct e1000_buffer) * tx_ring->count;
2440 memset(tx_ring->buffer_info, 0, size);
2441
2442 memset(tx_ring->desc, 0, tx_ring->size);
2443
2444 tx_ring->next_to_use = 0;
2445 tx_ring->next_to_clean = 0;
2446}
2447
2448/**
2449 * e1000e_free_tx_resources - Free Tx Resources per Queue
2450 * @tx_ring: Tx descriptor ring
2451 *
2452 * Free all transmit software resources
2453 **/
2454void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2455{
2456 struct e1000_adapter *adapter = tx_ring->adapter;
2457 struct pci_dev *pdev = adapter->pdev;
2458
2459 e1000_clean_tx_ring(tx_ring);
2460
2461 vfree(tx_ring->buffer_info);
2462 tx_ring->buffer_info = NULL;
2463
2464 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2465 tx_ring->dma);
2466 tx_ring->desc = NULL;
2467}
2468
2469/**
2470 * e1000e_free_rx_resources - Free Rx Resources
2471 * @rx_ring: Rx descriptor ring
2472 *
2473 * Free all receive software resources
2474 **/
2475void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2476{
2477 struct e1000_adapter *adapter = rx_ring->adapter;
2478 struct pci_dev *pdev = adapter->pdev;
2479 int i;
2480
2481 e1000_clean_rx_ring(rx_ring);
2482
2483 for (i = 0; i < rx_ring->count; i++)
2484 kfree(rx_ring->buffer_info[i].ps_pages);
2485
2486 vfree(rx_ring->buffer_info);
2487 rx_ring->buffer_info = NULL;
2488
2489 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2490 rx_ring->dma);
2491 rx_ring->desc = NULL;
2492}
2493
2494/**
2495 * e1000_update_itr - update the dynamic ITR value based on statistics
2496 * @adapter: pointer to adapter
2497 * @itr_setting: current adapter->itr
2498 * @packets: the number of packets during this measurement interval
2499 * @bytes: the number of bytes during this measurement interval
2500 *
2501 * Stores a new ITR value based on packets and byte
2502 * counts during the last interrupt. The advantage of per interrupt
2503 * computation is faster updates and more accurate ITR for the current
2504 * traffic pattern. Constants in this function were computed
2505 * based on theoretical maximum wire speed and thresholds were set based
2506 * on testing data as well as attempting to minimize response time
2507 * while increasing bulk throughput. This functionality is controlled
2508 * by the InterruptThrottleRate module parameter.
2509 **/
2510static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2511{
2512 unsigned int retval = itr_setting;
2513
2514 if (packets == 0)
2515 return itr_setting;
2516
2517 switch (itr_setting) {
2518 case lowest_latency:
2519 /* handle TSO and jumbo frames */
2520 if (bytes / packets > 8000)
2521 retval = bulk_latency;
2522 else if ((packets < 5) && (bytes > 512))
2523 retval = low_latency;
2524 break;
2525 case low_latency: /* 50 usec aka 20000 ints/s */
2526 if (bytes > 10000) {
2527 /* this if handles the TSO accounting */
2528 if (bytes / packets > 8000)
2529 retval = bulk_latency;
2530 else if ((packets < 10) || ((bytes / packets) > 1200))
2531 retval = bulk_latency;
2532 else if ((packets > 35))
2533 retval = lowest_latency;
2534 } else if (bytes / packets > 2000) {
2535 retval = bulk_latency;
2536 } else if (packets <= 2 && bytes < 512) {
2537 retval = lowest_latency;
2538 }
2539 break;
2540 case bulk_latency: /* 250 usec aka 4000 ints/s */
2541 if (bytes > 25000) {
2542 if (packets > 35)
2543 retval = low_latency;
2544 } else if (bytes < 6000) {
2545 retval = low_latency;
2546 }
2547 break;
2548 }
2549
2550 return retval;
2551}
2552
2553static void e1000_set_itr(struct e1000_adapter *adapter)
2554{
2555 u16 current_itr;
2556 u32 new_itr = adapter->itr;
2557
2558 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559 if (adapter->link_speed != SPEED_1000) {
2560 current_itr = 0;
2561 new_itr = 4000;
2562 goto set_itr_now;
2563 }
2564
2565 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2566 new_itr = 0;
2567 goto set_itr_now;
2568 }
2569
2570 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2571 adapter->total_tx_packets,
2572 adapter->total_tx_bytes);
2573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575 adapter->tx_itr = low_latency;
2576
2577 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2578 adapter->total_rx_packets,
2579 adapter->total_rx_bytes);
2580 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2581 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2582 adapter->rx_itr = low_latency;
2583
2584 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585
2586 /* counts and packets in update_itr are dependent on these numbers */
2587 switch (current_itr) {
2588 case lowest_latency:
2589 new_itr = 70000;
2590 break;
2591 case low_latency:
2592 new_itr = 20000; /* aka hwitr = ~200 */
2593 break;
2594 case bulk_latency:
2595 new_itr = 4000;
2596 break;
2597 default:
2598 break;
2599 }
2600
2601set_itr_now:
2602 if (new_itr != adapter->itr) {
2603 /* this attempts to bias the interrupt rate towards Bulk
2604 * by adding intermediate steps when interrupt rate is
2605 * increasing
2606 */
2607 new_itr = new_itr > adapter->itr ?
2608 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2609 adapter->itr = new_itr;
2610 adapter->rx_ring->itr_val = new_itr;
2611 if (adapter->msix_entries)
2612 adapter->rx_ring->set_itr = 1;
2613 else
2614 e1000e_write_itr(adapter, new_itr);
2615 }
2616}
2617
2618/**
2619 * e1000e_write_itr - write the ITR value to the appropriate registers
2620 * @adapter: address of board private structure
2621 * @itr: new ITR value to program
2622 *
2623 * e1000e_write_itr determines if the adapter is in MSI-X mode
2624 * and, if so, writes the EITR registers with the ITR value.
2625 * Otherwise, it writes the ITR value into the ITR register.
2626 **/
2627void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2631
2632 if (adapter->msix_entries) {
2633 int vector;
2634
2635 for (vector = 0; vector < adapter->num_vectors; vector++)
2636 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2637 } else {
2638 ew32(ITR, new_itr);
2639 }
2640}
2641
2642/**
2643 * e1000_alloc_queues - Allocate memory for all rings
2644 * @adapter: board private structure to initialize
2645 **/
2646static int e1000_alloc_queues(struct e1000_adapter *adapter)
2647{
2648 int size = sizeof(struct e1000_ring);
2649
2650 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2651 if (!adapter->tx_ring)
2652 goto err;
2653 adapter->tx_ring->count = adapter->tx_ring_count;
2654 adapter->tx_ring->adapter = adapter;
2655
2656 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2657 if (!adapter->rx_ring)
2658 goto err;
2659 adapter->rx_ring->count = adapter->rx_ring_count;
2660 adapter->rx_ring->adapter = adapter;
2661
2662 return 0;
2663err:
2664 e_err("Unable to allocate memory for queues\n");
2665 kfree(adapter->rx_ring);
2666 kfree(adapter->tx_ring);
2667 return -ENOMEM;
2668}
2669
2670/**
2671 * e1000e_poll - NAPI Rx polling callback
2672 * @napi: struct associated with this polling callback
2673 * @weight: number of packets driver is allowed to process this poll
2674 **/
2675static int e1000e_poll(struct napi_struct *napi, int weight)
2676{
2677 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2678 napi);
2679 struct e1000_hw *hw = &adapter->hw;
2680 struct net_device *poll_dev = adapter->netdev;
2681 int tx_cleaned = 1, work_done = 0;
2682
2683 adapter = netdev_priv(poll_dev);
2684
2685 if (!adapter->msix_entries ||
2686 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2687 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2688
2689 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2690
2691 if (!tx_cleaned)
2692 work_done = weight;
2693
2694 /* If weight not fully consumed, exit the polling mode */
2695 if (work_done < weight) {
2696 if (adapter->itr_setting & 3)
2697 e1000_set_itr(adapter);
2698 napi_complete_done(napi, work_done);
2699 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2700 if (adapter->msix_entries)
2701 ew32(IMS, adapter->rx_ring->ims_val);
2702 else
2703 e1000_irq_enable(adapter);
2704 }
2705 }
2706
2707 return work_done;
2708}
2709
2710static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2711 __always_unused __be16 proto, u16 vid)
2712{
2713 struct e1000_adapter *adapter = netdev_priv(netdev);
2714 struct e1000_hw *hw = &adapter->hw;
2715 u32 vfta, index;
2716
2717 /* don't update vlan cookie if already programmed */
2718 if ((adapter->hw.mng_cookie.status &
2719 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2720 (vid == adapter->mng_vlan_id))
2721 return 0;
2722
2723 /* add VID to filter table */
2724 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725 index = (vid >> 5) & 0x7F;
2726 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727 vfta |= (1 << (vid & 0x1F));
2728 hw->mac.ops.write_vfta(hw, index, vfta);
2729 }
2730
2731 set_bit(vid, adapter->active_vlans);
2732
2733 return 0;
2734}
2735
2736static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2737 __always_unused __be16 proto, u16 vid)
2738{
2739 struct e1000_adapter *adapter = netdev_priv(netdev);
2740 struct e1000_hw *hw = &adapter->hw;
2741 u32 vfta, index;
2742
2743 if ((adapter->hw.mng_cookie.status &
2744 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2745 (vid == adapter->mng_vlan_id)) {
2746 /* release control to f/w */
2747 e1000e_release_hw_control(adapter);
2748 return 0;
2749 }
2750
2751 /* remove VID from filter table */
2752 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2753 index = (vid >> 5) & 0x7F;
2754 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2755 vfta &= ~(1 << (vid & 0x1F));
2756 hw->mac.ops.write_vfta(hw, index, vfta);
2757 }
2758
2759 clear_bit(vid, adapter->active_vlans);
2760
2761 return 0;
2762}
2763
2764/**
2765 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2766 * @adapter: board private structure to initialize
2767 **/
2768static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2769{
2770 struct net_device *netdev = adapter->netdev;
2771 struct e1000_hw *hw = &adapter->hw;
2772 u32 rctl;
2773
2774 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2775 /* disable VLAN receive filtering */
2776 rctl = er32(RCTL);
2777 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2778 ew32(RCTL, rctl);
2779
2780 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2781 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2782 adapter->mng_vlan_id);
2783 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2784 }
2785 }
2786}
2787
2788/**
2789 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2790 * @adapter: board private structure to initialize
2791 **/
2792static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2793{
2794 struct e1000_hw *hw = &adapter->hw;
2795 u32 rctl;
2796
2797 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2798 /* enable VLAN receive filtering */
2799 rctl = er32(RCTL);
2800 rctl |= E1000_RCTL_VFE;
2801 rctl &= ~E1000_RCTL_CFIEN;
2802 ew32(RCTL, rctl);
2803 }
2804}
2805
2806/**
2807 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2811{
2812 struct e1000_hw *hw = &adapter->hw;
2813 u32 ctrl;
2814
2815 /* disable VLAN tag insert/strip */
2816 ctrl = er32(CTRL);
2817 ctrl &= ~E1000_CTRL_VME;
2818 ew32(CTRL, ctrl);
2819}
2820
2821/**
2822 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2823 * @adapter: board private structure to initialize
2824 **/
2825static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2826{
2827 struct e1000_hw *hw = &adapter->hw;
2828 u32 ctrl;
2829
2830 /* enable VLAN tag insert/strip */
2831 ctrl = er32(CTRL);
2832 ctrl |= E1000_CTRL_VME;
2833 ew32(CTRL, ctrl);
2834}
2835
2836static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2837{
2838 struct net_device *netdev = adapter->netdev;
2839 u16 vid = adapter->hw.mng_cookie.vlan_id;
2840 u16 old_vid = adapter->mng_vlan_id;
2841
2842 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2843 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2844 adapter->mng_vlan_id = vid;
2845 }
2846
2847 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2848 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2849}
2850
2851static void e1000_restore_vlan(struct e1000_adapter *adapter)
2852{
2853 u16 vid;
2854
2855 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2856
2857 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2858 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2859}
2860
2861static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2862{
2863 struct e1000_hw *hw = &adapter->hw;
2864 u32 manc, manc2h, mdef, i, j;
2865
2866 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2867 return;
2868
2869 manc = er32(MANC);
2870
2871 /* enable receiving management packets to the host. this will probably
2872 * generate destination unreachable messages from the host OS, but
2873 * the packets will be handled on SMBUS
2874 */
2875 manc |= E1000_MANC_EN_MNG2HOST;
2876 manc2h = er32(MANC2H);
2877
2878 switch (hw->mac.type) {
2879 default:
2880 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2881 break;
2882 case e1000_82574:
2883 case e1000_82583:
2884 /* Check if IPMI pass-through decision filter already exists;
2885 * if so, enable it.
2886 */
2887 for (i = 0, j = 0; i < 8; i++) {
2888 mdef = er32(MDEF(i));
2889
2890 /* Ignore filters with anything other than IPMI ports */
2891 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2892 continue;
2893
2894 /* Enable this decision filter in MANC2H */
2895 if (mdef)
2896 manc2h |= (1 << i);
2897
2898 j |= mdef;
2899 }
2900
2901 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 break;
2903
2904 /* Create new decision filter in an empty filter */
2905 for (i = 0, j = 0; i < 8; i++)
2906 if (er32(MDEF(i)) == 0) {
2907 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2908 E1000_MDEF_PORT_664));
2909 manc2h |= (1 << 1);
2910 j++;
2911 break;
2912 }
2913
2914 if (!j)
2915 e_warn("Unable to create IPMI pass-through filter\n");
2916 break;
2917 }
2918
2919 ew32(MANC2H, manc2h);
2920 ew32(MANC, manc);
2921}
2922
2923/**
2924 * e1000_configure_tx - Configure Transmit Unit after Reset
2925 * @adapter: board private structure
2926 *
2927 * Configure the Tx unit of the MAC after a reset.
2928 **/
2929static void e1000_configure_tx(struct e1000_adapter *adapter)
2930{
2931 struct e1000_hw *hw = &adapter->hw;
2932 struct e1000_ring *tx_ring = adapter->tx_ring;
2933 u64 tdba;
2934 u32 tdlen, tctl, tarc;
2935
2936 /* Setup the HW Tx Head and Tail descriptor pointers */
2937 tdba = tx_ring->dma;
2938 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2939 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2940 ew32(TDBAH(0), (tdba >> 32));
2941 ew32(TDLEN(0), tdlen);
2942 ew32(TDH(0), 0);
2943 ew32(TDT(0), 0);
2944 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2945 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2946
2947 writel(0, tx_ring->head);
2948 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2949 e1000e_update_tdt_wa(tx_ring, 0);
2950 else
2951 writel(0, tx_ring->tail);
2952
2953 /* Set the Tx Interrupt Delay register */
2954 ew32(TIDV, adapter->tx_int_delay);
2955 /* Tx irq moderation */
2956 ew32(TADV, adapter->tx_abs_int_delay);
2957
2958 if (adapter->flags2 & FLAG2_DMA_BURST) {
2959 u32 txdctl = er32(TXDCTL(0));
2960
2961 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962 E1000_TXDCTL_WTHRESH);
2963 /* set up some performance related parameters to encourage the
2964 * hardware to use the bus more efficiently in bursts, depends
2965 * on the tx_int_delay to be enabled,
2966 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967 * hthresh = 1 ==> prefetch when one or more available
2968 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969 * BEWARE: this seems to work but should be considered first if
2970 * there are Tx hangs or other Tx related bugs
2971 */
2972 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973 ew32(TXDCTL(0), txdctl);
2974 }
2975 /* erratum work around: set txdctl the same for both queues */
2976 ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978 /* Program the Transmit Control Register */
2979 tctl = er32(TCTL);
2980 tctl &= ~E1000_TCTL_CT;
2981 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985 tarc = er32(TARC(0));
2986 /* set the speed mode bit, we'll clear it if we're not at
2987 * gigabit link later
2988 */
2989#define SPEED_MODE_BIT (1 << 21)
2990 tarc |= SPEED_MODE_BIT;
2991 ew32(TARC(0), tarc);
2992 }
2993
2994 /* errata: program both queues to unweighted RR */
2995 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996 tarc = er32(TARC(0));
2997 tarc |= 1;
2998 ew32(TARC(0), tarc);
2999 tarc = er32(TARC(1));
3000 tarc |= 1;
3001 ew32(TARC(1), tarc);
3002 }
3003
3004 /* Setup Transmit Descriptor Settings for eop descriptor */
3005 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007 /* only set IDE if we are delaying interrupts using the timers */
3008 if (adapter->tx_int_delay)
3009 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011 /* enable Report Status bit */
3012 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014 ew32(TCTL, tctl);
3015
3016 hw->mac.ops.config_collision_dist(hw);
3017
3018 /* SPT Si errata workaround to avoid data corruption */
3019 if (hw->mac.type == e1000_pch_spt) {
3020 u32 reg_val;
3021
3022 reg_val = er32(IOSFPC);
3023 reg_val |= E1000_RCTL_RDMTS_HEX;
3024 ew32(IOSFPC, reg_val);
3025
3026 reg_val = er32(TARC(0));
3027 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3028 ew32(TARC(0), reg_val);
3029 }
3030}
3031
3032/**
3033 * e1000_setup_rctl - configure the receive control registers
3034 * @adapter: Board private structure
3035 **/
3036#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3037 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3038static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039{
3040 struct e1000_hw *hw = &adapter->hw;
3041 u32 rctl, rfctl;
3042 u32 pages = 0;
3043
3044 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3045 * If jumbo frames not set, program related MAC/PHY registers
3046 * to h/w defaults
3047 */
3048 if (hw->mac.type >= e1000_pch2lan) {
3049 s32 ret_val;
3050
3051 if (adapter->netdev->mtu > ETH_DATA_LEN)
3052 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053 else
3054 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056 if (ret_val)
3057 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 }
3059
3060 /* Program MC offset vector base */
3061 rctl = er32(RCTL);
3062 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067 /* Do not Store bad packets */
3068 rctl &= ~E1000_RCTL_SBP;
3069
3070 /* Enable Long Packet receive */
3071 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072 rctl &= ~E1000_RCTL_LPE;
3073 else
3074 rctl |= E1000_RCTL_LPE;
3075
3076 /* Some systems expect that the CRC is included in SMBUS traffic. The
3077 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078 * host memory when this is enabled
3079 */
3080 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081 rctl |= E1000_RCTL_SECRC;
3082
3083 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085 u16 phy_data;
3086
3087 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088 phy_data &= 0xfff8;
3089 phy_data |= (1 << 2);
3090 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092 e1e_rphy(hw, 22, &phy_data);
3093 phy_data &= 0x0fff;
3094 phy_data |= (1 << 14);
3095 e1e_wphy(hw, 0x10, 0x2823);
3096 e1e_wphy(hw, 0x11, 0x0003);
3097 e1e_wphy(hw, 22, phy_data);
3098 }
3099
3100 /* Setup buffer sizes */
3101 rctl &= ~E1000_RCTL_SZ_4096;
3102 rctl |= E1000_RCTL_BSEX;
3103 switch (adapter->rx_buffer_len) {
3104 case 2048:
3105 default:
3106 rctl |= E1000_RCTL_SZ_2048;
3107 rctl &= ~E1000_RCTL_BSEX;
3108 break;
3109 case 4096:
3110 rctl |= E1000_RCTL_SZ_4096;
3111 break;
3112 case 8192:
3113 rctl |= E1000_RCTL_SZ_8192;
3114 break;
3115 case 16384:
3116 rctl |= E1000_RCTL_SZ_16384;
3117 break;
3118 }
3119
3120 /* Enable Extended Status in all Receive Descriptors */
3121 rfctl = er32(RFCTL);
3122 rfctl |= E1000_RFCTL_EXTEN;
3123 ew32(RFCTL, rfctl);
3124
3125 /* 82571 and greater support packet-split where the protocol
3126 * header is placed in skb->data and the packet data is
3127 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128 * In the case of a non-split, skb->data is linearly filled,
3129 * followed by the page buffers. Therefore, skb->data is
3130 * sized to hold the largest protocol header.
