Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* Intel PRO/1000 Linux driver |
| 2 | * Copyright(c) 1999 - 2015 Intel Corporation. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms and conditions of the GNU General Public License, |
| 6 | * version 2, as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 11 | * more details. |
| 12 | * |
| 13 | * The full GNU General Public License is included in this distribution in |
| 14 | * the file called "COPYING". |
| 15 | * |
| 16 | * Contact Information: |
| 17 | * Linux NICS <linux.nics@intel.com> |
| 18 | * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 19 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 20 | */ |
| 21 | |
| 22 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 23 | |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/types.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/pci.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/pagemap.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/netdevice.h> |
| 32 | #include <linux/interrupt.h> |
| 33 | #include <linux/tcp.h> |
| 34 | #include <linux/ipv6.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <net/checksum.h> |
| 37 | #include <net/ip6_checksum.h> |
| 38 | #include <linux/ethtool.h> |
| 39 | #include <linux/if_vlan.h> |
| 40 | #include <linux/cpu.h> |
| 41 | #include <linux/smp.h> |
| 42 | #include <linux/pm_qos.h> |
| 43 | #include <linux/pm_runtime.h> |
| 44 | #include <linux/aer.h> |
| 45 | #include <linux/prefetch.h> |
| 46 | |
| 47 | #include "e1000.h" |
| 48 | |
| 49 | #define DRV_EXTRAVERSION "-k" |
| 50 | |
| 51 | #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION |
| 52 | char e1000e_driver_name[] = "e1000e"; |
| 53 | const char e1000e_driver_version[] = DRV_VERSION; |
| 54 | |
| 55 | #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) |
| 56 | static int debug = -1; |
| 57 | module_param(debug, int, 0); |
| 58 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| 59 | |
| 60 | static const struct e1000_info *e1000_info_tbl[] = { |
| 61 | [board_82571] = &e1000_82571_info, |
| 62 | [board_82572] = &e1000_82572_info, |
| 63 | [board_82573] = &e1000_82573_info, |
| 64 | [board_82574] = &e1000_82574_info, |
| 65 | [board_82583] = &e1000_82583_info, |
| 66 | [board_80003es2lan] = &e1000_es2_info, |
| 67 | [board_ich8lan] = &e1000_ich8_info, |
| 68 | [board_ich9lan] = &e1000_ich9_info, |
| 69 | [board_ich10lan] = &e1000_ich10_info, |
| 70 | [board_pchlan] = &e1000_pch_info, |
| 71 | [board_pch2lan] = &e1000_pch2_info, |
| 72 | [board_pch_lpt] = &e1000_pch_lpt_info, |
| 73 | [board_pch_spt] = &e1000_pch_spt_info, |
| 74 | }; |
| 75 | |
| 76 | struct e1000_reg_info { |
| 77 | u32 ofs; |
| 78 | char *name; |
| 79 | }; |
| 80 | |
| 81 | static const struct e1000_reg_info e1000_reg_info_tbl[] = { |
| 82 | /* General Registers */ |
| 83 | {E1000_CTRL, "CTRL"}, |
| 84 | {E1000_STATUS, "STATUS"}, |
| 85 | {E1000_CTRL_EXT, "CTRL_EXT"}, |
| 86 | |
| 87 | /* Interrupt Registers */ |
| 88 | {E1000_ICR, "ICR"}, |
| 89 | |
| 90 | /* Rx Registers */ |
| 91 | {E1000_RCTL, "RCTL"}, |
| 92 | {E1000_RDLEN(0), "RDLEN"}, |
| 93 | {E1000_RDH(0), "RDH"}, |
| 94 | {E1000_RDT(0), "RDT"}, |
| 95 | {E1000_RDTR, "RDTR"}, |
| 96 | {E1000_RXDCTL(0), "RXDCTL"}, |
| 97 | {E1000_ERT, "ERT"}, |
| 98 | {E1000_RDBAL(0), "RDBAL"}, |
| 99 | {E1000_RDBAH(0), "RDBAH"}, |
| 100 | {E1000_RDFH, "RDFH"}, |
| 101 | {E1000_RDFT, "RDFT"}, |
| 102 | {E1000_RDFHS, "RDFHS"}, |
| 103 | {E1000_RDFTS, "RDFTS"}, |
| 104 | {E1000_RDFPC, "RDFPC"}, |
| 105 | |
| 106 | /* Tx Registers */ |
| 107 | {E1000_TCTL, "TCTL"}, |
| 108 | {E1000_TDBAL(0), "TDBAL"}, |
| 109 | {E1000_TDBAH(0), "TDBAH"}, |
| 110 | {E1000_TDLEN(0), "TDLEN"}, |
| 111 | {E1000_TDH(0), "TDH"}, |
| 112 | {E1000_TDT(0), "TDT"}, |
| 113 | {E1000_TIDV, "TIDV"}, |
| 114 | {E1000_TXDCTL(0), "TXDCTL"}, |
| 115 | {E1000_TADV, "TADV"}, |
| 116 | {E1000_TARC(0), "TARC"}, |
| 117 | {E1000_TDFH, "TDFH"}, |
| 118 | {E1000_TDFT, "TDFT"}, |
| 119 | {E1000_TDFHS, "TDFHS"}, |
| 120 | {E1000_TDFTS, "TDFTS"}, |
| 121 | {E1000_TDFPC, "TDFPC"}, |
| 122 | |
| 123 | /* List Terminator */ |
| 124 | {0, NULL} |
| 125 | }; |
| 126 | |
| 127 | /** |
| 128 | * __ew32_prepare - prepare to write to MAC CSR register on certain parts |
| 129 | * @hw: pointer to the HW structure |
| 130 | * |
| 131 | * When updating the MAC CSR registers, the Manageability Engine (ME) could |
| 132 | * be accessing the registers at the same time. Normally, this is handled in |
| 133 | * h/w by an arbiter but on some parts there is a bug that acknowledges Host |
| 134 | * accesses later than it should which could result in the register to have |
| 135 | * an incorrect value. Workaround this by checking the FWSM register which |
| 136 | * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set |
| 137 | * and try again a number of times. |
| 138 | **/ |
| 139 | s32 __ew32_prepare(struct e1000_hw *hw) |
| 140 | { |
| 141 | s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; |
| 142 | |
| 143 | while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) |
| 144 | udelay(50); |
| 145 | |
| 146 | return i; |
| 147 | } |
| 148 | |
| 149 | void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) |
| 150 | { |
| 151 | if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 152 | __ew32_prepare(hw); |
| 153 | |
| 154 | writel(val, hw->hw_addr + reg); |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * e1000_regdump - register printout routine |
| 159 | * @hw: pointer to the HW structure |
| 160 | * @reginfo: pointer to the register info table |
| 161 | **/ |
| 162 | static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) |
| 163 | { |
| 164 | int n = 0; |
| 165 | char rname[16]; |
| 166 | u32 regs[8]; |
| 167 | |
| 168 | switch (reginfo->ofs) { |
| 169 | case E1000_RXDCTL(0): |
| 170 | for (n = 0; n < 2; n++) |
| 171 | regs[n] = __er32(hw, E1000_RXDCTL(n)); |
| 172 | break; |
| 173 | case E1000_TXDCTL(0): |
| 174 | for (n = 0; n < 2; n++) |
| 175 | regs[n] = __er32(hw, E1000_TXDCTL(n)); |
| 176 | break; |
| 177 | case E1000_TARC(0): |
| 178 | for (n = 0; n < 2; n++) |
| 179 | regs[n] = __er32(hw, E1000_TARC(n)); |
| 180 | break; |
| 181 | default: |
| 182 | pr_info("%-15s %08x\n", |
| 183 | reginfo->name, __er32(hw, reginfo->ofs)); |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); |
| 188 | pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); |
| 189 | } |
| 190 | |
| 191 | static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, |
| 192 | struct e1000_buffer *bi) |
| 193 | { |
| 194 | int i; |
| 195 | struct e1000_ps_page *ps_page; |
| 196 | |
| 197 | for (i = 0; i < adapter->rx_ps_pages; i++) { |
| 198 | ps_page = &bi->ps_pages[i]; |
| 199 | |
| 200 | if (ps_page->page) { |
| 201 | pr_info("packet dump for ps_page %d:\n", i); |
| 202 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, |
| 203 | 16, 1, page_address(ps_page->page), |
| 204 | PAGE_SIZE, true); |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | * e1000e_dump - Print registers, Tx-ring and Rx-ring |
| 211 | * @adapter: board private structure |
| 212 | **/ |
| 213 | static void e1000e_dump(struct e1000_adapter *adapter) |
| 214 | { |
| 215 | struct net_device *netdev = adapter->netdev; |
| 216 | struct e1000_hw *hw = &adapter->hw; |
| 217 | struct e1000_reg_info *reginfo; |
| 218 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 219 | struct e1000_tx_desc *tx_desc; |
| 220 | struct my_u0 { |
| 221 | __le64 a; |
| 222 | __le64 b; |
| 223 | } *u0; |
| 224 | struct e1000_buffer *buffer_info; |
| 225 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 226 | union e1000_rx_desc_packet_split *rx_desc_ps; |
| 227 | union e1000_rx_desc_extended *rx_desc; |
| 228 | struct my_u1 { |
| 229 | __le64 a; |
| 230 | __le64 b; |
| 231 | __le64 c; |
| 232 | __le64 d; |
| 233 | } *u1; |
| 234 | u32 staterr; |
| 235 | int i = 0; |
| 236 | |
| 237 | if (!netif_msg_hw(adapter)) |
| 238 | return; |
| 239 | |
| 240 | /* Print netdevice Info */ |
| 241 | if (netdev) { |
| 242 | dev_info(&adapter->pdev->dev, "Net device Info\n"); |
| 243 | pr_info("Device Name state trans_start last_rx\n"); |
| 244 | pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, |
| 245 | netdev->state, netdev->trans_start, netdev->last_rx); |
| 246 | } |
| 247 | |
| 248 | /* Print Registers */ |
| 249 | dev_info(&adapter->pdev->dev, "Register Dump\n"); |
| 250 | pr_info(" Register Name Value\n"); |
| 251 | for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; |
| 252 | reginfo->name; reginfo++) { |
| 253 | e1000_regdump(hw, reginfo); |
| 254 | } |
| 255 | |
| 256 | /* Print Tx Ring Summary */ |
| 257 | if (!netdev || !netif_running(netdev)) |
| 258 | return; |
| 259 | |
| 260 | dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); |
| 261 | pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); |
| 262 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; |
| 263 | pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", |
| 264 | 0, tx_ring->next_to_use, tx_ring->next_to_clean, |
| 265 | (unsigned long long)buffer_info->dma, |
| 266 | buffer_info->length, |
| 267 | buffer_info->next_to_watch, |
| 268 | (unsigned long long)buffer_info->time_stamp); |
| 269 | |
| 270 | /* Print Tx Ring */ |
| 271 | if (!netif_msg_tx_done(adapter)) |
| 272 | goto rx_ring_summary; |
| 273 | |
| 274 | dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); |
| 275 | |
| 276 | /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) |
| 277 | * |
| 278 | * Legacy Transmit Descriptor |
| 279 | * +--------------------------------------------------------------+ |
| 280 | * 0 | Buffer Address [63:0] (Reserved on Write Back) | |
| 281 | * +--------------------------------------------------------------+ |
| 282 | * 8 | Special | CSS | Status | CMD | CSO | Length | |
| 283 | * +--------------------------------------------------------------+ |
| 284 | * 63 48 47 36 35 32 31 24 23 16 15 0 |
| 285 | * |
| 286 | * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload |
| 287 | * 63 48 47 40 39 32 31 16 15 8 7 0 |
| 288 | * +----------------------------------------------------------------+ |
| 289 | * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | |
| 290 | * +----------------------------------------------------------------+ |
| 291 | * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | |
| 292 | * +----------------------------------------------------------------+ |
| 293 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| 294 | * |
| 295 | * Extended Data Descriptor (DTYP=0x1) |
| 296 | * +----------------------------------------------------------------+ |
| 297 | * 0 | Buffer Address [63:0] | |
| 298 | * +----------------------------------------------------------------+ |
| 299 | * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | |
| 300 | * +----------------------------------------------------------------+ |
| 301 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
| 302 | */ |
| 303 | pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); |
| 304 | pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); |
| 305 | pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); |
| 306 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
| 307 | const char *next_desc; |
| 308 | tx_desc = E1000_TX_DESC(*tx_ring, i); |
| 309 | buffer_info = &tx_ring->buffer_info[i]; |
| 310 | u0 = (struct my_u0 *)tx_desc; |
| 311 | if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) |
| 312 | next_desc = " NTC/U"; |
| 313 | else if (i == tx_ring->next_to_use) |
| 314 | next_desc = " NTU"; |
| 315 | else if (i == tx_ring->next_to_clean) |
| 316 | next_desc = " NTC"; |
| 317 | else |
| 318 | next_desc = ""; |
| 319 | pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", |
| 320 | (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : |
| 321 | ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), |
| 322 | i, |
| 323 | (unsigned long long)le64_to_cpu(u0->a), |
| 324 | (unsigned long long)le64_to_cpu(u0->b), |
| 325 | (unsigned long long)buffer_info->dma, |
| 326 | buffer_info->length, buffer_info->next_to_watch, |
| 327 | (unsigned long long)buffer_info->time_stamp, |
| 328 | buffer_info->skb, next_desc); |
| 329 | |
| 330 | if (netif_msg_pktdata(adapter) && buffer_info->skb) |
| 331 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, |
| 332 | 16, 1, buffer_info->skb->data, |
| 333 | buffer_info->skb->len, true); |
| 334 | } |
| 335 | |
| 336 | /* Print Rx Ring Summary */ |
| 337 | rx_ring_summary: |
| 338 | dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); |
| 339 | pr_info("Queue [NTU] [NTC]\n"); |
| 340 | pr_info(" %5d %5X %5X\n", |
| 341 | 0, rx_ring->next_to_use, rx_ring->next_to_clean); |
| 342 | |
| 343 | /* Print Rx Ring */ |
| 344 | if (!netif_msg_rx_status(adapter)) |
| 345 | return; |
| 346 | |
| 347 | dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); |
| 348 | switch (adapter->rx_ps_pages) { |
| 349 | case 1: |
| 350 | case 2: |
| 351 | case 3: |
| 352 | /* [Extended] Packet Split Receive Descriptor Format |
| 353 | * |
| 354 | * +-----------------------------------------------------+ |
| 355 | * 0 | Buffer Address 0 [63:0] | |
| 356 | * +-----------------------------------------------------+ |
| 357 | * 8 | Buffer Address 1 [63:0] | |
| 358 | * +-----------------------------------------------------+ |
| 359 | * 16 | Buffer Address 2 [63:0] | |
| 360 | * +-----------------------------------------------------+ |
| 361 | * 24 | Buffer Address 3 [63:0] | |
| 362 | * +-----------------------------------------------------+ |
| 363 | */ |
| 364 | pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); |
| 365 | /* [Extended] Receive Descriptor (Write-Back) Format |
| 366 | * |
| 367 | * 63 48 47 32 31 13 12 8 7 4 3 0 |
| 368 | * +------------------------------------------------------+ |
| 369 | * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | |
| 370 | * | Checksum | Ident | | Queue | | Type | |
| 371 | * +------------------------------------------------------+ |
| 372 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
| 373 | * +------------------------------------------------------+ |
| 374 | * 63 48 47 32 31 20 19 0 |
| 375 | */ |
| 376 | pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); |
| 377 | for (i = 0; i < rx_ring->count; i++) { |
| 378 | const char *next_desc; |
| 379 | buffer_info = &rx_ring->buffer_info[i]; |
| 380 | rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); |
| 381 | u1 = (struct my_u1 *)rx_desc_ps; |
| 382 | staterr = |
| 383 | le32_to_cpu(rx_desc_ps->wb.middle.status_error); |
| 384 | |
| 385 | if (i == rx_ring->next_to_use) |
| 386 | next_desc = " NTU"; |
| 387 | else if (i == rx_ring->next_to_clean) |
| 388 | next_desc = " NTC"; |
| 389 | else |
| 390 | next_desc = ""; |
| 391 | |
| 392 | if (staterr & E1000_RXD_STAT_DD) { |
| 393 | /* Descriptor Done */ |
| 394 | pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", |
| 395 | "RWB", i, |
| 396 | (unsigned long long)le64_to_cpu(u1->a), |
| 397 | (unsigned long long)le64_to_cpu(u1->b), |
| 398 | (unsigned long long)le64_to_cpu(u1->c), |
| 399 | (unsigned long long)le64_to_cpu(u1->d), |
| 400 | buffer_info->skb, next_desc); |
| 401 | } else { |
| 402 | pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", |
| 403 | "R ", i, |
| 404 | (unsigned long long)le64_to_cpu(u1->a), |
| 405 | (unsigned long long)le64_to_cpu(u1->b), |
| 406 | (unsigned long long)le64_to_cpu(u1->c), |
| 407 | (unsigned long long)le64_to_cpu(u1->d), |
| 408 | (unsigned long long)buffer_info->dma, |
| 409 | buffer_info->skb, next_desc); |
| 410 | |
| 411 | if (netif_msg_pktdata(adapter)) |
| 412 | e1000e_dump_ps_pages(adapter, |
| 413 | buffer_info); |
| 414 | } |
| 415 | } |
| 416 | break; |
| 417 | default: |
| 418 | case 0: |
| 419 | /* Extended Receive Descriptor (Read) Format |
| 420 | * |
| 421 | * +-----------------------------------------------------+ |
| 422 | * 0 | Buffer Address [63:0] | |
| 423 | * +-----------------------------------------------------+ |
| 424 | * 8 | Reserved | |
| 425 | * +-----------------------------------------------------+ |
| 426 | */ |
| 427 | pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); |
| 428 | /* Extended Receive Descriptor (Write-Back) Format |
| 429 | * |
| 430 | * 63 48 47 32 31 24 23 4 3 0 |
| 431 | * +------------------------------------------------------+ |
| 432 | * | RSS Hash | | | | |
| 433 | * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | |
| 434 | * | Packet | IP | | | Type | |
| 435 | * | Checksum | Ident | | | | |
| 436 | * +------------------------------------------------------+ |
| 437 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | |
| 438 | * +------------------------------------------------------+ |
| 439 | * 63 48 47 32 31 20 19 0 |
| 440 | */ |
| 441 | pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); |
| 442 | |
| 443 | for (i = 0; i < rx_ring->count; i++) { |
| 444 | const char *next_desc; |
| 445 | |
| 446 | buffer_info = &rx_ring->buffer_info[i]; |
| 447 | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| 448 | u1 = (struct my_u1 *)rx_desc; |
| 449 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 450 | |
| 451 | if (i == rx_ring->next_to_use) |
| 452 | next_desc = " NTU"; |
| 453 | else if (i == rx_ring->next_to_clean) |
| 454 | next_desc = " NTC"; |
| 455 | else |
| 456 | next_desc = ""; |
| 457 | |
| 458 | if (staterr & E1000_RXD_STAT_DD) { |
| 459 | /* Descriptor Done */ |
| 460 | pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", |
| 461 | "RWB", i, |
| 462 | (unsigned long long)le64_to_cpu(u1->a), |
| 463 | (unsigned long long)le64_to_cpu(u1->b), |
| 464 | buffer_info->skb, next_desc); |
| 465 | } else { |
| 466 | pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", |
| 467 | "R ", i, |
| 468 | (unsigned long long)le64_to_cpu(u1->a), |
| 469 | (unsigned long long)le64_to_cpu(u1->b), |
| 470 | (unsigned long long)buffer_info->dma, |
| 471 | buffer_info->skb, next_desc); |
| 472 | |
| 473 | if (netif_msg_pktdata(adapter) && |
| 474 | buffer_info->skb) |
| 475 | print_hex_dump(KERN_INFO, "", |
| 476 | DUMP_PREFIX_ADDRESS, 16, |
| 477 | 1, |
| 478 | buffer_info->skb->data, |
| 479 | adapter->rx_buffer_len, |
| 480 | true); |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | /** |
| 487 | * e1000_desc_unused - calculate if we have unused descriptors |
| 488 | **/ |
| 489 | static int e1000_desc_unused(struct e1000_ring *ring) |
| 490 | { |
| 491 | if (ring->next_to_clean > ring->next_to_use) |
| 492 | return ring->next_to_clean - ring->next_to_use - 1; |
| 493 | |
| 494 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
| 495 | } |
| 496 | |
| 497 | /** |
| 498 | * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp |
| 499 | * @adapter: board private structure |
| 500 | * @hwtstamps: time stamp structure to update |
| 501 | * @systim: unsigned 64bit system time value. |
| 502 | * |
| 503 | * Convert the system time value stored in the RX/TXSTMP registers into a |
| 504 | * hwtstamp which can be used by the upper level time stamping functions. |
| 505 | * |
| 506 | * The 'systim_lock' spinlock is used to protect the consistency of the |
| 507 | * system time value. This is needed because reading the 64 bit time |
| 508 | * value involves reading two 32 bit registers. The first read latches the |
| 509 | * value. |
| 510 | **/ |
| 511 | static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, |
| 512 | struct skb_shared_hwtstamps *hwtstamps, |
| 513 | u64 systim) |
| 514 | { |
| 515 | u64 ns; |
| 516 | unsigned long flags; |
| 517 | |
| 518 | spin_lock_irqsave(&adapter->systim_lock, flags); |
| 519 | ns = timecounter_cyc2time(&adapter->tc, systim); |
| 520 | spin_unlock_irqrestore(&adapter->systim_lock, flags); |
| 521 | |
| 522 | memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| 523 | hwtstamps->hwtstamp = ns_to_ktime(ns); |
| 524 | } |
| 525 | |
| 526 | /** |
| 527 | * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp |
| 528 | * @adapter: board private structure |
| 529 | * @status: descriptor extended error and status field |
| 530 | * @skb: particular skb to include time stamp |
| 531 | * |
| 532 | * If the time stamp is valid, convert it into the timecounter ns value |
| 533 | * and store that result into the shhwtstamps structure which is passed |
| 534 | * up the network stack. |
| 535 | **/ |
| 536 | static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, |
| 537 | struct sk_buff *skb) |
| 538 | { |
| 539 | struct e1000_hw *hw = &adapter->hw; |
| 540 | u64 rxstmp; |
| 541 | |
| 542 | if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || |
| 543 | !(status & E1000_RXDEXT_STATERR_TST) || |
| 544 | !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| 545 | return; |
| 546 | |
| 547 | /* The Rx time stamp registers contain the time stamp. No other |
| 548 | * received packet will be time stamped until the Rx time stamp |
| 549 | * registers are read. Because only one packet can be time stamped |
| 550 | * at a time, the register values must belong to this packet and |
| 551 | * therefore none of the other additional attributes need to be |
| 552 | * compared. |
| 553 | */ |
| 554 | rxstmp = (u64)er32(RXSTMPL); |
| 555 | rxstmp |= (u64)er32(RXSTMPH) << 32; |
| 556 | e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); |
| 557 | |
| 558 | adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; |
| 559 | } |
| 560 | |
| 561 | /** |
| 562 | * e1000_receive_skb - helper function to handle Rx indications |
| 563 | * @adapter: board private structure |
| 564 | * @staterr: descriptor extended error and status field as written by hardware |
| 565 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
| 566 | * @skb: pointer to sk_buff to be indicated to stack |
| 567 | **/ |
| 568 | static void e1000_receive_skb(struct e1000_adapter *adapter, |
| 569 | struct net_device *netdev, struct sk_buff *skb, |
| 570 | u32 staterr, __le16 vlan) |
| 571 | { |
| 572 | u16 tag = le16_to_cpu(vlan); |
| 573 | |
| 574 | e1000e_rx_hwtstamp(adapter, staterr, skb); |
| 575 | |
| 576 | skb->protocol = eth_type_trans(skb, netdev); |
| 577 | |
| 578 | if (staterr & E1000_RXD_STAT_VP) |
| 579 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); |
| 580 | |
| 581 | napi_gro_receive(&adapter->napi, skb); |
| 582 | } |
| 583 | |
| 584 | /** |
| 585 | * e1000_rx_checksum - Receive Checksum Offload |
| 586 | * @adapter: board private structure |
| 587 | * @status_err: receive descriptor status and error fields |
| 588 | * @csum: receive descriptor csum field |
| 589 | * @sk_buff: socket buffer with received data |
| 590 | **/ |
| 591 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
| 592 | struct sk_buff *skb) |
| 593 | { |
| 594 | u16 status = (u16)status_err; |
| 595 | u8 errors = (u8)(status_err >> 24); |
| 596 | |
| 597 | skb_checksum_none_assert(skb); |
| 598 | |
| 599 | /* Rx checksum disabled */ |
| 600 | if (!(adapter->netdev->features & NETIF_F_RXCSUM)) |
| 601 | return; |
| 602 | |
| 603 | /* Ignore Checksum bit is set */ |
| 604 | if (status & E1000_RXD_STAT_IXSM) |
| 605 | return; |
| 606 | |
| 607 | /* TCP/UDP checksum error bit or IP checksum error bit is set */ |
| 608 | if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { |
| 609 | /* let the stack verify checksum errors */ |
| 610 | adapter->hw_csum_err++; |
| 611 | return; |
| 612 | } |
| 613 | |
| 614 | /* TCP/UDP Checksum has not been calculated */ |
| 615 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
| 616 | return; |
| 617 | |
| 618 | /* It must be a TCP or UDP packet with a valid checksum */ |
| 619 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 620 | adapter->hw_csum_good++; |
| 621 | } |
| 622 | |
| 623 | static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) |
| 624 | { |
| 625 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 626 | struct e1000_hw *hw = &adapter->hw; |
| 627 | s32 ret_val = __ew32_prepare(hw); |
| 628 | |
| 629 | writel(i, rx_ring->tail); |
| 630 | |
| 631 | if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { |
| 632 | u32 rctl = er32(RCTL); |
| 633 | |
| 634 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 635 | e_err("ME firmware caused invalid RDT - resetting\n"); |
| 636 | schedule_work(&adapter->reset_task); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) |
| 641 | { |
| 642 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 643 | struct e1000_hw *hw = &adapter->hw; |
| 644 | s32 ret_val = __ew32_prepare(hw); |
| 645 | |
| 646 | writel(i, tx_ring->tail); |
| 647 | |
| 648 | if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { |
| 649 | u32 tctl = er32(TCTL); |
| 650 | |
| 651 | ew32(TCTL, tctl & ~E1000_TCTL_EN); |
| 652 | e_err("ME firmware caused invalid TDT - resetting\n"); |
| 653 | schedule_work(&adapter->reset_task); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | /** |
| 658 | * e1000_alloc_rx_buffers - Replace used receive buffers |
| 659 | * @rx_ring: Rx descriptor ring |
| 660 | **/ |
| 661 | static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, |
| 662 | int cleaned_count, gfp_t gfp) |
| 663 | { |
| 664 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 665 | struct net_device *netdev = adapter->netdev; |
| 666 | struct pci_dev *pdev = adapter->pdev; |
| 667 | union e1000_rx_desc_extended *rx_desc; |
| 668 | struct e1000_buffer *buffer_info; |
| 669 | struct sk_buff *skb; |
| 670 | unsigned int i; |
| 671 | unsigned int bufsz = adapter->rx_buffer_len; |
| 672 | |
| 673 | i = rx_ring->next_to_use; |
| 674 | buffer_info = &rx_ring->buffer_info[i]; |
| 675 | |
| 676 | while (cleaned_count--) { |
| 677 | skb = buffer_info->skb; |
| 678 | if (skb) { |
| 679 | skb_trim(skb, 0); |
| 680 | goto map_skb; |
| 681 | } |
| 682 | |
| 683 | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); |
| 684 | if (!skb) { |
| 685 | /* Better luck next round */ |
| 686 | adapter->alloc_rx_buff_failed++; |
| 687 | break; |
| 688 | } |
| 689 | |
| 690 | buffer_info->skb = skb; |
| 691 | map_skb: |
| 692 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
| 693 | adapter->rx_buffer_len, |
| 694 | DMA_FROM_DEVICE); |
| 695 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| 696 | dev_err(&pdev->dev, "Rx DMA map failed\n"); |
| 697 | adapter->rx_dma_failed++; |
| 698 | break; |
| 699 | } |
| 700 | |
| 701 | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| 702 | rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| 703 | |
| 704 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
| 705 | /* Force memory writes to complete before letting h/w |
| 706 | * know there are new descriptors to fetch. (Only |
| 707 | * applicable for weak-ordered memory model archs, |
| 708 | * such as IA-64). |
| 709 | */ |
| 710 | wmb(); |
| 711 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 712 | e1000e_update_rdt_wa(rx_ring, i); |
| 713 | else |
| 714 | writel(i, rx_ring->tail); |
| 715 | } |
| 716 | i++; |
| 717 | if (i == rx_ring->count) |
| 718 | i = 0; |
| 719 | buffer_info = &rx_ring->buffer_info[i]; |
| 720 | } |
| 721 | |
| 722 | rx_ring->next_to_use = i; |
| 723 | } |
| 724 | |
| 725 | /** |
| 726 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
| 727 | * @rx_ring: Rx descriptor ring |
| 728 | **/ |
| 729 | static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, |
| 730 | int cleaned_count, gfp_t gfp) |
| 731 | { |
| 732 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 733 | struct net_device *netdev = adapter->netdev; |
| 734 | struct pci_dev *pdev = adapter->pdev; |
| 735 | union e1000_rx_desc_packet_split *rx_desc; |
| 736 | struct e1000_buffer *buffer_info; |
| 737 | struct e1000_ps_page *ps_page; |
| 738 | struct sk_buff *skb; |
| 739 | unsigned int i, j; |
| 740 | |
| 741 | i = rx_ring->next_to_use; |
| 742 | buffer_info = &rx_ring->buffer_info[i]; |
| 743 | |
| 744 | while (cleaned_count--) { |
| 745 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| 746 | |
| 747 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| 748 | ps_page = &buffer_info->ps_pages[j]; |
| 749 | if (j >= adapter->rx_ps_pages) { |
| 750 | /* all unused desc entries get hw null ptr */ |
| 751 | rx_desc->read.buffer_addr[j + 1] = |
| 752 | ~cpu_to_le64(0); |
| 753 | continue; |
| 754 | } |
| 755 | if (!ps_page->page) { |
| 756 | ps_page->page = alloc_page(gfp); |
| 757 | if (!ps_page->page) { |
| 758 | adapter->alloc_rx_buff_failed++; |
| 759 | goto no_buffers; |
| 760 | } |
| 761 | ps_page->dma = dma_map_page(&pdev->dev, |
| 762 | ps_page->page, |
| 763 | 0, PAGE_SIZE, |
| 764 | DMA_FROM_DEVICE); |
| 765 | if (dma_mapping_error(&pdev->dev, |
| 766 | ps_page->dma)) { |
| 767 | dev_err(&adapter->pdev->dev, |
| 768 | "Rx DMA page map failed\n"); |
| 769 | adapter->rx_dma_failed++; |
| 770 | goto no_buffers; |
| 771 | } |
| 772 | } |
| 773 | /* Refresh the desc even if buffer_addrs |
| 774 | * didn't change because each write-back |
| 775 | * erases this info. |
| 776 | */ |
| 777 | rx_desc->read.buffer_addr[j + 1] = |
| 778 | cpu_to_le64(ps_page->dma); |
| 779 | } |
| 780 | |
| 781 | skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, |
| 782 | gfp); |
| 783 | |
| 784 | if (!skb) { |
| 785 | adapter->alloc_rx_buff_failed++; |
| 786 | break; |
| 787 | } |
| 788 | |
| 789 | buffer_info->skb = skb; |
| 790 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
| 791 | adapter->rx_ps_bsize0, |
| 792 | DMA_FROM_DEVICE); |
| 793 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| 794 | dev_err(&pdev->dev, "Rx DMA map failed\n"); |
| 795 | adapter->rx_dma_failed++; |
| 796 | /* cleanup skb */ |
| 797 | dev_kfree_skb_any(skb); |
| 798 | buffer_info->skb = NULL; |
| 799 | break; |
| 800 | } |
| 801 | |
| 802 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
| 803 | |
| 804 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
| 805 | /* Force memory writes to complete before letting h/w |
| 806 | * know there are new descriptors to fetch. (Only |
| 807 | * applicable for weak-ordered memory model archs, |
| 808 | * such as IA-64). |
| 809 | */ |
| 810 | wmb(); |
| 811 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 812 | e1000e_update_rdt_wa(rx_ring, i << 1); |
| 813 | else |
| 814 | writel(i << 1, rx_ring->tail); |
| 815 | } |
| 816 | |
| 817 | i++; |
| 818 | if (i == rx_ring->count) |
| 819 | i = 0; |
| 820 | buffer_info = &rx_ring->buffer_info[i]; |
| 821 | } |
| 822 | |
| 823 | no_buffers: |
| 824 | rx_ring->next_to_use = i; |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
| 829 | * @rx_ring: Rx descriptor ring |
| 830 | * @cleaned_count: number of buffers to allocate this pass |
| 831 | **/ |
| 832 | |
| 833 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, |
| 834 | int cleaned_count, gfp_t gfp) |
| 835 | { |
| 836 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 837 | struct net_device *netdev = adapter->netdev; |
| 838 | struct pci_dev *pdev = adapter->pdev; |
| 839 | union e1000_rx_desc_extended *rx_desc; |
| 840 | struct e1000_buffer *buffer_info; |
| 841 | struct sk_buff *skb; |
| 842 | unsigned int i; |
| 843 | unsigned int bufsz = 256 - 16; /* for skb_reserve */ |
| 844 | |
| 845 | i = rx_ring->next_to_use; |
| 846 | buffer_info = &rx_ring->buffer_info[i]; |
| 847 | |
| 848 | while (cleaned_count--) { |
| 849 | skb = buffer_info->skb; |
| 850 | if (skb) { |
| 851 | skb_trim(skb, 0); |
| 852 | goto check_page; |
| 853 | } |
| 854 | |
| 855 | skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); |
| 856 | if (unlikely(!skb)) { |
| 857 | /* Better luck next round */ |
| 858 | adapter->alloc_rx_buff_failed++; |
| 859 | break; |
| 860 | } |
| 861 | |
| 862 | buffer_info->skb = skb; |
| 863 | check_page: |
| 864 | /* allocate a new page if necessary */ |
| 865 | if (!buffer_info->page) { |
| 866 | buffer_info->page = alloc_page(gfp); |
| 867 | if (unlikely(!buffer_info->page)) { |
| 868 | adapter->alloc_rx_buff_failed++; |
| 869 | break; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | if (!buffer_info->dma) { |
| 874 | buffer_info->dma = dma_map_page(&pdev->dev, |
| 875 | buffer_info->page, 0, |
| 876 | PAGE_SIZE, |
| 877 | DMA_FROM_DEVICE); |
| 878 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
| 879 | adapter->alloc_rx_buff_failed++; |
| 880 | break; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| 885 | rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); |
| 886 | |
| 887 | if (unlikely(++i == rx_ring->count)) |
| 888 | i = 0; |
| 889 | buffer_info = &rx_ring->buffer_info[i]; |
| 890 | } |
| 891 | |
| 892 | if (likely(rx_ring->next_to_use != i)) { |
| 893 | rx_ring->next_to_use = i; |
| 894 | if (unlikely(i-- == 0)) |
| 895 | i = (rx_ring->count - 1); |
| 896 | |
| 897 | /* Force memory writes to complete before letting h/w |
| 898 | * know there are new descriptors to fetch. (Only |
| 899 | * applicable for weak-ordered memory model archs, |
| 900 | * such as IA-64). |
| 901 | */ |
| 902 | wmb(); |
| 903 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 904 | e1000e_update_rdt_wa(rx_ring, i); |
| 905 | else |
| 906 | writel(i, rx_ring->tail); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, |
| 911 | struct sk_buff *skb) |
| 912 | { |
| 913 | if (netdev->features & NETIF_F_RXHASH) |
| 914 | skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); |
| 915 | } |
| 916 | |
| 917 | /** |
| 918 | * e1000_clean_rx_irq - Send received data up the network stack |
| 919 | * @rx_ring: Rx descriptor ring |
| 920 | * |
| 921 | * the return value indicates whether actual cleaning was done, there |
| 922 | * is no guarantee that everything was cleaned |
| 923 | **/ |
| 924 | static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, |
| 925 | int work_to_do) |
| 926 | { |
| 927 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 928 | struct net_device *netdev = adapter->netdev; |
| 929 | struct pci_dev *pdev = adapter->pdev; |
| 930 | struct e1000_hw *hw = &adapter->hw; |
| 931 | union e1000_rx_desc_extended *rx_desc, *next_rxd; |
| 932 | struct e1000_buffer *buffer_info, *next_buffer; |
| 933 | u32 length, staterr; |
| 934 | unsigned int i; |
| 935 | int cleaned_count = 0; |
| 936 | bool cleaned = false; |
| 937 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| 938 | |
| 939 | i = rx_ring->next_to_clean; |
| 940 | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| 941 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 942 | buffer_info = &rx_ring->buffer_info[i]; |
| 943 | |
| 944 | while (staterr & E1000_RXD_STAT_DD) { |
| 945 | struct sk_buff *skb; |
| 946 | |
| 947 | if (*work_done >= work_to_do) |
| 948 | break; |
| 949 | (*work_done)++; |
| 950 | dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| 951 | |
| 952 | skb = buffer_info->skb; |
| 953 | buffer_info->skb = NULL; |
| 954 | |
| 955 | prefetch(skb->data - NET_IP_ALIGN); |
| 956 | |
| 957 | i++; |
| 958 | if (i == rx_ring->count) |
| 959 | i = 0; |
| 960 | next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); |
| 961 | prefetch(next_rxd); |
| 962 | |
| 963 | next_buffer = &rx_ring->buffer_info[i]; |
| 964 | |
| 965 | cleaned = true; |
| 966 | cleaned_count++; |
| 967 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
| 968 | adapter->rx_buffer_len, DMA_FROM_DEVICE); |
| 969 | buffer_info->dma = 0; |
| 970 | |
| 971 | length = le16_to_cpu(rx_desc->wb.upper.length); |
| 972 | |
| 973 | /* !EOP means multiple descriptors were used to store a single |
| 974 | * packet, if that's the case we need to toss it. In fact, we |
| 975 | * need to toss every packet with the EOP bit clear and the |
| 976 | * next frame that _does_ have the EOP bit set, as it is by |
| 977 | * definition only a frame fragment |
| 978 | */ |
| 979 | if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) |
| 980 | adapter->flags2 |= FLAG2_IS_DISCARDING; |
| 981 | |
| 982 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
| 983 | /* All receives must fit into a single buffer */ |
| 984 | e_dbg("Receive packet consumed multiple buffers\n"); |
| 985 | /* recycle */ |
| 986 | buffer_info->skb = skb; |
| 987 | if (staterr & E1000_RXD_STAT_EOP) |
| 988 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| 989 | goto next_desc; |
| 990 | } |
| 991 | |
| 992 | if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| 993 | !(netdev->features & NETIF_F_RXALL))) { |
| 994 | /* recycle */ |
| 995 | buffer_info->skb = skb; |
| 996 | goto next_desc; |
| 997 | } |
| 998 | |
| 999 | /* adjust length to remove Ethernet CRC */ |
| 1000 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| 1001 | /* If configured to store CRC, don't subtract FCS, |
| 1002 | * but keep the FCS bytes out of the total_rx_bytes |
| 1003 | * counter |
| 1004 | */ |
| 1005 | if (netdev->features & NETIF_F_RXFCS) |
| 1006 | total_rx_bytes -= 4; |
| 1007 | else |
| 1008 | length -= 4; |
| 1009 | } |
| 1010 | |
| 1011 | total_rx_bytes += length; |
| 1012 | total_rx_packets++; |
| 1013 | |
| 1014 | /* code added for copybreak, this should improve |
| 1015 | * performance for small packets with large amounts |
| 1016 | * of reassembly being done in the stack |
| 1017 | */ |
| 1018 | if (length < copybreak) { |
| 1019 | struct sk_buff *new_skb = |
| 1020 | napi_alloc_skb(&adapter->napi, length); |
| 1021 | if (new_skb) { |
| 1022 | skb_copy_to_linear_data_offset(new_skb, |
| 1023 | -NET_IP_ALIGN, |
| 1024 | (skb->data - |
| 1025 | NET_IP_ALIGN), |
| 1026 | (length + |
| 1027 | NET_IP_ALIGN)); |
| 1028 | /* save the skb in buffer_info as good */ |
| 1029 | buffer_info->skb = skb; |
| 1030 | skb = new_skb; |
| 1031 | } |
| 1032 | /* else just continue with the old one */ |
| 1033 | } |
| 1034 | /* end copybreak code */ |
| 1035 | skb_put(skb, length); |
| 1036 | |
| 1037 | /* Receive Checksum Offload */ |
| 1038 | e1000_rx_checksum(adapter, staterr, skb); |
| 1039 | |
| 1040 | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| 1041 | |
| 1042 | e1000_receive_skb(adapter, netdev, skb, staterr, |
| 1043 | rx_desc->wb.upper.vlan); |
| 1044 | |
| 1045 | next_desc: |
| 1046 | rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); |
| 1047 | |
| 1048 | /* return some buffers to hardware, one at a time is too slow */ |
| 1049 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| 1050 | adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| 1051 | GFP_ATOMIC); |
| 1052 | cleaned_count = 0; |
| 1053 | } |
| 1054 | |
| 1055 | /* use prefetched values */ |
| 1056 | rx_desc = next_rxd; |
| 1057 | buffer_info = next_buffer; |
| 1058 | |
| 1059 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 1060 | } |
| 1061 | rx_ring->next_to_clean = i; |
| 1062 | |
| 1063 | cleaned_count = e1000_desc_unused(rx_ring); |
| 1064 | if (cleaned_count) |
| 1065 | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| 1066 | |
| 1067 | adapter->total_rx_bytes += total_rx_bytes; |
| 1068 | adapter->total_rx_packets += total_rx_packets; |
| 1069 | return cleaned; |
| 1070 | } |
| 1071 | |
| 1072 | static void e1000_put_txbuf(struct e1000_ring *tx_ring, |
| 1073 | struct e1000_buffer *buffer_info) |
| 1074 | { |
| 1075 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 1076 | |
| 1077 | if (buffer_info->dma) { |
| 1078 | if (buffer_info->mapped_as_page) |
| 1079 | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
| 1080 | buffer_info->length, DMA_TO_DEVICE); |
| 1081 | else |
| 1082 | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
| 1083 | buffer_info->length, DMA_TO_DEVICE); |
| 1084 | buffer_info->dma = 0; |
| 1085 | } |
| 1086 | if (buffer_info->skb) { |
| 1087 | dev_kfree_skb_any(buffer_info->skb); |
| 1088 | buffer_info->skb = NULL; |
| 1089 | } |
| 1090 | buffer_info->time_stamp = 0; |
| 1091 | } |
| 1092 | |
| 1093 | static void e1000_print_hw_hang(struct work_struct *work) |
| 1094 | { |
| 1095 | struct e1000_adapter *adapter = container_of(work, |
| 1096 | struct e1000_adapter, |
| 1097 | print_hang_task); |
| 1098 | struct net_device *netdev = adapter->netdev; |
| 1099 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 1100 | unsigned int i = tx_ring->next_to_clean; |
| 1101 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
| 1102 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| 1103 | struct e1000_hw *hw = &adapter->hw; |
| 1104 | u16 phy_status, phy_1000t_status, phy_ext_status; |
| 1105 | u16 pci_status; |
| 1106 | |
| 1107 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 1108 | return; |
| 1109 | |
| 1110 | if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { |
| 1111 | /* May be block on write-back, flush and detect again |
| 1112 | * flush pending descriptor writebacks to memory |
| 1113 | */ |
| 1114 | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| 1115 | /* execute the writes immediately */ |
| 1116 | e1e_flush(); |
| 1117 | /* Due to rare timing issues, write to TIDV again to ensure |
| 1118 | * the write is successful |
| 1119 | */ |
| 1120 | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| 1121 | /* execute the writes immediately */ |
| 1122 | e1e_flush(); |
| 1123 | adapter->tx_hang_recheck = true; |
| 1124 | return; |
| 1125 | } |
| 1126 | adapter->tx_hang_recheck = false; |
| 1127 | |
| 1128 | if (er32(TDH(0)) == er32(TDT(0))) { |
| 1129 | e_dbg("false hang detected, ignoring\n"); |
| 1130 | return; |
| 1131 | } |
| 1132 | |
| 1133 | /* Real hang detected */ |
| 1134 | netif_stop_queue(netdev); |
| 1135 | |
| 1136 | e1e_rphy(hw, MII_BMSR, &phy_status); |
| 1137 | e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); |
| 1138 | e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); |
| 1139 | |
| 1140 | pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
| 1141 | |
| 1142 | /* detected Hardware unit hang */ |
| 1143 | e_err("Detected Hardware Unit Hang:\n" |
| 1144 | " TDH <%x>\n" |
| 1145 | " TDT <%x>\n" |
| 1146 | " next_to_use <%x>\n" |
| 1147 | " next_to_clean <%x>\n" |
| 1148 | "buffer_info[next_to_clean]:\n" |
| 1149 | " time_stamp <%lx>\n" |
| 1150 | " next_to_watch <%x>\n" |
| 1151 | " jiffies <%lx>\n" |
| 1152 | " next_to_watch.status <%x>\n" |
| 1153 | "MAC Status <%x>\n" |
| 1154 | "PHY Status <%x>\n" |
| 1155 | "PHY 1000BASE-T Status <%x>\n" |
| 1156 | "PHY Extended Status <%x>\n" |
| 1157 | "PCI Status <%x>\n", |
| 1158 | readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, |
| 1159 | tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, |
| 1160 | eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), |
| 1161 | phy_status, phy_1000t_status, phy_ext_status, pci_status); |
| 1162 | |
| 1163 | e1000e_dump(adapter); |
| 1164 | |
| 1165 | /* Suggest workaround for known h/w issue */ |