3131 *
3132 * allocations using alloc_page take too long for regular MTU
3133 * so only enable packet split for jumbo frames
3134 *
3135 * Using pages when the page size is greater than 16k wastes
3136 * a lot of memory, since we allocate 3 pages at all times
3137 * per packet.
3138 */
3139 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141 adapter->rx_ps_pages = pages;
3142 else
3143 adapter->rx_ps_pages = 0;
3144
3145 if (adapter->rx_ps_pages) {
3146 u32 psrctl = 0;
3147
3148 /* Enable Packet split descriptors */
3149 rctl |= E1000_RCTL_DTYP_PS;
3150
3151 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152
3153 switch (adapter->rx_ps_pages) {
3154 case 3:
3155 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156 /* fall-through */
3157 case 2:
3158 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159 /* fall-through */
3160 case 1:
3161 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162 break;
3163 }
3164
3165 ew32(PSRCTL, psrctl);
3166 }
3167
3168 /* This is useful for sniffing bad packets. */
3169 if (adapter->netdev->features & NETIF_F_RXALL) {
3170 /* UPE and MPE will be handled by normal PROMISC logic
3171 * in e1000e_set_rx_mode
3172 */
3173 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3174 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3175 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3176
3177 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3178 E1000_RCTL_DPF | /* Allow filtered pause */
3179 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3180 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181 * and that breaks VLANs.
3182 */
3183 }
3184
3185 ew32(RCTL, rctl);
3186 /* just started the receive unit, no need to restart */
3187 adapter->flags &= ~FLAG_RESTART_NOW;
3188}
3189
3190/**
3191 * e1000_configure_rx - Configure Receive Unit after Reset
3192 * @adapter: board private structure
3193 *
3194 * Configure the Rx unit of the MAC after a reset.
3195 **/
3196static void e1000_configure_rx(struct e1000_adapter *adapter)
3197{
3198 struct e1000_hw *hw = &adapter->hw;
3199 struct e1000_ring *rx_ring = adapter->rx_ring;
3200 u64 rdba;
3201 u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203 if (adapter->rx_ps_pages) {
3204 /* this is a 32 byte descriptor */
3205 rdlen = rx_ring->count *
3206 sizeof(union e1000_rx_desc_packet_split);
3207 adapter->clean_rx = e1000_clean_rx_irq_ps;
3208 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213 } else {
3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 adapter->clean_rx = e1000_clean_rx_irq;
3216 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 }
3218
3219 /* disable receives while setting up the descriptors */
3220 rctl = er32(RCTL);
3221 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223 e1e_flush();
3224 usleep_range(10000, 20000);
3225
3226 if (adapter->flags2 & FLAG2_DMA_BURST) {
3227 /* set the writeback threshold (only takes effect if the RDTR
3228 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229 * enable prefetching of 0x20 Rx descriptors
3230 * granularity = 01
3231 * wthresh = 04,
3232 * hthresh = 04,
3233 * pthresh = 0x20
3234 */
3235 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237
3238 /* override the delay timers for enabling bursting, only if
3239 * the value was not set by the user via module options
3240 */
3241 if (adapter->rx_int_delay == DEFAULT_RDTR)
3242 adapter->rx_int_delay = BURST_RDTR;
3243 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3244 adapter->rx_abs_int_delay = BURST_RADV;
3245 }
3246
3247 /* set the Receive Delay Timer Register */
3248 ew32(RDTR, adapter->rx_int_delay);
3249
3250 /* irq moderation */
3251 ew32(RADV, adapter->rx_abs_int_delay);
3252 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3253 e1000e_write_itr(adapter, adapter->itr);
3254
3255 ctrl_ext = er32(CTRL_EXT);
3256 /* Auto-Mask interrupts upon ICR access */
3257 ctrl_ext |= E1000_CTRL_EXT_IAME;
3258 ew32(IAM, 0xffffffff);
3259 ew32(CTRL_EXT, ctrl_ext);
3260 e1e_flush();
3261
3262 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3263 * the Base and Length of the Rx Descriptor Ring
3264 */
3265 rdba = rx_ring->dma;
3266 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3267 ew32(RDBAH(0), (rdba >> 32));
3268 ew32(RDLEN(0), rdlen);
3269 ew32(RDH(0), 0);
3270 ew32(RDT(0), 0);
3271 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3272 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3273
3274 writel(0, rx_ring->head);
3275 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3276 e1000e_update_rdt_wa(rx_ring, 0);
3277 else
3278 writel(0, rx_ring->tail);
3279
3280 /* Enable Receive Checksum Offload for TCP and UDP */
3281 rxcsum = er32(RXCSUM);
3282 if (adapter->netdev->features & NETIF_F_RXCSUM)
3283 rxcsum |= E1000_RXCSUM_TUOFL;
3284 else
3285 rxcsum &= ~E1000_RXCSUM_TUOFL;
3286 ew32(RXCSUM, rxcsum);
3287
3288 /* With jumbo frames, excessive C-state transition latencies result
3289 * in dropped transactions.
3290 */
3291 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3292 u32 lat =
3293 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3294 adapter->max_frame_size) * 8 / 1000;
3295
3296 if (adapter->flags & FLAG_IS_ICH) {
3297 u32 rxdctl = er32(RXDCTL(0));
3298
3299 ew32(RXDCTL(0), rxdctl | 0x3);
3300 }
3301
3302 pm_qos_update_request(&adapter->pm_qos_req, lat);
3303 } else {
3304 pm_qos_update_request(&adapter->pm_qos_req,
3305 PM_QOS_DEFAULT_VALUE);
3306 }
3307
3308 /* Enable Receives */
3309 ew32(RCTL, rctl);
3310}
3311
3312/**
3313 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3314 * @netdev: network interface device structure
3315 *
3316 * Writes multicast address list to the MTA hash table.
3317 * Returns: -ENOMEM on failure
3318 * 0 on no addresses written
3319 * X on writing X addresses to MTA
3320 */
3321static int e1000e_write_mc_addr_list(struct net_device *netdev)
3322{
3323 struct e1000_adapter *adapter = netdev_priv(netdev);
3324 struct e1000_hw *hw = &adapter->hw;
3325 struct netdev_hw_addr *ha;
3326 u8 *mta_list;
3327 int i;
3328
3329 if (netdev_mc_empty(netdev)) {
3330 /* nothing to program, so clear mc list */
3331 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3332 return 0;
3333 }
3334
3335 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3336 if (!mta_list)
3337 return -ENOMEM;
3338
3339 /* update_mc_addr_list expects a packed array of only addresses. */
3340 i = 0;
3341 netdev_for_each_mc_addr(ha, netdev)
3342 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3343
3344 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3345 kfree(mta_list);
3346
3347 return netdev_mc_count(netdev);
3348}
3349
3350/**
3351 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3352 * @netdev: network interface device structure
3353 *
3354 * Writes unicast address list to the RAR table.
3355 * Returns: -ENOMEM on failure/insufficient address space
3356 * 0 on no addresses written
3357 * X on writing X addresses to the RAR table
3358 **/
3359static int e1000e_write_uc_addr_list(struct net_device *netdev)
3360{
3361 struct e1000_adapter *adapter = netdev_priv(netdev);
3362 struct e1000_hw *hw = &adapter->hw;
3363 unsigned int rar_entries;
3364 int count = 0;
3365
3366 rar_entries = hw->mac.ops.rar_get_count(hw);
3367
3368 /* save a rar entry for our hardware address */
3369 rar_entries--;
3370
3371 /* save a rar entry for the LAA workaround */
3372 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3373 rar_entries--;
3374
3375 /* return ENOMEM indicating insufficient memory for addresses */
3376 if (netdev_uc_count(netdev) > rar_entries)
3377 return -ENOMEM;
3378
3379 if (!netdev_uc_empty(netdev) && rar_entries) {
3380 struct netdev_hw_addr *ha;
3381
3382 /* write the addresses in reverse order to avoid write
3383 * combining
3384 */
3385 netdev_for_each_uc_addr(ha, netdev) {
3386 int rval;
3387
3388 if (!rar_entries)
3389 break;
3390 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3391 if (rval < 0)
3392 return -ENOMEM;
3393 count++;
3394 }
3395 }
3396
3397 /* zero out the remaining RAR entries not used above */
3398 for (; rar_entries > 0; rar_entries--) {
3399 ew32(RAH(rar_entries), 0);
3400 ew32(RAL(rar_entries), 0);
3401 }
3402 e1e_flush();
3403
3404 return count;
3405}
3406
3407/**
3408 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3409 * @netdev: network interface device structure
3410 *
3411 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3412 * address list or the network interface flags are updated. This routine is
3413 * responsible for configuring the hardware for proper unicast, multicast,
3414 * promiscuous mode, and all-multi behavior.
3415 **/
3416static void e1000e_set_rx_mode(struct net_device *netdev)
3417{
3418 struct e1000_adapter *adapter = netdev_priv(netdev);
3419 struct e1000_hw *hw = &adapter->hw;
3420 u32 rctl;
3421
3422 if (pm_runtime_suspended(netdev->dev.parent))
3423 return;
3424
3425 /* Check for Promiscuous and All Multicast modes */
3426 rctl = er32(RCTL);
3427
3428 /* clear the affected bits */
3429 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3430
3431 if (netdev->flags & IFF_PROMISC) {
3432 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3433 /* Do not hardware filter VLANs in promisc mode */
3434 e1000e_vlan_filter_disable(adapter);
3435 } else {
3436 int count;
3437
3438 if (netdev->flags & IFF_ALLMULTI) {
3439 rctl |= E1000_RCTL_MPE;
3440 } else {
3441 /* Write addresses to the MTA, if the attempt fails
3442 * then we should just turn on promiscuous mode so
3443 * that we can at least receive multicast traffic
3444 */
3445 count = e1000e_write_mc_addr_list(netdev);
3446 if (count < 0)
3447 rctl |= E1000_RCTL_MPE;
3448 }
3449 e1000e_vlan_filter_enable(adapter);
3450 /* Write addresses to available RAR registers, if there is not
3451 * sufficient space to store all the addresses then enable
3452 * unicast promiscuous mode
3453 */
3454 count = e1000e_write_uc_addr_list(netdev);
3455 if (count < 0)
3456 rctl |= E1000_RCTL_UPE;
3457 }
3458
3459 ew32(RCTL, rctl);
3460
3461 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3462 e1000e_vlan_strip_enable(adapter);
3463 else
3464 e1000e_vlan_strip_disable(adapter);
3465}
3466
3467static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3468{
3469 struct e1000_hw *hw = &adapter->hw;
3470 u32 mrqc, rxcsum;
3471 u32 rss_key[10];
3472 int i;
3473
3474 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3475 for (i = 0; i < 10; i++)
3476 ew32(RSSRK(i), rss_key[i]);
3477
3478 /* Direct all traffic to queue 0 */
3479 for (i = 0; i < 32; i++)
3480 ew32(RETA(i), 0);
3481
3482 /* Disable raw packet checksumming so that RSS hash is placed in
3483 * descriptor on writeback.
3484 */
3485 rxcsum = er32(RXCSUM);
3486 rxcsum |= E1000_RXCSUM_PCSD;
3487
3488 ew32(RXCSUM, rxcsum);
3489
3490 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3491 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3492 E1000_MRQC_RSS_FIELD_IPV6 |
3493 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3494 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3495
3496 ew32(MRQC, mrqc);
3497}
3498
3499/**
3500 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3501 * @adapter: board private structure
3502 * @timinca: pointer to returned time increment attributes
3503 *
3504 * Get attributes for incrementing the System Time Register SYSTIML/H at
3505 * the default base frequency, and set the cyclecounter shift value.
3506 **/
3507s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3508{
3509 struct e1000_hw *hw = &adapter->hw;
3510 u32 incvalue, incperiod, shift;
3511
3512 /* Make sure clock is enabled on I217/I218/I219 before checking
3513 * the frequency
3514 */
3515 if (((hw->mac.type == e1000_pch_lpt) ||
3516 (hw->mac.type == e1000_pch_spt)) &&
3517 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3518 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3519 u32 fextnvm7 = er32(FEXTNVM7);
3520
3521 if (!(fextnvm7 & (1 << 0))) {
3522 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3523 e1e_flush();
3524 }
3525 }
3526
3527 switch (hw->mac.type) {
3528 case e1000_pch2lan:
3529 case e1000_pch_lpt:
3530 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3531 /* Stable 96MHz frequency */
3532 incperiod = INCPERIOD_96MHz;
3533 incvalue = INCVALUE_96MHz;
3534 shift = INCVALUE_SHIFT_96MHz;
3535 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3536 } else {
3537 /* Stable 25MHz frequency */
3538 incperiod = INCPERIOD_25MHz;
3539 incvalue = INCVALUE_25MHz;
3540 shift = INCVALUE_SHIFT_25MHz;
3541 adapter->cc.shift = shift;
3542 }
3543 break;
3544 case e1000_pch_spt:
3545 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3546 /* Stable 24MHz frequency */
3547 incperiod = INCPERIOD_24MHz;
3548 incvalue = INCVALUE_24MHz;
3549 shift = INCVALUE_SHIFT_24MHz;
3550 adapter->cc.shift = shift;
3551 break;
3552 }
3553 return -EINVAL;
3554 case e1000_82574:
3555 case e1000_82583:
3556 /* Stable 25MHz frequency */
3557 incperiod = INCPERIOD_25MHz;
3558 incvalue = INCVALUE_25MHz;
3559 shift = INCVALUE_SHIFT_25MHz;
3560 adapter->cc.shift = shift;
3561 break;
3562 default:
3563 return -EINVAL;
3564 }
3565
3566 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3567 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3568
3569 return 0;
3570}
3571
3572/**
3573 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3574 * @adapter: board private structure
3575 *
3576 * Outgoing time stamping can be enabled and disabled. Play nice and
3577 * disable it when requested, although it shouldn't cause any overhead
3578 * when no packet needs it. At most one packet in the queue may be
3579 * marked for time stamping, otherwise it would be impossible to tell
3580 * for sure to which packet the hardware time stamp belongs.
3581 *
3582 * Incoming time stamping has to be configured via the hardware filters.
3583 * Not all combinations are supported, in particular event type has to be
3584 * specified. Matching the kind of event packet is not supported, with the
3585 * exception of "all V2 events regardless of level 2 or 4".
3586 **/
3587static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3588 struct hwtstamp_config *config)
3589{
3590 struct e1000_hw *hw = &adapter->hw;
3591 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3592 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3593 u32 rxmtrl = 0;
3594 u16 rxudp = 0;
3595 bool is_l4 = false;
3596 bool is_l2 = false;
3597 u32 regval;
3598 s32 ret_val;
3599
3600 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3601 return -EINVAL;
3602
3603 /* flags reserved for future extensions - must be zero */
3604 if (config->flags)
3605 return -EINVAL;
3606
3607 switch (config->tx_type) {
3608 case HWTSTAMP_TX_OFF:
3609 tsync_tx_ctl = 0;
3610 break;
3611 case HWTSTAMP_TX_ON:
3612 break;
3613 default:
3614 return -ERANGE;
3615 }
3616
3617 switch (config->rx_filter) {
3618 case HWTSTAMP_FILTER_NONE:
3619 tsync_rx_ctl = 0;
3620 break;
3621 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3622 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3623 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3624 is_l4 = true;
3625 break;
3626 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3627 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3628 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3629 is_l4 = true;
3630 break;
3631 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3632 /* Also time stamps V2 L2 Path Delay Request/Response */
3633 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3634 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3635 is_l2 = true;
3636 break;
3637 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3638 /* Also time stamps V2 L2 Path Delay Request/Response. */
3639 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3640 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3641 is_l2 = true;
3642 break;
3643 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3644 /* Hardware cannot filter just V2 L4 Sync messages;
3645 * fall-through to V2 (both L2 and L4) Sync.
3646 */
3647 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3648 /* Also time stamps V2 Path Delay Request/Response. */
3649 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3650 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3651 is_l2 = true;
3652 is_l4 = true;
3653 break;
3654 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3655 /* Hardware cannot filter just V2 L4 Delay Request messages;
3656 * fall-through to V2 (both L2 and L4) Delay Request.
3657 */
3658 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3659 /* Also time stamps V2 Path Delay Request/Response. */
3660 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3661 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3662 is_l2 = true;
3663 is_l4 = true;
3664 break;
3665 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3666 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3667 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3668 * fall-through to all V2 (both L2 and L4) Events.
3669 */
3670 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673 is_l2 = true;
3674 is_l4 = true;
3675 break;
3676 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677 /* For V1, the hardware can only filter Sync messages or
3678 * Delay Request messages but not both so fall-through to
3679 * time stamp all packets.
3680 */
3681 case HWTSTAMP_FILTER_ALL:
3682 is_l2 = true;
3683 is_l4 = true;
3684 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3685 config->rx_filter = HWTSTAMP_FILTER_ALL;
3686 break;
3687 default:
3688 return -ERANGE;
3689 }
3690
3691 adapter->hwtstamp_config = *config;
3692
3693 /* enable/disable Tx h/w time stamping */
3694 regval = er32(TSYNCTXCTL);
3695 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3696 regval |= tsync_tx_ctl;
3697 ew32(TSYNCTXCTL, regval);
3698 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3699 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3700 e_err("Timesync Tx Control register not set as expected\n");
3701 return -EAGAIN;
3702 }
3703
3704 /* enable/disable Rx h/w time stamping */
3705 regval = er32(TSYNCRXCTL);
3706 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3707 regval |= tsync_rx_ctl;
3708 ew32(TSYNCRXCTL, regval);
3709 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3710 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3711 (regval & (E1000_TSYNCRXCTL_ENABLED |
3712 E1000_TSYNCRXCTL_TYPE_MASK))) {
3713 e_err("Timesync Rx Control register not set as expected\n");
3714 return -EAGAIN;
3715 }
3716
3717 /* L2: define ethertype filter for time stamped packets */
3718 if (is_l2)
3719 rxmtrl |= ETH_P_1588;
3720
3721 /* define which PTP packets get time stamped */
3722 ew32(RXMTRL, rxmtrl);
3723
3724 /* Filter by destination port */
3725 if (is_l4) {
3726 rxudp = PTP_EV_PORT;
3727 cpu_to_be16s(&rxudp);
3728 }
3729 ew32(RXUDP, rxudp);
3730
3731 e1e_flush();
3732
3733 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3734 er32(RXSTMPH);
3735 er32(TXSTMPH);
3736
3737 /* Get and set the System Time Register SYSTIM base frequency */
3738 ret_val = e1000e_get_base_timinca(adapter, &regval);
3739 if (ret_val)
3740 return ret_val;
3741 ew32(TIMINCA, regval);
3742
3743 /* reset the ns time counter */
3744 timecounter_init(&adapter->tc, &adapter->cc,
3745 ktime_to_ns(ktime_get_real()));
3746
3747 return 0;
3748}
3749
3750/**
3751 * e1000_configure - configure the hardware for Rx and Tx
3752 * @adapter: private board structure
3753 **/
3754static void e1000_configure(struct e1000_adapter *adapter)
3755{
3756 struct e1000_ring *rx_ring = adapter->rx_ring;
3757
3758 e1000e_set_rx_mode(adapter->netdev);
3759
3760 e1000_restore_vlan(adapter);
3761 e1000_init_manageability_pt(adapter);
3762
3763 e1000_configure_tx(adapter);
3764
3765 if (adapter->netdev->features & NETIF_F_RXHASH)
3766 e1000e_setup_rss_hash(adapter);
3767 e1000_setup_rctl(adapter);
3768 e1000_configure_rx(adapter);
3769 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3770}
3771
3772/**
3773 * e1000e_power_up_phy - restore link in case the phy was powered down
3774 * @adapter: address of board private structure
3775 *
3776 * The phy may be powered down to save power and turn off link when the
3777 * driver is unloaded and wake on lan is not enabled (among others)
3778 * *** this routine MUST be followed by a call to e1000e_reset ***
3779 **/
3780void e1000e_power_up_phy(struct e1000_adapter *adapter)
3781{
3782 if (adapter->hw.phy.ops.power_up)
3783 adapter->hw.phy.ops.power_up(&adapter->hw);
3784
3785 adapter->hw.mac.ops.setup_link(&adapter->hw);
3786}
3787
3788/**
3789 * e1000_power_down_phy - Power down the PHY
3790 *
3791 * Power down the PHY so no link is implied when interface is down.
3792 * The PHY cannot be powered down if management or WoL is active.
3793 */
3794static void e1000_power_down_phy(struct e1000_adapter *adapter)
3795{
3796 if (adapter->hw.phy.ops.power_down)
3797 adapter->hw.phy.ops.power_down(&adapter->hw);
3798}
3799
3800/**
3801 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3802 *
3803 * We want to clear all pending descriptors from the TX ring.
3804 * zeroing happens when the HW reads the regs. We assign the ring itself as
3805 * the data of the next descriptor. We don't care about the data we are about
3806 * to reset the HW.
3807 */
3808static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3809{
3810 struct e1000_hw *hw = &adapter->hw;
3811 struct e1000_ring *tx_ring = adapter->tx_ring;
3812 struct e1000_tx_desc *tx_desc = NULL;
3813 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3814 u16 size = 512;
3815
3816 tctl = er32(TCTL);
3817 ew32(TCTL, tctl | E1000_TCTL_EN);
3818 tdt = er32(TDT(0));
3819 BUG_ON(tdt != tx_ring->next_to_use);
3820 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3821 tx_desc->buffer_addr = tx_ring->dma;
3822
3823 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3824 tx_desc->upper.data = 0;
3825 /* flush descriptors to memory before notifying the HW */
3826 wmb();
3827 tx_ring->next_to_use++;
3828 if (tx_ring->next_to_use == tx_ring->count)
3829 tx_ring->next_to_use = 0;
3830 ew32(TDT(0), tx_ring->next_to_use);
3831 mmiowb();
3832 usleep_range(200, 250);
3833}
3834
3835/**
3836 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3837 *
3838 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3839 */
3840static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3841{
3842 u32 rctl, rxdctl;
3843 struct e1000_hw *hw = &adapter->hw;
3844
3845 rctl = er32(RCTL);
3846 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3847 e1e_flush();
3848 usleep_range(100, 150);
3849
3850 rxdctl = er32(RXDCTL(0));
3851 /* zero the lower 14 bits (prefetch and host thresholds) */
3852 rxdctl &= 0xffffc000;
3853
3854 /* update thresholds: prefetch threshold to 31, host threshold to 1
3855 * and make sure the granularity is "descriptors" and not "cache lines"
3856 */
3857 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3858
3859 ew32(RXDCTL(0), rxdctl);
3860 /* momentarily enable the RX ring for the changes to take effect */
3861 ew32(RCTL, rctl | E1000_RCTL_EN);
3862 e1e_flush();
3863 usleep_range(100, 150);
3864 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3865}
3866
3867/**
3868 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3869 *
3870 * In i219, the descriptor rings must be emptied before resetting the HW
3871 * or before changing the device state to D3 during runtime (runtime PM).
3872 *
3873 * Failure to do this will cause the HW to enter a unit hang state which can
3874 * only be released by PCI reset on the device
3875 *
3876 */
3877
3878static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3879{
3880 u16 hang_state;
3881 u32 fext_nvm11, tdlen;
3882 struct e1000_hw *hw = &adapter->hw;
3883
3884 /* First, disable MULR fix in FEXTNVM11 */
3885 fext_nvm11 = er32(FEXTNVM11);
3886 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3887 ew32(FEXTNVM11, fext_nvm11);
3888 /* do nothing if we're not in faulty state, or if the queue is empty */
3889 tdlen = er32(TDLEN(0));
3890 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3891 &hang_state);
3892 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3893 return;
3894 e1000_flush_tx_ring(adapter);
3895 /* recheck, maybe the fault is caused by the rx ring */
3896 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3897 &hang_state);
3898 if (hang_state & FLUSH_DESC_REQUIRED)
3899 e1000_flush_rx_ring(adapter);
3900}
3901
3902/**
3903 * e1000e_reset - bring the hardware into a known good state
3904 *
3905 * This function boots the hardware and enables some settings that
3906 * require a configuration cycle of the hardware - those cannot be
3907 * set/changed during runtime. After reset the device needs to be
3908 * properly configured for Rx, Tx etc.
3909 */
3910void e1000e_reset(struct e1000_adapter *adapter)
3911{
3912 struct e1000_mac_info *mac = &adapter->hw.mac;
3913 struct e1000_fc_info *fc = &adapter->hw.fc;
3914 struct e1000_hw *hw = &adapter->hw;
3915 u32 tx_space, min_tx_space, min_rx_space;
3916 u32 pba = adapter->pba;
3917 u16 hwm;
3918
3919 /* reset Packet Buffer Allocation to default */
3920 ew32(PBA, pba);
3921
3922 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3923 /* To maintain wire speed transmits, the Tx FIFO should be
3924 * large enough to accommodate two full transmit packets,
3925 * rounded up to the next 1KB and expressed in KB. Likewise,
3926 * the Rx FIFO should be large enough to accommodate at least
3927 * one full receive packet and is similarly rounded up and
3928 * expressed in KB.
3929 */
3930 pba = er32(PBA);
3931 /* upper 16 bits has Tx packet buffer allocation size in KB */
3932 tx_space = pba >> 16;
3933 /* lower 16 bits has Rx packet buffer allocation size in KB */
3934 pba &= 0xffff;
3935 /* the Tx fifo also stores 16 bytes of information about the Tx
3936 * but don't include ethernet FCS because hardware appends it
3937 */
3938 min_tx_space = (adapter->max_frame_size +
3939 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3940 min_tx_space = ALIGN(min_tx_space, 1024);
3941 min_tx_space >>= 10;
3942 /* software strips receive CRC, so leave room for it */
3943 min_rx_space = adapter->max_frame_size;
3944 min_rx_space = ALIGN(min_rx_space, 1024);
3945 min_rx_space >>= 10;
3946
3947 /* If current Tx allocation is less than the min Tx FIFO size,
3948 * and the min Tx FIFO size is less than the current Rx FIFO
3949 * allocation, take space away from current Rx allocation
3950 */
3951 if ((tx_space < min_tx_space) &&
3952 ((min_tx_space - tx_space) < pba)) {
3953 pba -= min_tx_space - tx_space;
3954
3955 /* if short on Rx space, Rx wins and must trump Tx
3956 * adjustment
3957 */
3958 if (pba < min_rx_space)
3959 pba = min_rx_space;
3960 }
3961
3962 ew32(PBA, pba);
3963 }
3964
3965 /* flow control settings
3966 *
3967 * The high water mark must be low enough to fit one full frame
3968 * (or the size used for early receive) above it in the Rx FIFO.
3969 * Set it to the lower of:
3970 * - 90% of the Rx FIFO size, and
3971 * - the full Rx FIFO size minus one full frame
3972 */
3973 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3974 fc->pause_time = 0xFFFF;
3975 else
3976 fc->pause_time = E1000_FC_PAUSE_TIME;
3977 fc->send_xon = true;
3978 fc->current_mode = fc->requested_mode;
3979
3980 switch (hw->mac.type) {
3981 case e1000_ich9lan:
3982 case e1000_ich10lan:
3983 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3984 pba = 14;
3985 ew32(PBA, pba);
3986 fc->high_water = 0x2800;
3987 fc->low_water = fc->high_water - 8;
3988 break;
3989 }
3990 /* fall-through */
3991 default:
3992 hwm = min(((pba << 10) * 9 / 10),
3993 ((pba << 10) - adapter->max_frame_size));
3994
3995 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3996 fc->low_water = fc->high_water - 8;
3997 break;
3998 case e1000_pchlan:
3999 /* Workaround PCH LOM adapter hangs with certain network
4000 * loads. If hangs persist, try disabling Tx flow control.
4001 */
4002 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4003 fc->high_water = 0x3500;
4004 fc->low_water = 0x1500;
4005 } else {
4006 fc->high_water = 0x5000;
4007 fc->low_water = 0x3000;
4008 }
4009 fc->refresh_time = 0x1000;
4010 break;
4011 case e1000_pch2lan:
4012 case e1000_pch_lpt:
4013 case e1000_pch_spt:
4014 fc->refresh_time = 0x0400;
4015
4016 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4017 fc->high_water = 0x05C20;
4018 fc->low_water = 0x05048;
4019 fc->pause_time = 0x0650;
4020 break;
4021 }
4022
4023 pba = 14;
4024 ew32(PBA, pba);
4025 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4026 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4027 break;
4028 }
4029
4030 /* Alignment of Tx data is on an arbitrary byte boundary with the
4031 * maximum size per Tx descriptor limited only to the transmit
4032 * allocation of the packet buffer minus 96 bytes with an upper
4033 * limit of 24KB due to receive synchronization limitations.
4034 */
4035 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4036 24 << 10);
4037
4038 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4039 * fit in receive buffer.
4040 */
4041 if (adapter->itr_setting & 0x3) {
4042 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4043 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4044 dev_info(&adapter->pdev->dev,
4045 "Interrupt Throttle Rate off\n");
4046 adapter->flags2 |= FLAG2_DISABLE_AIM;
4047 e1000e_write_itr(adapter, 0);
4048 }
4049 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4050 dev_info(&adapter->pdev->dev,
4051 "Interrupt Throttle Rate on\n");
4052 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4053 adapter->itr = 20000;
4054 e1000e_write_itr(adapter, adapter->itr);
4055 }
4056 }
4057
4058 if (hw->mac.type == e1000_pch_spt)
4059 e1000_flush_desc_rings(adapter);
4060 /* Allow time for pending master requests to run */
4061 mac->ops.reset_hw(hw);
4062
4063 /* For parts with AMT enabled, let the firmware know
4064 * that the network interface is in control
4065 */
4066 if (adapter->flags & FLAG_HAS_AMT)
4067 e1000e_get_hw_control(adapter);
4068
4069 ew32(WUC, 0);
4070
4071 if (mac->ops.init_hw(hw))
4072 e_err("Hardware Error\n");
4073
4074 e1000_update_mng_vlan(adapter);
4075
4076 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4077 ew32(VET, ETH_P_8021Q);
4078
4079 e1000e_reset_adaptive(hw);
4080
4081 /* initialize systim and reset the ns time counter */
4082 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4083
4084 /* Set EEE advertisement as appropriate */
4085 if (adapter->flags2 & FLAG2_HAS_EEE) {
4086 s32 ret_val;
4087 u16 adv_addr;
4088
4089 switch (hw->phy.type) {
4090 case e1000_phy_82579:
4091 adv_addr = I82579_EEE_ADVERTISEMENT;
4092 break;
4093 case e1000_phy_i217:
4094 adv_addr = I217_EEE_ADVERTISEMENT;
4095 break;
4096 default:
4097 dev_err(&adapter->pdev->dev,
4098 "Invalid PHY type setting EEE advertisement\n");
4099 return;
4100 }
4101
4102 ret_val = hw->phy.ops.acquire(hw);
4103 if (ret_val) {
4104 dev_err(&adapter->pdev->dev,
4105 "EEE advertisement - unable to acquire PHY\n");
4106 return;
4107 }
4108
4109 e1000_write_emi_reg_locked(hw, adv_addr,
4110 hw->dev_spec.ich8lan.eee_disable ?
4111 0 : adapter->eee_advert);
4112
4113 hw->phy.ops.release(hw);
4114 }
4115
4116 if (!netif_running(adapter->netdev) &&
4117 !test_bit(__E1000_TESTING, &adapter->state))
4118 e1000_power_down_phy(adapter);
4119
4120 e1000_get_phy_info(hw);
4121
4122 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4123 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4124 u16 phy_data = 0;
4125 /* speed up time to link by disabling smart power down, ignore
4126 * the return value of this function because there is nothing
4127 * different we would do if it failed
4128 */
4129 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4130 phy_data &= ~IGP02E1000_PM_SPD;
4131 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4132 }
4133 if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4134 u32 reg;
4135
4136 /* Fextnvm7 @ 0xe4[2] = 1 */
4137 reg = er32(FEXTNVM7);
4138 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4139 ew32(FEXTNVM7, reg);
4140 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4141 reg = er32(FEXTNVM9);
4142 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4143 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4144 ew32(FEXTNVM9, reg);
4145 }
4146
4147}
4148
4149int e1000e_up(struct e1000_adapter *adapter)
4150{
4151 struct e1000_hw *hw = &adapter->hw;
4152
4153 /* hardware has been reset, we need to reload some things */
4154 e1000_configure(adapter);
4155
4156 clear_bit(__E1000_DOWN, &adapter->state);
4157
4158 if (adapter->msix_entries)
4159 e1000_configure_msix(adapter);
4160 e1000_irq_enable(adapter);
4161
4162 netif_start_queue(adapter->netdev);
4163
4164 /* fire a link change interrupt to start the watchdog */
4165 if (adapter->msix_entries)
4166 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4167 else
4168 ew32(ICS, E1000_ICS_LSC);
4169
4170 return 0;
4171}
4172
4173static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4174{
4175 struct e1000_hw *hw = &adapter->hw;
4176
4177 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4178 return;
4179
4180 /* flush pending descriptor writebacks to memory */
4181 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4182 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4183
4184 /* execute the writes immediately */
4185 e1e_flush();
4186
4187 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4188 * write is successful
4189 */
4190 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4191 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4192
4193 /* execute the writes immediately */
4194 e1e_flush();
4195}
4196
4197static void e1000e_update_stats(struct e1000_adapter *adapter);
4198
4199/**
4200 * e1000e_down - quiesce the device and optionally reset the hardware
4201 * @adapter: board private structure
4202 * @reset: boolean flag to reset the hardware or not
4203 */
4204void e1000e_down(struct e1000_adapter *adapter, bool reset)
4205{
4206 struct net_device *netdev = adapter->netdev;
4207 struct e1000_hw *hw = &adapter->hw;
4208 u32 tctl, rctl;
4209
4210 /* signal that we're down so the interrupt handler does not
4211 * reschedule our watchdog timer
4212 */
4213 set_bit(__E1000_DOWN, &adapter->state);
4214
4215 netif_carrier_off(netdev);
4216
4217 /* disable receives in the hardware */
4218 rctl = er32(RCTL);
4219 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4221 /* flush and sleep below */
4222
4223 netif_stop_queue(netdev);
4224
4225 /* disable transmits in the hardware */
4226 tctl = er32(TCTL);
4227 tctl &= ~E1000_TCTL_EN;
4228 ew32(TCTL, tctl);
4229
4230 /* flush both disables and wait for them to finish */
4231 e1e_flush();
4232 usleep_range(10000, 20000);
4233
4234 e1000_irq_disable(adapter);
4235
4236 napi_synchronize(&adapter->napi);
4237
4238 del_timer_sync(&adapter->watchdog_timer);
4239 del_timer_sync(&adapter->phy_info_timer);
4240
4241 spin_lock(&adapter->stats64_lock);
4242 e1000e_update_stats(adapter);
4243 spin_unlock(&adapter->stats64_lock);
4244
4245 e1000e_flush_descriptors(adapter);
4246
4247 adapter->link_speed = 0;
4248 adapter->link_duplex = 0;
4249
4250 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4251 if ((hw->mac.type >= e1000_pch2lan) &&
4252 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4253 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4254 e_dbg("failed to disable jumbo frame workaround mode\n");
4255
4256 if (!pci_channel_offline(adapter->pdev)) {
4257 if (reset)
4258 e1000e_reset(adapter);
4259 else if (hw->mac.type == e1000_pch_spt)
4260 e1000_flush_desc_rings(adapter);
4261 }
4262 e1000_clean_tx_ring(adapter->tx_ring);
4263 e1000_clean_rx_ring(adapter->rx_ring);
4264}
4265
4266void e1000e_reinit_locked(struct e1000_adapter *adapter)
4267{
4268 might_sleep();
4269 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4270 usleep_range(1000, 2000);
4271 e1000e_down(adapter, true);
4272 e1000e_up(adapter);
4273 clear_bit(__E1000_RESETTING, &adapter->state);
4274}
4275
4276/**
4277 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4278 * @cc: cyclecounter structure
4279 **/
4280static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4281{
4282 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4283 cc);
4284 struct e1000_hw *hw = &adapter->hw;
4285 u32 systimel_1, systimel_2, systimeh;
4286 cycle_t systim, systim_next;
4287 /* SYSTIMH latching upon SYSTIML read does not work well.
4288 * This means that if SYSTIML overflows after we read it but before
4289 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4290 * will experience a huge non linear increment in the systime value
4291 * to fix that we test for overflow and if true, we re-read systime.
4292 */
4293 systimel_1 = er32(SYSTIML);
4294 systimeh = er32(SYSTIMH);
4295 systimel_2 = er32(SYSTIML);
4296 /* Check for overflow. If there was no overflow, use the values */
4297 if (systimel_1 < systimel_2) {
4298 systim = (cycle_t)systimel_1;
4299 systim |= (cycle_t)systimeh << 32;
4300 } else {
4301 /* There was an overflow, read again SYSTIMH, and use
4302 * systimel_2
4303 */
4304 systimeh = er32(SYSTIMH);
4305 systim = (cycle_t)systimel_2;
4306 systim |= (cycle_t)systimeh << 32;
4307 }
4308
4309 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4310 u64 incvalue, time_delta, rem, temp;
4311 int i;
4312
4313 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4314 * check to see that the time is incrementing at a reasonable
4315 * rate and is a multiple of incvalue
4316 */
4317 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4318 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4319 /* latch SYSTIMH on read of SYSTIML */
4320 systim_next = (cycle_t)er32(SYSTIML);
4321 systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4322
4323 time_delta = systim_next - systim;
4324 temp = time_delta;
4325 rem = do_div(temp, incvalue);
4326
4327 systim = systim_next;
4328
4329 if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4330 (rem == 0))
4331 break;
4332 }
4333 }
4334 return systim;
4335}
4336
4337/**
4338 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4339 * @adapter: board private structure to initialize
4340 *
4341 * e1000_sw_init initializes the Adapter private data structure.
4342 * Fields are initialized based on PCI device information and
4343 * OS network device settings (MTU size).