| 1166 | if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) |
| 1167 | e_err("Try turning off Tx pause (flow control) via ethtool\n"); |
| 1168 | } |
| 1169 | |
| 1170 | /** |
| 1171 | * e1000e_tx_hwtstamp_work - check for Tx time stamp |
| 1172 | * @work: pointer to work struct |
| 1173 | * |
| 1174 | * This work function polls the TSYNCTXCTL valid bit to determine when a |
| 1175 | * timestamp has been taken for the current stored skb. The timestamp must |
| 1176 | * be for this skb because only one such packet is allowed in the queue. |
| 1177 | */ |
| 1178 | static void e1000e_tx_hwtstamp_work(struct work_struct *work) |
| 1179 | { |
| 1180 | struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, |
| 1181 | tx_hwtstamp_work); |
| 1182 | struct e1000_hw *hw = &adapter->hw; |
| 1183 | |
| 1184 | if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { |
| 1185 | struct skb_shared_hwtstamps shhwtstamps; |
| 1186 | u64 txstmp; |
| 1187 | |
| 1188 | txstmp = er32(TXSTMPL); |
| 1189 | txstmp |= (u64)er32(TXSTMPH) << 32; |
| 1190 | |
| 1191 | e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); |
| 1192 | |
| 1193 | skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps); |
| 1194 | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); |
| 1195 | adapter->tx_hwtstamp_skb = NULL; |
| 1196 | } else if (time_after(jiffies, adapter->tx_hwtstamp_start |
| 1197 | + adapter->tx_timeout_factor * HZ)) { |
| 1198 | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); |
| 1199 | adapter->tx_hwtstamp_skb = NULL; |
| 1200 | adapter->tx_hwtstamp_timeouts++; |
| 1201 | e_warn("clearing Tx timestamp hang\n"); |
| 1202 | } else { |
| 1203 | /* reschedule to check later */ |
| 1204 | schedule_work(&adapter->tx_hwtstamp_work); |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | /** |
| 1209 | * e1000_clean_tx_irq - Reclaim resources after transmit completes |
| 1210 | * @tx_ring: Tx descriptor ring |
| 1211 | * |
| 1212 | * the return value indicates whether actual cleaning was done, there |
| 1213 | * is no guarantee that everything was cleaned |
| 1214 | **/ |
| 1215 | static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) |
| 1216 | { |
| 1217 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 1218 | struct net_device *netdev = adapter->netdev; |
| 1219 | struct e1000_hw *hw = &adapter->hw; |
| 1220 | struct e1000_tx_desc *tx_desc, *eop_desc; |
| 1221 | struct e1000_buffer *buffer_info; |
| 1222 | unsigned int i, eop; |
| 1223 | unsigned int count = 0; |
| 1224 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
| 1225 | unsigned int bytes_compl = 0, pkts_compl = 0; |
| 1226 | |
| 1227 | i = tx_ring->next_to_clean; |
| 1228 | eop = tx_ring->buffer_info[i].next_to_watch; |
| 1229 | eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| 1230 | |
| 1231 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
| 1232 | (count < tx_ring->count)) { |
| 1233 | bool cleaned = false; |
| 1234 | |
| 1235 | dma_rmb(); /* read buffer_info after eop_desc */ |
| 1236 | for (; !cleaned; count++) { |
| 1237 | tx_desc = E1000_TX_DESC(*tx_ring, i); |
| 1238 | buffer_info = &tx_ring->buffer_info[i]; |
| 1239 | cleaned = (i == eop); |
| 1240 | |
| 1241 | if (cleaned) { |
| 1242 | total_tx_packets += buffer_info->segs; |
| 1243 | total_tx_bytes += buffer_info->bytecount; |
| 1244 | if (buffer_info->skb) { |
| 1245 | bytes_compl += buffer_info->skb->len; |
| 1246 | pkts_compl++; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | e1000_put_txbuf(tx_ring, buffer_info); |
| 1251 | tx_desc->upper.data = 0; |
| 1252 | |
| 1253 | i++; |
| 1254 | if (i == tx_ring->count) |
| 1255 | i = 0; |
| 1256 | } |
| 1257 | |
| 1258 | if (i == tx_ring->next_to_use) |
| 1259 | break; |
| 1260 | eop = tx_ring->buffer_info[i].next_to_watch; |
| 1261 | eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| 1262 | } |
| 1263 | |
| 1264 | tx_ring->next_to_clean = i; |
| 1265 | |
| 1266 | netdev_completed_queue(netdev, pkts_compl, bytes_compl); |
| 1267 | |
| 1268 | #define TX_WAKE_THRESHOLD 32 |
| 1269 | if (count && netif_carrier_ok(netdev) && |
| 1270 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
| 1271 | /* Make sure that anybody stopping the queue after this |
| 1272 | * sees the new next_to_clean. |
| 1273 | */ |
| 1274 | smp_mb(); |
| 1275 | |
| 1276 | if (netif_queue_stopped(netdev) && |
| 1277 | !(test_bit(__E1000_DOWN, &adapter->state))) { |
| 1278 | netif_wake_queue(netdev); |
| 1279 | ++adapter->restart_queue; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | if (adapter->detect_tx_hung) { |
| 1284 | /* Detect a transmit hang in hardware, this serializes the |
| 1285 | * check with the clearing of time_stamp and movement of i |
| 1286 | */ |
| 1287 | adapter->detect_tx_hung = false; |
| 1288 | if (tx_ring->buffer_info[i].time_stamp && |
| 1289 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp |
| 1290 | + (adapter->tx_timeout_factor * HZ)) && |
| 1291 | !(er32(STATUS) & E1000_STATUS_TXOFF)) |
| 1292 | schedule_work(&adapter->print_hang_task); |
| 1293 | else |
| 1294 | adapter->tx_hang_recheck = false; |
| 1295 | } |
| 1296 | adapter->total_tx_bytes += total_tx_bytes; |
| 1297 | adapter->total_tx_packets += total_tx_packets; |
| 1298 | return count < tx_ring->count; |
| 1299 | } |
| 1300 | |
| 1301 | /** |
| 1302 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
| 1303 | * @rx_ring: Rx descriptor ring |
| 1304 | * |
| 1305 | * the return value indicates whether actual cleaning was done, there |
| 1306 | * is no guarantee that everything was cleaned |
| 1307 | **/ |
| 1308 | static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, |
| 1309 | int work_to_do) |
| 1310 | { |
| 1311 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 1312 | struct e1000_hw *hw = &adapter->hw; |
| 1313 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
| 1314 | struct net_device *netdev = adapter->netdev; |
| 1315 | struct pci_dev *pdev = adapter->pdev; |
| 1316 | struct e1000_buffer *buffer_info, *next_buffer; |
| 1317 | struct e1000_ps_page *ps_page; |
| 1318 | struct sk_buff *skb; |
| 1319 | unsigned int i, j; |
| 1320 | u32 length, staterr; |
| 1321 | int cleaned_count = 0; |
| 1322 | bool cleaned = false; |
| 1323 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| 1324 | |
| 1325 | i = rx_ring->next_to_clean; |
| 1326 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| 1327 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| 1328 | buffer_info = &rx_ring->buffer_info[i]; |
| 1329 | |
| 1330 | while (staterr & E1000_RXD_STAT_DD) { |
| 1331 | if (*work_done >= work_to_do) |
| 1332 | break; |
| 1333 | (*work_done)++; |
| 1334 | skb = buffer_info->skb; |
| 1335 | dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| 1336 | |
| 1337 | /* in the packet split case this is header only */ |
| 1338 | prefetch(skb->data - NET_IP_ALIGN); |
| 1339 | |
| 1340 | i++; |
| 1341 | if (i == rx_ring->count) |
| 1342 | i = 0; |
| 1343 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
| 1344 | prefetch(next_rxd); |
| 1345 | |
| 1346 | next_buffer = &rx_ring->buffer_info[i]; |
| 1347 | |
| 1348 | cleaned = true; |
| 1349 | cleaned_count++; |
| 1350 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
| 1351 | adapter->rx_ps_bsize0, DMA_FROM_DEVICE); |
| 1352 | buffer_info->dma = 0; |
| 1353 | |
| 1354 | /* see !EOP comment in other Rx routine */ |
| 1355 | if (!(staterr & E1000_RXD_STAT_EOP)) |
| 1356 | adapter->flags2 |= FLAG2_IS_DISCARDING; |
| 1357 | |
| 1358 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
| 1359 | e_dbg("Packet Split buffers didn't pick up the full packet\n"); |
| 1360 | dev_kfree_skb_irq(skb); |
| 1361 | if (staterr & E1000_RXD_STAT_EOP) |
| 1362 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| 1363 | goto next_desc; |
| 1364 | } |
| 1365 | |
| 1366 | if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| 1367 | !(netdev->features & NETIF_F_RXALL))) { |
| 1368 | dev_kfree_skb_irq(skb); |
| 1369 | goto next_desc; |
| 1370 | } |
| 1371 | |
| 1372 | length = le16_to_cpu(rx_desc->wb.middle.length0); |
| 1373 | |
| 1374 | if (!length) { |
| 1375 | e_dbg("Last part of the packet spanning multiple descriptors\n"); |
| 1376 | dev_kfree_skb_irq(skb); |
| 1377 | goto next_desc; |
| 1378 | } |
| 1379 | |
| 1380 | /* Good Receive */ |
| 1381 | skb_put(skb, length); |
| 1382 | |
| 1383 | { |
| 1384 | /* this looks ugly, but it seems compiler issues make |
| 1385 | * it more efficient than reusing j |
| 1386 | */ |
| 1387 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
| 1388 | |
| 1389 | /* page alloc/put takes too long and effects small |
| 1390 | * packet throughput, so unsplit small packets and |
| 1391 | * save the alloc/put only valid in softirq (napi) |
| 1392 | * context to call kmap_* |
| 1393 | */ |
| 1394 | if (l1 && (l1 <= copybreak) && |
| 1395 | ((length + l1) <= adapter->rx_ps_bsize0)) { |
| 1396 | u8 *vaddr; |
| 1397 | |
| 1398 | ps_page = &buffer_info->ps_pages[0]; |
| 1399 | |
| 1400 | /* there is no documentation about how to call |
| 1401 | * kmap_atomic, so we can't hold the mapping |
| 1402 | * very long |
| 1403 | */ |
| 1404 | dma_sync_single_for_cpu(&pdev->dev, |
| 1405 | ps_page->dma, |
| 1406 | PAGE_SIZE, |
| 1407 | DMA_FROM_DEVICE); |
| 1408 | vaddr = kmap_atomic(ps_page->page); |
| 1409 | memcpy(skb_tail_pointer(skb), vaddr, l1); |
| 1410 | kunmap_atomic(vaddr); |
| 1411 | dma_sync_single_for_device(&pdev->dev, |
| 1412 | ps_page->dma, |
| 1413 | PAGE_SIZE, |
| 1414 | DMA_FROM_DEVICE); |
| 1415 | |
| 1416 | /* remove the CRC */ |
| 1417 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| 1418 | if (!(netdev->features & NETIF_F_RXFCS)) |
| 1419 | l1 -= 4; |
| 1420 | } |
| 1421 | |
| 1422 | skb_put(skb, l1); |
| 1423 | goto copydone; |
| 1424 | } /* if */ |
| 1425 | } |
| 1426 | |
| 1427 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| 1428 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
| 1429 | if (!length) |
| 1430 | break; |
| 1431 | |
| 1432 | ps_page = &buffer_info->ps_pages[j]; |
| 1433 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
| 1434 | DMA_FROM_DEVICE); |
| 1435 | ps_page->dma = 0; |
| 1436 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
| 1437 | ps_page->page = NULL; |
| 1438 | skb->len += length; |
| 1439 | skb->data_len += length; |
| 1440 | skb->truesize += PAGE_SIZE; |
| 1441 | } |
| 1442 | |
| 1443 | /* strip the ethernet crc, problem is we're using pages now so |
| 1444 | * this whole operation can get a little cpu intensive |
| 1445 | */ |
| 1446 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { |
| 1447 | if (!(netdev->features & NETIF_F_RXFCS)) |
| 1448 | pskb_trim(skb, skb->len - 4); |
| 1449 | } |
| 1450 | |
| 1451 | copydone: |
| 1452 | total_rx_bytes += skb->len; |
| 1453 | total_rx_packets++; |
| 1454 | |
| 1455 | e1000_rx_checksum(adapter, staterr, skb); |
| 1456 | |
| 1457 | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| 1458 | |
| 1459 | if (rx_desc->wb.upper.header_status & |
| 1460 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
| 1461 | adapter->rx_hdr_split++; |
| 1462 | |
| 1463 | e1000_receive_skb(adapter, netdev, skb, staterr, |
| 1464 | rx_desc->wb.middle.vlan); |
| 1465 | |
| 1466 | next_desc: |
| 1467 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
| 1468 | buffer_info->skb = NULL; |
| 1469 | |
| 1470 | /* return some buffers to hardware, one at a time is too slow */ |
| 1471 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| 1472 | adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| 1473 | GFP_ATOMIC); |
| 1474 | cleaned_count = 0; |
| 1475 | } |
| 1476 | |
| 1477 | /* use prefetched values */ |
| 1478 | rx_desc = next_rxd; |
| 1479 | buffer_info = next_buffer; |
| 1480 | |
| 1481 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| 1482 | } |
| 1483 | rx_ring->next_to_clean = i; |
| 1484 | |
| 1485 | cleaned_count = e1000_desc_unused(rx_ring); |
| 1486 | if (cleaned_count) |
| 1487 | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| 1488 | |
| 1489 | adapter->total_rx_bytes += total_rx_bytes; |
| 1490 | adapter->total_rx_packets += total_rx_packets; |
| 1491 | return cleaned; |
| 1492 | } |
| 1493 | |
| 1494 | /** |
| 1495 | * e1000_consume_page - helper function |
| 1496 | **/ |
| 1497 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
| 1498 | u16 length) |
| 1499 | { |
| 1500 | bi->page = NULL; |
| 1501 | skb->len += length; |
| 1502 | skb->data_len += length; |
| 1503 | skb->truesize += PAGE_SIZE; |
| 1504 | } |
| 1505 | |
| 1506 | /** |
| 1507 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
| 1508 | * @adapter: board private structure |
| 1509 | * |
| 1510 | * the return value indicates whether actual cleaning was done, there |
| 1511 | * is no guarantee that everything was cleaned |
| 1512 | **/ |
| 1513 | static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, |
| 1514 | int work_to_do) |
| 1515 | { |
| 1516 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 1517 | struct net_device *netdev = adapter->netdev; |
| 1518 | struct pci_dev *pdev = adapter->pdev; |
| 1519 | union e1000_rx_desc_extended *rx_desc, *next_rxd; |
| 1520 | struct e1000_buffer *buffer_info, *next_buffer; |
| 1521 | u32 length, staterr; |
| 1522 | unsigned int i; |
| 1523 | int cleaned_count = 0; |
| 1524 | bool cleaned = false; |
| 1525 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| 1526 | struct skb_shared_info *shinfo; |
| 1527 | |
| 1528 | i = rx_ring->next_to_clean; |
| 1529 | rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
| 1530 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 1531 | buffer_info = &rx_ring->buffer_info[i]; |
| 1532 | |
| 1533 | while (staterr & E1000_RXD_STAT_DD) { |
| 1534 | struct sk_buff *skb; |
| 1535 | |
| 1536 | if (*work_done >= work_to_do) |
| 1537 | break; |
| 1538 | (*work_done)++; |
| 1539 | dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ |
| 1540 | |
| 1541 | skb = buffer_info->skb; |
| 1542 | buffer_info->skb = NULL; |
| 1543 | |
| 1544 | ++i; |
| 1545 | if (i == rx_ring->count) |
| 1546 | i = 0; |
| 1547 | next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); |
| 1548 | prefetch(next_rxd); |
| 1549 | |
| 1550 | next_buffer = &rx_ring->buffer_info[i]; |
| 1551 | |
| 1552 | cleaned = true; |
| 1553 | cleaned_count++; |
| 1554 | dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, |
| 1555 | DMA_FROM_DEVICE); |
| 1556 | buffer_info->dma = 0; |
| 1557 | |
| 1558 | length = le16_to_cpu(rx_desc->wb.upper.length); |
| 1559 | |
| 1560 | /* errors is only valid for DD + EOP descriptors */ |
| 1561 | if (unlikely((staterr & E1000_RXD_STAT_EOP) && |
| 1562 | ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && |
| 1563 | !(netdev->features & NETIF_F_RXALL)))) { |
| 1564 | /* recycle both page and skb */ |
| 1565 | buffer_info->skb = skb; |
| 1566 | /* an error means any chain goes out the window too */ |
| 1567 | if (rx_ring->rx_skb_top) |
| 1568 | dev_kfree_skb_irq(rx_ring->rx_skb_top); |
| 1569 | rx_ring->rx_skb_top = NULL; |
| 1570 | goto next_desc; |
| 1571 | } |
| 1572 | #define rxtop (rx_ring->rx_skb_top) |
| 1573 | if (!(staterr & E1000_RXD_STAT_EOP)) { |
| 1574 | /* this descriptor is only the beginning (or middle) */ |
| 1575 | if (!rxtop) { |
| 1576 | /* this is the beginning of a chain */ |
| 1577 | rxtop = skb; |
| 1578 | skb_fill_page_desc(rxtop, 0, buffer_info->page, |
| 1579 | 0, length); |
| 1580 | } else { |
| 1581 | /* this is the middle of a chain */ |
| 1582 | shinfo = skb_shinfo(rxtop); |
| 1583 | skb_fill_page_desc(rxtop, shinfo->nr_frags, |
| 1584 | buffer_info->page, 0, |
| 1585 | length); |
| 1586 | /* re-use the skb, only consumed the page */ |
| 1587 | buffer_info->skb = skb; |
| 1588 | } |
| 1589 | e1000_consume_page(buffer_info, rxtop, length); |
| 1590 | goto next_desc; |
| 1591 | } else { |
| 1592 | if (rxtop) { |
| 1593 | /* end of the chain */ |
| 1594 | shinfo = skb_shinfo(rxtop); |
| 1595 | skb_fill_page_desc(rxtop, shinfo->nr_frags, |
| 1596 | buffer_info->page, 0, |
| 1597 | length); |
| 1598 | /* re-use the current skb, we only consumed the |
| 1599 | * page |
| 1600 | */ |
| 1601 | buffer_info->skb = skb; |
| 1602 | skb = rxtop; |
| 1603 | rxtop = NULL; |
| 1604 | e1000_consume_page(buffer_info, skb, length); |
| 1605 | } else { |
| 1606 | /* no chain, got EOP, this buf is the packet |
| 1607 | * copybreak to save the put_page/alloc_page |
| 1608 | */ |
| 1609 | if (length <= copybreak && |
| 1610 | skb_tailroom(skb) >= length) { |
| 1611 | u8 *vaddr; |
| 1612 | vaddr = kmap_atomic(buffer_info->page); |
| 1613 | memcpy(skb_tail_pointer(skb), vaddr, |
| 1614 | length); |
| 1615 | kunmap_atomic(vaddr); |
| 1616 | /* re-use the page, so don't erase |
| 1617 | * buffer_info->page |
| 1618 | */ |
| 1619 | skb_put(skb, length); |
| 1620 | } else { |
| 1621 | skb_fill_page_desc(skb, 0, |
| 1622 | buffer_info->page, 0, |
| 1623 | length); |
| 1624 | e1000_consume_page(buffer_info, skb, |
| 1625 | length); |
| 1626 | } |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | /* Receive Checksum Offload */ |
| 1631 | e1000_rx_checksum(adapter, staterr, skb); |
| 1632 | |
| 1633 | e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); |
| 1634 | |
| 1635 | /* probably a little skewed due to removing CRC */ |
| 1636 | total_rx_bytes += skb->len; |
| 1637 | total_rx_packets++; |
| 1638 | |
| 1639 | /* eth type trans needs skb->data to point to something */ |
| 1640 | if (!pskb_may_pull(skb, ETH_HLEN)) { |
| 1641 | e_err("pskb_may_pull failed.\n"); |
| 1642 | dev_kfree_skb_irq(skb); |
| 1643 | goto next_desc; |
| 1644 | } |
| 1645 | |
| 1646 | e1000_receive_skb(adapter, netdev, skb, staterr, |
| 1647 | rx_desc->wb.upper.vlan); |
| 1648 | |
| 1649 | next_desc: |
| 1650 | rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); |
| 1651 | |
| 1652 | /* return some buffers to hardware, one at a time is too slow */ |
| 1653 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| 1654 | adapter->alloc_rx_buf(rx_ring, cleaned_count, |
| 1655 | GFP_ATOMIC); |
| 1656 | cleaned_count = 0; |
| 1657 | } |
| 1658 | |
| 1659 | /* use prefetched values */ |
| 1660 | rx_desc = next_rxd; |
| 1661 | buffer_info = next_buffer; |
| 1662 | |
| 1663 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); |
| 1664 | } |
| 1665 | rx_ring->next_to_clean = i; |
| 1666 | |
| 1667 | cleaned_count = e1000_desc_unused(rx_ring); |
| 1668 | if (cleaned_count) |
| 1669 | adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); |
| 1670 | |
| 1671 | adapter->total_rx_bytes += total_rx_bytes; |
| 1672 | adapter->total_rx_packets += total_rx_packets; |
| 1673 | return cleaned; |
| 1674 | } |
| 1675 | |
| 1676 | /** |
| 1677 | * e1000_clean_rx_ring - Free Rx Buffers per Queue |
| 1678 | * @rx_ring: Rx descriptor ring |
| 1679 | **/ |
| 1680 | static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) |
| 1681 | { |
| 1682 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 1683 | struct e1000_buffer *buffer_info; |
| 1684 | struct e1000_ps_page *ps_page; |
| 1685 | struct pci_dev *pdev = adapter->pdev; |
| 1686 | unsigned int i, j; |
| 1687 | |
| 1688 | /* Free all the Rx ring sk_buffs */ |
| 1689 | for (i = 0; i < rx_ring->count; i++) { |
| 1690 | buffer_info = &rx_ring->buffer_info[i]; |
| 1691 | if (buffer_info->dma) { |
| 1692 | if (adapter->clean_rx == e1000_clean_rx_irq) |
| 1693 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
| 1694 | adapter->rx_buffer_len, |
| 1695 | DMA_FROM_DEVICE); |
| 1696 | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
| 1697 | dma_unmap_page(&pdev->dev, buffer_info->dma, |
| 1698 | PAGE_SIZE, DMA_FROM_DEVICE); |
| 1699 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
| 1700 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
| 1701 | adapter->rx_ps_bsize0, |
| 1702 | DMA_FROM_DEVICE); |
| 1703 | buffer_info->dma = 0; |
| 1704 | } |
| 1705 | |
| 1706 | if (buffer_info->page) { |
| 1707 | put_page(buffer_info->page); |
| 1708 | buffer_info->page = NULL; |
| 1709 | } |
| 1710 | |
| 1711 | if (buffer_info->skb) { |
| 1712 | dev_kfree_skb(buffer_info->skb); |
| 1713 | buffer_info->skb = NULL; |
| 1714 | } |
| 1715 | |
| 1716 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| 1717 | ps_page = &buffer_info->ps_pages[j]; |
| 1718 | if (!ps_page->page) |
| 1719 | break; |
| 1720 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
| 1721 | DMA_FROM_DEVICE); |
| 1722 | ps_page->dma = 0; |
| 1723 | put_page(ps_page->page); |
| 1724 | ps_page->page = NULL; |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | /* there also may be some cached data from a chained receive */ |
| 1729 | if (rx_ring->rx_skb_top) { |
| 1730 | dev_kfree_skb(rx_ring->rx_skb_top); |
| 1731 | rx_ring->rx_skb_top = NULL; |
| 1732 | } |
| 1733 | |
| 1734 | /* Zero out the descriptor ring */ |
| 1735 | memset(rx_ring->desc, 0, rx_ring->size); |
| 1736 | |
| 1737 | rx_ring->next_to_clean = 0; |
| 1738 | rx_ring->next_to_use = 0; |
| 1739 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
| 1740 | } |
| 1741 | |
| 1742 | static void e1000e_downshift_workaround(struct work_struct *work) |
| 1743 | { |
| 1744 | struct e1000_adapter *adapter = container_of(work, |
| 1745 | struct e1000_adapter, |
| 1746 | downshift_task); |
| 1747 | |
| 1748 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 1749 | return; |
| 1750 | |
| 1751 | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
| 1752 | } |
| 1753 | |
| 1754 | /** |
| 1755 | * e1000_intr_msi - Interrupt Handler |
| 1756 | * @irq: interrupt number |
| 1757 | * @data: pointer to a network interface device structure |
| 1758 | **/ |
| 1759 | static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) |
| 1760 | { |
| 1761 | struct net_device *netdev = data; |
| 1762 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1763 | struct e1000_hw *hw = &adapter->hw; |
| 1764 | u32 icr = er32(ICR); |
| 1765 | |
| 1766 | /* read ICR disables interrupts using IAM */ |
| 1767 | if (icr & E1000_ICR_LSC) { |
| 1768 | hw->mac.get_link_status = true; |
| 1769 | /* ICH8 workaround-- Call gig speed drop workaround on cable |
| 1770 | * disconnect (LSC) before accessing any PHY registers |
| 1771 | */ |
| 1772 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| 1773 | (!(er32(STATUS) & E1000_STATUS_LU))) |
| 1774 | schedule_work(&adapter->downshift_task); |
| 1775 | |
| 1776 | /* 80003ES2LAN workaround-- For packet buffer work-around on |
| 1777 | * link down event; disable receives here in the ISR and reset |
| 1778 | * adapter in watchdog |
| 1779 | */ |
| 1780 | if (netif_carrier_ok(netdev) && |
| 1781 | adapter->flags & FLAG_RX_NEEDS_RESTART) { |
| 1782 | /* disable receives */ |
| 1783 | u32 rctl = er32(RCTL); |
| 1784 | |
| 1785 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 1786 | adapter->flags |= FLAG_RESTART_NOW; |
| 1787 | } |
| 1788 | /* guard against interrupt when we're going down */ |
| 1789 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 1790 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 1791 | } |
| 1792 | |
| 1793 | /* Reset on uncorrectable ECC error */ |
| 1794 | if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) || |
| 1795 | (hw->mac.type == e1000_pch_spt))) { |
| 1796 | u32 pbeccsts = er32(PBECCSTS); |
| 1797 | |
| 1798 | adapter->corr_errors += |
| 1799 | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| 1800 | adapter->uncorr_errors += |
| 1801 | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| 1802 | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| 1803 | |
| 1804 | /* Do the reset outside of interrupt context */ |
| 1805 | schedule_work(&adapter->reset_task); |
| 1806 | |
| 1807 | /* return immediately since reset is imminent */ |
| 1808 | return IRQ_HANDLED; |
| 1809 | } |
| 1810 | |
| 1811 | if (napi_schedule_prep(&adapter->napi)) { |
| 1812 | adapter->total_tx_bytes = 0; |
| 1813 | adapter->total_tx_packets = 0; |
| 1814 | adapter->total_rx_bytes = 0; |
| 1815 | adapter->total_rx_packets = 0; |
| 1816 | __napi_schedule(&adapter->napi); |
| 1817 | } |
| 1818 | |
| 1819 | return IRQ_HANDLED; |
| 1820 | } |
| 1821 | |
| 1822 | /** |
| 1823 | * e1000_intr - Interrupt Handler |
| 1824 | * @irq: interrupt number |
| 1825 | * @data: pointer to a network interface device structure |
| 1826 | **/ |
| 1827 | static irqreturn_t e1000_intr(int __always_unused irq, void *data) |
| 1828 | { |
| 1829 | struct net_device *netdev = data; |
| 1830 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1831 | struct e1000_hw *hw = &adapter->hw; |
| 1832 | u32 rctl, icr = er32(ICR); |
| 1833 | |
| 1834 | if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
| 1835 | return IRQ_NONE; /* Not our interrupt */ |
| 1836 | |
| 1837 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| 1838 | * not set, then the adapter didn't send an interrupt |
| 1839 | */ |
| 1840 | if (!(icr & E1000_ICR_INT_ASSERTED)) |
| 1841 | return IRQ_NONE; |
| 1842 | |
| 1843 | /* Interrupt Auto-Mask...upon reading ICR, |
| 1844 | * interrupts are masked. No need for the |
| 1845 | * IMC write |
| 1846 | */ |
| 1847 | |
| 1848 | if (icr & E1000_ICR_LSC) { |
| 1849 | hw->mac.get_link_status = true; |
| 1850 | /* ICH8 workaround-- Call gig speed drop workaround on cable |
| 1851 | * disconnect (LSC) before accessing any PHY registers |
| 1852 | */ |
| 1853 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| 1854 | (!(er32(STATUS) & E1000_STATUS_LU))) |
| 1855 | schedule_work(&adapter->downshift_task); |
| 1856 | |
| 1857 | /* 80003ES2LAN workaround-- |
| 1858 | * For packet buffer work-around on link down event; |
| 1859 | * disable receives here in the ISR and |
| 1860 | * reset adapter in watchdog |
| 1861 | */ |
| 1862 | if (netif_carrier_ok(netdev) && |
| 1863 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
| 1864 | /* disable receives */ |
| 1865 | rctl = er32(RCTL); |
| 1866 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 1867 | adapter->flags |= FLAG_RESTART_NOW; |
| 1868 | } |
| 1869 | /* guard against interrupt when we're going down */ |
| 1870 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 1871 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 1872 | } |
| 1873 | |
| 1874 | /* Reset on uncorrectable ECC error */ |
| 1875 | if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) || |
| 1876 | (hw->mac.type == e1000_pch_spt))) { |
| 1877 | u32 pbeccsts = er32(PBECCSTS); |
| 1878 | |
| 1879 | adapter->corr_errors += |
| 1880 | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| 1881 | adapter->uncorr_errors += |
| 1882 | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| 1883 | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| 1884 | |
| 1885 | /* Do the reset outside of interrupt context */ |
| 1886 | schedule_work(&adapter->reset_task); |
| 1887 | |
| 1888 | /* return immediately since reset is imminent */ |
| 1889 | return IRQ_HANDLED; |
| 1890 | } |
| 1891 | |
| 1892 | if (napi_schedule_prep(&adapter->napi)) { |
| 1893 | adapter->total_tx_bytes = 0; |
| 1894 | adapter->total_tx_packets = 0; |
| 1895 | adapter->total_rx_bytes = 0; |
| 1896 | adapter->total_rx_packets = 0; |
| 1897 | __napi_schedule(&adapter->napi); |
| 1898 | } |
| 1899 | |
| 1900 | return IRQ_HANDLED; |
| 1901 | } |
| 1902 | |
| 1903 | static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) |
| 1904 | { |
| 1905 | struct net_device *netdev = data; |
| 1906 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1907 | struct e1000_hw *hw = &adapter->hw; |
| 1908 | u32 icr = er32(ICR); |
| 1909 | |
| 1910 | if (!(icr & E1000_ICR_INT_ASSERTED)) { |
| 1911 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 1912 | ew32(IMS, E1000_IMS_OTHER); |
| 1913 | return IRQ_NONE; |
| 1914 | } |
| 1915 | |
| 1916 | if (icr & adapter->eiac_mask) |
| 1917 | ew32(ICS, (icr & adapter->eiac_mask)); |
| 1918 | |
| 1919 | if (icr & E1000_ICR_OTHER) { |
| 1920 | if (!(icr & E1000_ICR_LSC)) |
| 1921 | goto no_link_interrupt; |
| 1922 | hw->mac.get_link_status = true; |
| 1923 | /* guard against interrupt when we're going down */ |
| 1924 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 1925 | mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| 1926 | } |
| 1927 | |
| 1928 | no_link_interrupt: |
| 1929 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 1930 | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); |
| 1931 | |
| 1932 | return IRQ_HANDLED; |
| 1933 | } |
| 1934 | |
| 1935 | static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) |
| 1936 | { |
| 1937 | struct net_device *netdev = data; |
| 1938 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1939 | struct e1000_hw *hw = &adapter->hw; |
| 1940 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 1941 | |
| 1942 | adapter->total_tx_bytes = 0; |
| 1943 | adapter->total_tx_packets = 0; |
| 1944 | |
| 1945 | if (!e1000_clean_tx_irq(tx_ring)) |
| 1946 | /* Ring was not completely cleaned, so fire another interrupt */ |
| 1947 | ew32(ICS, tx_ring->ims_val); |
| 1948 | |
| 1949 | return IRQ_HANDLED; |
| 1950 | } |
| 1951 | |
| 1952 | static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) |
| 1953 | { |
| 1954 | struct net_device *netdev = data; |
| 1955 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1956 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 1957 | |
| 1958 | /* Write the ITR value calculated at the end of the |
| 1959 | * previous interrupt. |
| 1960 | */ |
| 1961 | if (rx_ring->set_itr) { |
| 1962 | u32 itr = rx_ring->itr_val ? |
| 1963 | 1000000000 / (rx_ring->itr_val * 256) : 0; |
| 1964 | |
| 1965 | writel(itr, rx_ring->itr_register); |
| 1966 | rx_ring->set_itr = 0; |
| 1967 | } |
| 1968 | |
| 1969 | if (napi_schedule_prep(&adapter->napi)) { |
| 1970 | adapter->total_rx_bytes = 0; |
| 1971 | adapter->total_rx_packets = 0; |
| 1972 | __napi_schedule(&adapter->napi); |
| 1973 | } |
| 1974 | return IRQ_HANDLED; |
| 1975 | } |
| 1976 | |
| 1977 | /** |
| 1978 | * e1000_configure_msix - Configure MSI-X hardware |
| 1979 | * |
| 1980 | * e1000_configure_msix sets up the hardware to properly |
| 1981 | * generate MSI-X interrupts. |
| 1982 | **/ |
| 1983 | static void e1000_configure_msix(struct e1000_adapter *adapter) |
| 1984 | { |
| 1985 | struct e1000_hw *hw = &adapter->hw; |
| 1986 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 1987 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 1988 | int vector = 0; |
| 1989 | u32 ctrl_ext, ivar = 0; |
| 1990 | |
| 1991 | adapter->eiac_mask = 0; |
| 1992 | |
| 1993 | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
| 1994 | if (hw->mac.type == e1000_82574) { |
| 1995 | u32 rfctl = er32(RFCTL); |
| 1996 | |
| 1997 | rfctl |= E1000_RFCTL_ACK_DIS; |
| 1998 | ew32(RFCTL, rfctl); |
| 1999 | } |
| 2000 | |
| 2001 | /* Configure Rx vector */ |
| 2002 | rx_ring->ims_val = E1000_IMS_RXQ0; |
| 2003 | adapter->eiac_mask |= rx_ring->ims_val; |
| 2004 | if (rx_ring->itr_val) |
| 2005 | writel(1000000000 / (rx_ring->itr_val * 256), |
| 2006 | rx_ring->itr_register); |
| 2007 | else |
| 2008 | writel(1, rx_ring->itr_register); |
| 2009 | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
| 2010 | |
| 2011 | /* Configure Tx vector */ |
| 2012 | tx_ring->ims_val = E1000_IMS_TXQ0; |
| 2013 | vector++; |
| 2014 | if (tx_ring->itr_val) |
| 2015 | writel(1000000000 / (tx_ring->itr_val * 256), |
| 2016 | tx_ring->itr_register); |
| 2017 | else |
| 2018 | writel(1, tx_ring->itr_register); |
| 2019 | adapter->eiac_mask |= tx_ring->ims_val; |
| 2020 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
| 2021 | |
| 2022 | /* set vector for Other Causes, e.g. link changes */ |
| 2023 | vector++; |
| 2024 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
| 2025 | if (rx_ring->itr_val) |
| 2026 | writel(1000000000 / (rx_ring->itr_val * 256), |
| 2027 | hw->hw_addr + E1000_EITR_82574(vector)); |
| 2028 | else |
| 2029 | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
| 2030 | |
| 2031 | /* Cause Tx interrupts on every write back */ |
| 2032 | ivar |= (1 << 31); |
| 2033 | |
| 2034 | ew32(IVAR, ivar); |
| 2035 | |
| 2036 | /* enable MSI-X PBA support */ |
| 2037 | ctrl_ext = er32(CTRL_EXT); |
| 2038 | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; |
| 2039 | |
| 2040 | /* Auto-Mask Other interrupts upon ICR read */ |
| 2041 | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); |
| 2042 | ctrl_ext |= E1000_CTRL_EXT_EIAME; |
| 2043 | ew32(CTRL_EXT, ctrl_ext); |
| 2044 | e1e_flush(); |
| 2045 | } |
| 2046 | |
| 2047 | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
| 2048 | { |
| 2049 | if (adapter->msix_entries) { |
| 2050 | pci_disable_msix(adapter->pdev); |
| 2051 | kfree(adapter->msix_entries); |
| 2052 | adapter->msix_entries = NULL; |
| 2053 | } else if (adapter->flags & FLAG_MSI_ENABLED) { |
| 2054 | pci_disable_msi(adapter->pdev); |
| 2055 | adapter->flags &= ~FLAG_MSI_ENABLED; |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | /** |
| 2060 | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
| 2061 | * |
| 2062 | * Attempt to configure interrupts using the best available |
| 2063 | * capabilities of the hardware and kernel. |
| 2064 | **/ |
| 2065 | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
| 2066 | { |
| 2067 | int err; |
| 2068 | int i; |
| 2069 | |
| 2070 | switch (adapter->int_mode) { |
| 2071 | case E1000E_INT_MODE_MSIX: |
| 2072 | if (adapter->flags & FLAG_HAS_MSIX) { |
| 2073 | adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ |
| 2074 | adapter->msix_entries = kcalloc(adapter->num_vectors, |
| 2075 | sizeof(struct |
| 2076 | msix_entry), |
| 2077 | GFP_KERNEL); |
| 2078 | if (adapter->msix_entries) { |
| 2079 | struct e1000_adapter *a = adapter; |
| 2080 | |
| 2081 | for (i = 0; i < adapter->num_vectors; i++) |
| 2082 | adapter->msix_entries[i].entry = i; |
| 2083 | |
| 2084 | err = pci_enable_msix_range(a->pdev, |
| 2085 | a->msix_entries, |
| 2086 | a->num_vectors, |
| 2087 | a->num_vectors); |
| 2088 | if (err > 0) |
| 2089 | return; |
| 2090 | } |
| 2091 | /* MSI-X failed, so fall through and try MSI */ |
| 2092 | e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); |
| 2093 | e1000e_reset_interrupt_capability(adapter); |
| 2094 | } |
| 2095 | adapter->int_mode = E1000E_INT_MODE_MSI; |
| 2096 | /* Fall through */ |
| 2097 | case E1000E_INT_MODE_MSI: |
| 2098 | if (!pci_enable_msi(adapter->pdev)) { |
| 2099 | adapter->flags |= FLAG_MSI_ENABLED; |
| 2100 | } else { |
| 2101 | adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| 2102 | e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); |
| 2103 | } |
| 2104 | /* Fall through */ |
| 2105 | case E1000E_INT_MODE_LEGACY: |
| 2106 | /* Don't do anything; this is the system default */ |
| 2107 | break; |
| 2108 | } |
| 2109 | |
| 2110 | /* store the number of vectors being used */ |
| 2111 | adapter->num_vectors = 1; |
| 2112 | } |
| 2113 | |
| 2114 | /** |
| 2115 | * e1000_request_msix - Initialize MSI-X interrupts |
| 2116 | * |
| 2117 | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
| 2118 | * kernel. |
| 2119 | **/ |
| 2120 | static int e1000_request_msix(struct e1000_adapter *adapter) |
| 2121 | { |
| 2122 | struct net_device *netdev = adapter->netdev; |
| 2123 | int err = 0, vector = 0; |
| 2124 | |
| 2125 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| 2126 | snprintf(adapter->rx_ring->name, |
| 2127 | sizeof(adapter->rx_ring->name) - 1, |
| 2128 | "%s-rx-0", netdev->name); |
| 2129 | else |
| 2130 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
| 2131 | err = request_irq(adapter->msix_entries[vector].vector, |
| 2132 | e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
| 2133 | netdev); |
| 2134 | if (err) |
| 2135 | return err; |
| 2136 | adapter->rx_ring->itr_register = adapter->hw.hw_addr + |
| 2137 | E1000_EITR_82574(vector); |
| 2138 | adapter->rx_ring->itr_val = adapter->itr; |
| 2139 | vector++; |
| 2140 | |
| 2141 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| 2142 | snprintf(adapter->tx_ring->name, |
| 2143 | sizeof(adapter->tx_ring->name) - 1, |
| 2144 | "%s-tx-0", netdev->name); |
| 2145 | else |
| 2146 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
| 2147 | err = request_irq(adapter->msix_entries[vector].vector, |
| 2148 | e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
| 2149 | netdev); |
| 2150 | if (err) |
| 2151 | return err; |
| 2152 | adapter->tx_ring->itr_register = adapter->hw.hw_addr + |
| 2153 | E1000_EITR_82574(vector); |
| 2154 | adapter->tx_ring->itr_val = adapter->itr; |
| 2155 | vector++; |
| 2156 | |
| 2157 | err = request_irq(adapter->msix_entries[vector].vector, |
| 2158 | e1000_msix_other, 0, netdev->name, netdev); |
| 2159 | if (err) |
| 2160 | return err; |
| 2161 | |
| 2162 | e1000_configure_msix(adapter); |
| 2163 | |
| 2164 | return 0; |
| 2165 | } |
| 2166 | |
| 2167 | /** |
| 2168 | * e1000_request_irq - initialize interrupts |
| 2169 | * |
| 2170 | * Attempts to configure interrupts using the best available |
| 2171 | * capabilities of the hardware and kernel. |
| 2172 | **/ |
| 2173 | static int e1000_request_irq(struct e1000_adapter *adapter) |
| 2174 | { |
| 2175 | struct net_device *netdev = adapter->netdev; |
| 2176 | int err; |
| 2177 | |
| 2178 | if (adapter->msix_entries) { |
| 2179 | err = e1000_request_msix(adapter); |
| 2180 | if (!err) |
| 2181 | return err; |
| 2182 | /* fall back to MSI */ |
| 2183 | e1000e_reset_interrupt_capability(adapter); |
| 2184 | adapter->int_mode = E1000E_INT_MODE_MSI; |
| 2185 | e1000e_set_interrupt_capability(adapter); |
| 2186 | } |
| 2187 | if (adapter->flags & FLAG_MSI_ENABLED) { |
| 2188 | err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
| 2189 | netdev->name, netdev); |
| 2190 | if (!err) |
| 2191 | return err; |
| 2192 | |
| 2193 | /* fall back to legacy interrupt */ |
| 2194 | e1000e_reset_interrupt_capability(adapter); |
| 2195 | adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| 2196 | } |
| 2197 | |
| 2198 | err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
| 2199 | netdev->name, netdev); |
| 2200 | if (err) |
| 2201 | e_err("Unable to allocate interrupt, Error: %d\n", err); |
| 2202 | |
| 2203 | return err; |
| 2204 | } |
| 2205 | |
| 2206 | static void e1000_free_irq(struct e1000_adapter *adapter) |
| 2207 | { |
| 2208 | struct net_device *netdev = adapter->netdev; |
| 2209 | |
| 2210 | if (adapter->msix_entries) { |
| 2211 | int vector = 0; |
| 2212 | |
| 2213 | free_irq(adapter->msix_entries[vector].vector, netdev); |
| 2214 | vector++; |
| 2215 | |
| 2216 | free_irq(adapter->msix_entries[vector].vector, netdev); |
| 2217 | vector++; |
| 2218 | |
| 2219 | /* Other Causes interrupt vector */ |
| 2220 | free_irq(adapter->msix_entries[vector].vector, netdev); |
| 2221 | return; |
| 2222 | } |
| 2223 | |
| 2224 | free_irq(adapter->pdev->irq, netdev); |
| 2225 | } |
| 2226 | |
| 2227 | /** |
| 2228 | * e1000_irq_disable - Mask off interrupt generation on the NIC |
| 2229 | **/ |
| 2230 | static void e1000_irq_disable(struct e1000_adapter *adapter) |
| 2231 | { |
| 2232 | struct e1000_hw *hw = &adapter->hw; |
| 2233 | |
| 2234 | ew32(IMC, ~0); |
| 2235 | if (adapter->msix_entries) |
| 2236 | ew32(EIAC_82574, 0); |
| 2237 | e1e_flush(); |
| 2238 | |
| 2239 | if (adapter->msix_entries) { |
| 2240 | int i; |
| 2241 | |
| 2242 | for (i = 0; i < adapter->num_vectors; i++) |
| 2243 | synchronize_irq(adapter->msix_entries[i].vector); |
| 2244 | } else { |
| 2245 | synchronize_irq(adapter->pdev->irq); |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | /** |
| 2250 | * e1000_irq_enable - Enable default interrupt generation settings |
| 2251 | **/ |
| 2252 | static void e1000_irq_enable(struct e1000_adapter *adapter) |
| 2253 | { |
| 2254 | struct e1000_hw *hw = &adapter->hw; |
| 2255 | |
| 2256 | if (adapter->msix_entries) { |
| 2257 | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
| 2258 | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); |
| 2259 | } else if ((hw->mac.type == e1000_pch_lpt) || |
| 2260 | (hw->mac.type == e1000_pch_spt)) { |
| 2261 | ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); |
| 2262 | } else { |
| 2263 | ew32(IMS, IMS_ENABLE_MASK); |
| 2264 | } |
| 2265 | e1e_flush(); |
| 2266 | } |
| 2267 | |
| 2268 | /** |
| 2269 | * e1000e_get_hw_control - get control of the h/w from f/w |
| 2270 | * @adapter: address of board private structure |
| 2271 | * |
| 2272 | * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| 2273 | * For ASF and Pass Through versions of f/w this means that |
| 2274 | * the driver is loaded. For AMT version (only with 82573) |
| 2275 | * of the f/w this means that the network i/f is open. |
| 2276 | **/ |
| 2277 | void e1000e_get_hw_control(struct e1000_adapter *adapter) |
| 2278 | { |
| 2279 | struct e1000_hw *hw = &adapter->hw; |
| 2280 | u32 ctrl_ext; |
| 2281 | u32 swsm; |
| 2282 | |
| 2283 | /* Let firmware know the driver has taken over */ |
| 2284 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| 2285 | swsm = er32(SWSM); |
| 2286 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
| 2287 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| 2288 | ctrl_ext = er32(CTRL_EXT); |
| 2289 | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | /** |
| 2294 | * e1000e_release_hw_control - release control of the h/w to f/w |
| 2295 | * @adapter: address of board private structure |
| 2296 | * |
| 2297 | * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| 2298 | * For ASF and Pass Through versions of f/w this means that the |
| 2299 | * driver is no longer loaded. For AMT version (only with 82573) i |
| 2300 | * of the f/w this means that the network i/f is closed. |
| 2301 | * |
| 2302 | **/ |
| 2303 | void e1000e_release_hw_control(struct e1000_adapter *adapter) |
| 2304 | { |
| 2305 | struct e1000_hw *hw = &adapter->hw; |
| 2306 | u32 ctrl_ext; |
| 2307 | u32 swsm; |
| 2308 | |
| 2309 | /* Let firmware taken over control of h/w */ |
| 2310 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| 2311 | swsm = er32(SWSM); |
| 2312 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
| 2313 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| 2314 | ctrl_ext = er32(CTRL_EXT); |
| 2315 | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| 2316 | } |
| 2317 | } |
| 2318 | |
| 2319 | /** |
| 2320 | * e1000_alloc_ring_dma - allocate memory for a ring structure |
| 2321 | **/ |
| 2322 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
| 2323 | struct e1000_ring *ring) |
| 2324 | { |
| 2325 | struct pci_dev *pdev = adapter->pdev; |
| 2326 | |
| 2327 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