4344 **/
4345static int e1000_sw_init(struct e1000_adapter *adapter)
4346{
4347 struct net_device *netdev = adapter->netdev;
4348
4349 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4350 adapter->rx_ps_bsize0 = 128;
4351 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4352 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4353 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4354 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4355
4356 spin_lock_init(&adapter->stats64_lock);
4357
4358 e1000e_set_interrupt_capability(adapter);
4359
4360 if (e1000_alloc_queues(adapter))
4361 return -ENOMEM;
4362
4363 /* Setup hardware time stamping cyclecounter */
4364 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4365 adapter->cc.read = e1000e_cyclecounter_read;
4366 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4367 adapter->cc.mult = 1;
4368 /* cc.shift set in e1000e_get_base_tininca() */
4369
4370 spin_lock_init(&adapter->systim_lock);
4371 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4372 }
4373
4374 /* Explicitly disable IRQ since the NIC can be in any state. */
4375 e1000_irq_disable(adapter);
4376
4377 set_bit(__E1000_DOWN, &adapter->state);
4378 return 0;
4379}
4380
4381/**
4382 * e1000_intr_msi_test - Interrupt Handler
4383 * @irq: interrupt number
4384 * @data: pointer to a network interface device structure
4385 **/
4386static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4387{
4388 struct net_device *netdev = data;
4389 struct e1000_adapter *adapter = netdev_priv(netdev);
4390 struct e1000_hw *hw = &adapter->hw;
4391 u32 icr = er32(ICR);
4392
4393 e_dbg("icr is %08X\n", icr);
4394 if (icr & E1000_ICR_RXSEQ) {
4395 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4396 /* Force memory writes to complete before acknowledging the
4397 * interrupt is handled.
4398 */
4399 wmb();
4400 }
4401
4402 return IRQ_HANDLED;
4403}
4404
4405/**
4406 * e1000_test_msi_interrupt - Returns 0 for successful test
4407 * @adapter: board private struct
4408 *
4409 * code flow taken from tg3.c
4410 **/
4411static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4412{
4413 struct net_device *netdev = adapter->netdev;
4414 struct e1000_hw *hw = &adapter->hw;
4415 int err;
4416
4417 /* poll_enable hasn't been called yet, so don't need disable */
4418 /* clear any pending events */
4419 er32(ICR);
4420
4421 /* free the real vector and request a test handler */
4422 e1000_free_irq(adapter);
4423 e1000e_reset_interrupt_capability(adapter);
4424
4425 /* Assume that the test fails, if it succeeds then the test
4426 * MSI irq handler will unset this flag
4427 */
4428 adapter->flags |= FLAG_MSI_TEST_FAILED;
4429
4430 err = pci_enable_msi(adapter->pdev);
4431 if (err)
4432 goto msi_test_failed;
4433
4434 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4435 netdev->name, netdev);
4436 if (err) {
4437 pci_disable_msi(adapter->pdev);
4438 goto msi_test_failed;
4439 }
4440
4441 /* Force memory writes to complete before enabling and firing an
4442 * interrupt.
4443 */
4444 wmb();
4445
4446 e1000_irq_enable(adapter);
4447
4448 /* fire an unusual interrupt on the test handler */
4449 ew32(ICS, E1000_ICS_RXSEQ);
4450 e1e_flush();
4451 msleep(100);
4452
4453 e1000_irq_disable(adapter);
4454
4455 rmb(); /* read flags after interrupt has been fired */
4456
4457 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4458 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4459 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4460 } else {
4461 e_dbg("MSI interrupt test succeeded!\n");
4462 }
4463
4464 free_irq(adapter->pdev->irq, netdev);
4465 pci_disable_msi(adapter->pdev);
4466
4467msi_test_failed:
4468 e1000e_set_interrupt_capability(adapter);
4469 return e1000_request_irq(adapter);
4470}
4471
4472/**
4473 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4474 * @adapter: board private struct
4475 *
4476 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4477 **/
4478static int e1000_test_msi(struct e1000_adapter *adapter)
4479{
4480 int err;
4481 u16 pci_cmd;
4482
4483 if (!(adapter->flags & FLAG_MSI_ENABLED))
4484 return 0;
4485
4486 /* disable SERR in case the MSI write causes a master abort */
4487 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4488 if (pci_cmd & PCI_COMMAND_SERR)
4489 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4490 pci_cmd & ~PCI_COMMAND_SERR);
4491
4492 err = e1000_test_msi_interrupt(adapter);
4493
4494 /* re-enable SERR */
4495 if (pci_cmd & PCI_COMMAND_SERR) {
4496 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4497 pci_cmd |= PCI_COMMAND_SERR;
4498 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4499 }
4500
4501 return err;
4502}
4503
4504/**
4505 * e1000_open - Called when a network interface is made active
4506 * @netdev: network interface device structure
4507 *
4508 * Returns 0 on success, negative value on failure
4509 *
4510 * The open entry point is called when a network interface is made
4511 * active by the system (IFF_UP). At this point all resources needed
4512 * for transmit and receive operations are allocated, the interrupt
4513 * handler is registered with the OS, the watchdog timer is started,
4514 * and the stack is notified that the interface is ready.
4515 **/
4516static int e1000_open(struct net_device *netdev)
4517{
4518 struct e1000_adapter *adapter = netdev_priv(netdev);
4519 struct e1000_hw *hw = &adapter->hw;
4520 struct pci_dev *pdev = adapter->pdev;
4521 int err;
4522
4523 /* disallow open during test */
4524 if (test_bit(__E1000_TESTING, &adapter->state))
4525 return -EBUSY;
4526
4527 pm_runtime_get_sync(&pdev->dev);
4528
4529 netif_carrier_off(netdev);
4530
4531 /* allocate transmit descriptors */
4532 err = e1000e_setup_tx_resources(adapter->tx_ring);
4533 if (err)
4534 goto err_setup_tx;
4535
4536 /* allocate receive descriptors */
4537 err = e1000e_setup_rx_resources(adapter->rx_ring);
4538 if (err)
4539 goto err_setup_rx;
4540
4541 /* If AMT is enabled, let the firmware know that the network
4542 * interface is now open and reset the part to a known state.
4543 */
4544 if (adapter->flags & FLAG_HAS_AMT) {
4545 e1000e_get_hw_control(adapter);
4546 e1000e_reset(adapter);
4547 }
4548
4549 e1000e_power_up_phy(adapter);
4550
4551 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4552 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4553 e1000_update_mng_vlan(adapter);
4554
4555 /* DMA latency requirement to workaround jumbo issue */
4556 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4557 PM_QOS_DEFAULT_VALUE);
4558
4559 /* before we allocate an interrupt, we must be ready to handle it.
4560 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4561 * as soon as we call pci_request_irq, so we have to setup our
4562 * clean_rx handler before we do so.
4563 */
4564 e1000_configure(adapter);
4565
4566 err = e1000_request_irq(adapter);
4567 if (err)
4568 goto err_req_irq;
4569
4570 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4571 * ignore e1000e MSI messages, which means we need to test our MSI
4572 * interrupt now
4573 */
4574 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4575 err = e1000_test_msi(adapter);
4576 if (err) {
4577 e_err("Interrupt allocation failed\n");
4578 goto err_req_irq;
4579 }
4580 }
4581
4582 /* From here on the code is the same as e1000e_up() */
4583 clear_bit(__E1000_DOWN, &adapter->state);
4584
4585 napi_enable(&adapter->napi);
4586
4587 e1000_irq_enable(adapter);
4588
4589 adapter->tx_hang_recheck = false;
4590 netif_start_queue(netdev);
4591
4592 hw->mac.get_link_status = true;
4593 pm_runtime_put(&pdev->dev);
4594
4595 /* fire a link status change interrupt to start the watchdog */
4596 if (adapter->msix_entries)
4597 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4598 else
4599 ew32(ICS, E1000_ICS_LSC);
4600
4601 return 0;
4602
4603err_req_irq:
4604 pm_qos_remove_request(&adapter->pm_qos_req);
4605 e1000e_release_hw_control(adapter);
4606 e1000_power_down_phy(adapter);
4607 e1000e_free_rx_resources(adapter->rx_ring);
4608err_setup_rx:
4609 e1000e_free_tx_resources(adapter->tx_ring);
4610err_setup_tx:
4611 e1000e_reset(adapter);
4612 pm_runtime_put_sync(&pdev->dev);
4613
4614 return err;
4615}
4616
4617/**
4618 * e1000_close - Disables a network interface
4619 * @netdev: network interface device structure
4620 *
4621 * Returns 0, this is not allowed to fail
4622 *
4623 * The close entry point is called when an interface is de-activated
4624 * by the OS. The hardware is still under the drivers control, but
4625 * needs to be disabled. A global MAC reset is issued to stop the
4626 * hardware, and all transmit and receive resources are freed.
4627 **/
4628static int e1000_close(struct net_device *netdev)
4629{
4630 struct e1000_adapter *adapter = netdev_priv(netdev);
4631 struct pci_dev *pdev = adapter->pdev;
4632 int count = E1000_CHECK_RESET_COUNT;
4633
4634 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4635 usleep_range(10000, 20000);
4636
4637 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4638
4639 pm_runtime_get_sync(&pdev->dev);
4640
4641 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4642 e1000e_down(adapter, true);
4643 e1000_free_irq(adapter);
4644
4645 /* Link status message must follow this format */
4646 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4647 }
4648
4649 napi_disable(&adapter->napi);
4650
4651 e1000e_free_tx_resources(adapter->tx_ring);
4652 e1000e_free_rx_resources(adapter->rx_ring);
4653
4654 /* kill manageability vlan ID if supported, but not if a vlan with
4655 * the same ID is registered on the host OS (let 8021q kill it)
4656 */
4657 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4658 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4659 adapter->mng_vlan_id);
4660
4661 /* If AMT is enabled, let the firmware know that the network
4662 * interface is now closed
4663 */
4664 if ((adapter->flags & FLAG_HAS_AMT) &&
4665 !test_bit(__E1000_TESTING, &adapter->state))
4666 e1000e_release_hw_control(adapter);
4667
4668 pm_qos_remove_request(&adapter->pm_qos_req);
4669
4670 pm_runtime_put_sync(&pdev->dev);
4671
4672 return 0;
4673}
4674
4675/**
4676 * e1000_set_mac - Change the Ethernet Address of the NIC
4677 * @netdev: network interface device structure
4678 * @p: pointer to an address structure
4679 *
4680 * Returns 0 on success, negative on failure
4681 **/
4682static int e1000_set_mac(struct net_device *netdev, void *p)
4683{
4684 struct e1000_adapter *adapter = netdev_priv(netdev);
4685 struct e1000_hw *hw = &adapter->hw;
4686 struct sockaddr *addr = p;
4687
4688 if (!is_valid_ether_addr(addr->sa_data))
4689 return -EADDRNOTAVAIL;
4690
4691 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4692 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4693
4694 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4695
4696 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4697 /* activate the work around */
4698 e1000e_set_laa_state_82571(&adapter->hw, 1);
4699
4700 /* Hold a copy of the LAA in RAR[14] This is done so that
4701 * between the time RAR[0] gets clobbered and the time it
4702 * gets fixed (in e1000_watchdog), the actual LAA is in one
4703 * of the RARs and no incoming packets directed to this port
4704 * are dropped. Eventually the LAA will be in RAR[0] and
4705 * RAR[14]
4706 */
4707 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4708 adapter->hw.mac.rar_entry_count - 1);
4709 }
4710
4711 return 0;
4712}
4713
4714/**
4715 * e1000e_update_phy_task - work thread to update phy
4716 * @work: pointer to our work struct
4717 *
4718 * this worker thread exists because we must acquire a
4719 * semaphore to read the phy, which we could msleep while
4720 * waiting for it, and we can't msleep in a timer.
4721 **/
4722static void e1000e_update_phy_task(struct work_struct *work)
4723{
4724 struct e1000_adapter *adapter = container_of(work,
4725 struct e1000_adapter,
4726 update_phy_task);
4727 struct e1000_hw *hw = &adapter->hw;
4728
4729 if (test_bit(__E1000_DOWN, &adapter->state))
4730 return;
4731
4732 e1000_get_phy_info(hw);
4733
4734 /* Enable EEE on 82579 after link up */
4735 if (hw->phy.type >= e1000_phy_82579)
4736 e1000_set_eee_pchlan(hw);
4737}
4738
4739/**
4740 * e1000_update_phy_info - timre call-back to update PHY info
4741 * @data: pointer to adapter cast into an unsigned long
4742 *
4743 * Need to wait a few seconds after link up to get diagnostic information from
4744 * the phy
4745 **/
4746static void e1000_update_phy_info(unsigned long data)
4747{
4748 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4749
4750 if (test_bit(__E1000_DOWN, &adapter->state))
4751 return;
4752
4753 schedule_work(&adapter->update_phy_task);
4754}
4755
4756/**
4757 * e1000e_update_phy_stats - Update the PHY statistics counters
4758 * @adapter: board private structure
4759 *
4760 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4761 **/
4762static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4763{
4764 struct e1000_hw *hw = &adapter->hw;
4765 s32 ret_val;
4766 u16 phy_data;
4767
4768 ret_val = hw->phy.ops.acquire(hw);
4769 if (ret_val)
4770 return;
4771
4772 /* A page set is expensive so check if already on desired page.
4773 * If not, set to the page with the PHY status registers.
4774 */
4775 hw->phy.addr = 1;
4776 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4777 &phy_data);
4778 if (ret_val)
4779 goto release;
4780 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4781 ret_val = hw->phy.ops.set_page(hw,
4782 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4783 if (ret_val)
4784 goto release;
4785 }
4786
4787 /* Single Collision Count */
4788 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4789 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4790 if (!ret_val)
4791 adapter->stats.scc += phy_data;
4792
4793 /* Excessive Collision Count */
4794 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4795 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4796 if (!ret_val)
4797 adapter->stats.ecol += phy_data;
4798
4799 /* Multiple Collision Count */
4800 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4801 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4802 if (!ret_val)
4803 adapter->stats.mcc += phy_data;
4804
4805 /* Late Collision Count */
4806 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4807 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4808 if (!ret_val)
4809 adapter->stats.latecol += phy_data;
4810
4811 /* Collision Count - also used for adaptive IFS */
4812 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4813 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4814 if (!ret_val)
4815 hw->mac.collision_delta = phy_data;
4816
4817 /* Defer Count */
4818 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4819 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4820 if (!ret_val)
4821 adapter->stats.dc += phy_data;
4822
4823 /* Transmit with no CRS */
4824 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4825 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4826 if (!ret_val)
4827 adapter->stats.tncrs += phy_data;
4828
4829release:
4830 hw->phy.ops.release(hw);
4831}
4832
4833/**
4834 * e1000e_update_stats - Update the board statistics counters
4835 * @adapter: board private structure
4836 **/
4837static void e1000e_update_stats(struct e1000_adapter *adapter)
4838{
4839 struct net_device *netdev = adapter->netdev;
4840 struct e1000_hw *hw = &adapter->hw;
4841 struct pci_dev *pdev = adapter->pdev;
4842
4843 /* Prevent stats update while adapter is being reset, or if the pci
4844 * connection is down.