| 2328 | GFP_KERNEL); |
| 2329 | if (!ring->desc) |
| 2330 | return -ENOMEM; |
| 2331 | |
| 2332 | return 0; |
| 2333 | } |
| 2334 | |
| 2335 | /** |
| 2336 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
| 2337 | * @tx_ring: Tx descriptor ring |
| 2338 | * |
| 2339 | * Return 0 on success, negative on failure |
| 2340 | **/ |
| 2341 | int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) |
| 2342 | { |
| 2343 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 2344 | int err = -ENOMEM, size; |
| 2345 | |
| 2346 | size = sizeof(struct e1000_buffer) * tx_ring->count; |
| 2347 | tx_ring->buffer_info = vzalloc(size); |
| 2348 | if (!tx_ring->buffer_info) |
| 2349 | goto err; |
| 2350 | |
| 2351 | /* round up to nearest 4K */ |
| 2352 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| 2353 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 2354 | |
| 2355 | err = e1000_alloc_ring_dma(adapter, tx_ring); |
| 2356 | if (err) |
| 2357 | goto err; |
| 2358 | |
| 2359 | tx_ring->next_to_use = 0; |
| 2360 | tx_ring->next_to_clean = 0; |
| 2361 | |
| 2362 | return 0; |
| 2363 | err: |
| 2364 | vfree(tx_ring->buffer_info); |
| 2365 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
| 2366 | return err; |
| 2367 | } |
| 2368 | |
| 2369 | /** |
| 2370 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
| 2371 | * @rx_ring: Rx descriptor ring |
| 2372 | * |
| 2373 | * Returns 0 on success, negative on failure |
| 2374 | **/ |
| 2375 | int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) |
| 2376 | { |
| 2377 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 2378 | struct e1000_buffer *buffer_info; |
| 2379 | int i, size, desc_len, err = -ENOMEM; |
| 2380 | |
| 2381 | size = sizeof(struct e1000_buffer) * rx_ring->count; |
| 2382 | rx_ring->buffer_info = vzalloc(size); |
| 2383 | if (!rx_ring->buffer_info) |
| 2384 | goto err; |
| 2385 | |
| 2386 | for (i = 0; i < rx_ring->count; i++) { |
| 2387 | buffer_info = &rx_ring->buffer_info[i]; |
| 2388 | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
| 2389 | sizeof(struct e1000_ps_page), |
| 2390 | GFP_KERNEL); |
| 2391 | if (!buffer_info->ps_pages) |
| 2392 | goto err_pages; |
| 2393 | } |
| 2394 | |
| 2395 | desc_len = sizeof(union e1000_rx_desc_packet_split); |
| 2396 | |
| 2397 | /* Round up to nearest 4K */ |
| 2398 | rx_ring->size = rx_ring->count * desc_len; |
| 2399 | rx_ring->size = ALIGN(rx_ring->size, 4096); |
| 2400 | |
| 2401 | err = e1000_alloc_ring_dma(adapter, rx_ring); |
| 2402 | if (err) |
| 2403 | goto err_pages; |
| 2404 | |
| 2405 | rx_ring->next_to_clean = 0; |
| 2406 | rx_ring->next_to_use = 0; |
| 2407 | rx_ring->rx_skb_top = NULL; |
| 2408 | |
| 2409 | return 0; |
| 2410 | |
| 2411 | err_pages: |
| 2412 | for (i = 0; i < rx_ring->count; i++) { |
| 2413 | buffer_info = &rx_ring->buffer_info[i]; |
| 2414 | kfree(buffer_info->ps_pages); |
| 2415 | } |
| 2416 | err: |
| 2417 | vfree(rx_ring->buffer_info); |
| 2418 | e_err("Unable to allocate memory for the receive descriptor ring\n"); |
| 2419 | return err; |
| 2420 | } |
| 2421 | |
| 2422 | /** |
| 2423 | * e1000_clean_tx_ring - Free Tx Buffers |
| 2424 | * @tx_ring: Tx descriptor ring |
| 2425 | **/ |
| 2426 | static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) |
| 2427 | { |
| 2428 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 2429 | struct e1000_buffer *buffer_info; |
| 2430 | unsigned long size; |
| 2431 | unsigned int i; |
| 2432 | |
| 2433 | for (i = 0; i < tx_ring->count; i++) { |
| 2434 | buffer_info = &tx_ring->buffer_info[i]; |
| 2435 | e1000_put_txbuf(tx_ring, buffer_info); |
| 2436 | } |
| 2437 | |
| 2438 | netdev_reset_queue(adapter->netdev); |
| 2439 | size = sizeof(struct e1000_buffer) * tx_ring->count; |
| 2440 | memset(tx_ring->buffer_info, 0, size); |
| 2441 | |
| 2442 | memset(tx_ring->desc, 0, tx_ring->size); |
| 2443 | |
| 2444 | tx_ring->next_to_use = 0; |
| 2445 | tx_ring->next_to_clean = 0; |
| 2446 | } |
| 2447 | |
| 2448 | /** |
| 2449 | * e1000e_free_tx_resources - Free Tx Resources per Queue |
| 2450 | * @tx_ring: Tx descriptor ring |
| 2451 | * |
| 2452 | * Free all transmit software resources |
| 2453 | **/ |
| 2454 | void e1000e_free_tx_resources(struct e1000_ring *tx_ring) |
| 2455 | { |
| 2456 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 2457 | struct pci_dev *pdev = adapter->pdev; |
| 2458 | |
| 2459 | e1000_clean_tx_ring(tx_ring); |
| 2460 | |
| 2461 | vfree(tx_ring->buffer_info); |
| 2462 | tx_ring->buffer_info = NULL; |
| 2463 | |
| 2464 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| 2465 | tx_ring->dma); |
| 2466 | tx_ring->desc = NULL; |
| 2467 | } |
| 2468 | |
| 2469 | /** |
| 2470 | * e1000e_free_rx_resources - Free Rx Resources |
| 2471 | * @rx_ring: Rx descriptor ring |
| 2472 | * |
| 2473 | * Free all receive software resources |
| 2474 | **/ |
| 2475 | void e1000e_free_rx_resources(struct e1000_ring *rx_ring) |
| 2476 | { |
| 2477 | struct e1000_adapter *adapter = rx_ring->adapter; |
| 2478 | struct pci_dev *pdev = adapter->pdev; |
| 2479 | int i; |
| 2480 | |
| 2481 | e1000_clean_rx_ring(rx_ring); |
| 2482 | |
| 2483 | for (i = 0; i < rx_ring->count; i++) |
| 2484 | kfree(rx_ring->buffer_info[i].ps_pages); |
| 2485 | |
| 2486 | vfree(rx_ring->buffer_info); |
| 2487 | rx_ring->buffer_info = NULL; |
| 2488 | |
| 2489 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| 2490 | rx_ring->dma); |
| 2491 | rx_ring->desc = NULL; |
| 2492 | } |
| 2493 | |
| 2494 | /** |
| 2495 | * e1000_update_itr - update the dynamic ITR value based on statistics |
| 2496 | * @adapter: pointer to adapter |
| 2497 | * @itr_setting: current adapter->itr |
| 2498 | * @packets: the number of packets during this measurement interval |
| 2499 | * @bytes: the number of bytes during this measurement interval |
| 2500 | * |
| 2501 | * Stores a new ITR value based on packets and byte |
| 2502 | * counts during the last interrupt. The advantage of per interrupt |
| 2503 | * computation is faster updates and more accurate ITR for the current |
| 2504 | * traffic pattern. Constants in this function were computed |
| 2505 | * based on theoretical maximum wire speed and thresholds were set based |
| 2506 | * on testing data as well as attempting to minimize response time |
| 2507 | * while increasing bulk throughput. This functionality is controlled |
| 2508 | * by the InterruptThrottleRate module parameter. |
| 2509 | **/ |
| 2510 | static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) |
| 2511 | { |
| 2512 | unsigned int retval = itr_setting; |
| 2513 | |
| 2514 | if (packets == 0) |
| 2515 | return itr_setting; |
| 2516 | |
| 2517 | switch (itr_setting) { |
| 2518 | case lowest_latency: |
| 2519 | /* handle TSO and jumbo frames */ |
| 2520 | if (bytes / packets > 8000) |
| 2521 | retval = bulk_latency; |
| 2522 | else if ((packets < 5) && (bytes > 512)) |
| 2523 | retval = low_latency; |
| 2524 | break; |
| 2525 | case low_latency: /* 50 usec aka 20000 ints/s */ |
| 2526 | if (bytes > 10000) { |
| 2527 | /* this if handles the TSO accounting */ |
| 2528 | if (bytes / packets > 8000) |
| 2529 | retval = bulk_latency; |
| 2530 | else if ((packets < 10) || ((bytes / packets) > 1200)) |
| 2531 | retval = bulk_latency; |
| 2532 | else if ((packets > 35)) |
| 2533 | retval = lowest_latency; |
| 2534 | } else if (bytes / packets > 2000) { |
| 2535 | retval = bulk_latency; |
| 2536 | } else if (packets <= 2 && bytes < 512) { |
| 2537 | retval = lowest_latency; |
| 2538 | } |
| 2539 | break; |
| 2540 | case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| 2541 | if (bytes > 25000) { |
| 2542 | if (packets > 35) |
| 2543 | retval = low_latency; |
| 2544 | } else if (bytes < 6000) { |
| 2545 | retval = low_latency; |
| 2546 | } |
| 2547 | break; |
| 2548 | } |
| 2549 | |
| 2550 | return retval; |
| 2551 | } |
| 2552 | |
| 2553 | static void e1000_set_itr(struct e1000_adapter *adapter) |
| 2554 | { |
| 2555 | u16 current_itr; |
| 2556 | u32 new_itr = adapter->itr; |
| 2557 | |
| 2558 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| 2559 | if (adapter->link_speed != SPEED_1000) { |
| 2560 | current_itr = 0; |
| 2561 | new_itr = 4000; |
| 2562 | goto set_itr_now; |
| 2563 | } |
| 2564 | |
| 2565 | if (adapter->flags2 & FLAG2_DISABLE_AIM) { |
| 2566 | new_itr = 0; |
| 2567 | goto set_itr_now; |
| 2568 | } |
| 2569 | |
| 2570 | adapter->tx_itr = e1000_update_itr(adapter->tx_itr, |
| 2571 | adapter->total_tx_packets, |
| 2572 | adapter->total_tx_bytes); |
| 2573 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| 2574 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
| 2575 | adapter->tx_itr = low_latency; |
| 2576 | |
| 2577 | adapter->rx_itr = e1000_update_itr(adapter->rx_itr, |
| 2578 | adapter->total_rx_packets, |
| 2579 | adapter->total_rx_bytes); |
| 2580 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| 2581 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
| 2582 | adapter->rx_itr = low_latency; |
| 2583 | |
| 2584 | current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| 2585 | |
| 2586 | /* counts and packets in update_itr are dependent on these numbers */ |
| 2587 | switch (current_itr) { |
| 2588 | case lowest_latency: |
| 2589 | new_itr = 70000; |
| 2590 | break; |
| 2591 | case low_latency: |
| 2592 | new_itr = 20000; /* aka hwitr = ~200 */ |
| 2593 | break; |
| 2594 | case bulk_latency: |
| 2595 | new_itr = 4000; |
| 2596 | break; |
| 2597 | default: |
| 2598 | break; |
| 2599 | } |
| 2600 | |
| 2601 | set_itr_now: |
| 2602 | if (new_itr != adapter->itr) { |
| 2603 | /* this attempts to bias the interrupt rate towards Bulk |
| 2604 | * by adding intermediate steps when interrupt rate is |
| 2605 | * increasing |
| 2606 | */ |
| 2607 | new_itr = new_itr > adapter->itr ? |
| 2608 | min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; |
| 2609 | adapter->itr = new_itr; |
| 2610 | adapter->rx_ring->itr_val = new_itr; |
| 2611 | if (adapter->msix_entries) |
| 2612 | adapter->rx_ring->set_itr = 1; |
| 2613 | else |
| 2614 | e1000e_write_itr(adapter, new_itr); |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | /** |
| 2619 | * e1000e_write_itr - write the ITR value to the appropriate registers |
| 2620 | * @adapter: address of board private structure |
| 2621 | * @itr: new ITR value to program |
| 2622 | * |
| 2623 | * e1000e_write_itr determines if the adapter is in MSI-X mode |
| 2624 | * and, if so, writes the EITR registers with the ITR value. |
| 2625 | * Otherwise, it writes the ITR value into the ITR register. |
| 2626 | **/ |
| 2627 | void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) |
| 2628 | { |
| 2629 | struct e1000_hw *hw = &adapter->hw; |
| 2630 | u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; |
| 2631 | |
| 2632 | if (adapter->msix_entries) { |
| 2633 | int vector; |
| 2634 | |
| 2635 | for (vector = 0; vector < adapter->num_vectors; vector++) |
| 2636 | writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); |
| 2637 | } else { |
| 2638 | ew32(ITR, new_itr); |
| 2639 | } |
| 2640 | } |
| 2641 | |
| 2642 | /** |
| 2643 | * e1000_alloc_queues - Allocate memory for all rings |
| 2644 | * @adapter: board private structure to initialize |
| 2645 | **/ |
| 2646 | static int e1000_alloc_queues(struct e1000_adapter *adapter) |
| 2647 | { |
| 2648 | int size = sizeof(struct e1000_ring); |
| 2649 | |
| 2650 | adapter->tx_ring = kzalloc(size, GFP_KERNEL); |
| 2651 | if (!adapter->tx_ring) |
| 2652 | goto err; |
| 2653 | adapter->tx_ring->count = adapter->tx_ring_count; |
| 2654 | adapter->tx_ring->adapter = adapter; |
| 2655 | |
| 2656 | adapter->rx_ring = kzalloc(size, GFP_KERNEL); |
| 2657 | if (!adapter->rx_ring) |
| 2658 | goto err; |
| 2659 | adapter->rx_ring->count = adapter->rx_ring_count; |
| 2660 | adapter->rx_ring->adapter = adapter; |
| 2661 | |
| 2662 | return 0; |
| 2663 | err: |
| 2664 | e_err("Unable to allocate memory for queues\n"); |
| 2665 | kfree(adapter->rx_ring); |
| 2666 | kfree(adapter->tx_ring); |
| 2667 | return -ENOMEM; |
| 2668 | } |
| 2669 | |
| 2670 | /** |
| 2671 | * e1000e_poll - NAPI Rx polling callback |
| 2672 | * @napi: struct associated with this polling callback |
| 2673 | * @weight: number of packets driver is allowed to process this poll |
| 2674 | **/ |
| 2675 | static int e1000e_poll(struct napi_struct *napi, int weight) |
| 2676 | { |
| 2677 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, |
| 2678 | napi); |
| 2679 | struct e1000_hw *hw = &adapter->hw; |
| 2680 | struct net_device *poll_dev = adapter->netdev; |
| 2681 | int tx_cleaned = 1, work_done = 0; |
| 2682 | |
| 2683 | adapter = netdev_priv(poll_dev); |
| 2684 | |
| 2685 | if (!adapter->msix_entries || |
| 2686 | (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
| 2687 | tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); |
| 2688 | |
| 2689 | adapter->clean_rx(adapter->rx_ring, &work_done, weight); |
| 2690 | |
| 2691 | if (!tx_cleaned) |
| 2692 | work_done = weight; |
| 2693 | |
| 2694 | /* If weight not fully consumed, exit the polling mode */ |
| 2695 | if (work_done < weight) { |
| 2696 | if (adapter->itr_setting & 3) |
| 2697 | e1000_set_itr(adapter); |
| 2698 | napi_complete_done(napi, work_done); |
| 2699 | if (!test_bit(__E1000_DOWN, &adapter->state)) { |
| 2700 | if (adapter->msix_entries) |
| 2701 | ew32(IMS, adapter->rx_ring->ims_val); |
| 2702 | else |
| 2703 | e1000_irq_enable(adapter); |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | return work_done; |
| 2708 | } |
| 2709 | |
| 2710 | static int e1000_vlan_rx_add_vid(struct net_device *netdev, |
| 2711 | __always_unused __be16 proto, u16 vid) |
| 2712 | { |
| 2713 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 2714 | struct e1000_hw *hw = &adapter->hw; |
| 2715 | u32 vfta, index; |
| 2716 | |
| 2717 | /* don't update vlan cookie if already programmed */ |
| 2718 | if ((adapter->hw.mng_cookie.status & |
| 2719 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| 2720 | (vid == adapter->mng_vlan_id)) |
| 2721 | return 0; |
| 2722 | |
| 2723 | /* add VID to filter table */ |
| 2724 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| 2725 | index = (vid >> 5) & 0x7F; |
| 2726 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| 2727 | vfta |= (1 << (vid & 0x1F)); |
| 2728 | hw->mac.ops.write_vfta(hw, index, vfta); |
| 2729 | } |
| 2730 | |
| 2731 | set_bit(vid, adapter->active_vlans); |
| 2732 | |
| 2733 | return 0; |
| 2734 | } |
| 2735 | |
| 2736 | static int e1000_vlan_rx_kill_vid(struct net_device *netdev, |
| 2737 | __always_unused __be16 proto, u16 vid) |
| 2738 | { |
| 2739 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 2740 | struct e1000_hw *hw = &adapter->hw; |
| 2741 | u32 vfta, index; |
| 2742 | |
| 2743 | if ((adapter->hw.mng_cookie.status & |
| 2744 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| 2745 | (vid == adapter->mng_vlan_id)) { |
| 2746 | /* release control to f/w */ |
| 2747 | e1000e_release_hw_control(adapter); |
| 2748 | return 0; |
| 2749 | } |
| 2750 | |
| 2751 | /* remove VID from filter table */ |
| 2752 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| 2753 | index = (vid >> 5) & 0x7F; |
| 2754 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| 2755 | vfta &= ~(1 << (vid & 0x1F)); |
| 2756 | hw->mac.ops.write_vfta(hw, index, vfta); |
| 2757 | } |
| 2758 | |
| 2759 | clear_bit(vid, adapter->active_vlans); |
| 2760 | |
| 2761 | return 0; |
| 2762 | } |
| 2763 | |
| 2764 | /** |
| 2765 | * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering |
| 2766 | * @adapter: board private structure to initialize |
| 2767 | **/ |
| 2768 | static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) |
| 2769 | { |
| 2770 | struct net_device *netdev = adapter->netdev; |
| 2771 | struct e1000_hw *hw = &adapter->hw; |
| 2772 | u32 rctl; |
| 2773 | |
| 2774 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| 2775 | /* disable VLAN receive filtering */ |
| 2776 | rctl = er32(RCTL); |
| 2777 | rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); |
| 2778 | ew32(RCTL, rctl); |
| 2779 | |
| 2780 | if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { |
| 2781 | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
| 2782 | adapter->mng_vlan_id); |
| 2783 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| 2784 | } |
| 2785 | } |
| 2786 | } |
| 2787 | |
| 2788 | /** |
| 2789 | * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering |
| 2790 | * @adapter: board private structure to initialize |
| 2791 | **/ |
| 2792 | static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) |
| 2793 | { |
| 2794 | struct e1000_hw *hw = &adapter->hw; |
| 2795 | u32 rctl; |
| 2796 | |
| 2797 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| 2798 | /* enable VLAN receive filtering */ |
| 2799 | rctl = er32(RCTL); |
| 2800 | rctl |= E1000_RCTL_VFE; |
| 2801 | rctl &= ~E1000_RCTL_CFIEN; |
| 2802 | ew32(RCTL, rctl); |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | /** |
| 2807 | * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping |
| 2808 | * @adapter: board private structure to initialize |
| 2809 | **/ |
| 2810 | static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) |
| 2811 | { |
| 2812 | struct e1000_hw *hw = &adapter->hw; |
| 2813 | u32 ctrl; |
| 2814 | |
| 2815 | /* disable VLAN tag insert/strip */ |
| 2816 | ctrl = er32(CTRL); |
| 2817 | ctrl &= ~E1000_CTRL_VME; |
| 2818 | ew32(CTRL, ctrl); |
| 2819 | } |
| 2820 | |
| 2821 | /** |
| 2822 | * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping |
| 2823 | * @adapter: board private structure to initialize |
| 2824 | **/ |
| 2825 | static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) |
| 2826 | { |
| 2827 | struct e1000_hw *hw = &adapter->hw; |
| 2828 | u32 ctrl; |
| 2829 | |
| 2830 | /* enable VLAN tag insert/strip */ |
| 2831 | ctrl = er32(CTRL); |
| 2832 | ctrl |= E1000_CTRL_VME; |
| 2833 | ew32(CTRL, ctrl); |
| 2834 | } |
| 2835 | |
| 2836 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
| 2837 | { |
| 2838 | struct net_device *netdev = adapter->netdev; |
| 2839 | u16 vid = adapter->hw.mng_cookie.vlan_id; |
| 2840 | u16 old_vid = adapter->mng_vlan_id; |
| 2841 | |
| 2842 | if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| 2843 | e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); |
| 2844 | adapter->mng_vlan_id = vid; |
| 2845 | } |
| 2846 | |
| 2847 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) |
| 2848 | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); |
| 2849 | } |
| 2850 | |
| 2851 | static void e1000_restore_vlan(struct e1000_adapter *adapter) |
| 2852 | { |
| 2853 | u16 vid; |
| 2854 | |
| 2855 | e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); |
| 2856 | |
| 2857 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
| 2858 | e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); |
| 2859 | } |
| 2860 | |
| 2861 | static void e1000_init_manageability_pt(struct e1000_adapter *adapter) |
| 2862 | { |
| 2863 | struct e1000_hw *hw = &adapter->hw; |
| 2864 | u32 manc, manc2h, mdef, i, j; |
| 2865 | |
| 2866 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
| 2867 | return; |
| 2868 | |
| 2869 | manc = er32(MANC); |
| 2870 | |
| 2871 | /* enable receiving management packets to the host. this will probably |
| 2872 | * generate destination unreachable messages from the host OS, but |
| 2873 | * the packets will be handled on SMBUS |
| 2874 | */ |
| 2875 | manc |= E1000_MANC_EN_MNG2HOST; |
| 2876 | manc2h = er32(MANC2H); |
| 2877 | |
| 2878 | switch (hw->mac.type) { |
| 2879 | default: |
| 2880 | manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); |
| 2881 | break; |
| 2882 | case e1000_82574: |
| 2883 | case e1000_82583: |
| 2884 | /* Check if IPMI pass-through decision filter already exists; |
| 2885 | * if so, enable it. |
| 2886 | */ |
| 2887 | for (i = 0, j = 0; i < 8; i++) { |
| 2888 | mdef = er32(MDEF(i)); |
| 2889 | |
| 2890 | /* Ignore filters with anything other than IPMI ports */ |
| 2891 | if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
| 2892 | continue; |
| 2893 | |
| 2894 | /* Enable this decision filter in MANC2H */ |
| 2895 | if (mdef) |
| 2896 | manc2h |= (1 << i); |
| 2897 | |
| 2898 | j |= mdef; |
| 2899 | } |
| 2900 | |
| 2901 | if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
| 2902 | break; |
| 2903 | |
| 2904 | /* Create new decision filter in an empty filter */ |
| 2905 | for (i = 0, j = 0; i < 8; i++) |
| 2906 | if (er32(MDEF(i)) == 0) { |
| 2907 | ew32(MDEF(i), (E1000_MDEF_PORT_623 | |
| 2908 | E1000_MDEF_PORT_664)); |
| 2909 | manc2h |= (1 << 1); |
| 2910 | j++; |
| 2911 | break; |
| 2912 | } |
| 2913 | |
| 2914 | if (!j) |
| 2915 | e_warn("Unable to create IPMI pass-through filter\n"); |
| 2916 | break; |
| 2917 | } |
| 2918 | |
| 2919 | ew32(MANC2H, manc2h); |
| 2920 | ew32(MANC, manc); |
| 2921 | } |
| 2922 | |
| 2923 | /** |
| 2924 | * e1000_configure_tx - Configure Transmit Unit after Reset |
| 2925 | * @adapter: board private structure |
| 2926 | * |
| 2927 | * Configure the Tx unit of the MAC after a reset. |
| 2928 | **/ |
| 2929 | static void e1000_configure_tx(struct e1000_adapter *adapter) |
| 2930 | { |
| 2931 | struct e1000_hw *hw = &adapter->hw; |
| 2932 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 2933 | u64 tdba; |