4845 */
4846 if (adapter->link_speed == 0)
4847 return;
4848 if (pci_channel_offline(pdev))
4849 return;
4850
4851 adapter->stats.crcerrs += er32(CRCERRS);
4852 adapter->stats.gprc += er32(GPRC);
4853 adapter->stats.gorc += er32(GORCL);
4854 er32(GORCH); /* Clear gorc */
4855 adapter->stats.bprc += er32(BPRC);
4856 adapter->stats.mprc += er32(MPRC);
4857 adapter->stats.roc += er32(ROC);
4858
4859 adapter->stats.mpc += er32(MPC);
4860
4861 /* Half-duplex statistics */
4862 if (adapter->link_duplex == HALF_DUPLEX) {
4863 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4864 e1000e_update_phy_stats(adapter);
4865 } else {
4866 adapter->stats.scc += er32(SCC);
4867 adapter->stats.ecol += er32(ECOL);
4868 adapter->stats.mcc += er32(MCC);
4869 adapter->stats.latecol += er32(LATECOL);
4870 adapter->stats.dc += er32(DC);
4871
4872 hw->mac.collision_delta = er32(COLC);
4873
4874 if ((hw->mac.type != e1000_82574) &&
4875 (hw->mac.type != e1000_82583))
4876 adapter->stats.tncrs += er32(TNCRS);
4877 }
4878 adapter->stats.colc += hw->mac.collision_delta;
4879 }
4880
4881 adapter->stats.xonrxc += er32(XONRXC);
4882 adapter->stats.xontxc += er32(XONTXC);
4883 adapter->stats.xoffrxc += er32(XOFFRXC);
4884 adapter->stats.xofftxc += er32(XOFFTXC);
4885 adapter->stats.gptc += er32(GPTC);
4886 adapter->stats.gotc += er32(GOTCL);
4887 er32(GOTCH); /* Clear gotc */
4888 adapter->stats.rnbc += er32(RNBC);
4889 adapter->stats.ruc += er32(RUC);
4890
4891 adapter->stats.mptc += er32(MPTC);
4892 adapter->stats.bptc += er32(BPTC);
4893
4894 /* used for adaptive IFS */
4895
4896 hw->mac.tx_packet_delta = er32(TPT);
4897 adapter->stats.tpt += hw->mac.tx_packet_delta;
4898
4899 adapter->stats.algnerrc += er32(ALGNERRC);
4900 adapter->stats.rxerrc += er32(RXERRC);
4901 adapter->stats.cexterr += er32(CEXTERR);
4902 adapter->stats.tsctc += er32(TSCTC);
4903 adapter->stats.tsctfc += er32(TSCTFC);
4904
4905 /* Fill out the OS statistics structure */
4906 netdev->stats.multicast = adapter->stats.mprc;
4907 netdev->stats.collisions = adapter->stats.colc;
4908
4909 /* Rx Errors */
4910
4911 /* RLEC on some newer hardware can be incorrect so build
4912 * our own version based on RUC and ROC
4913 */
4914 netdev->stats.rx_errors = adapter->stats.rxerrc +
4915 adapter->stats.crcerrs + adapter->stats.algnerrc +
4916 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4917 netdev->stats.rx_length_errors = adapter->stats.ruc +
4918 adapter->stats.roc;
4919 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4920 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4921 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4922
4923 /* Tx Errors */
4924 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4925 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4926 netdev->stats.tx_window_errors = adapter->stats.latecol;
4927 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4928
4929 /* Tx Dropped needs to be maintained elsewhere */
4930
4931 /* Management Stats */
4932 adapter->stats.mgptc += er32(MGTPTC);
4933 adapter->stats.mgprc += er32(MGTPRC);
4934 adapter->stats.mgpdc += er32(MGTPDC);
4935
4936 /* Correctable ECC Errors */
4937 if ((hw->mac.type == e1000_pch_lpt) ||
4938 (hw->mac.type == e1000_pch_spt)) {
4939 u32 pbeccsts = er32(PBECCSTS);
4940
4941 adapter->corr_errors +=
4942 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4943 adapter->uncorr_errors +=
4944 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4945 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4946 }
4947}
4948
4949/**
4950 * e1000_phy_read_status - Update the PHY register status snapshot
4951 * @adapter: board private structure
4952 **/
4953static void e1000_phy_read_status(struct e1000_adapter *adapter)
4954{
4955 struct e1000_hw *hw = &adapter->hw;
4956 struct e1000_phy_regs *phy = &adapter->phy_regs;
4957
4958 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4959 (er32(STATUS) & E1000_STATUS_LU) &&
4960 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4961 int ret_val;
4962
4963 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4964 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4965 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4966 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4967 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4968 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4969 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4970 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4971 if (ret_val)
4972 e_warn("Error reading PHY register\n");
4973 } else {
4974 /* Do not read PHY registers if link is not up
4975 * Set values to typical power-on defaults
4976 */
4977 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4978 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4979 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4980 BMSR_ERCAP);
4981 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4982 ADVERTISE_ALL | ADVERTISE_CSMA);
4983 phy->lpa = 0;
4984 phy->expansion = EXPANSION_ENABLENPAGE;
4985 phy->ctrl1000 = ADVERTISE_1000FULL;
4986 phy->stat1000 = 0;
4987 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4988 }
4989}
4990
4991static void e1000_print_link_info(struct e1000_adapter *adapter)
4992{
4993 struct e1000_hw *hw = &adapter->hw;
4994 u32 ctrl = er32(CTRL);
4995
4996 /* Link status message must follow this format for user tools */
4997 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4998 adapter->netdev->name, adapter->link_speed,
4999 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5000 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5001 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5002 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5003}
5004
5005static bool e1000e_has_link(struct e1000_adapter *adapter)
5006{
5007 struct e1000_hw *hw = &adapter->hw;
5008 bool link_active = false;
5009 s32 ret_val = 0;
5010
5011 /* get_link_status is set on LSC (link status) interrupt or
5012 * Rx sequence error interrupt. get_link_status will stay
5013 * false until the check_for_link establishes link
5014 * for copper adapters ONLY
5015 */
5016 switch (hw->phy.media_type) {
5017 case e1000_media_type_copper:
5018 if (hw->mac.get_link_status) {
5019 ret_val = hw->mac.ops.check_for_link(hw);
5020 link_active = !hw->mac.get_link_status;
5021 } else {
5022 link_active = true;
5023 }
5024 break;
5025 case e1000_media_type_fiber:
5026 ret_val = hw->mac.ops.check_for_link(hw);
5027 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5028 break;
5029 case e1000_media_type_internal_serdes:
5030 ret_val = hw->mac.ops.check_for_link(hw);
5031 link_active = adapter->hw.mac.serdes_has_link;
5032 break;
5033 default:
5034 case e1000_media_type_unknown:
5035 break;
5036 }
5037
5038 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5039 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5040 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5041 e_info("Gigabit has been disabled, downgrading speed\n");
5042 }
5043
5044 return link_active;
5045}
5046
5047static void e1000e_enable_receives(struct e1000_adapter *adapter)
5048{
5049 /* make sure the receive unit is started */
5050 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5051 (adapter->flags & FLAG_RESTART_NOW)) {
5052 struct e1000_hw *hw = &adapter->hw;
5053 u32 rctl = er32(RCTL);
5054
5055 ew32(RCTL, rctl | E1000_RCTL_EN);
5056 adapter->flags &= ~FLAG_RESTART_NOW;
5057 }
5058}
5059
5060static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5061{
5062 struct e1000_hw *hw = &adapter->hw;
5063
5064 /* With 82574 controllers, PHY needs to be checked periodically
5065 * for hung state and reset, if two calls return true
5066 */
5067 if (e1000_check_phy_82574(hw))
5068 adapter->phy_hang_count++;
5069 else
5070 adapter->phy_hang_count = 0;
5071
5072 if (adapter->phy_hang_count > 1) {
5073 adapter->phy_hang_count = 0;
5074 e_dbg("PHY appears hung - resetting\n");
5075 schedule_work(&adapter->reset_task);
5076 }
5077}
5078
5079/**
5080 * e1000_watchdog - Timer Call-back
5081 * @data: pointer to adapter cast into an unsigned long
5082 **/
5083static void e1000_watchdog(unsigned long data)
5084{
5085 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5086
5087 /* Do the rest outside of interrupt context */
5088 schedule_work(&adapter->watchdog_task);
5089
5090 /* TODO: make this use queue_delayed_work() */
5091}
5092
5093static void e1000_watchdog_task(struct work_struct *work)
5094{
5095 struct e1000_adapter *adapter = container_of(work,
5096 struct e1000_adapter,
5097 watchdog_task);
5098 struct net_device *netdev = adapter->netdev;
5099 struct e1000_mac_info *mac = &adapter->hw.mac;
5100 struct e1000_phy_info *phy = &adapter->hw.phy;
5101 struct e1000_ring *tx_ring = adapter->tx_ring;
5102 struct e1000_hw *hw = &adapter->hw;
5103 u32 link, tctl;
5104
5105 if (test_bit(__E1000_DOWN, &adapter->state))
5106 return;
5107
5108 link = e1000e_has_link(adapter);
5109 if ((netif_carrier_ok(netdev)) && link) {
5110 /* Cancel scheduled suspend requests. */
5111 pm_runtime_resume(netdev->dev.parent);
5112
5113 e1000e_enable_receives(adapter);
5114 goto link_up;
5115 }
5116
5117 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5118 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5119 e1000_update_mng_vlan(adapter);
5120
5121 if (link) {
5122 if (!netif_carrier_ok(netdev)) {
5123 bool txb2b = true;
5124
5125 /* Cancel scheduled suspend requests. */
5126 pm_runtime_resume(netdev->dev.parent);
5127
5128 /* update snapshot of PHY registers on LSC */
5129 e1000_phy_read_status(adapter);
5130 mac->ops.get_link_up_info(&adapter->hw,
5131 &adapter->link_speed,
5132 &adapter->link_duplex);
5133 e1000_print_link_info(adapter);
5134
5135 /* check if SmartSpeed worked */
5136 e1000e_check_downshift(hw);
5137 if (phy->speed_downgraded)
5138 netdev_warn(netdev,
5139 "Link Speed was downgraded by SmartSpeed\n");
5140
5141 /* On supported PHYs, check for duplex mismatch only
5142 * if link has autonegotiated at 10/100 half
5143 */
5144 if ((hw->phy.type == e1000_phy_igp_3 ||
5145 hw->phy.type == e1000_phy_bm) &&
5146 hw->mac.autoneg &&
5147 (adapter->link_speed == SPEED_10 ||
5148 adapter->link_speed == SPEED_100) &&
5149 (adapter->link_duplex == HALF_DUPLEX)) {
5150 u16 autoneg_exp;
5151
5152 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5153
5154 if (!(autoneg_exp & EXPANSION_NWAY))
5155 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5156 }
5157
5158 /* adjust timeout factor according to speed/duplex */
5159 adapter->tx_timeout_factor = 1;
5160 switch (adapter->link_speed) {
5161 case SPEED_10:
5162 txb2b = false;
5163 adapter->tx_timeout_factor = 16;
5164 break;
5165 case SPEED_100:
5166 txb2b = false;
5167 adapter->tx_timeout_factor = 10;
5168 break;
5169 }
5170
5171 /* workaround: re-program speed mode bit after
5172 * link-up event
5173 */
5174 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5175 !txb2b) {
5176 u32 tarc0;
5177
5178 tarc0 = er32(TARC(0));
5179 tarc0 &= ~SPEED_MODE_BIT;
5180 ew32(TARC(0), tarc0);
5181 }
5182
5183 /* disable TSO for pcie and 10/100 speeds, to avoid
5184 * some hardware issues
5185 */
5186 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5187 switch (adapter->link_speed) {
5188 case SPEED_10:
5189 case SPEED_100:
5190 e_info("10/100 speed: disabling TSO\n");
5191 netdev->features &= ~NETIF_F_TSO;
5192 netdev->features &= ~NETIF_F_TSO6;
5193 break;
5194 case SPEED_1000:
5195 netdev->features |= NETIF_F_TSO;
5196 netdev->features |= NETIF_F_TSO6;
5197 break;
5198 default:
5199 /* oops */
5200 break;
5201 }
5202 }
5203
5204 /* enable transmits in the hardware, need to do this
5205 * after setting TARC(0)
5206 */
5207 tctl = er32(TCTL);
5208 tctl |= E1000_TCTL_EN;
5209 ew32(TCTL, tctl);
5210
5211 /* Perform any post-link-up configuration before
5212 * reporting link up.
5213 */
5214 if (phy->ops.cfg_on_link_up)
5215 phy->ops.cfg_on_link_up(hw);
5216
5217 netif_carrier_on(netdev);
5218
5219 if (!test_bit(__E1000_DOWN, &adapter->state))
5220 mod_timer(&adapter->phy_info_timer,
5221 round_jiffies(jiffies + 2 * HZ));
5222 }
5223 } else {
5224 if (netif_carrier_ok(netdev)) {
5225 adapter->link_speed = 0;
5226 adapter->link_duplex = 0;
5227 /* Link status message must follow this format */
5228 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5229 netif_carrier_off(netdev);
5230 if (!test_bit(__E1000_DOWN, &adapter->state))
5231 mod_timer(&adapter->phy_info_timer,
5232 round_jiffies(jiffies + 2 * HZ));
5233
5234 /* 8000ES2LAN requires a Rx packet buffer work-around
5235 * on link down event; reset the controller to flush
5236 * the Rx packet buffer.
5237 */
5238 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5239 adapter->flags |= FLAG_RESTART_NOW;
5240 else
5241 pm_schedule_suspend(netdev->dev.parent,
5242 LINK_TIMEOUT);
5243 }
5244 }
5245
5246link_up:
5247 spin_lock(&adapter->stats64_lock);
5248 e1000e_update_stats(adapter);
5249
5250 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5251 adapter->tpt_old = adapter->stats.tpt;
5252 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5253 adapter->colc_old = adapter->stats.colc;
5254
5255 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5256 adapter->gorc_old = adapter->stats.gorc;
5257 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5258 adapter->gotc_old = adapter->stats.gotc;
5259 spin_unlock(&adapter->stats64_lock);
5260
5261 /* If the link is lost the controller stops DMA, but
5262 * if there is queued Tx work it cannot be done. So
5263 * reset the controller to flush the Tx packet buffers.
5264 */
5265 if (!netif_carrier_ok(netdev) &&
5266 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5267 adapter->flags |= FLAG_RESTART_NOW;
5268
5269 /* If reset is necessary, do it outside of interrupt context. */
5270 if (adapter->flags & FLAG_RESTART_NOW) {
5271 schedule_work(&adapter->reset_task);
5272 /* return immediately since reset is imminent */
5273 return;
5274 }
5275
5276 e1000e_update_adaptive(&adapter->hw);
5277
5278 /* Simple mode for Interrupt Throttle Rate (ITR) */
5279 if (adapter->itr_setting == 4) {
5280 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5281 * Total asymmetrical Tx or Rx gets ITR=8000;
5282 * everyone else is between 2000-8000.
5283 */
5284 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5285 u32 dif = (adapter->gotc > adapter->gorc ?
5286 adapter->gotc - adapter->gorc :
5287 adapter->gorc - adapter->gotc) / 10000;
5288 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5289
5290 e1000e_write_itr(adapter, itr);
5291 }
5292
5293 /* Cause software interrupt to ensure Rx ring is cleaned */
5294 if (adapter->msix_entries)
5295 ew32(ICS, adapter->rx_ring->ims_val);
5296 else
5297 ew32(ICS, E1000_ICS_RXDMT0);
5298
5299 /* flush pending descriptors to memory before detecting Tx hang */
5300 e1000e_flush_descriptors(adapter);
5301
5302 /* Force detection of hung controller every watchdog period */
5303 adapter->detect_tx_hung = true;
5304
5305 /* With 82571 controllers, LAA may be overwritten due to controller
5306 * reset from the other port. Set the appropriate LAA in RAR[0]
5307 */
5308 if (e1000e_get_laa_state_82571(hw))
5309 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5310
5311 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5312 e1000e_check_82574_phy_workaround(adapter);
5313
5314 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5315 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5316 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5317 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5318 er32(RXSTMPH);
5319 adapter->rx_hwtstamp_cleared++;
5320 } else {
5321 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5322 }
5323 }
5324
5325 /* Reset the timer */
5326 if (!test_bit(__E1000_DOWN, &adapter->state))
5327 mod_timer(&adapter->watchdog_timer,
5328 round_jiffies(jiffies + 2 * HZ));
5329}
5330
5331#define E1000_TX_FLAGS_CSUM 0x00000001
5332#define E1000_TX_FLAGS_VLAN 0x00000002
5333#define E1000_TX_FLAGS_TSO 0x00000004
5334#define E1000_TX_FLAGS_IPV4 0x00000008
5335#define E1000_TX_FLAGS_NO_FCS 0x00000010
5336#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5337#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5338#define E1000_TX_FLAGS_VLAN_SHIFT 16
5339
5340static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5341 __be16 protocol)
5342{
5343 struct e1000_context_desc *context_desc;
5344 struct e1000_buffer *buffer_info;
5345 unsigned int i;
5346 u32 cmd_length = 0;
5347 u16 ipcse = 0, mss;
5348 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5349 int err;
5350
5351 if (!skb_is_gso(skb))
5352 return 0;
5353
5354 err = skb_cow_head(skb, 0);
5355 if (err < 0)
5356 return err;
5357
5358 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5359 mss = skb_shinfo(skb)->gso_size;
5360 if (protocol == htons(ETH_P_IP)) {
5361 struct iphdr *iph = ip_hdr(skb);
5362 iph->tot_len = 0;
5363 iph->check = 0;
5364 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5365 0, IPPROTO_TCP, 0);
5366 cmd_length = E1000_TXD_CMD_IP;
5367 ipcse = skb_transport_offset(skb) - 1;
5368 } else if (skb_is_gso_v6(skb)) {
5369 ipv6_hdr(skb)->payload_len = 0;
5370 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5371 &ipv6_hdr(skb)->daddr,
5372 0, IPPROTO_TCP, 0);
5373 ipcse = 0;
5374 }
5375 ipcss = skb_network_offset(skb);
5376 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5377 tucss = skb_transport_offset(skb);
5378 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5379
5380 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5381 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5382
5383 i = tx_ring->next_to_use;
5384 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5385 buffer_info = &tx_ring->buffer_info[i];
5386
5387 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5388 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5389 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5390 context_desc->upper_setup.tcp_fields.tucss = tucss;
5391 context_desc->upper_setup.tcp_fields.tucso = tucso;
5392 context_desc->upper_setup.tcp_fields.tucse = 0;
5393 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5394 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5395 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5396
5397 buffer_info->time_stamp = jiffies;
5398 buffer_info->next_to_watch = i;
5399
5400 i++;
5401 if (i == tx_ring->count)
5402 i = 0;
5403 tx_ring->next_to_use = i;
5404
5405 return 1;
5406}
5407
5408static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5409 __be16 protocol)
5410{
5411 struct e1000_adapter *adapter = tx_ring->adapter;
5412 struct e1000_context_desc *context_desc;
5413 struct e1000_buffer *buffer_info;
5414 unsigned int i;
5415 u8 css;
5416 u32 cmd_len = E1000_TXD_CMD_DEXT;
5417
5418 if (skb->ip_summed != CHECKSUM_PARTIAL)
5419 return false;
5420
5421 switch (protocol) {
5422 case cpu_to_be16(ETH_P_IP):
5423 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5424 cmd_len |= E1000_TXD_CMD_TCP;
5425 break;
5426 case cpu_to_be16(ETH_P_IPV6):
5427 /* XXX not handling all IPV6 headers */
5428 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5429 cmd_len |= E1000_TXD_CMD_TCP;
5430 break;
5431 default:
5432 if (unlikely(net_ratelimit()))
5433 e_warn("checksum_partial proto=%x!\n",
5434 be16_to_cpu(protocol));
5435 break;
5436 }
5437
5438 css = skb_checksum_start_offset(skb);
5439
5440 i = tx_ring->next_to_use;
5441 buffer_info = &tx_ring->buffer_info[i];
5442 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5443
5444 context_desc->lower_setup.ip_config = 0;
5445 context_desc->upper_setup.tcp_fields.tucss = css;
5446 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5447 context_desc->upper_setup.tcp_fields.tucse = 0;
5448 context_desc->tcp_seg_setup.data = 0;
5449 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5450
5451 buffer_info->time_stamp = jiffies;
5452 buffer_info->next_to_watch = i;
5453
5454 i++;
5455 if (i == tx_ring->count)
5456 i = 0;
5457 tx_ring->next_to_use = i;
5458
5459 return true;
5460}
5461
5462static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5463 unsigned int first, unsigned int max_per_txd,
5464 unsigned int nr_frags)
5465{
5466 struct e1000_adapter *adapter = tx_ring->adapter;
5467 struct pci_dev *pdev = adapter->pdev;
5468 struct e1000_buffer *buffer_info;
5469 unsigned int len = skb_headlen(skb);
5470 unsigned int offset = 0, size, count = 0, i;
5471 unsigned int f, bytecount, segs;
5472
5473 i = tx_ring->next_to_use;
5474
5475 while (len) {
5476 buffer_info = &tx_ring->buffer_info[i];
5477 size = min(len, max_per_txd);
5478
5479 buffer_info->length = size;
5480 buffer_info->time_stamp = jiffies;
5481 buffer_info->next_to_watch = i;
5482 buffer_info->dma = dma_map_single(&pdev->dev,
5483 skb->data + offset,
5484 size, DMA_TO_DEVICE);
5485 buffer_info->mapped_as_page = false;
5486 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5487 goto dma_error;
5488
5489 len -= size;
5490 offset += size;
5491 count++;
5492
5493 if (len) {
5494 i++;
5495 if (i == tx_ring->count)
5496 i = 0;
5497 }
5498 }
5499
5500 for (f = 0; f < nr_frags; f++) {
5501 const struct skb_frag_struct *frag;
5502
5503 frag = &skb_shinfo(skb)->frags[f];
5504 len = skb_frag_size(frag);
5505 offset = 0;
5506
5507 while (len) {
5508 i++;
5509 if (i == tx_ring->count)
5510 i = 0;
5511
5512 buffer_info = &tx_ring->buffer_info[i];
5513 size = min(len, max_per_txd);
5514
5515 buffer_info->length = size;
5516 buffer_info->time_stamp = jiffies;
5517 buffer_info->next_to_watch = i;
5518 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5519 offset, size,
5520 DMA_TO_DEVICE);
5521 buffer_info->mapped_as_page = true;
5522 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5523 goto dma_error;
5524
5525 len -= size;
5526 offset += size;
5527 count++;
5528 }
5529 }
5530
5531 segs = skb_shinfo(skb)->gso_segs ? : 1;
5532 /* multiply data chunks by size of headers */
5533 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5534
5535 tx_ring->buffer_info[i].skb = skb;
5536 tx_ring->buffer_info[i].segs = segs;
5537 tx_ring->buffer_info[i].bytecount = bytecount;
5538 tx_ring->buffer_info[first].next_to_watch = i;
5539
5540 return count;
5541
5542dma_error:
5543 dev_err(&pdev->dev, "Tx DMA map failed\n");
5544 buffer_info->dma = 0;
5545 if (count)
5546 count--;
5547
5548 while (count--) {
5549 if (i == 0)
5550 i += tx_ring->count;
5551 i--;
5552 buffer_info = &tx_ring->buffer_info[i];
5553 e1000_put_txbuf(tx_ring, buffer_info);
5554 }
5555
5556 return 0;
5557}
5558
5559static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5560{
5561 struct e1000_adapter *adapter = tx_ring->adapter;
5562 struct e1000_tx_desc *tx_desc = NULL;
5563 struct e1000_buffer *buffer_info;
5564 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5565 unsigned int i;
5566
5567 if (tx_flags & E1000_TX_FLAGS_TSO) {
5568 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5569 E1000_TXD_CMD_TSE;
5570 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5571
5572 if (tx_flags & E1000_TX_FLAGS_IPV4)
5573 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5574 }
5575
5576 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5577 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5578 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5579 }
5580
5581 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5582 txd_lower |= E1000_TXD_CMD_VLE;
5583 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5584 }
5585
5586 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5587 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5588
5589 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5590 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5591 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5592 }
5593
5594 i = tx_ring->next_to_use;
5595
5596 do {
5597 buffer_info = &tx_ring->buffer_info[i];
5598 tx_desc = E1000_TX_DESC(*tx_ring, i);
5599 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5600 tx_desc->lower.data = cpu_to_le32(txd_lower |
5601 buffer_info->length);
5602 tx_desc->upper.data = cpu_to_le32(txd_upper);
5603
5604 i++;
5605 if (i == tx_ring->count)
5606 i = 0;
5607 } while (--count > 0);
5608
5609 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5610
5611 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5612 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5613 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5614
5615 /* Force memory writes to complete before letting h/w
5616 * know there are new descriptors to fetch. (Only
5617 * applicable for weak-ordered memory model archs,
5618 * such as IA-64).