| 2934 | u32 tdlen, tctl, tarc; |
| 2935 | |
| 2936 | /* Setup the HW Tx Head and Tail descriptor pointers */ |
| 2937 | tdba = tx_ring->dma; |
| 2938 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
| 2939 | ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); |
| 2940 | ew32(TDBAH(0), (tdba >> 32)); |
| 2941 | ew32(TDLEN(0), tdlen); |
| 2942 | ew32(TDH(0), 0); |
| 2943 | ew32(TDT(0), 0); |
| 2944 | tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); |
| 2945 | tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); |
| 2946 | |
| 2947 | writel(0, tx_ring->head); |
| 2948 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 2949 | e1000e_update_tdt_wa(tx_ring, 0); |
| 2950 | else |
| 2951 | writel(0, tx_ring->tail); |
| 2952 | |
| 2953 | /* Set the Tx Interrupt Delay register */ |
| 2954 | ew32(TIDV, adapter->tx_int_delay); |
| 2955 | /* Tx irq moderation */ |
| 2956 | ew32(TADV, adapter->tx_abs_int_delay); |
| 2957 | |
| 2958 | if (adapter->flags2 & FLAG2_DMA_BURST) { |
| 2959 | u32 txdctl = er32(TXDCTL(0)); |
| 2960 | |
| 2961 | txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | |
| 2962 | E1000_TXDCTL_WTHRESH); |
| 2963 | /* set up some performance related parameters to encourage the |
| 2964 | * hardware to use the bus more efficiently in bursts, depends |
| 2965 | * on the tx_int_delay to be enabled, |
| 2966 | * wthresh = 1 ==> burst write is disabled to avoid Tx stalls |
| 2967 | * hthresh = 1 ==> prefetch when one or more available |
| 2968 | * pthresh = 0x1f ==> prefetch if internal cache 31 or less |
| 2969 | * BEWARE: this seems to work but should be considered first if |
| 2970 | * there are Tx hangs or other Tx related bugs |
| 2971 | */ |
| 2972 | txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; |
| 2973 | ew32(TXDCTL(0), txdctl); |
| 2974 | } |
| 2975 | /* erratum work around: set txdctl the same for both queues */ |
| 2976 | ew32(TXDCTL(1), er32(TXDCTL(0))); |
| 2977 | |
| 2978 | /* Program the Transmit Control Register */ |
| 2979 | tctl = er32(TCTL); |
| 2980 | tctl &= ~E1000_TCTL_CT; |
| 2981 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| 2982 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| 2983 | |
| 2984 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
| 2985 | tarc = er32(TARC(0)); |
| 2986 | /* set the speed mode bit, we'll clear it if we're not at |
| 2987 | * gigabit link later |
| 2988 | */ |
| 2989 | #define SPEED_MODE_BIT (1 << 21) |
| 2990 | tarc |= SPEED_MODE_BIT; |
| 2991 | ew32(TARC(0), tarc); |
| 2992 | } |
| 2993 | |
| 2994 | /* errata: program both queues to unweighted RR */ |
| 2995 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
| 2996 | tarc = er32(TARC(0)); |
| 2997 | tarc |= 1; |
| 2998 | ew32(TARC(0), tarc); |
| 2999 | tarc = er32(TARC(1)); |
| 3000 | tarc |= 1; |
| 3001 | ew32(TARC(1), tarc); |
| 3002 | } |
| 3003 | |
| 3004 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
| 3005 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
| 3006 | |
| 3007 | /* only set IDE if we are delaying interrupts using the timers */ |
| 3008 | if (adapter->tx_int_delay) |
| 3009 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
| 3010 | |
| 3011 | /* enable Report Status bit */ |
| 3012 | adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| 3013 | |
| 3014 | ew32(TCTL, tctl); |
| 3015 | |
| 3016 | hw->mac.ops.config_collision_dist(hw); |
| 3017 | |
| 3018 | /* SPT Si errata workaround to avoid data corruption */ |
| 3019 | if (hw->mac.type == e1000_pch_spt) { |
| 3020 | u32 reg_val; |
| 3021 | |
| 3022 | reg_val = er32(IOSFPC); |
| 3023 | reg_val |= E1000_RCTL_RDMTS_HEX; |
| 3024 | ew32(IOSFPC, reg_val); |
| 3025 | |
| 3026 | reg_val = er32(TARC(0)); |
| 3027 | reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ; |
| 3028 | ew32(TARC(0), reg_val); |
| 3029 | } |
| 3030 | } |
| 3031 | |
| 3032 | /** |
| 3033 | * e1000_setup_rctl - configure the receive control registers |
| 3034 | * @adapter: Board private structure |
| 3035 | **/ |
| 3036 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
| 3037 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
| 3038 | static void e1000_setup_rctl(struct e1000_adapter *adapter) |
| 3039 | { |
| 3040 | struct e1000_hw *hw = &adapter->hw; |
| 3041 | u32 rctl, rfctl; |
| 3042 | u32 pages = 0; |
| 3043 | |
| 3044 | /* Workaround Si errata on PCHx - configure jumbo frame flow. |
| 3045 | * If jumbo frames not set, program related MAC/PHY registers |
| 3046 | * to h/w defaults |
| 3047 | */ |
| 3048 | if (hw->mac.type >= e1000_pch2lan) { |
| 3049 | s32 ret_val; |
| 3050 | |
| 3051 | if (adapter->netdev->mtu > ETH_DATA_LEN) |
| 3052 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); |
| 3053 | else |
| 3054 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); |
| 3055 | |
| 3056 | if (ret_val) |
| 3057 | e_dbg("failed to enable|disable jumbo frame workaround mode\n"); |
| 3058 | } |
| 3059 | |
| 3060 | /* Program MC offset vector base */ |
| 3061 | rctl = er32(RCTL); |
| 3062 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| 3063 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
| 3064 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| 3065 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| 3066 | |
| 3067 | /* Do not Store bad packets */ |
| 3068 | rctl &= ~E1000_RCTL_SBP; |
| 3069 | |
| 3070 | /* Enable Long Packet receive */ |
| 3071 | if (adapter->netdev->mtu <= ETH_DATA_LEN) |
| 3072 | rctl &= ~E1000_RCTL_LPE; |
| 3073 | else |
| 3074 | rctl |= E1000_RCTL_LPE; |
| 3075 | |
| 3076 | /* Some systems expect that the CRC is included in SMBUS traffic. The |
| 3077 | * hardware strips the CRC before sending to both SMBUS (BMC) and to |
| 3078 | * host memory when this is enabled |
| 3079 | */ |
| 3080 | if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
| 3081 | rctl |= E1000_RCTL_SECRC; |
| 3082 | |
| 3083 | /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
| 3084 | if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { |
| 3085 | u16 phy_data; |
| 3086 | |
| 3087 | e1e_rphy(hw, PHY_REG(770, 26), &phy_data); |
| 3088 | phy_data &= 0xfff8; |
| 3089 | phy_data |= (1 << 2); |
| 3090 | e1e_wphy(hw, PHY_REG(770, 26), phy_data); |
| 3091 | |
| 3092 | e1e_rphy(hw, 22, &phy_data); |
| 3093 | phy_data &= 0x0fff; |
| 3094 | phy_data |= (1 << 14); |
| 3095 | e1e_wphy(hw, 0x10, 0x2823); |
| 3096 | e1e_wphy(hw, 0x11, 0x0003); |
| 3097 | e1e_wphy(hw, 22, phy_data); |
| 3098 | } |
| 3099 | |
| 3100 | /* Setup buffer sizes */ |
| 3101 | rctl &= ~E1000_RCTL_SZ_4096; |
| 3102 | rctl |= E1000_RCTL_BSEX; |
| 3103 | switch (adapter->rx_buffer_len) { |
| 3104 | case 2048: |
| 3105 | default: |
| 3106 | rctl |= E1000_RCTL_SZ_2048; |
| 3107 | rctl &= ~E1000_RCTL_BSEX; |
| 3108 | break; |
| 3109 | case 4096: |
| 3110 | rctl |= E1000_RCTL_SZ_4096; |
| 3111 | break; |
| 3112 | case 8192: |
| 3113 | rctl |= E1000_RCTL_SZ_8192; |
| 3114 | break; |
| 3115 | case 16384: |
| 3116 | rctl |= E1000_RCTL_SZ_16384; |
| 3117 | break; |
| 3118 | } |
| 3119 | |
| 3120 | /* Enable Extended Status in all Receive Descriptors */ |
| 3121 | rfctl = er32(RFCTL); |
| 3122 | rfctl |= E1000_RFCTL_EXTEN; |
| 3123 | ew32(RFCTL, rfctl); |
| 3124 | |
| 3125 | /* 82571 and greater support packet-split where the protocol |
| 3126 | * header is placed in skb->data and the packet data is |
| 3127 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
| 3128 | * In the case of a non-split, skb->data is linearly filled, |
| 3129 | * followed by the page buffers. Therefore, skb->data is |
| 3130 | * sized to hold the largest protocol header. |
| 3131 | * |
| 3132 | * allocations using alloc_page take too long for regular MTU |
| 3133 | * so only enable packet split for jumbo frames |
| 3134 | * |
| 3135 | * Using pages when the page size is greater than 16k wastes |
| 3136 | * a lot of memory, since we allocate 3 pages at all times |
| 3137 | * per packet. |
| 3138 | */ |
| 3139 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
| 3140 | if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
| 3141 | adapter->rx_ps_pages = pages; |
| 3142 | else |
| 3143 | adapter->rx_ps_pages = 0; |
| 3144 | |
| 3145 | if (adapter->rx_ps_pages) { |
| 3146 | u32 psrctl = 0; |
| 3147 | |
| 3148 | /* Enable Packet split descriptors */ |
| 3149 | rctl |= E1000_RCTL_DTYP_PS; |
| 3150 | |
| 3151 | psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; |
| 3152 | |
| 3153 | switch (adapter->rx_ps_pages) { |
| 3154 | case 3: |
| 3155 | psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; |
| 3156 | /* fall-through */ |
| 3157 | case 2: |
| 3158 | psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; |
| 3159 | /* fall-through */ |
| 3160 | case 1: |
| 3161 | psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; |
| 3162 | break; |
| 3163 | } |
| 3164 | |
| 3165 | ew32(PSRCTL, psrctl); |
| 3166 | } |
| 3167 | |
| 3168 | /* This is useful for sniffing bad packets. */ |
| 3169 | if (adapter->netdev->features & NETIF_F_RXALL) { |
| 3170 | /* UPE and MPE will be handled by normal PROMISC logic |
| 3171 | * in e1000e_set_rx_mode |
| 3172 | */ |
| 3173 | rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ |
| 3174 | E1000_RCTL_BAM | /* RX All Bcast Pkts */ |
| 3175 | E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ |
| 3176 | |
| 3177 | rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ |
| 3178 | E1000_RCTL_DPF | /* Allow filtered pause */ |
| 3179 | E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ |
| 3180 | /* Do not mess with E1000_CTRL_VME, it affects transmit as well, |
| 3181 | * and that breaks VLANs. |
| 3182 | */ |
| 3183 | } |
| 3184 | |
| 3185 | ew32(RCTL, rctl); |
| 3186 | /* just started the receive unit, no need to restart */ |
| 3187 | adapter->flags &= ~FLAG_RESTART_NOW; |
| 3188 | } |
| 3189 | |
| 3190 | /** |
| 3191 | * e1000_configure_rx - Configure Receive Unit after Reset |
| 3192 | * @adapter: board private structure |
| 3193 | * |
| 3194 | * Configure the Rx unit of the MAC after a reset. |
| 3195 | **/ |
| 3196 | static void e1000_configure_rx(struct e1000_adapter *adapter) |
| 3197 | { |
| 3198 | struct e1000_hw *hw = &adapter->hw; |
| 3199 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 3200 | u64 rdba; |
| 3201 | u32 rdlen, rctl, rxcsum, ctrl_ext; |
| 3202 | |
| 3203 | if (adapter->rx_ps_pages) { |
| 3204 | /* this is a 32 byte descriptor */ |
| 3205 | rdlen = rx_ring->count * |
| 3206 | sizeof(union e1000_rx_desc_packet_split); |
| 3207 | adapter->clean_rx = e1000_clean_rx_irq_ps; |
| 3208 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
| 3209 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| 3210 | rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); |
| 3211 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
| 3212 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
| 3213 | } else { |
| 3214 | rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); |
| 3215 | adapter->clean_rx = e1000_clean_rx_irq; |
| 3216 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
| 3217 | } |
| 3218 | |
| 3219 | /* disable receives while setting up the descriptors */ |
| 3220 | rctl = er32(RCTL); |
| 3221 | if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) |
| 3222 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 3223 | e1e_flush(); |
| 3224 | usleep_range(10000, 20000); |
| 3225 | |
| 3226 | if (adapter->flags2 & FLAG2_DMA_BURST) { |
| 3227 | /* set the writeback threshold (only takes effect if the RDTR |
| 3228 | * is set). set GRAN=1 and write back up to 0x4 worth, and |
| 3229 | * enable prefetching of 0x20 Rx descriptors |
| 3230 | * granularity = 01 |
| 3231 | * wthresh = 04, |
| 3232 | * hthresh = 04, |
| 3233 | * pthresh = 0x20 |
| 3234 | */ |
| 3235 | ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); |
| 3236 | ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); |
| 3237 | |
| 3238 | /* override the delay timers for enabling bursting, only if |
| 3239 | * the value was not set by the user via module options |
| 3240 | */ |
| 3241 | if (adapter->rx_int_delay == DEFAULT_RDTR) |
| 3242 | adapter->rx_int_delay = BURST_RDTR; |
| 3243 | if (adapter->rx_abs_int_delay == DEFAULT_RADV) |
| 3244 | adapter->rx_abs_int_delay = BURST_RADV; |
| 3245 | } |
| 3246 | |
| 3247 | /* set the Receive Delay Timer Register */ |
| 3248 | ew32(RDTR, adapter->rx_int_delay); |
| 3249 | |
| 3250 | /* irq moderation */ |
| 3251 | ew32(RADV, adapter->rx_abs_int_delay); |
| 3252 | if ((adapter->itr_setting != 0) && (adapter->itr != 0)) |
| 3253 | e1000e_write_itr(adapter, adapter->itr); |
| 3254 | |
| 3255 | ctrl_ext = er32(CTRL_EXT); |
| 3256 | /* Auto-Mask interrupts upon ICR access */ |
| 3257 | ctrl_ext |= E1000_CTRL_EXT_IAME; |
| 3258 | ew32(IAM, 0xffffffff); |
| 3259 | ew32(CTRL_EXT, ctrl_ext); |
| 3260 | e1e_flush(); |
| 3261 | |
| 3262 | /* Setup the HW Rx Head and Tail Descriptor Pointers and |
| 3263 | * the Base and Length of the Rx Descriptor Ring |
| 3264 | */ |
| 3265 | rdba = rx_ring->dma; |
| 3266 | ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); |
| 3267 | ew32(RDBAH(0), (rdba >> 32)); |
| 3268 | ew32(RDLEN(0), rdlen); |
| 3269 | ew32(RDH(0), 0); |
| 3270 | ew32(RDT(0), 0); |
| 3271 | rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); |
| 3272 | rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); |
| 3273 | |
| 3274 | writel(0, rx_ring->head); |
| 3275 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 3276 | e1000e_update_rdt_wa(rx_ring, 0); |
| 3277 | else |
| 3278 | writel(0, rx_ring->tail); |
| 3279 | |
| 3280 | /* Enable Receive Checksum Offload for TCP and UDP */ |
| 3281 | rxcsum = er32(RXCSUM); |
| 3282 | if (adapter->netdev->features & NETIF_F_RXCSUM) |
| 3283 | rxcsum |= E1000_RXCSUM_TUOFL; |
| 3284 | else |
| 3285 | rxcsum &= ~E1000_RXCSUM_TUOFL; |
| 3286 | ew32(RXCSUM, rxcsum); |
| 3287 | |
| 3288 | /* With jumbo frames, excessive C-state transition latencies result |
| 3289 | * in dropped transactions. |
| 3290 | */ |
| 3291 | if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| 3292 | u32 lat = |
| 3293 | ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - |
| 3294 | adapter->max_frame_size) * 8 / 1000; |
| 3295 | |
| 3296 | if (adapter->flags & FLAG_IS_ICH) { |
| 3297 | u32 rxdctl = er32(RXDCTL(0)); |
| 3298 | |
| 3299 | ew32(RXDCTL(0), rxdctl | 0x3); |
| 3300 | } |
| 3301 | |
| 3302 | pm_qos_update_request(&adapter->pm_qos_req, lat); |
| 3303 | } else { |
| 3304 | pm_qos_update_request(&adapter->pm_qos_req, |
| 3305 | PM_QOS_DEFAULT_VALUE); |
| 3306 | } |
| 3307 | |
| 3308 | /* Enable Receives */ |
| 3309 | ew32(RCTL, rctl); |
| 3310 | } |
| 3311 | |
| 3312 | /** |
| 3313 | * e1000e_write_mc_addr_list - write multicast addresses to MTA |
| 3314 | * @netdev: network interface device structure |
| 3315 | * |
| 3316 | * Writes multicast address list to the MTA hash table. |
| 3317 | * Returns: -ENOMEM on failure |
| 3318 | * 0 on no addresses written |
| 3319 | * X on writing X addresses to MTA |
| 3320 | */ |
| 3321 | static int e1000e_write_mc_addr_list(struct net_device *netdev) |
| 3322 | { |
| 3323 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 3324 | struct e1000_hw *hw = &adapter->hw; |
| 3325 | struct netdev_hw_addr *ha; |
| 3326 | u8 *mta_list; |
| 3327 | int i; |
| 3328 | |
| 3329 | if (netdev_mc_empty(netdev)) { |
| 3330 | /* nothing to program, so clear mc list */ |
| 3331 | hw->mac.ops.update_mc_addr_list(hw, NULL, 0); |
| 3332 | return 0; |
| 3333 | } |
| 3334 | |
| 3335 | mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); |
| 3336 | if (!mta_list) |
| 3337 | return -ENOMEM; |
| 3338 | |
| 3339 | /* update_mc_addr_list expects a packed array of only addresses. */ |
| 3340 | i = 0; |
| 3341 | netdev_for_each_mc_addr(ha, netdev) |
| 3342 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); |
| 3343 | |
| 3344 | hw->mac.ops.update_mc_addr_list(hw, mta_list, i); |
| 3345 | kfree(mta_list); |
| 3346 | |
| 3347 | return netdev_mc_count(netdev); |
| 3348 | } |
| 3349 | |
| 3350 | /** |
| 3351 | * e1000e_write_uc_addr_list - write unicast addresses to RAR table |
| 3352 | * @netdev: network interface device structure |
| 3353 | * |
| 3354 | * Writes unicast address list to the RAR table. |
| 3355 | * Returns: -ENOMEM on failure/insufficient address space |
| 3356 | * 0 on no addresses written |
| 3357 | * X on writing X addresses to the RAR table |
| 3358 | **/ |
| 3359 | static int e1000e_write_uc_addr_list(struct net_device *netdev) |
| 3360 | { |
| 3361 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 3362 | struct e1000_hw *hw = &adapter->hw; |
| 3363 | unsigned int rar_entries; |
| 3364 | int count = 0; |
| 3365 | |
| 3366 | rar_entries = hw->mac.ops.rar_get_count(hw); |
| 3367 | |
| 3368 | /* save a rar entry for our hardware address */ |
| 3369 | rar_entries--; |
| 3370 | |
| 3371 | /* save a rar entry for the LAA workaround */ |
| 3372 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) |
| 3373 | rar_entries--; |
| 3374 | |
| 3375 | /* return ENOMEM indicating insufficient memory for addresses */ |
| 3376 | if (netdev_uc_count(netdev) > rar_entries) |
| 3377 | return -ENOMEM; |
| 3378 | |
| 3379 | if (!netdev_uc_empty(netdev) && rar_entries) { |
| 3380 | struct netdev_hw_addr *ha; |
| 3381 | |
| 3382 | /* write the addresses in reverse order to avoid write |
| 3383 | * combining |
| 3384 | */ |
| 3385 | netdev_for_each_uc_addr(ha, netdev) { |
| 3386 | int rval; |
| 3387 | |
| 3388 | if (!rar_entries) |
| 3389 | break; |
| 3390 | rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); |
| 3391 | if (rval < 0) |
| 3392 | return -ENOMEM; |
| 3393 | count++; |
| 3394 | } |
| 3395 | } |
| 3396 | |
| 3397 | /* zero out the remaining RAR entries not used above */ |
| 3398 | for (; rar_entries > 0; rar_entries--) { |
| 3399 | ew32(RAH(rar_entries), 0); |
| 3400 | ew32(RAL(rar_entries), 0); |
| 3401 | } |
| 3402 | e1e_flush(); |
| 3403 | |
| 3404 | return count; |
| 3405 | } |
| 3406 | |
| 3407 | /** |
| 3408 | * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set |
| 3409 | * @netdev: network interface device structure |
| 3410 | * |
| 3411 | * The ndo_set_rx_mode entry point is called whenever the unicast or multicast |
| 3412 | * address list or the network interface flags are updated. This routine is |
| 3413 | * responsible for configuring the hardware for proper unicast, multicast, |
| 3414 | * promiscuous mode, and all-multi behavior. |
| 3415 | **/ |
| 3416 | static void e1000e_set_rx_mode(struct net_device *netdev) |
| 3417 | { |
| 3418 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 3419 | struct e1000_hw *hw = &adapter->hw; |
| 3420 | u32 rctl; |
| 3421 | |
| 3422 | if (pm_runtime_suspended(netdev->dev.parent)) |
| 3423 | return; |
| 3424 | |
| 3425 | /* Check for Promiscuous and All Multicast modes */ |
| 3426 | rctl = er32(RCTL); |
| 3427 | |
| 3428 | /* clear the affected bits */ |
| 3429 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
| 3430 | |
| 3431 | if (netdev->flags & IFF_PROMISC) { |
| 3432 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| 3433 | /* Do not hardware filter VLANs in promisc mode */ |
| 3434 | e1000e_vlan_filter_disable(adapter); |
| 3435 | } else { |
| 3436 | int count; |
| 3437 | |
| 3438 | if (netdev->flags & IFF_ALLMULTI) { |
| 3439 | rctl |= E1000_RCTL_MPE; |
| 3440 | } else { |
| 3441 | /* Write addresses to the MTA, if the attempt fails |
| 3442 | * then we should just turn on promiscuous mode so |
| 3443 | * that we can at least receive multicast traffic |
| 3444 | */ |
| 3445 | count = e1000e_write_mc_addr_list(netdev); |
| 3446 | if (count < 0) |
| 3447 | rctl |= E1000_RCTL_MPE; |
| 3448 | } |
| 3449 | e1000e_vlan_filter_enable(adapter); |
| 3450 | /* Write addresses to available RAR registers, if there is not |
| 3451 | * sufficient space to store all the addresses then enable |
| 3452 | * unicast promiscuous mode |
| 3453 | */ |
| 3454 | count = e1000e_write_uc_addr_list(netdev); |
| 3455 | if (count < 0) |
| 3456 | rctl |= E1000_RCTL_UPE; |
| 3457 | } |
| 3458 | |
| 3459 | ew32(RCTL, rctl); |
| 3460 | |
| 3461 | if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| 3462 | e1000e_vlan_strip_enable(adapter); |
| 3463 | else |
| 3464 | e1000e_vlan_strip_disable(adapter); |
| 3465 | } |
| 3466 | |
| 3467 | static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) |
| 3468 | { |
| 3469 | struct e1000_hw *hw = &adapter->hw; |
| 3470 | u32 mrqc, rxcsum; |
| 3471 | u32 rss_key[10]; |
| 3472 | int i; |
| 3473 | |
| 3474 | netdev_rss_key_fill(rss_key, sizeof(rss_key)); |
| 3475 | for (i = 0; i < 10; i++) |
| 3476 | ew32(RSSRK(i), rss_key[i]); |
| 3477 | |
| 3478 | /* Direct all traffic to queue 0 */ |
| 3479 | for (i = 0; i < 32; i++) |
| 3480 | ew32(RETA(i), 0); |
| 3481 | |
| 3482 | /* Disable raw packet checksumming so that RSS hash is placed in |
| 3483 | * descriptor on writeback. |
| 3484 | */ |
| 3485 | rxcsum = er32(RXCSUM); |
| 3486 | rxcsum |= E1000_RXCSUM_PCSD; |
| 3487 | |
| 3488 | ew32(RXCSUM, rxcsum); |
| 3489 | |
| 3490 | mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | |
| 3491 | E1000_MRQC_RSS_FIELD_IPV4_TCP | |
| 3492 | E1000_MRQC_RSS_FIELD_IPV6 | |
| 3493 | E1000_MRQC_RSS_FIELD_IPV6_TCP | |
| 3494 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); |
| 3495 | |
| 3496 | ew32(MRQC, mrqc); |
| 3497 | } |
| 3498 | |
| 3499 | /** |
| 3500 | * e1000e_get_base_timinca - get default SYSTIM time increment attributes |
| 3501 | * @adapter: board private structure |
| 3502 | * @timinca: pointer to returned time increment attributes |
| 3503 | * |
| 3504 | * Get attributes for incrementing the System Time Register SYSTIML/H at |
| 3505 | * the default base frequency, and set the cyclecounter shift value. |
| 3506 | **/ |
| 3507 | s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) |
| 3508 | { |
| 3509 | struct e1000_hw *hw = &adapter->hw; |
| 3510 | u32 incvalue, incperiod, shift; |
| 3511 | |
| 3512 | /* Make sure clock is enabled on I217/I218/I219 before checking |
| 3513 | * the frequency |
| 3514 | */ |
| 3515 | if (((hw->mac.type == e1000_pch_lpt) || |
| 3516 | (hw->mac.type == e1000_pch_spt)) && |
| 3517 | !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && |
| 3518 | !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { |
| 3519 | u32 fextnvm7 = er32(FEXTNVM7); |
| 3520 | |
| 3521 | if (!(fextnvm7 & (1 << 0))) { |
| 3522 | ew32(FEXTNVM7, fextnvm7 | (1 << 0)); |
| 3523 | e1e_flush(); |
| 3524 | } |
| 3525 | } |
| 3526 | |
| 3527 | switch (hw->mac.type) { |
| 3528 | case e1000_pch2lan: |
| 3529 | case e1000_pch_lpt: |
| 3530 | if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { |
| 3531 | /* Stable 96MHz frequency */ |
| 3532 | incperiod = INCPERIOD_96MHz; |
| 3533 | incvalue = INCVALUE_96MHz; |
| 3534 | shift = INCVALUE_SHIFT_96MHz; |
| 3535 | adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz; |
| 3536 | } else { |
| 3537 | /* Stable 25MHz frequency */ |
| 3538 | incperiod = INCPERIOD_25MHz; |
| 3539 | incvalue = INCVALUE_25MHz; |
| 3540 | shift = INCVALUE_SHIFT_25MHz; |
| 3541 | adapter->cc.shift = shift; |
| 3542 | } |
| 3543 | break; |
| 3544 | case e1000_pch_spt: |
| 3545 | if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { |
| 3546 | /* Stable 24MHz frequency */ |
| 3547 | incperiod = INCPERIOD_24MHz; |
| 3548 | incvalue = INCVALUE_24MHz; |
| 3549 | shift = INCVALUE_SHIFT_24MHz; |
| 3550 | adapter->cc.shift = shift; |
| 3551 | break; |
| 3552 | } |
| 3553 | return -EINVAL; |
| 3554 | case e1000_82574: |
| 3555 | case e1000_82583: |
| 3556 | /* Stable 25MHz frequency */ |
| 3557 | incperiod = INCPERIOD_25MHz; |
| 3558 | incvalue = INCVALUE_25MHz; |
| 3559 | shift = INCVALUE_SHIFT_25MHz; |
| 3560 | adapter->cc.shift = shift; |
| 3561 | break; |
| 3562 | default: |
| 3563 | return -EINVAL; |
| 3564 | } |
| 3565 | |
| 3566 | *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | |
| 3567 | ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); |
| 3568 | |
| 3569 | return 0; |
| 3570 | } |
| 3571 | |
| 3572 | /** |
| 3573 | * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable |
| 3574 | * @adapter: board private structure |
| 3575 | * |
| 3576 | * Outgoing time stamping can be enabled and disabled. Play nice and |
| 3577 | * disable it when requested, although it shouldn't cause any overhead |
| 3578 | * when no packet needs it. At most one packet in the queue may be |
| 3579 | * marked for time stamping, otherwise it would be impossible to tell |
| 3580 | * for sure to which packet the hardware time stamp belongs. |
| 3581 | * |
| 3582 | * Incoming time stamping has to be configured via the hardware filters. |
| 3583 | * Not all combinations are supported, in particular event type has to be |
| 3584 | * specified. Matching the kind of event packet is not supported, with the |
| 3585 | * exception of "all V2 events regardless of level 2 or 4". |
| 3586 | **/ |
| 3587 | static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, |
| 3588 | struct hwtstamp_config *config) |
| 3589 | { |
| 3590 | struct e1000_hw *hw = &adapter->hw; |
| 3591 | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| 3592 | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| 3593 | u32 rxmtrl = 0; |
| 3594 | u16 rxudp = 0; |
| 3595 | bool is_l4 = false; |
| 3596 | bool is_l2 = false; |
| 3597 | u32 regval; |
| 3598 | s32 ret_val; |
| 3599 | |
| 3600 | if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) |
| 3601 | return -EINVAL; |
| 3602 | |
| 3603 | /* flags reserved for future extensions - must be zero */ |
| 3604 | if (config->flags) |
| 3605 | return -EINVAL; |
| 3606 | |
| 3607 | switch (config->tx_type) { |
| 3608 | case HWTSTAMP_TX_OFF: |
| 3609 | tsync_tx_ctl = 0; |
| 3610 | break; |
| 3611 | case HWTSTAMP_TX_ON: |
| 3612 | break; |
| 3613 | default: |
| 3614 | return -ERANGE; |
| 3615 | } |
| 3616 | |
| 3617 | switch (config->rx_filter) { |
| 3618 | case HWTSTAMP_FILTER_NONE: |
| 3619 | tsync_rx_ctl = 0; |
| 3620 | break; |
| 3621 | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| 3622 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| 3623 | rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; |
| 3624 | is_l4 = true; |
| 3625 | break; |
| 3626 | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| 3627 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| 3628 | rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; |
| 3629 | is_l4 = true; |
| 3630 | break; |
| 3631 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| 3632 | /* Also time stamps V2 L2 Path Delay Request/Response */ |
| 3633 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; |
| 3634 | rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; |
| 3635 | is_l2 = true; |
| 3636 | break; |
| 3637 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| 3638 | /* Also time stamps V2 L2 Path Delay Request/Response. */ |
| 3639 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; |
| 3640 | rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; |
| 3641 | is_l2 = true; |
| 3642 | break; |
| 3643 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| 3644 | /* Hardware cannot filter just V2 L4 Sync messages; |
| 3645 | * fall-through to V2 (both L2 and L4) Sync. |
| 3646 | */ |
| 3647 | case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| 3648 | /* Also time stamps V2 Path Delay Request/Response. */ |
| 3649 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| 3650 | rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; |
| 3651 | is_l2 = true; |
| 3652 | is_l4 = true; |
| 3653 | break; |
| 3654 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| 3655 | /* Hardware cannot filter just V2 L4 Delay Request messages; |
| 3656 | * fall-through to V2 (both L2 and L4) Delay Request. |
| 3657 | */ |
| 3658 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| 3659 | /* Also time stamps V2 Path Delay Request/Response. */ |
| 3660 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; |
| 3661 | rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; |
| 3662 | is_l2 = true; |
| 3663 | is_l4 = true; |
| 3664 | break; |
| 3665 | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| 3666 | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| 3667 | /* Hardware cannot filter just V2 L4 or L2 Event messages; |
| 3668 | * fall-through to all V2 (both L2 and L4) Events. |
| 3669 | */ |
| 3670 | case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| 3671 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| 3672 | config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| 3673 | is_l2 = true; |
| 3674 | is_l4 = true; |
| 3675 | break; |
| 3676 | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| 3677 | /* For V1, the hardware can only filter Sync messages or |
| 3678 | * Delay Request messages but not both so fall-through to |
| 3679 | * time stamp all packets. |
| 3680 | */ |
| 3681 | case HWTSTAMP_FILTER_ALL: |
| 3682 | is_l2 = true; |
| 3683 | is_l4 = true; |
| 3684 | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| 3685 | config->rx_filter = HWTSTAMP_FILTER_ALL; |
| 3686 | break; |
| 3687 | default: |
| 3688 | return -ERANGE; |
| 3689 | } |
| 3690 | |
| 3691 | adapter->hwtstamp_config = *config; |
| 3692 | |
| 3693 | /* enable/disable Tx h/w time stamping */ |
| 3694 | regval = er32(TSYNCTXCTL); |
| 3695 | regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| 3696 | regval |= tsync_tx_ctl; |
| 3697 | ew32(TSYNCTXCTL, regval); |
| 3698 | if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != |
| 3699 | (regval & E1000_TSYNCTXCTL_ENABLED)) { |
| 3700 | e_err("Timesync Tx Control register not set as expected\n"); |
| 3701 | return -EAGAIN; |
| 3702 | } |
| 3703 | |
| 3704 | /* enable/disable Rx h/w time stamping */ |
| 3705 | regval = er32(TSYNCRXCTL); |
| 3706 | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| 3707 | regval |= tsync_rx_ctl; |
| 3708 | ew32(TSYNCRXCTL, regval); |
| 3709 | if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | |
| 3710 | E1000_TSYNCRXCTL_TYPE_MASK)) != |
| 3711 | (regval & (E1000_TSYNCRXCTL_ENABLED | |
| 3712 | E1000_TSYNCRXCTL_TYPE_MASK))) { |
| 3713 | e_err("Timesync Rx Control register not set as expected\n"); |
| 3714 | return -EAGAIN; |
| 3715 | } |
| 3716 | |
| 3717 | /* L2: define ethertype filter for time stamped packets */ |
| 3718 | if (is_l2) |
| 3719 | rxmtrl |= ETH_P_1588; |
| 3720 | |
| 3721 | /* define which PTP packets get time stamped */ |
| 3722 | ew32(RXMTRL, rxmtrl); |
| 3723 | |
| 3724 | /* Filter by destination port */ |
| 3725 | if (is_l4) { |
| 3726 | rxudp = PTP_EV_PORT; |
| 3727 | cpu_to_be16s(&rxudp); |
| 3728 | } |
| 3729 | ew32(RXUDP, rxudp); |
| 3730 | |
| 3731 | e1e_flush(); |
| 3732 | |
| 3733 | /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ |
| 3734 | er32(RXSTMPH); |
| 3735 | er32(TXSTMPH); |
| 3736 | |
| 3737 | /* Get and set the System Time Register SYSTIM base frequency */ |
| 3738 | ret_val = e1000e_get_base_timinca(adapter, ®val); |
| 3739 | if (ret_val) |
| 3740 | return ret_val; |
| 3741 | ew32(TIMINCA, regval); |
| 3742 | |
| 3743 | /* reset the ns time counter */ |
| 3744 | timecounter_init(&adapter->tc, &adapter->cc, |
| 3745 | ktime_to_ns(ktime_get_real())); |
| 3746 | |
| 3747 | return 0; |
| 3748 | } |
| 3749 | |
| 3750 | /** |
| 3751 | * e1000_configure - configure the hardware for Rx and Tx |
| 3752 | * @adapter: private board structure |
| 3753 | **/ |
| 3754 | static void e1000_configure(struct e1000_adapter *adapter) |
| 3755 | { |
| 3756 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 3757 | |
| 3758 | e1000e_set_rx_mode(adapter->netdev); |
| 3759 | |
| 3760 | e1000_restore_vlan(adapter); |
| 3761 | e1000_init_manageability_pt(adapter); |
| 3762 | |
| 3763 | e1000_configure_tx(adapter); |
| 3764 | |
| 3765 | if (adapter->netdev->features & NETIF_F_RXHASH) |
| 3766 | e1000e_setup_rss_hash(adapter); |
| 3767 | e1000_setup_rctl(adapter); |
| 3768 | e1000_configure_rx(adapter); |
| 3769 | adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); |
| 3770 | } |
| 3771 | |
| 3772 | /** |
| 3773 | * e1000e_power_up_phy - restore link in case the phy was powered down |
| 3774 | * @adapter: address of board private structure |
| 3775 | * |
| 3776 | * The phy may be powered down to save power and turn off link when the |
| 3777 | * driver is unloaded and wake on lan is not enabled (among others) |
| 3778 | * *** this routine MUST be followed by a call to e1000e_reset *** |
| 3779 | **/ |
| 3780 | void e1000e_power_up_phy(struct e1000_adapter *adapter) |
| 3781 | { |
| 3782 | if (adapter->hw.phy.ops.power_up) |
| 3783 | adapter->hw.phy.ops.power_up(&adapter->hw); |
| 3784 | |
| 3785 | adapter->hw.mac.ops.setup_link(&adapter->hw); |
| 3786 | } |
| 3787 | |
| 3788 | /** |
| 3789 | * e1000_power_down_phy - Power down the PHY |
| 3790 | * |
| 3791 | * Power down the PHY so no link is implied when interface is down. |
| 3792 | * The PHY cannot be powered down if management or WoL is active. |
| 3793 | */ |
| 3794 | static void e1000_power_down_phy(struct e1000_adapter *adapter) |
| 3795 | { |
| 3796 | if (adapter->hw.phy.ops.power_down) |
| 3797 | adapter->hw.phy.ops.power_down(&adapter->hw); |
| 3798 | } |
| 3799 | |
| 3800 | /** |
| 3801 | * e1000_flush_tx_ring - remove all descriptors from the tx_ring |
| 3802 | * |
| 3803 | * We want to clear all pending descriptors from the TX ring. |
| 3804 | * zeroing happens when the HW reads the regs. We assign the ring itself as |
| 3805 | * the data of the next descriptor. We don't care about the data we are about |
| 3806 | * to reset the HW. |
| 3807 | */ |
| 3808 | static void e1000_flush_tx_ring(struct e1000_adapter *adapter) |
| 3809 | { |
| 3810 | struct e1000_hw *hw = &adapter->hw; |
| 3811 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 3812 | struct e1000_tx_desc *tx_desc = NULL; |
| 3813 | u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; |
| 3814 | u16 size = 512; |
| 3815 | |
| 3816 | tctl = er32(TCTL); |
| 3817 | ew32(TCTL, tctl | E1000_TCTL_EN); |
| 3818 | tdt = er32(TDT(0)); |
| 3819 | BUG_ON(tdt != tx_ring->next_to_use); |
| 3820 | tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); |
| 3821 | tx_desc->buffer_addr = tx_ring->dma; |
| 3822 | |
| 3823 | tx_desc->lower.data = cpu_to_le32(txd_lower | size); |
| 3824 | tx_desc->upper.data = 0; |
| 3825 | /* flush descriptors to memory before notifying the HW */ |
| 3826 | wmb(); |
| 3827 | tx_ring->next_to_use++; |
| 3828 | if (tx_ring->next_to_use == tx_ring->count) |
| 3829 | tx_ring->next_to_use = 0; |
| 3830 | ew32(TDT(0), tx_ring->next_to_use); |
| 3831 | mmiowb(); |
| 3832 | usleep_range(200, 250); |
| 3833 | } |
| 3834 | |
| 3835 | /** |
| 3836 | * e1000_flush_rx_ring - remove all descriptors from the rx_ring |
| 3837 | * |
| 3838 | * Mark all descriptors in the RX ring as consumed and disable the rx ring |
| 3839 | */ |
| 3840 | static void e1000_flush_rx_ring(struct e1000_adapter *adapter) |
| 3841 | { |
| 3842 | u32 rctl, rxdctl; |
| 3843 | struct e1000_hw *hw = &adapter->hw; |
| 3844 | |
| 3845 | rctl = er32(RCTL); |
| 3846 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 3847 | e1e_flush(); |
| 3848 | usleep_range(100, 150); |
| 3849 | |
| 3850 | rxdctl = er32(RXDCTL(0)); |
| 3851 | /* zero the lower 14 bits (prefetch and host thresholds) */ |
| 3852 | rxdctl &= 0xffffc000; |
| 3853 | |
| 3854 | /* update thresholds: prefetch threshold to 31, host threshold to 1 |
| 3855 | * and make sure the granularity is "descriptors" and not "cache lines" |
| 3856 | */ |
| 3857 | rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC); |
| 3858 | |
| 3859 | ew32(RXDCTL(0), rxdctl); |
| 3860 | /* momentarily enable the RX ring for the changes to take effect */ |
| 3861 | ew32(RCTL, rctl | E1000_RCTL_EN); |
| 3862 | e1e_flush(); |
| 3863 | usleep_range(100, 150); |
| 3864 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 3865 | } |
| 3866 | |
| 3867 | /** |
| 3868 | * e1000_flush_desc_rings - remove all descriptors from the descriptor rings |
| 3869 | * |
| 3870 | * In i219, the descriptor rings must be emptied before resetting the HW |
| 3871 | * or before changing the device state to D3 during runtime (runtime PM). |
| 3872 | * |
| 3873 | * Failure to do this will cause the HW to enter a unit hang state which can |
| 3874 | * only be released by PCI reset on the device |
| 3875 | * |
| 3876 | */ |
| 3877 | |
| 3878 | static void e1000_flush_desc_rings(struct e1000_adapter *adapter) |
| 3879 | { |
| 3880 | u16 hang_state; |
| 3881 | u32 fext_nvm11, tdlen; |
| 3882 | struct e1000_hw *hw = &adapter->hw; |
| 3883 | |
| 3884 | /* First, disable MULR fix in FEXTNVM11 */ |
| 3885 | fext_nvm11 = er32(FEXTNVM11); |
| 3886 | fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; |
| 3887 | ew32(FEXTNVM11, fext_nvm11); |
| 3888 | /* do nothing if we're not in faulty state, or if the queue is empty */ |
| 3889 | tdlen = er32(TDLEN(0)); |
| 3890 | pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, |
| 3891 | &hang_state); |
| 3892 | if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) |
| 3893 | return; |
| 3894 | e1000_flush_tx_ring(adapter); |
| 3895 | /* recheck, maybe the fault is caused by the rx ring */ |
| 3896 | pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, |
| 3897 | &hang_state); |
| 3898 | if (hang_state & FLUSH_DESC_REQUIRED) |
| 3899 | e1000_flush_rx_ring(adapter); |
| 3900 | } |
| 3901 | |
| 3902 | /** |
| 3903 | * e1000e_reset - bring the hardware into a known good state |
| 3904 | * |
| 3905 | * This function boots the hardware and enables some settings that |
| 3906 | * require a configuration cycle of the hardware - those cannot be |
| 3907 | * set/changed during runtime. After reset the device needs to be |
| 3908 | * properly configured for Rx, Tx etc. |
| 3909 | */ |
| 3910 | void e1000e_reset(struct e1000_adapter *adapter) |
| 3911 | { |
| 3912 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 3913 | struct e1000_fc_info *fc = &adapter->hw.fc; |
| 3914 | struct e1000_hw *hw = &adapter->hw; |
| 3915 | u32 tx_space, min_tx_space, min_rx_space; |
| 3916 | u32 pba = adapter->pba; |
| 3917 | u16 hwm; |
| 3918 | |
| 3919 | /* reset Packet Buffer Allocation to default */ |
| 3920 | ew32(PBA, pba); |
| 3921 | |
| 3922 | if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { |
| 3923 | /* To maintain wire speed transmits, the Tx FIFO should be |
| 3924 | * large enough to accommodate two full transmit packets, |
| 3925 | * rounded up to the next 1KB and expressed in KB. Likewise, |
| 3926 | * the Rx FIFO should be large enough to accommodate at least |
| 3927 | * one full receive packet and is similarly rounded up and |
| 3928 | * expressed in KB. |
| 3929 | */ |
| 3930 | pba = er32(PBA); |
| 3931 | /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| 3932 | tx_space = pba >> 16; |
| 3933 | /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| 3934 | pba &= 0xffff; |
| 3935 | /* the Tx fifo also stores 16 bytes of information about the Tx |
| 3936 | * but don't include ethernet FCS because hardware appends it |
| 3937 | */ |
| 3938 | min_tx_space = (adapter->max_frame_size + |
| 3939 | sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; |
| 3940 | min_tx_space = ALIGN(min_tx_space, 1024); |
| 3941 | min_tx_space >>= 10; |
| 3942 | /* software strips receive CRC, so leave room for it */ |
| 3943 | min_rx_space = adapter->max_frame_size; |
| 3944 | min_rx_space = ALIGN(min_rx_space, 1024); |
| 3945 | min_rx_space >>= 10; |
| 3946 | |
| 3947 | /* If current Tx allocation is less than the min Tx FIFO size, |
| 3948 | * and the min Tx FIFO size is less than the current Rx FIFO |
| 3949 | * allocation, take space away from current Rx allocation |
| 3950 | */ |
| 3951 | if ((tx_space < min_tx_space) && |
| 3952 | ((min_tx_space - tx_space) < pba)) { |
| 3953 | pba -= min_tx_space - tx_space; |
| 3954 | |
| 3955 | /* if short on Rx space, Rx wins and must trump Tx |
| 3956 | * adjustment |
| 3957 | */ |
| 3958 | if (pba < min_rx_space) |
| 3959 | pba = min_rx_space; |
| 3960 | } |
| 3961 | |
| 3962 | ew32(PBA, pba); |
| 3963 | } |
| 3964 | |
| 3965 | /* flow control settings |
| 3966 | * |
| 3967 | * The high water mark must be low enough to fit one full frame |
| 3968 | * (or the size used for early receive) above it in the Rx FIFO. |
| 3969 | * Set it to the lower of: |
| 3970 | * - 90% of the Rx FIFO size, and |
| 3971 | * - the full Rx FIFO size minus one full frame |
| 3972 | */ |
| 3973 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
| 3974 | fc->pause_time = 0xFFFF; |
| 3975 | else |
| 3976 | fc->pause_time = E1000_FC_PAUSE_TIME; |
| 3977 | fc->send_xon = true; |
| 3978 | fc->current_mode = fc->requested_mode; |
| 3979 | |
| 3980 | switch (hw->mac.type) { |
| 3981 | case e1000_ich9lan: |
| 3982 | case e1000_ich10lan: |
| 3983 | if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| 3984 | pba = 14; |
| 3985 | ew32(PBA, pba); |
| 3986 | fc->high_water = 0x2800; |
| 3987 | fc->low_water = fc->high_water - 8; |
| 3988 | break; |
| 3989 | } |
| 3990 | /* fall-through */ |
| 3991 | default: |
| 3992 | hwm = min(((pba << 10) * 9 / 10), |
| 3993 | ((pba << 10) - adapter->max_frame_size)); |
| 3994 | |
| 3995 | fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
| 3996 | fc->low_water = fc->high_water - 8; |
| 3997 | break; |
| 3998 | case e1000_pchlan: |
| 3999 | /* Workaround PCH LOM adapter hangs with certain network |
| 4000 | * loads. If hangs persist, try disabling Tx flow control. |
| 4001 | */ |
| 4002 | if (adapter->netdev->mtu > ETH_DATA_LEN) { |
| 4003 | fc->high_water = 0x3500; |
| 4004 | fc->low_water = 0x1500; |
| 4005 | } else { |
| 4006 | fc->high_water = 0x5000; |
| 4007 | fc->low_water = 0x3000; |
| 4008 | } |
| 4009 | fc->refresh_time = 0x1000; |
| 4010 | break; |
| 4011 | case e1000_pch2lan: |
| 4012 | case e1000_pch_lpt: |
| 4013 | case e1000_pch_spt: |
| 4014 | fc->refresh_time = 0x0400; |
| 4015 | |
| 4016 | if (adapter->netdev->mtu <= ETH_DATA_LEN) { |
| 4017 | fc->high_water = 0x05C20; |
| 4018 | fc->low_water = 0x05048; |
| 4019 | fc->pause_time = 0x0650; |
| 4020 | break; |
| 4021 | } |
| 4022 | |
| 4023 | pba = 14; |
| 4024 | ew32(PBA, pba); |
| 4025 | fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; |
| 4026 | fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; |
| 4027 | break; |
| 4028 | } |
| 4029 | |
| 4030 | /* Alignment of Tx data is on an arbitrary byte boundary with the |
| 4031 | * maximum size per Tx descriptor limited only to the transmit |
| 4032 | * allocation of the packet buffer minus 96 bytes with an upper |