5619 */
5620 wmb();
5621
5622 tx_ring->next_to_use = i;
5623}
5624
5625#define MINIMUM_DHCP_PACKET_SIZE 282
5626static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5627 struct sk_buff *skb)
5628{
5629 struct e1000_hw *hw = &adapter->hw;
5630 u16 length, offset;
5631
5632 if (skb_vlan_tag_present(skb) &&
5633 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5634 (adapter->hw.mng_cookie.status &
5635 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5636 return 0;
5637
5638 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5639 return 0;
5640
5641 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5642 return 0;
5643
5644 {
5645 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5646 struct udphdr *udp;
5647
5648 if (ip->protocol != IPPROTO_UDP)
5649 return 0;
5650
5651 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5652 if (ntohs(udp->dest) != 67)
5653 return 0;
5654
5655 offset = (u8 *)udp + 8 - skb->data;
5656 length = skb->len - offset;
5657 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5658 }
5659
5660 return 0;
5661}
5662
5663static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5664{
5665 struct e1000_adapter *adapter = tx_ring->adapter;
5666
5667 netif_stop_queue(adapter->netdev);
5668 /* Herbert's original patch had:
5669 * smp_mb__after_netif_stop_queue();
5670 * but since that doesn't exist yet, just open code it.
5671 */
5672 smp_mb();
5673
5674 /* We need to check again in a case another CPU has just
5675 * made room available.
5676 */
5677 if (e1000_desc_unused(tx_ring) < size)
5678 return -EBUSY;
5679
5680 /* A reprieve! */
5681 netif_start_queue(adapter->netdev);
5682 ++adapter->restart_queue;
5683 return 0;
5684}
5685
5686static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5687{
5688 BUG_ON(size > tx_ring->count);
5689
5690 if (e1000_desc_unused(tx_ring) >= size)
5691 return 0;
5692 return __e1000_maybe_stop_tx(tx_ring, size);
5693}
5694
5695static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5696 struct net_device *netdev)
5697{
5698 struct e1000_adapter *adapter = netdev_priv(netdev);
5699 struct e1000_ring *tx_ring = adapter->tx_ring;
5700 unsigned int first;
5701 unsigned int tx_flags = 0;
5702 unsigned int len = skb_headlen(skb);
5703 unsigned int nr_frags;
5704 unsigned int mss;
5705 int count = 0;
5706 int tso;
5707 unsigned int f;
5708 __be16 protocol = vlan_get_protocol(skb);
5709
5710 if (test_bit(__E1000_DOWN, &adapter->state)) {
5711 dev_kfree_skb_any(skb);
5712 return NETDEV_TX_OK;
5713 }
5714
5715 if (skb->len <= 0) {
5716 dev_kfree_skb_any(skb);
5717 return NETDEV_TX_OK;
5718 }
5719
5720 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5721 * pad skb in order to meet this minimum size requirement
5722 */
5723 if (skb_put_padto(skb, 17))
5724 return NETDEV_TX_OK;
5725
5726 mss = skb_shinfo(skb)->gso_size;
5727 if (mss) {
5728 u8 hdr_len;
5729
5730 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5731 * points to just header, pull a few bytes of payload from
5732 * frags into skb->data
5733 */
5734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5735 /* we do this workaround for ES2LAN, but it is un-necessary,
5736 * avoiding it could save a lot of cycles
5737 */
5738 if (skb->data_len && (hdr_len == len)) {
5739 unsigned int pull_size;
5740
5741 pull_size = min_t(unsigned int, 4, skb->data_len);
5742 if (!__pskb_pull_tail(skb, pull_size)) {
5743 e_err("__pskb_pull_tail failed.\n");
5744 dev_kfree_skb_any(skb);
5745 return NETDEV_TX_OK;
5746 }
5747 len = skb_headlen(skb);
5748 }
5749 }
5750
5751 /* reserve a descriptor for the offload context */
5752 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5753 count++;
5754 count++;
5755
5756 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5757
5758 nr_frags = skb_shinfo(skb)->nr_frags;
5759 for (f = 0; f < nr_frags; f++)
5760 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5761 adapter->tx_fifo_limit);
5762
5763 if (adapter->hw.mac.tx_pkt_filtering)
5764 e1000_transfer_dhcp_info(adapter, skb);
5765
5766 /* need: count + 2 desc gap to keep tail from touching
5767 * head, otherwise try next time
5768 */
5769 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5770 return NETDEV_TX_BUSY;
5771
5772 if (skb_vlan_tag_present(skb)) {
5773 tx_flags |= E1000_TX_FLAGS_VLAN;
5774 tx_flags |= (skb_vlan_tag_get(skb) <<
5775 E1000_TX_FLAGS_VLAN_SHIFT);
5776 }
5777
5778 first = tx_ring->next_to_use;
5779
5780 tso = e1000_tso(tx_ring, skb, protocol);
5781 if (tso < 0) {
5782 dev_kfree_skb_any(skb);
5783 return NETDEV_TX_OK;
5784 }
5785
5786 if (tso)
5787 tx_flags |= E1000_TX_FLAGS_TSO;
5788 else if (e1000_tx_csum(tx_ring, skb, protocol))
5789 tx_flags |= E1000_TX_FLAGS_CSUM;
5790
5791 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5792 * 82571 hardware supports TSO capabilities for IPv6 as well...
5793 * no longer assume, we must.
5794 */
5795 if (protocol == htons(ETH_P_IP))
5796 tx_flags |= E1000_TX_FLAGS_IPV4;
5797
5798 if (unlikely(skb->no_fcs))
5799 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5800
5801 /* if count is 0 then mapping error has occurred */
5802 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5803 nr_frags);
5804 if (count) {
5805 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5806 (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5807 !adapter->tx_hwtstamp_skb) {
5808 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5809 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5810 adapter->tx_hwtstamp_skb = skb_get(skb);
5811 adapter->tx_hwtstamp_start = jiffies;
5812 schedule_work(&adapter->tx_hwtstamp_work);
5813 } else {
5814 skb_tx_timestamp(skb);
5815 }
5816
5817 netdev_sent_queue(netdev, skb->len);
5818 e1000_tx_queue(tx_ring, tx_flags, count);
5819 /* Make sure there is space in the ring for the next send. */
5820 e1000_maybe_stop_tx(tx_ring,
5821 (MAX_SKB_FRAGS *
5822 DIV_ROUND_UP(PAGE_SIZE,
5823 adapter->tx_fifo_limit) + 2));
5824
5825 if (!skb->xmit_more ||
5826 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5827 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5828 e1000e_update_tdt_wa(tx_ring,
5829 tx_ring->next_to_use);
5830 else
5831 writel(tx_ring->next_to_use, tx_ring->tail);
5832
5833 /* we need this if more than one processor can write
5834 * to our tail at a time, it synchronizes IO on
5835 *IA64/Altix systems
5836 */
5837 mmiowb();
5838 }
5839 } else {
5840 dev_kfree_skb_any(skb);
5841 tx_ring->buffer_info[first].time_stamp = 0;
5842 tx_ring->next_to_use = first;
5843 }
5844
5845 return NETDEV_TX_OK;
5846}
5847
5848/**
5849 * e1000_tx_timeout - Respond to a Tx Hang
5850 * @netdev: network interface device structure
5851 **/
5852static void e1000_tx_timeout(struct net_device *netdev)
5853{
5854 struct e1000_adapter *adapter = netdev_priv(netdev);
5855
5856 /* Do the reset outside of interrupt context */
5857 adapter->tx_timeout_count++;
5858 schedule_work(&adapter->reset_task);
5859}
5860
5861static void e1000_reset_task(struct work_struct *work)
5862{
5863 struct e1000_adapter *adapter;
5864 adapter = container_of(work, struct e1000_adapter, reset_task);
5865
5866 /* don't run the task if already down */
5867 if (test_bit(__E1000_DOWN, &adapter->state))
5868 return;
5869
5870 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5871 e1000e_dump(adapter);
5872 e_err("Reset adapter unexpectedly\n");
5873 }
5874 e1000e_reinit_locked(adapter);
5875}
5876
5877/**
5878 * e1000_get_stats64 - Get System Network Statistics
5879 * @netdev: network interface device structure
5880 * @stats: rtnl_link_stats64 pointer
5881 *
5882 * Returns the address of the device statistics structure.
5883 **/
5884struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5885 struct rtnl_link_stats64 *stats)
5886{
5887 struct e1000_adapter *adapter = netdev_priv(netdev);
5888
5889 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5890 spin_lock(&adapter->stats64_lock);
5891 e1000e_update_stats(adapter);
5892 /* Fill out the OS statistics structure */
5893 stats->rx_bytes = adapter->stats.gorc;
5894 stats->rx_packets = adapter->stats.gprc;
5895 stats->tx_bytes = adapter->stats.gotc;
5896 stats->tx_packets = adapter->stats.gptc;
5897 stats->multicast = adapter->stats.mprc;
5898 stats->collisions = adapter->stats.colc;
5899
5900 /* Rx Errors */
5901
5902 /* RLEC on some newer hardware can be incorrect so build
5903 * our own version based on RUC and ROC
5904 */
5905 stats->rx_errors = adapter->stats.rxerrc +
5906 adapter->stats.crcerrs + adapter->stats.algnerrc +
5907 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5908 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5909 stats->rx_crc_errors = adapter->stats.crcerrs;
5910 stats->rx_frame_errors = adapter->stats.algnerrc;
5911 stats->rx_missed_errors = adapter->stats.mpc;
5912
5913 /* Tx Errors */
5914 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5915 stats->tx_aborted_errors = adapter->stats.ecol;
5916 stats->tx_window_errors = adapter->stats.latecol;
5917 stats->tx_carrier_errors = adapter->stats.tncrs;
5918
5919 /* Tx Dropped needs to be maintained elsewhere */
5920
5921 spin_unlock(&adapter->stats64_lock);
5922 return stats;
5923}
5924
5925/**
5926 * e1000_change_mtu - Change the Maximum Transfer Unit
5927 * @netdev: network interface device structure
5928 * @new_mtu: new value for maximum frame size
5929 *
5930 * Returns 0 on success, negative on failure
5931 **/
5932static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5933{
5934 struct e1000_adapter *adapter = netdev_priv(netdev);
5935 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5936
5937 /* Jumbo frame support */
5938 if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5939 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5940 e_err("Jumbo Frames not supported.\n");
5941 return -EINVAL;
5942 }
5943
5944 /* Supported frame sizes */
5945 if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5946 (max_frame > adapter->max_hw_frame_size)) {
5947 e_err("Unsupported MTU setting\n");
5948 return -EINVAL;
5949 }
5950
5951 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5952 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5953 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5954 (new_mtu > ETH_DATA_LEN)) {
5955 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5956 return -EINVAL;
5957 }
5958
5959 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5960 usleep_range(1000, 2000);
5961 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5962 adapter->max_frame_size = max_frame;
5963 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5964 netdev->mtu = new_mtu;
5965
5966 pm_runtime_get_sync(netdev->dev.parent);
5967
5968 if (netif_running(netdev))
5969 e1000e_down(adapter, true);
5970
5971 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5972 * means we reserve 2 more, this pushes us to allocate from the next
5973 * larger slab size.
5974 * i.e. RXBUFFER_2048 --> size-4096 slab
5975 * However with the new *_jumbo_rx* routines, jumbo receives will use
5976 * fragmented skbs
5977 */
5978
5979 if (max_frame <= 2048)
5980 adapter->rx_buffer_len = 2048;
5981 else
5982 adapter->rx_buffer_len = 4096;
5983
5984 /* adjust allocation if LPE protects us, and we aren't using SBP */
5985 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5986 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5987
5988 if (netif_running(netdev))
5989 e1000e_up(adapter);
5990 else
5991 e1000e_reset(adapter);
5992
5993 pm_runtime_put_sync(netdev->dev.parent);
5994
5995 clear_bit(__E1000_RESETTING, &adapter->state);
5996
5997 return 0;
5998}
5999
6000static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6001 int cmd)
6002{
6003 struct e1000_adapter *adapter = netdev_priv(netdev);
6004 struct mii_ioctl_data *data = if_mii(ifr);
6005
6006 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6007 return -EOPNOTSUPP;
6008
6009 switch (cmd) {
6010 case SIOCGMIIPHY:
6011 data->phy_id = adapter->hw.phy.addr;
6012 break;
6013 case SIOCGMIIREG:
6014 e1000_phy_read_status(adapter);
6015
6016 switch (data->reg_num & 0x1F) {
6017 case MII_BMCR:
6018 data->val_out = adapter->phy_regs.bmcr;
6019 break;
6020 case MII_BMSR:
6021 data->val_out = adapter->phy_regs.bmsr;
6022 break;
6023 case MII_PHYSID1:
6024 data->val_out = (adapter->hw.phy.id >> 16);
6025 break;
6026 case MII_PHYSID2:
6027 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6028 break;
6029 case MII_ADVERTISE:
6030 data->val_out = adapter->phy_regs.advertise;
6031 break;
6032 case MII_LPA:
6033 data->val_out = adapter->phy_regs.lpa;
6034 break;
6035 case MII_EXPANSION:
6036 data->val_out = adapter->phy_regs.expansion;
6037 break;
6038 case MII_CTRL1000:
6039 data->val_out = adapter->phy_regs.ctrl1000;
6040 break;
6041 case MII_STAT1000:
6042 data->val_out = adapter->phy_regs.stat1000;
6043 break;
6044 case MII_ESTATUS:
6045 data->val_out = adapter->phy_regs.estatus;
6046 break;
6047 default:
6048 return -EIO;
6049 }
6050 break;
6051 case SIOCSMIIREG:
6052 default:
6053 return -EOPNOTSUPP;
6054 }
6055 return 0;
6056}
6057
6058/**
6059 * e1000e_hwtstamp_ioctl - control hardware time stamping
6060 * @netdev: network interface device structure
6061 * @ifreq: interface request
6062 *
6063 * Outgoing time stamping can be enabled and disabled. Play nice and
6064 * disable it when requested, although it shouldn't cause any overhead
6065 * when no packet needs it. At most one packet in the queue may be
6066 * marked for time stamping, otherwise it would be impossible to tell
6067 * for sure to which packet the hardware time stamp belongs.
6068 *
6069 * Incoming time stamping has to be configured via the hardware filters.
6070 * Not all combinations are supported, in particular event type has to be
6071 * specified. Matching the kind of event packet is not supported, with the
6072 * exception of "all V2 events regardless of level 2 or 4".
6073 **/
6074static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6075{
6076 struct e1000_adapter *adapter = netdev_priv(netdev);
6077 struct hwtstamp_config config;
6078 int ret_val;
6079
6080 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6081 return -EFAULT;
6082
6083 ret_val = e1000e_config_hwtstamp(adapter, &config);
6084 if (ret_val)
6085 return ret_val;
6086
6087 switch (config.rx_filter) {
6088 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6089 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6090 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6091 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6092 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6093 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6094 /* With V2 type filters which specify a Sync or Delay Request,
6095 * Path Delay Request/Response messages are also time stamped
6096 * by hardware so notify the caller the requested packets plus
6097 * some others are time stamped.
6098 */
6099 config.rx_filter = HWTSTAMP_FILTER_SOME;
6100 break;
6101 default:
6102 break;
6103 }
6104
6105 return copy_to_user(ifr->ifr_data, &config,
6106 sizeof(config)) ? -EFAULT : 0;
6107}
6108
6109static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6110{
6111 struct e1000_adapter *adapter = netdev_priv(netdev);
6112
6113 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6114 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6115}
6116
6117static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6118{
6119 switch (cmd) {
6120 case SIOCGMIIPHY:
6121 case SIOCGMIIREG:
6122 case SIOCSMIIREG:
6123 return e1000_mii_ioctl(netdev, ifr, cmd);
6124 case SIOCSHWTSTAMP:
6125 return e1000e_hwtstamp_set(netdev, ifr);
6126 case SIOCGHWTSTAMP:
6127 return e1000e_hwtstamp_get(netdev, ifr);
6128 default:
6129 return -EOPNOTSUPP;
6130 }
6131}
6132
6133static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6134{
6135 struct e1000_hw *hw = &adapter->hw;
6136 u32 i, mac_reg, wuc;
6137 u16 phy_reg, wuc_enable;
6138 int retval;
6139
6140 /* copy MAC RARs to PHY RARs */
6141 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6142
6143 retval = hw->phy.ops.acquire(hw);
6144 if (retval) {
6145 e_err("Could not acquire PHY\n");
6146 return retval;
6147 }
6148
6149 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6150 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6151 if (retval)
6152 goto release;
6153
6154 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6155 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6156 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6157 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6158 (u16)(mac_reg & 0xFFFF));
6159 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6160 (u16)((mac_reg >> 16) & 0xFFFF));
6161 }
6162
6163 /* configure PHY Rx Control register */
6164 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6165 mac_reg = er32(RCTL);
6166 if (mac_reg & E1000_RCTL_UPE)
6167 phy_reg |= BM_RCTL_UPE;
6168 if (mac_reg & E1000_RCTL_MPE)
6169 phy_reg |= BM_RCTL_MPE;
6170 phy_reg &= ~(BM_RCTL_MO_MASK);
6171 if (mac_reg & E1000_RCTL_MO_3)
6172 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6173 << BM_RCTL_MO_SHIFT);
6174 if (mac_reg & E1000_RCTL_BAM)
6175 phy_reg |= BM_RCTL_BAM;
6176 if (mac_reg & E1000_RCTL_PMCF)
6177 phy_reg |= BM_RCTL_PMCF;
6178 mac_reg = er32(CTRL);
6179 if (mac_reg & E1000_CTRL_RFCE)
6180 phy_reg |= BM_RCTL_RFCE;
6181 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6182
6183 wuc = E1000_WUC_PME_EN;
6184 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6185 wuc |= E1000_WUC_APME;
6186
6187 /* enable PHY wakeup in MAC register */
6188 ew32(WUFC, wufc);
6189 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6190 E1000_WUC_PME_STATUS | wuc));
6191
6192 /* configure and enable PHY wakeup in PHY registers */
6193 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6194 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6195
6196 /* activate PHY wakeup */
6197 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6198 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6199 if (retval)
6200 e_err("Could not set PHY Host Wakeup bit\n");
6201release:
6202 hw->phy.ops.release(hw);
6203
6204 return retval;
6205}
6206
6207static void e1000e_flush_lpic(struct pci_dev *pdev)
6208{
6209 struct net_device *netdev = pci_get_drvdata(pdev);
6210 struct e1000_adapter *adapter = netdev_priv(netdev);
6211 struct e1000_hw *hw = &adapter->hw;
6212 u32 ret_val;
6213
6214 pm_runtime_get_sync(netdev->dev.parent);
6215
6216 ret_val = hw->phy.ops.acquire(hw);
6217 if (ret_val)
6218 goto fl_out;
6219
6220 pr_info("EEE TX LPI TIMER: %08X\n",
6221 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6222
6223 hw->phy.ops.release(hw);
6224
6225fl_out:
6226 pm_runtime_put_sync(netdev->dev.parent);
6227}
6228
6229static int e1000e_pm_freeze(struct device *dev)
6230{
6231 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6232 struct e1000_adapter *adapter = netdev_priv(netdev);
6233
6234 netif_device_detach(netdev);
6235
6236 if (netif_running(netdev)) {
6237 int count = E1000_CHECK_RESET_COUNT;
6238
6239 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6240 usleep_range(10000, 20000);
6241
6242 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6243
6244 /* Quiesce the device without resetting the hardware */
6245 e1000e_down(adapter, false);
6246 e1000_free_irq(adapter);
6247 }
6248 e1000e_reset_interrupt_capability(adapter);
6249
6250 /* Allow time for pending master requests to run */
6251 e1000e_disable_pcie_master(&adapter->hw);
6252
6253 return 0;
6254}
6255
6256static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6257{
6258 struct net_device *netdev = pci_get_drvdata(pdev);
6259 struct e1000_adapter *adapter = netdev_priv(netdev);
6260 struct e1000_hw *hw = &adapter->hw;
6261 u32 ctrl, ctrl_ext, rctl, status;
6262 /* Runtime suspend should only enable wakeup for link changes */
6263 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6264 int retval = 0;
6265
6266 status = er32(STATUS);
6267 if (status & E1000_STATUS_LU)
6268 wufc &= ~E1000_WUFC_LNKC;
6269
6270 if (wufc) {
6271 e1000_setup_rctl(adapter);
6272 e1000e_set_rx_mode(netdev);
6273
6274 /* turn on all-multi mode if wake on multicast is enabled */
6275 if (wufc & E1000_WUFC_MC) {
6276 rctl = er32(RCTL);
6277 rctl |= E1000_RCTL_MPE;
6278 ew32(RCTL, rctl);
6279 }
6280
6281 ctrl = er32(CTRL);
6282 ctrl |= E1000_CTRL_ADVD3WUC;
6283 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6284 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6285 ew32(CTRL, ctrl);
6286
6287 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6288 adapter->hw.phy.media_type ==
6289 e1000_media_type_internal_serdes) {
6290 /* keep the laser running in D3 */
6291 ctrl_ext = er32(CTRL_EXT);
6292 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6293 ew32(CTRL_EXT, ctrl_ext);
6294 }
6295
6296 if (!runtime)
6297 e1000e_power_up_phy(adapter);
6298
6299 if (adapter->flags & FLAG_IS_ICH)
6300 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6301
6302 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6303 /* enable wakeup by the PHY */
6304 retval = e1000_init_phy_wakeup(adapter, wufc);
6305 if (retval)
6306 return retval;
6307 } else {
6308 /* enable wakeup by the MAC */
6309 ew32(WUFC, wufc);
6310 ew32(WUC, E1000_WUC_PME_EN);
6311 }
6312 } else {
6313 ew32(WUC, 0);
6314 ew32(WUFC, 0);
6315
6316 e1000_power_down_phy(adapter);
6317 }
6318
6319 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6320 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6321 } else if ((hw->mac.type == e1000_pch_lpt) ||
6322 (hw->mac.type == e1000_pch_spt)) {
6323 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6324 /* ULP does not support wake from unicast, multicast
6325 * or broadcast.
6326 */
6327 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6328
6329 if (retval)
6330 return retval;
6331 }
6332
6333 /* Ensure that the appropriate bits are set in LPI_CTRL
6334 * for EEE in Sx
6335 */
6336 if ((hw->phy.type >= e1000_phy_i217) &&
6337 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6338 u16 lpi_ctrl = 0;
6339
6340 retval = hw->phy.ops.acquire(hw);
6341 if (!retval) {
6342 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6343 &lpi_ctrl);
6344 if (!retval) {
6345 if (adapter->eee_advert &
6346 hw->dev_spec.ich8lan.eee_lp_ability &
6347 I82579_EEE_100_SUPPORTED)
6348 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6349 if (adapter->eee_advert &
6350 hw->dev_spec.ich8lan.eee_lp_ability &
6351 I82579_EEE_1000_SUPPORTED)
6352 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6353
6354 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6355 lpi_ctrl);
6356 }
6357 }
6358 hw->phy.ops.release(hw);
6359 }
6360
6361 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6362 * would have already happened in close and is redundant.
6363 */
6364 e1000e_release_hw_control(adapter);
6365
6366 pci_clear_master(pdev);
6367
6368 /* The pci-e switch on some quad port adapters will report a
6369 * correctable error when the MAC transitions from D0 to D3. To
6370 * prevent this we need to mask off the correctable errors on the
6371 * downstream port of the pci-e switch.
6372 *
6373 * We don't have the associated upstream bridge while assigning
6374 * the PCI device into guest. For example, the KVM on power is
6375 * one of the cases.
6376 */
6377 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6378 struct pci_dev *us_dev = pdev->bus->self;
6379 u16 devctl;
6380
6381 if (!us_dev)
6382 return 0;
6383
6384 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6385 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6386 (devctl & ~PCI_EXP_DEVCTL_CERE));
6387
6388 pci_save_state(pdev);
6389 pci_prepare_to_sleep(pdev);
6390
6391 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6392 }
6393
6394 return 0;
6395}
6396
6397/**
6398 * __e1000e_disable_aspm - Disable ASPM states
6399 * @pdev: pointer to PCI device struct
6400 * @state: bit-mask of ASPM states to disable
6401 * @locked: indication if this context holds pci_bus_sem locked.
6402 *
6403 * Some devices *must* have certain ASPM states disabled per hardware errata.
6404 **/
6405static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6406{
6407 struct pci_dev *parent = pdev->bus->self;
6408 u16 aspm_dis_mask = 0;
6409 u16 pdev_aspmc, parent_aspmc;
6410
6411 switch (state) {
6412 case PCIE_LINK_STATE_L0S:
6413 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6414 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6415 /* fall-through - can't have L1 without L0s */
6416 case PCIE_LINK_STATE_L1:
6417 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6418 break;
6419 default:
6420 return;
6421 }
6422
6423 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6424 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6425
6426 if (parent) {
6427 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6428 &parent_aspmc);
6429 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6430 }
6431
6432 /* Nothing to do if the ASPM states to be disabled already are */
6433 if (!(pdev_aspmc & aspm_dis_mask) &&
6434 (!parent || !(parent_aspmc & aspm_dis_mask)))
6435 return;
6436
6437 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6438 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6439 "L0s" : "",
6440 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6441 "L1" : "");
6442
6443#ifdef CONFIG_PCIEASPM
6444 if (locked)
6445 pci_disable_link_state_locked(pdev, state);
6446 else
6447 pci_disable_link_state(pdev, state);
6448
6449 /* Double-check ASPM control. If not disabled by the above, the
6450 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6451 * not enabled); override by writing PCI config space directly.
6452 */
6453 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6454 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6455
6456 if (!(aspm_dis_mask & pdev_aspmc))
6457 return;
6458#endif
6459
6460 /* Both device and parent should have the same ASPM setting.
6461 * Disable ASPM in downstream component first and then upstream.
6462 */
6463 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6464
6465 if (parent)
6466 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6467 aspm_dis_mask);
6468}
6469
6470/**
6471 * e1000e_disable_aspm - Disable ASPM states.
6472 * @pdev: pointer to PCI device struct
6473 * @state: bit-mask of ASPM states to disable
6474 *
6475 * This function acquires the pci_bus_sem!
6476 * Some devices *must* have certain ASPM states disabled per hardware errata.
6477 **/
6478static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6479{
6480 __e1000e_disable_aspm(pdev, state, 0);
6481}
6482
6483/**
6484 * e1000e_disable_aspm_locked Disable ASPM states.
6485 * @pdev: pointer to PCI device struct
6486 * @state: bit-mask of ASPM states to disable
6487 *
6488 * This function must be called with pci_bus_sem acquired!
6489 * Some devices *must* have certain ASPM states disabled per hardware errata.
6490 **/
6491static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6492{
6493 __e1000e_disable_aspm(pdev, state, 1);
6494}
6495
6496#ifdef CONFIG_PM
6497static int __e1000_resume(struct pci_dev *pdev)
6498{
6499 struct net_device *netdev = pci_get_drvdata(pdev);
6500 struct e1000_adapter *adapter = netdev_priv(netdev);
6501 struct e1000_hw *hw = &adapter->hw;
6502 u16 aspm_disable_flag = 0;
6503
6504 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6505 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6506 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6507 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6508 if (aspm_disable_flag)
6509 e1000e_disable_aspm(pdev, aspm_disable_flag);
6510
6511 pci_set_master(pdev);
6512
6513 if (hw->mac.type >= e1000_pch2lan)
6514 e1000_resume_workarounds_pchlan(&adapter->hw);
6515
6516 e1000e_power_up_phy(adapter);
6517
6518 /* report the system wakeup cause from S3/S4 */
6519 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6520 u16 phy_data;
6521
6522 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6523 if (phy_data) {
6524 e_info("PHY Wakeup cause - %s\n",
6525 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6526 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6527 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6528 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6529 phy_data & E1000_WUS_LNKC ?
6530 "Link Status Change" : "other");
6531 }
6532 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6533 } else {
6534 u32 wus = er32(WUS);
6535
6536 if (wus) {
6537 e_info("MAC Wakeup cause - %s\n",
6538 wus & E1000_WUS_EX ? "Unicast Packet" :
6539 wus & E1000_WUS_MC ? "Multicast Packet" :
6540 wus & E1000_WUS_BC ? "Broadcast Packet" :
6541 wus & E1000_WUS_MAG ? "Magic Packet" :
6542 wus & E1000_WUS_LNKC ? "Link Status Change" :
6543 "other");
6544 }
6545 ew32(WUS, ~0);
6546 }
6547
6548 e1000e_reset(adapter);
6549
6550 e1000_init_manageability_pt(adapter);
6551
6552 /* If the controller has AMT, do not set DRV_LOAD until the interface
6553 * is up. For all other cases, let the f/w know that the h/w is now
6554 * under the control of the driver.
6555 */
6556 if (!(adapter->flags & FLAG_HAS_AMT))
6557 e1000e_get_hw_control(adapter);
6558
6559 return 0;
6560}
6561
6562#ifdef CONFIG_PM_SLEEP
6563static int e1000e_pm_thaw(struct device *dev)
6564{
6565 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6566 struct e1000_adapter *adapter = netdev_priv(netdev);
6567
6568 e1000e_set_interrupt_capability(adapter);
6569 if (netif_running(netdev)) {
6570 u32 err = e1000_request_irq(adapter);
6571
6572 if (err)
6573 return err;
6574
6575 e1000e_up(adapter);
6576 }
6577
6578 netif_device_attach(netdev);
6579
6580 return 0;
6581}
6582
6583static int e1000e_pm_suspend(struct device *dev)
6584{
6585 struct pci_dev *pdev = to_pci_dev(dev);
6586
6587 e1000e_flush_lpic(pdev);
6588
6589 e1000e_pm_freeze(dev);
6590
6591 return __e1000_shutdown(pdev, false);
6592}
6593
6594static int e1000e_pm_resume(struct device *dev)
6595{
6596 struct pci_dev *pdev = to_pci_dev(dev);
6597 int rc;
6598
6599 rc = __e1000_resume(pdev);
6600 if (rc)
6601 return rc;
6602
6603 return e1000e_pm_thaw(dev);
6604}
6605#endif /* CONFIG_PM_SLEEP */
6606
6607static int e1000e_pm_runtime_idle(struct device *dev)
6608{
6609 struct pci_dev *pdev = to_pci_dev(dev);
6610 struct net_device *netdev = pci_get_drvdata(pdev);
6611 struct e1000_adapter *adapter = netdev_priv(netdev);
6612 u16 eee_lp;
6613
6614 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6615
6616 if (!e1000e_has_link(adapter)) {
6617 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6618 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6619 }
6620
6621 return -EBUSY;
6622}
6623
6624static int e1000e_pm_runtime_resume(struct device *dev)
6625{
6626 struct pci_dev *pdev = to_pci_dev(dev);
6627 struct net_device *netdev = pci_get_drvdata(pdev);
6628 struct e1000_adapter *adapter = netdev_priv(netdev);
6629 int rc;
6630
6631 rc = __e1000_resume(pdev);
6632 if (rc)
6633 return rc;
6634
6635 if (netdev->flags & IFF_UP)
6636 rc = e1000e_up(adapter);
6637
6638 return rc;
6639}
6640
6641static int e1000e_pm_runtime_suspend(struct device *dev)
6642{
6643 struct pci_dev *pdev = to_pci_dev(dev);
6644 struct net_device *netdev = pci_get_drvdata(pdev);
6645 struct e1000_adapter *adapter = netdev_priv(netdev);
6646
6647 if (netdev->flags & IFF_UP) {
6648 int count = E1000_CHECK_RESET_COUNT;
6649
6650 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6651 usleep_range(10000, 20000);
6652
6653 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6654
6655 /* Down the device without resetting the hardware */
6656 e1000e_down(adapter, false);
6657 }
6658
6659 if (__e1000_shutdown(pdev, true)) {
6660 e1000e_pm_runtime_resume(dev);
6661 return -EBUSY;
6662 }
6663
6664 return 0;
6665}
6666#endif /* CONFIG_PM */
6667
6668static void e1000_shutdown(struct pci_dev *pdev)
6669{
6670 e1000e_flush_lpic(pdev);
6671
6672 e1000e_pm_freeze(&pdev->dev);
6673
6674 __e1000_shutdown(pdev, false);
6675}
6676
6677#ifdef CONFIG_NET_POLL_CONTROLLER
6678
6679static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6680{
6681 struct net_device *netdev = data;
6682 struct e1000_adapter *adapter = netdev_priv(netdev);
6683
6684 if (adapter->msix_entries) {
6685 int vector, msix_irq;
6686
6687 vector = 0;
6688 msix_irq = adapter->msix_entries[vector].vector;
6689 disable_irq(msix_irq);
6690 e1000_intr_msix_rx(msix_irq, netdev);
6691 enable_irq(msix_irq);
6692
6693 vector++;
6694 msix_irq = adapter->msix_entries[vector].vector;
6695 disable_irq(msix_irq);
6696 e1000_intr_msix_tx(msix_irq, netdev);
6697 enable_irq(msix_irq);
6698
6699 vector++;
6700 msix_irq = adapter->msix_entries[vector].vector;
6701 disable_irq(msix_irq);
6702 e1000_msix_other(msix_irq, netdev);
6703 enable_irq(msix_irq);
6704 }
6705
6706 return IRQ_HANDLED;
6707}
6708
6709/**
6710 * e1000_netpoll
6711 * @netdev: network interface device structure
6712 *
6713 * Polling 'interrupt' - used by things like netconsole to send skbs
6714 * without having to re-enable interrupts. It's not called while
6715 * the interrupt routine is executing.
6716 */
6717static void e1000_netpoll(struct net_device *netdev)
6718{
6719 struct e1000_adapter *adapter = netdev_priv(netdev);
6720
6721 switch (adapter->int_mode) {
6722 case E1000E_INT_MODE_MSIX:
6723 e1000_intr_msix(adapter->pdev->irq, netdev);
6724 break;
6725 case E1000E_INT_MODE_MSI:
6726 disable_irq(adapter->pdev->irq);
6727 e1000_intr_msi(adapter->pdev->irq, netdev);
6728 enable_irq(adapter->pdev->irq);
6729 break;
6730 default: /* E1000E_INT_MODE_LEGACY */
6731 disable_irq(adapter->pdev->irq);
6732 e1000_intr(adapter->pdev->irq, netdev);
6733 enable_irq(adapter->pdev->irq);
6734 break;
6735 }
6736}
6737#endif
6738
6739/**
6740 * e1000_io_error_detected - called when PCI error is detected
6741 * @pdev: Pointer to PCI device
6742 * @state: The current pci connection state
6743 *
6744 * This function is called after a PCI bus error affecting
6745 * this device has been detected.
6746 */
6747static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6748 pci_channel_state_t state)
6749{
6750 struct net_device *netdev = pci_get_drvdata(pdev);
6751 struct e1000_adapter *adapter = netdev_priv(netdev);
6752
6753 netif_device_detach(netdev);
6754
6755 if (state == pci_channel_io_perm_failure)
6756 return PCI_ERS_RESULT_DISCONNECT;
6757
6758 if (netif_running(netdev))
6759 e1000e_down(adapter, true);
6760 pci_disable_device(pdev);
6761
6762 /* Request a slot slot reset. */
6763 return PCI_ERS_RESULT_NEED_RESET;
6764}
6765
6766/**
6767 * e1000_io_slot_reset - called after the pci bus has been reset.
6768 * @pdev: Pointer to PCI device
6769 *
6770 * Restart the card from scratch, as if from a cold-boot. Implementation
6771 * resembles the first-half of the e1000e_pm_resume routine.
6772 */
6773static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6774{
6775 struct net_device *netdev = pci_get_drvdata(pdev);
6776 struct e1000_adapter *adapter = netdev_priv(netdev);
6777 struct e1000_hw *hw = &adapter->hw;
6778 u16 aspm_disable_flag = 0;
6779 int err;
6780 pci_ers_result_t result;
6781
6782 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6783 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6784 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6785 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6786 if (aspm_disable_flag)
6787 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6788
6789 err = pci_enable_device_mem(pdev);
6790 if (err) {
6791 dev_err(&pdev->dev,
6792 "Cannot re-enable PCI device after reset.\n");
6793 result = PCI_ERS_RESULT_DISCONNECT;
6794 } else {
6795 pdev->state_saved = true;
6796 pci_restore_state(pdev);
6797 pci_set_master(pdev);
6798
6799 pci_enable_wake(pdev, PCI_D3hot, 0);
6800 pci_enable_wake(pdev, PCI_D3cold, 0);
6801
6802 e1000e_reset(adapter);
6803 ew32(WUS, ~0);
6804 result = PCI_ERS_RESULT_RECOVERED;
6805 }
6806
6807 pci_cleanup_aer_uncorrect_error_status(pdev);
6808
6809 return result;
6810}
6811
6812/**
6813 * e1000_io_resume - called when traffic can start flowing again.
6814 * @pdev: Pointer to PCI device
6815 *
6816 * This callback is called when the error recovery driver tells us that
6817 * its OK to resume normal operation. Implementation resembles the
6818 * second-half of the e1000e_pm_resume routine.
6819 */
6820static void e1000_io_resume(struct pci_dev *pdev)
6821{
6822 struct net_device *netdev = pci_get_drvdata(pdev);
6823 struct e1000_adapter *adapter = netdev_priv(netdev);
6824
6825 e1000_init_manageability_pt(adapter);
6826
6827 if (netif_running(netdev)) {
6828 if (e1000e_up(adapter)) {
6829 dev_err(&pdev->dev,
6830 "can't bring device back up after reset\n");
6831 return;
6832 }
6833 }
6834
6835 netif_device_attach(netdev);
6836
6837 /* If the controller has AMT, do not set DRV_LOAD until the interface
6838 * is up. For all other cases, let the f/w know that the h/w is now
6839 * under the control of the driver.
6840 */
6841 if (!(adapter->flags & FLAG_HAS_AMT))
6842 e1000e_get_hw_control(adapter);
6843}
6844
6845static void e1000_print_device_info(struct e1000_adapter *adapter)
6846{
6847 struct e1000_hw *hw = &adapter->hw;
6848 struct net_device *netdev = adapter->netdev;
6849 u32 ret_val;
6850 u8 pba_str[E1000_PBANUM_LENGTH];
6851
6852 /* print bus type/speed/width info */
6853 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6854 /* bus width */
6855 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6856 "Width x1"),
6857 /* MAC address */
6858 netdev->dev_addr);
6859 e_info("Intel(R) PRO/%s Network Connection\n",
6860 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6861 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6862 E1000_PBANUM_LENGTH);
6863 if (ret_val)
6864 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6865 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6866 hw->mac.type, hw->phy.type, pba_str);
6867}
6868
6869static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6870{
6871 struct e1000_hw *hw = &adapter->hw;
6872 int ret_val;
6873 u16 buf = 0;
6874
6875 if (hw->mac.type != e1000_82573)
6876 return;
6877
6878 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6879 le16_to_cpus(&buf);
6880 if (!ret_val && (!(buf & (1 << 0)))) {
6881 /* Deep Smart Power Down (DSPD) */
6882 dev_warn(&adapter->pdev->dev,
6883 "Warning: detected DSPD enabled in EEPROM\n");
6884 }
6885}
6886
6887static netdev_features_t e1000_fix_features(struct net_device *netdev,
6888 netdev_features_t features)
6889{
6890 struct e1000_adapter *adapter = netdev_priv(netdev);
6891 struct e1000_hw *hw = &adapter->hw;
6892
6893 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6894 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6895 features &= ~NETIF_F_RXFCS;
6896
6897 return features;
6898}
6899
6900static int e1000_set_features(struct net_device *netdev,
6901 netdev_features_t features)
6902{
6903 struct e1000_adapter *adapter = netdev_priv(netdev);
6904 netdev_features_t changed = features ^ netdev->features;
6905
6906 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6907 adapter->flags |= FLAG_TSO_FORCE;
6908
6909 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6910 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6911 NETIF_F_RXALL)))
6912 return 0;
6913
6914 if (changed & NETIF_F_RXFCS) {
6915 if (features & NETIF_F_RXFCS) {
6916 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6917 } else {
6918 /* We need to take it back to defaults, which might mean
6919 * stripping is still disabled at the adapter level.
6920 */
6921 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6922 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6923 else
6924 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6925 }
6926 }
6927
6928 netdev->features = features;
6929
6930 if (netif_running(netdev))
6931 e1000e_reinit_locked(adapter);
6932 else
6933 e1000e_reset(adapter);
6934
6935 return 0;
6936}
6937
6938static const struct net_device_ops e1000e_netdev_ops = {
6939 .ndo_open = e1000_open,
6940 .ndo_stop = e1000_close,
6941 .ndo_start_xmit = e1000_xmit_frame,
6942 .ndo_get_stats64 = e1000e_get_stats64,
6943 .ndo_set_rx_mode = e1000e_set_rx_mode,
6944 .ndo_set_mac_address = e1000_set_mac,
6945 .ndo_change_mtu = e1000_change_mtu,
6946 .ndo_do_ioctl = e1000_ioctl,
6947 .ndo_tx_timeout = e1000_tx_timeout,
6948 .ndo_validate_addr = eth_validate_addr,
6949
6950 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6951 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6952#ifdef CONFIG_NET_POLL_CONTROLLER
6953 .ndo_poll_controller = e1000_netpoll,
6954#endif
6955 .ndo_set_features = e1000_set_features,
6956 .ndo_fix_features = e1000_fix_features,
6957 .ndo_features_check = passthru_features_check,
6958};
6959
6960/**
6961 * e1000_probe - Device Initialization Routine
6962 * @pdev: PCI device information struct
6963 * @ent: entry in e1000_pci_tbl
6964 *
6965 * Returns 0 on success, negative on failure
6966 *
6967 * e1000_probe initializes an adapter identified by a pci_dev structure.
6968 * The OS initialization, configuring of the adapter private structure,
6969 * and a hardware reset occur.
6970 **/
6971static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6972{
6973 struct net_device *netdev;
6974 struct e1000_adapter *adapter;
6975 struct e1000_hw *hw;
6976 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6977 resource_size_t mmio_start, mmio_len;
6978 resource_size_t flash_start, flash_len;
6979 static int cards_found;
6980 u16 aspm_disable_flag = 0;
6981 int bars, i, err, pci_using_dac;
6982 u16 eeprom_data = 0;
6983 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6984 s32 rval = 0;
6985
6986 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6987 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6988 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6989 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6990 if (aspm_disable_flag)
6991 e1000e_disable_aspm(pdev, aspm_disable_flag);
6992
6993 err = pci_enable_device_mem(pdev);
6994 if (err)
6995 return err;
6996
6997 pci_using_dac = 0;
6998 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6999 if (!err) {
7000 pci_using_dac = 1;
7001 } else {
7002 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7003 if (err) {
7004 dev_err(&pdev->dev,
7005 "No usable DMA configuration, aborting\n");
7006 goto err_dma;
7007 }
7008 }
7009
7010 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7011 err = pci_request_selected_regions_exclusive(pdev, bars,
7012 e1000e_driver_name);
7013 if (err)
7014 goto err_pci_reg;
7015
7016 /* AER (Advanced Error Reporting) hooks */
7017 pci_enable_pcie_error_reporting(pdev);
7018
7019 pci_set_master(pdev);
7020 /* PCI config space info */
7021 err = pci_save_state(pdev);
7022 if (err)
7023 goto err_alloc_etherdev;
7024
7025 err = -ENOMEM;
7026 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7027 if (!netdev)
7028 goto err_alloc_etherdev;
7029
7030 SET_NETDEV_DEV(netdev, &pdev->dev);
7031
7032 netdev->irq = pdev->irq;
7033
7034 pci_set_drvdata(pdev, netdev);
7035 adapter = netdev_priv(netdev);
7036 hw = &adapter->hw;
7037 adapter->netdev = netdev;
7038 adapter->pdev = pdev;
7039 adapter->ei = ei;
7040 adapter->pba = ei->pba;
7041 adapter->flags = ei->flags;
7042 adapter->flags2 = ei->flags2;
7043 adapter->hw.adapter = adapter;
7044 adapter->hw.mac.type = ei->mac;
7045 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7046 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7047
7048 mmio_start = pci_resource_start(pdev, 0);
7049 mmio_len = pci_resource_len(pdev, 0);
7050
7051 err = -EIO;
7052 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7053 if (!adapter->hw.hw_addr)
7054 goto err_ioremap;
7055
7056 if ((adapter->flags & FLAG_HAS_FLASH) &&
7057 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7058 (hw->mac.type < e1000_pch_spt)) {
7059 flash_start = pci_resource_start(pdev, 1);
7060 flash_len = pci_resource_len(pdev, 1);
7061 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7062 if (!adapter->hw.flash_address)
7063 goto err_flashmap;
7064 }
7065
7066 /* Set default EEE advertisement */
7067 if (adapter->flags2 & FLAG2_HAS_EEE)
7068 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7069
7070 /* construct the net_device struct */
7071 netdev->netdev_ops = &e1000e_netdev_ops;
7072 e1000e_set_ethtool_ops(netdev);
7073 netdev->watchdog_timeo = 5 * HZ;
7074 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7075 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7076
7077 netdev->mem_start = mmio_start;
7078 netdev->mem_end = mmio_start + mmio_len;
7079
7080 adapter->bd_number = cards_found++;
7081
7082 e1000e_check_options(adapter);
7083
7084 /* setup adapter struct */
7085 err = e1000_sw_init(adapter);
7086 if (err)
7087 goto err_sw_init;
7088
7089 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7090 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7091 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7092
7093 err = ei->get_variants(adapter);
7094 if (err)
7095 goto err_hw_init;
7096
7097 if ((adapter->flags & FLAG_IS_ICH) &&
7098 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7099 (hw->mac.type < e1000_pch_spt))
7100 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7101
7102 hw->mac.ops.get_bus_info(&adapter->hw);
7103
7104 adapter->hw.phy.autoneg_wait_to_complete = 0;
7105
7106 /* Copper options */
7107 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7108 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7109 adapter->hw.phy.disable_polarity_correction = 0;
7110 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7111 }
7112
7113 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7114 dev_info(&pdev->dev,
7115 "PHY reset is blocked due to SOL/IDER session.\n");
7116
7117 /* Set initial default active device features */
7118 netdev->features = (NETIF_F_SG |
7119 NETIF_F_HW_VLAN_CTAG_RX |
7120 NETIF_F_HW_VLAN_CTAG_TX |
7121 NETIF_F_TSO |
7122 NETIF_F_TSO6 |
7123 NETIF_F_RXHASH |
7124 NETIF_F_RXCSUM |
7125 NETIF_F_HW_CSUM);
7126
7127 /* Set user-changeable features (subset of all device features) */
7128 netdev->hw_features = netdev->features;
7129 netdev->hw_features |= NETIF_F_RXFCS;
7130 netdev->priv_flags |= IFF_SUPP_NOFCS;
7131 netdev->hw_features |= NETIF_F_RXALL;
7132
7133 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7134 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7135
7136 netdev->vlan_features |= (NETIF_F_SG |
7137 NETIF_F_TSO |
7138 NETIF_F_TSO6 |
7139 NETIF_F_HW_CSUM);
7140
7141 netdev->priv_flags |= IFF_UNICAST_FLT;
7142
7143 if (pci_using_dac) {
7144 netdev->features |= NETIF_F_HIGHDMA;
7145 netdev->vlan_features |= NETIF_F_HIGHDMA;
7146 }
7147
7148 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7149 adapter->flags |= FLAG_MNG_PT_ENABLED;
7150
7151 /* before reading the NVM, reset the controller to
7152 * put the device in a known good starting state
7153 */
7154 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7155
7156 /* systems with ASPM and others may see the checksum fail on the first
7157 * attempt. Let's give it a few tries
7158 */
7159 for (i = 0;; i++) {
7160 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7161 break;
7162 if (i == 2) {
7163 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7164 err = -EIO;
7165 goto err_eeprom;
7166 }
7167 }
7168
7169 e1000_eeprom_checks(adapter);
7170
7171 /* copy the MAC address */
7172 if (e1000e_read_mac_addr(&adapter->hw))
7173 dev_err(&pdev->dev,
7174 "NVM Read Error while reading MAC address\n");
7175
7176 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7177
7178 if (!is_valid_ether_addr(netdev->dev_addr)) {
7179 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7180 netdev->dev_addr);
7181 err = -EIO;
7182 goto err_eeprom;
7183 }
7184
7185 init_timer(&adapter->watchdog_timer);
7186 adapter->watchdog_timer.function = e1000_watchdog;
7187 adapter->watchdog_timer.data = (unsigned long)adapter;
7188
7189 init_timer(&adapter->phy_info_timer);
7190 adapter->phy_info_timer.function = e1000_update_phy_info;
7191 adapter->phy_info_timer.data = (unsigned long)adapter;
7192
7193 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7194 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7195 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7196 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7197 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7198
7199 /* Initialize link parameters. User can change them with ethtool */
7200 adapter->hw.mac.autoneg = 1;
7201 adapter->fc_autoneg = true;
7202 adapter->hw.fc.requested_mode = e1000_fc_default;
7203 adapter->hw.fc.current_mode = e1000_fc_default;
7204 adapter->hw.phy.autoneg_advertised = 0x2f;
7205
7206 /* Initial Wake on LAN setting - If APM wake is enabled in
7207 * the EEPROM, enable the ACPI Magic Packet filter
7208 */
7209 if (adapter->flags & FLAG_APME_IN_WUC) {
7210 /* APME bit in EEPROM is mapped to WUC.APME */
7211 eeprom_data = er32(WUC);
7212 eeprom_apme_mask = E1000_WUC_APME;
7213 if ((hw->mac.type > e1000_ich10lan) &&
7214 (eeprom_data & E1000_WUC_PHY_WAKE))
7215 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7216 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7217 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7218 (adapter->hw.bus.func == 1))
7219 rval = e1000_read_nvm(&adapter->hw,
7220 NVM_INIT_CONTROL3_PORT_B,
7221 1, &eeprom_data);
7222 else
7223 rval = e1000_read_nvm(&adapter->hw,
7224 NVM_INIT_CONTROL3_PORT_A,
7225 1, &eeprom_data);
7226 }
7227
7228 /* fetch WoL from EEPROM */
7229 if (rval)
7230 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7231 else if (eeprom_data & eeprom_apme_mask)
7232 adapter->eeprom_wol |= E1000_WUFC_MAG;
7233
7234 /* now that we have the eeprom settings, apply the special cases
7235 * where the eeprom may be wrong or the board simply won't support
7236 * wake on lan on a particular port
7237 */
7238 if (!(adapter->flags & FLAG_HAS_WOL))
7239 adapter->eeprom_wol = 0;
7240
7241 /* initialize the wol settings based on the eeprom settings */
7242 adapter->wol = adapter->eeprom_wol;
7243
7244 /* make sure adapter isn't asleep if manageability is enabled */
7245 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7246 (hw->mac.ops.check_mng_mode(hw)))
7247 device_wakeup_enable(&pdev->dev);
7248
7249 /* save off EEPROM version number */
7250 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7251
7252 if (rval) {
7253 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7254 adapter->eeprom_vers = 0;
7255 }
7256
7257 /* reset the hardware with the new settings */
7258 e1000e_reset(adapter);
7259
7260 /* If the controller has AMT, do not set DRV_LOAD until the interface
7261 * is up. For all other cases, let the f/w know that the h/w is now
7262 * under the control of the driver.
7263 */
7264 if (!(adapter->flags & FLAG_HAS_AMT))
7265 e1000e_get_hw_control(adapter);
7266
7267 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7268 err = register_netdev(netdev);
7269 if (err)
7270 goto err_register;
7271
7272 /* carrier off reporting is important to ethtool even BEFORE open */
7273 netif_carrier_off(netdev);
7274
7275 /* init PTP hardware clock */
7276 e1000e_ptp_init(adapter);
7277
7278 e1000_print_device_info(adapter);
7279
7280 if (pci_dev_run_wake(pdev))
7281 pm_runtime_put_noidle(&pdev->dev);
7282
7283 return 0;
7284
7285err_register:
7286 if (!(adapter->flags & FLAG_HAS_AMT))
7287 e1000e_release_hw_control(adapter);
7288err_eeprom:
7289 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7290 e1000_phy_hw_reset(&adapter->hw);
7291err_hw_init:
7292 kfree(adapter->tx_ring);
7293 kfree(adapter->rx_ring);
7294err_sw_init:
7295 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7296 iounmap(adapter->hw.flash_address);
7297 e1000e_reset_interrupt_capability(adapter);
7298err_flashmap:
7299 iounmap(adapter->hw.hw_addr);
7300err_ioremap:
7301 free_netdev(netdev);
7302err_alloc_etherdev:
7303 pci_release_selected_regions(pdev,
7304 pci_select_bars(pdev, IORESOURCE_MEM));
7305err_pci_reg:
7306err_dma:
7307 pci_disable_device(pdev);
7308 return err;
7309}
7310
7311/**
7312 * e1000_remove - Device Removal Routine
7313 * @pdev: PCI device information struct
7314 *
7315 * e1000_remove is called by the PCI subsystem to alert the driver
7316 * that it should release a PCI device. The could be caused by a
7317 * Hot-Plug event, or because the driver is going to be removed from
7318 * memory.
7319 **/
7320static void e1000_remove(struct pci_dev *pdev)
7321{
7322 struct net_device *netdev = pci_get_drvdata(pdev);
7323 struct e1000_adapter *adapter = netdev_priv(netdev);
7324 bool down = test_bit(__E1000_DOWN, &adapter->state);
7325
7326 e1000e_ptp_remove(adapter);
7327
7328 /* The timers may be rescheduled, so explicitly disable them
7329 * from being rescheduled.
7330 */
7331 if (!down)
7332 set_bit(__E1000_DOWN, &adapter->state);
7333 del_timer_sync(&adapter->watchdog_timer);
7334 del_timer_sync(&adapter->phy_info_timer);
7335
7336 cancel_work_sync(&adapter->reset_task);
7337 cancel_work_sync(&adapter->watchdog_task);
7338 cancel_work_sync(&adapter->downshift_task);
7339 cancel_work_sync(&adapter->update_phy_task);
7340 cancel_work_sync(&adapter->print_hang_task);
7341
7342 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7343 cancel_work_sync(&adapter->tx_hwtstamp_work);
7344 if (adapter->tx_hwtstamp_skb) {
7345 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7346 adapter->tx_hwtstamp_skb = NULL;
7347 }
7348 }
7349
7350 /* Don't lie to e1000_close() down the road. */
7351 if (!down)
7352 clear_bit(__E1000_DOWN, &adapter->state);
7353 unregister_netdev(netdev);
7354
7355 if (pci_dev_run_wake(pdev))
7356 pm_runtime_get_noresume(&pdev->dev);
7357
7358 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7359 * would have already happened in close and is redundant.
7360 */
7361 e1000e_release_hw_control(adapter);
7362
7363 e1000e_reset_interrupt_capability(adapter);
7364 kfree(adapter->tx_ring);
7365 kfree(adapter->rx_ring);
7366
7367 iounmap(adapter->hw.hw_addr);
7368 if ((adapter->hw.flash_address) &&
7369 (adapter->hw.mac.type < e1000_pch_spt))
7370 iounmap(adapter->hw.flash_address);
7371 pci_release_selected_regions(pdev,
7372 pci_select_bars(pdev, IORESOURCE_MEM));
7373
7374 free_netdev(netdev);
7375
7376 /* AER disable */
7377 pci_disable_pcie_error_reporting(pdev);
7378
7379 pci_disable_device(pdev);
7380}
7381
7382/* PCI Error Recovery (ERS) */
7383static const struct pci_error_handlers e1000_err_handler = {
7384 .error_detected = e1000_io_error_detected,
7385 .slot_reset = e1000_io_slot_reset,
7386 .resume = e1000_io_resume,
7387};
7388
7389static const struct pci_device_id e1000_pci_tbl[] = {
7390 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7391 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7392 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7393 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7394 board_82571 },
7395 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7396 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7397 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7398 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7399 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7400
7401 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7402 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7403 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7404 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7405
7406 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7407 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7408 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7409
7410 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7411 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7412 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7413
7414 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7415 board_80003es2lan },
7416 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7417 board_80003es2lan },
7418 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7419 board_80003es2lan },
7420 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7421 board_80003es2lan },
7422
7423 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7424 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7425 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7426 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7427 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7428 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7429 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7430 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7431
7432 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7433 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7434 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7435 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7436 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7437 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7438 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7439 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7440 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7441
7442 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7443 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7444 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7445
7446 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7447 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7448 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7449
7450 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7451 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7452 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7453 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7454
7455 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7457
7458 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7462 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7464 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7466 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7469 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7470
7471 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7472};
7473MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7474
7475static const struct dev_pm_ops e1000_pm_ops = {
7476#ifdef CONFIG_PM_SLEEP
7477 .suspend = e1000e_pm_suspend,
7478 .resume = e1000e_pm_resume,
7479 .freeze = e1000e_pm_freeze,
7480 .thaw = e1000e_pm_thaw,
7481 .poweroff = e1000e_pm_suspend,
7482 .restore = e1000e_pm_resume,
7483#endif
7484 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7485 e1000e_pm_runtime_idle)
7486};
7487
7488/* PCI Device API Driver */
7489static struct pci_driver e1000_driver = {
7490 .name = e1000e_driver_name,
7491 .id_table = e1000_pci_tbl,
7492 .probe = e1000_probe,
7493 .remove = e1000_remove,
7494 .driver = {
7495 .pm = &e1000_pm_ops,
7496 },
7497 .shutdown = e1000_shutdown,
7498 .err_handler = &e1000_err_handler
7499};
7500
7501/**
7502 * e1000_init_module - Driver Registration Routine
7503 *
7504 * e1000_init_module is the first routine called when the driver is
7505 * loaded. All it does is register with the PCI subsystem.
7506 **/
7507static int __init e1000_init_module(void)
7508{
7509 int ret;
7510
7511 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7512 e1000e_driver_version);
7513 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7514 ret = pci_register_driver(&e1000_driver);
7515
7516 return ret;
7517}
7518module_init(e1000_init_module);
7519
7520/**
7521 * e1000_exit_module - Driver Exit Cleanup Routine
7522 *
7523 * e1000_exit_module is called just before the driver is removed
7524 * from memory.
7525 **/
7526static void __exit e1000_exit_module(void)
7527{
7528 pci_unregister_driver(&e1000_driver);
7529}
7530module_exit(e1000_exit_module);
7531
7532MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7533MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7534MODULE_LICENSE("GPL");
7535MODULE_VERSION(DRV_VERSION);
7536
7537/* netdev.c */