| 4033 | * limit of 24KB due to receive synchronization limitations. |
| 4034 | */ |
| 4035 | adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, |
| 4036 | 24 << 10); |
| 4037 | |
| 4038 | /* Disable Adaptive Interrupt Moderation if 2 full packets cannot |
| 4039 | * fit in receive buffer. |
| 4040 | */ |
| 4041 | if (adapter->itr_setting & 0x3) { |
| 4042 | if ((adapter->max_frame_size * 2) > (pba << 10)) { |
| 4043 | if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { |
| 4044 | dev_info(&adapter->pdev->dev, |
| 4045 | "Interrupt Throttle Rate off\n"); |
| 4046 | adapter->flags2 |= FLAG2_DISABLE_AIM; |
| 4047 | e1000e_write_itr(adapter, 0); |
| 4048 | } |
| 4049 | } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { |
| 4050 | dev_info(&adapter->pdev->dev, |
| 4051 | "Interrupt Throttle Rate on\n"); |
| 4052 | adapter->flags2 &= ~FLAG2_DISABLE_AIM; |
| 4053 | adapter->itr = 20000; |
| 4054 | e1000e_write_itr(adapter, adapter->itr); |
| 4055 | } |
| 4056 | } |
| 4057 | |
| 4058 | if (hw->mac.type == e1000_pch_spt) |
| 4059 | e1000_flush_desc_rings(adapter); |
| 4060 | /* Allow time for pending master requests to run */ |
| 4061 | mac->ops.reset_hw(hw); |
| 4062 | |
| 4063 | /* For parts with AMT enabled, let the firmware know |
| 4064 | * that the network interface is in control |
| 4065 | */ |
| 4066 | if (adapter->flags & FLAG_HAS_AMT) |
| 4067 | e1000e_get_hw_control(adapter); |
| 4068 | |
| 4069 | ew32(WUC, 0); |
| 4070 | |
| 4071 | if (mac->ops.init_hw(hw)) |
| 4072 | e_err("Hardware Error\n"); |
| 4073 | |
| 4074 | e1000_update_mng_vlan(adapter); |
| 4075 | |
| 4076 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| 4077 | ew32(VET, ETH_P_8021Q); |
| 4078 | |
| 4079 | e1000e_reset_adaptive(hw); |
| 4080 | |
| 4081 | /* initialize systim and reset the ns time counter */ |
| 4082 | e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); |
| 4083 | |
| 4084 | /* Set EEE advertisement as appropriate */ |
| 4085 | if (adapter->flags2 & FLAG2_HAS_EEE) { |
| 4086 | s32 ret_val; |
| 4087 | u16 adv_addr; |
| 4088 | |
| 4089 | switch (hw->phy.type) { |
| 4090 | case e1000_phy_82579: |
| 4091 | adv_addr = I82579_EEE_ADVERTISEMENT; |
| 4092 | break; |
| 4093 | case e1000_phy_i217: |
| 4094 | adv_addr = I217_EEE_ADVERTISEMENT; |
| 4095 | break; |
| 4096 | default: |
| 4097 | dev_err(&adapter->pdev->dev, |
| 4098 | "Invalid PHY type setting EEE advertisement\n"); |
| 4099 | return; |
| 4100 | } |
| 4101 | |
| 4102 | ret_val = hw->phy.ops.acquire(hw); |
| 4103 | if (ret_val) { |
| 4104 | dev_err(&adapter->pdev->dev, |
| 4105 | "EEE advertisement - unable to acquire PHY\n"); |
| 4106 | return; |
| 4107 | } |
| 4108 | |
| 4109 | e1000_write_emi_reg_locked(hw, adv_addr, |
| 4110 | hw->dev_spec.ich8lan.eee_disable ? |
| 4111 | 0 : adapter->eee_advert); |
| 4112 | |
| 4113 | hw->phy.ops.release(hw); |
| 4114 | } |
| 4115 | |
| 4116 | if (!netif_running(adapter->netdev) && |
| 4117 | !test_bit(__E1000_TESTING, &adapter->state)) |
| 4118 | e1000_power_down_phy(adapter); |
| 4119 | |
| 4120 | e1000_get_phy_info(hw); |
| 4121 | |
| 4122 | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
| 4123 | !(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
| 4124 | u16 phy_data = 0; |
| 4125 | /* speed up time to link by disabling smart power down, ignore |
| 4126 | * the return value of this function because there is nothing |
| 4127 | * different we would do if it failed |
| 4128 | */ |
| 4129 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| 4130 | phy_data &= ~IGP02E1000_PM_SPD; |
| 4131 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| 4132 | } |
| 4133 | if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) { |
| 4134 | u32 reg; |
| 4135 | |
| 4136 | /* Fextnvm7 @ 0xe4[2] = 1 */ |
| 4137 | reg = er32(FEXTNVM7); |
| 4138 | reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; |
| 4139 | ew32(FEXTNVM7, reg); |
| 4140 | /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ |
| 4141 | reg = er32(FEXTNVM9); |
| 4142 | reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | |
| 4143 | E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; |
| 4144 | ew32(FEXTNVM9, reg); |
| 4145 | } |
| 4146 | |
| 4147 | } |
| 4148 | |
| 4149 | int e1000e_up(struct e1000_adapter *adapter) |
| 4150 | { |
| 4151 | struct e1000_hw *hw = &adapter->hw; |
| 4152 | |
| 4153 | /* hardware has been reset, we need to reload some things */ |
| 4154 | e1000_configure(adapter); |
| 4155 | |
| 4156 | clear_bit(__E1000_DOWN, &adapter->state); |
| 4157 | |
| 4158 | if (adapter->msix_entries) |
| 4159 | e1000_configure_msix(adapter); |
| 4160 | e1000_irq_enable(adapter); |
| 4161 | |
| 4162 | netif_start_queue(adapter->netdev); |
| 4163 | |
| 4164 | /* fire a link change interrupt to start the watchdog */ |
| 4165 | if (adapter->msix_entries) |
| 4166 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); |
| 4167 | else |
| 4168 | ew32(ICS, E1000_ICS_LSC); |
| 4169 | |
| 4170 | return 0; |
| 4171 | } |
| 4172 | |
| 4173 | static void e1000e_flush_descriptors(struct e1000_adapter *adapter) |
| 4174 | { |
| 4175 | struct e1000_hw *hw = &adapter->hw; |
| 4176 | |
| 4177 | if (!(adapter->flags2 & FLAG2_DMA_BURST)) |
| 4178 | return; |
| 4179 | |
| 4180 | /* flush pending descriptor writebacks to memory */ |
| 4181 | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| 4182 | ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); |
| 4183 | |
| 4184 | /* execute the writes immediately */ |
| 4185 | e1e_flush(); |
| 4186 | |
| 4187 | /* due to rare timing issues, write to TIDV/RDTR again to ensure the |
| 4188 | * write is successful |
| 4189 | */ |
| 4190 | ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); |
| 4191 | ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); |
| 4192 | |
| 4193 | /* execute the writes immediately */ |
| 4194 | e1e_flush(); |
| 4195 | } |
| 4196 | |
| 4197 | static void e1000e_update_stats(struct e1000_adapter *adapter); |
| 4198 | |
| 4199 | /** |
| 4200 | * e1000e_down - quiesce the device and optionally reset the hardware |
| 4201 | * @adapter: board private structure |
| 4202 | * @reset: boolean flag to reset the hardware or not |
| 4203 | */ |
| 4204 | void e1000e_down(struct e1000_adapter *adapter, bool reset) |
| 4205 | { |
| 4206 | struct net_device *netdev = adapter->netdev; |
| 4207 | struct e1000_hw *hw = &adapter->hw; |
| 4208 | u32 tctl, rctl; |
| 4209 | |
| 4210 | /* signal that we're down so the interrupt handler does not |
| 4211 | * reschedule our watchdog timer |
| 4212 | */ |
| 4213 | set_bit(__E1000_DOWN, &adapter->state); |
| 4214 | |
| 4215 | netif_carrier_off(netdev); |
| 4216 | |
| 4217 | /* disable receives in the hardware */ |
| 4218 | rctl = er32(RCTL); |
| 4219 | if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) |
| 4220 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 4221 | /* flush and sleep below */ |
| 4222 | |
| 4223 | netif_stop_queue(netdev); |
| 4224 | |
| 4225 | /* disable transmits in the hardware */ |
| 4226 | tctl = er32(TCTL); |
| 4227 | tctl &= ~E1000_TCTL_EN; |
| 4228 | ew32(TCTL, tctl); |
| 4229 | |
| 4230 | /* flush both disables and wait for them to finish */ |
| 4231 | e1e_flush(); |
| 4232 | usleep_range(10000, 20000); |
| 4233 | |
| 4234 | e1000_irq_disable(adapter); |
| 4235 | |
| 4236 | napi_synchronize(&adapter->napi); |
| 4237 | |
| 4238 | del_timer_sync(&adapter->watchdog_timer); |
| 4239 | del_timer_sync(&adapter->phy_info_timer); |
| 4240 | |
| 4241 | spin_lock(&adapter->stats64_lock); |
| 4242 | e1000e_update_stats(adapter); |
| 4243 | spin_unlock(&adapter->stats64_lock); |
| 4244 | |
| 4245 | e1000e_flush_descriptors(adapter); |
| 4246 | |
| 4247 | adapter->link_speed = 0; |
| 4248 | adapter->link_duplex = 0; |
| 4249 | |
| 4250 | /* Disable Si errata workaround on PCHx for jumbo frame flow */ |
| 4251 | if ((hw->mac.type >= e1000_pch2lan) && |
| 4252 | (adapter->netdev->mtu > ETH_DATA_LEN) && |
| 4253 | e1000_lv_jumbo_workaround_ich8lan(hw, false)) |
| 4254 | e_dbg("failed to disable jumbo frame workaround mode\n"); |
| 4255 | |
| 4256 | if (!pci_channel_offline(adapter->pdev)) { |
| 4257 | if (reset) |
| 4258 | e1000e_reset(adapter); |
| 4259 | else if (hw->mac.type == e1000_pch_spt) |
| 4260 | e1000_flush_desc_rings(adapter); |
| 4261 | } |
| 4262 | e1000_clean_tx_ring(adapter->tx_ring); |
| 4263 | e1000_clean_rx_ring(adapter->rx_ring); |
| 4264 | } |
| 4265 | |
| 4266 | void e1000e_reinit_locked(struct e1000_adapter *adapter) |
| 4267 | { |
| 4268 | might_sleep(); |
| 4269 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| 4270 | usleep_range(1000, 2000); |
| 4271 | e1000e_down(adapter, true); |
| 4272 | e1000e_up(adapter); |
| 4273 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 4274 | } |
| 4275 | |
| 4276 | /** |
| 4277 | * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) |
| 4278 | * @cc: cyclecounter structure |
| 4279 | **/ |
| 4280 | static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc) |
| 4281 | { |
| 4282 | struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, |
| 4283 | cc); |
| 4284 | struct e1000_hw *hw = &adapter->hw; |
| 4285 | u32 systimel_1, systimel_2, systimeh; |
| 4286 | cycle_t systim, systim_next; |
| 4287 | /* SYSTIMH latching upon SYSTIML read does not work well. |
| 4288 | * This means that if SYSTIML overflows after we read it but before |
| 4289 | * we read SYSTIMH, the value of SYSTIMH has been incremented and we |
| 4290 | * will experience a huge non linear increment in the systime value |
| 4291 | * to fix that we test for overflow and if true, we re-read systime. |
| 4292 | */ |
| 4293 | systimel_1 = er32(SYSTIML); |
| 4294 | systimeh = er32(SYSTIMH); |
| 4295 | systimel_2 = er32(SYSTIML); |
| 4296 | /* Check for overflow. If there was no overflow, use the values */ |
| 4297 | if (systimel_1 < systimel_2) { |
| 4298 | systim = (cycle_t)systimel_1; |
| 4299 | systim |= (cycle_t)systimeh << 32; |
| 4300 | } else { |
| 4301 | /* There was an overflow, read again SYSTIMH, and use |
| 4302 | * systimel_2 |
| 4303 | */ |
| 4304 | systimeh = er32(SYSTIMH); |
| 4305 | systim = (cycle_t)systimel_2; |
| 4306 | systim |= (cycle_t)systimeh << 32; |
| 4307 | } |
| 4308 | |
| 4309 | if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) { |
| 4310 | u64 incvalue, time_delta, rem, temp; |
| 4311 | int i; |
| 4312 | |
| 4313 | /* errata for 82574/82583 possible bad bits read from SYSTIMH/L |
| 4314 | * check to see that the time is incrementing at a reasonable |
| 4315 | * rate and is a multiple of incvalue |
| 4316 | */ |
| 4317 | incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; |
| 4318 | for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { |
| 4319 | /* latch SYSTIMH on read of SYSTIML */ |
| 4320 | systim_next = (cycle_t)er32(SYSTIML); |
| 4321 | systim_next |= (cycle_t)er32(SYSTIMH) << 32; |
| 4322 | |
| 4323 | time_delta = systim_next - systim; |
| 4324 | temp = time_delta; |
| 4325 | rem = do_div(temp, incvalue); |
| 4326 | |
| 4327 | systim = systim_next; |
| 4328 | |
| 4329 | if ((time_delta < E1000_82574_SYSTIM_EPSILON) && |
| 4330 | (rem == 0)) |
| 4331 | break; |
| 4332 | } |
| 4333 | } |
| 4334 | return systim; |
| 4335 | } |
| 4336 | |
| 4337 | /** |
| 4338 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| 4339 | * @adapter: board private structure to initialize |
| 4340 | * |
| 4341 | * e1000_sw_init initializes the Adapter private data structure. |
| 4342 | * Fields are initialized based on PCI device information and |
| 4343 | * OS network device settings (MTU size). |
| 4344 | **/ |
| 4345 | static int e1000_sw_init(struct e1000_adapter *adapter) |
| 4346 | { |
| 4347 | struct net_device *netdev = adapter->netdev; |
| 4348 | |
| 4349 | adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; |
| 4350 | adapter->rx_ps_bsize0 = 128; |
| 4351 | adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; |
| 4352 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| 4353 | adapter->tx_ring_count = E1000_DEFAULT_TXD; |
| 4354 | adapter->rx_ring_count = E1000_DEFAULT_RXD; |
| 4355 | |
| 4356 | spin_lock_init(&adapter->stats64_lock); |
| 4357 | |
| 4358 | e1000e_set_interrupt_capability(adapter); |
| 4359 | |
| 4360 | if (e1000_alloc_queues(adapter)) |
| 4361 | return -ENOMEM; |
| 4362 | |
| 4363 | /* Setup hardware time stamping cyclecounter */ |
| 4364 | if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { |
| 4365 | adapter->cc.read = e1000e_cyclecounter_read; |
| 4366 | adapter->cc.mask = CYCLECOUNTER_MASK(64); |
| 4367 | adapter->cc.mult = 1; |
| 4368 | /* cc.shift set in e1000e_get_base_tininca() */ |
| 4369 | |
| 4370 | spin_lock_init(&adapter->systim_lock); |
| 4371 | INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); |
| 4372 | } |
| 4373 | |
| 4374 | /* Explicitly disable IRQ since the NIC can be in any state. */ |
| 4375 | e1000_irq_disable(adapter); |
| 4376 | |
| 4377 | set_bit(__E1000_DOWN, &adapter->state); |
| 4378 | return 0; |
| 4379 | } |
| 4380 | |
| 4381 | /** |
| 4382 | * e1000_intr_msi_test - Interrupt Handler |
| 4383 | * @irq: interrupt number |
| 4384 | * @data: pointer to a network interface device structure |
| 4385 | **/ |
| 4386 | static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) |
| 4387 | { |
| 4388 | struct net_device *netdev = data; |
| 4389 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 4390 | struct e1000_hw *hw = &adapter->hw; |
| 4391 | u32 icr = er32(ICR); |
| 4392 | |
| 4393 | e_dbg("icr is %08X\n", icr); |
| 4394 | if (icr & E1000_ICR_RXSEQ) { |
| 4395 | adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
| 4396 | /* Force memory writes to complete before acknowledging the |
| 4397 | * interrupt is handled. |
| 4398 | */ |
| 4399 | wmb(); |
| 4400 | } |
| 4401 | |
| 4402 | return IRQ_HANDLED; |
| 4403 | } |
| 4404 | |
| 4405 | /** |
| 4406 | * e1000_test_msi_interrupt - Returns 0 for successful test |
| 4407 | * @adapter: board private struct |
| 4408 | * |
| 4409 | * code flow taken from tg3.c |
| 4410 | **/ |
| 4411 | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
| 4412 | { |
| 4413 | struct net_device *netdev = adapter->netdev; |
| 4414 | struct e1000_hw *hw = &adapter->hw; |
| 4415 | int err; |
| 4416 | |
| 4417 | /* poll_enable hasn't been called yet, so don't need disable */ |
| 4418 | /* clear any pending events */ |
| 4419 | er32(ICR); |
| 4420 | |
| 4421 | /* free the real vector and request a test handler */ |
| 4422 | e1000_free_irq(adapter); |
| 4423 | e1000e_reset_interrupt_capability(adapter); |
| 4424 | |
| 4425 | /* Assume that the test fails, if it succeeds then the test |
| 4426 | * MSI irq handler will unset this flag |
| 4427 | */ |
| 4428 | adapter->flags |= FLAG_MSI_TEST_FAILED; |
| 4429 | |
| 4430 | err = pci_enable_msi(adapter->pdev); |
| 4431 | if (err) |
| 4432 | goto msi_test_failed; |
| 4433 | |
| 4434 | err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
| 4435 | netdev->name, netdev); |
| 4436 | if (err) { |
| 4437 | pci_disable_msi(adapter->pdev); |
| 4438 | goto msi_test_failed; |
| 4439 | } |
| 4440 | |
| 4441 | /* Force memory writes to complete before enabling and firing an |
| 4442 | * interrupt. |
| 4443 | */ |
| 4444 | wmb(); |
| 4445 | |
| 4446 | e1000_irq_enable(adapter); |
| 4447 | |
| 4448 | /* fire an unusual interrupt on the test handler */ |
| 4449 | ew32(ICS, E1000_ICS_RXSEQ); |
| 4450 | e1e_flush(); |
| 4451 | msleep(100); |
| 4452 | |
| 4453 | e1000_irq_disable(adapter); |
| 4454 | |
| 4455 | rmb(); /* read flags after interrupt has been fired */ |
| 4456 | |
| 4457 | if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
| 4458 | adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| 4459 | e_info("MSI interrupt test failed, using legacy interrupt.\n"); |
| 4460 | } else { |
| 4461 | e_dbg("MSI interrupt test succeeded!\n"); |
| 4462 | } |
| 4463 | |
| 4464 | free_irq(adapter->pdev->irq, netdev); |
| 4465 | pci_disable_msi(adapter->pdev); |
| 4466 | |
| 4467 | msi_test_failed: |
| 4468 | e1000e_set_interrupt_capability(adapter); |
| 4469 | return e1000_request_irq(adapter); |
| 4470 | } |
| 4471 | |
| 4472 | /** |
| 4473 | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
| 4474 | * @adapter: board private struct |
| 4475 | * |
| 4476 | * code flow taken from tg3.c, called with e1000 interrupts disabled. |
| 4477 | **/ |
| 4478 | static int e1000_test_msi(struct e1000_adapter *adapter) |
| 4479 | { |
| 4480 | int err; |
| 4481 | u16 pci_cmd; |
| 4482 | |
| 4483 | if (!(adapter->flags & FLAG_MSI_ENABLED)) |
| 4484 | return 0; |
| 4485 | |
| 4486 | /* disable SERR in case the MSI write causes a master abort */ |
| 4487 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
| 4488 | if (pci_cmd & PCI_COMMAND_SERR) |
| 4489 | pci_write_config_word(adapter->pdev, PCI_COMMAND, |
| 4490 | pci_cmd & ~PCI_COMMAND_SERR); |
| 4491 | |
| 4492 | err = e1000_test_msi_interrupt(adapter); |
| 4493 | |
| 4494 | /* re-enable SERR */ |
| 4495 | if (pci_cmd & PCI_COMMAND_SERR) { |
| 4496 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
| 4497 | pci_cmd |= PCI_COMMAND_SERR; |
| 4498 | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
| 4499 | } |
| 4500 | |
| 4501 | return err; |
| 4502 | } |
| 4503 | |
| 4504 | /** |
| 4505 | * e1000_open - Called when a network interface is made active |
| 4506 | * @netdev: network interface device structure |
| 4507 | * |
| 4508 | * Returns 0 on success, negative value on failure |
| 4509 | * |
| 4510 | * The open entry point is called when a network interface is made |
| 4511 | * active by the system (IFF_UP). At this point all resources needed |
| 4512 | * for transmit and receive operations are allocated, the interrupt |
| 4513 | * handler is registered with the OS, the watchdog timer is started, |
| 4514 | * and the stack is notified that the interface is ready. |
| 4515 | **/ |
| 4516 | static int e1000_open(struct net_device *netdev) |
| 4517 | { |
| 4518 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 4519 | struct e1000_hw *hw = &adapter->hw; |
| 4520 | struct pci_dev *pdev = adapter->pdev; |
| 4521 | int err; |
| 4522 | |
| 4523 | /* disallow open during test */ |
| 4524 | if (test_bit(__E1000_TESTING, &adapter->state)) |
| 4525 | return -EBUSY; |
| 4526 | |
| 4527 | pm_runtime_get_sync(&pdev->dev); |
| 4528 | |
| 4529 | netif_carrier_off(netdev); |
| 4530 | |
| 4531 | /* allocate transmit descriptors */ |
| 4532 | err = e1000e_setup_tx_resources(adapter->tx_ring); |
| 4533 | if (err) |
| 4534 | goto err_setup_tx; |
| 4535 | |
| 4536 | /* allocate receive descriptors */ |
| 4537 | err = e1000e_setup_rx_resources(adapter->rx_ring); |
| 4538 | if (err) |
| 4539 | goto err_setup_rx; |
| 4540 | |
| 4541 | /* If AMT is enabled, let the firmware know that the network |
| 4542 | * interface is now open and reset the part to a known state. |
| 4543 | */ |
| 4544 | if (adapter->flags & FLAG_HAS_AMT) { |
| 4545 | e1000e_get_hw_control(adapter); |
| 4546 | e1000e_reset(adapter); |
| 4547 | } |
| 4548 | |
| 4549 | e1000e_power_up_phy(adapter); |
| 4550 | |
| 4551 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| 4552 | if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
| 4553 | e1000_update_mng_vlan(adapter); |
| 4554 | |
| 4555 | /* DMA latency requirement to workaround jumbo issue */ |
| 4556 | pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, |
| 4557 | PM_QOS_DEFAULT_VALUE); |
| 4558 | |
| 4559 | /* before we allocate an interrupt, we must be ready to handle it. |
| 4560 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| 4561 | * as soon as we call pci_request_irq, so we have to setup our |
| 4562 | * clean_rx handler before we do so. |
| 4563 | */ |
| 4564 | e1000_configure(adapter); |
| 4565 | |
| 4566 | err = e1000_request_irq(adapter); |
| 4567 | if (err) |
| 4568 | goto err_req_irq; |
| 4569 | |
| 4570 | /* Work around PCIe errata with MSI interrupts causing some chipsets to |
| 4571 | * ignore e1000e MSI messages, which means we need to test our MSI |
| 4572 | * interrupt now |
| 4573 | */ |
| 4574 | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
| 4575 | err = e1000_test_msi(adapter); |
| 4576 | if (err) { |
| 4577 | e_err("Interrupt allocation failed\n"); |
| 4578 | goto err_req_irq; |
| 4579 | } |
| 4580 | } |
| 4581 | |
| 4582 | /* From here on the code is the same as e1000e_up() */ |
| 4583 | clear_bit(__E1000_DOWN, &adapter->state); |
| 4584 | |
| 4585 | napi_enable(&adapter->napi); |
| 4586 | |
| 4587 | e1000_irq_enable(adapter); |
| 4588 | |
| 4589 | adapter->tx_hang_recheck = false; |
| 4590 | netif_start_queue(netdev); |
| 4591 | |
| 4592 | hw->mac.get_link_status = true; |
| 4593 | pm_runtime_put(&pdev->dev); |
| 4594 | |
| 4595 | /* fire a link status change interrupt to start the watchdog */ |
| 4596 | if (adapter->msix_entries) |
| 4597 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); |
| 4598 | else |
| 4599 | ew32(ICS, E1000_ICS_LSC); |
| 4600 | |
| 4601 | return 0; |
| 4602 | |
| 4603 | err_req_irq: |
| 4604 | pm_qos_remove_request(&adapter->pm_qos_req); |
| 4605 | e1000e_release_hw_control(adapter); |
| 4606 | e1000_power_down_phy(adapter); |
| 4607 | e1000e_free_rx_resources(adapter->rx_ring); |
| 4608 | err_setup_rx: |
| 4609 | e1000e_free_tx_resources(adapter->tx_ring); |
| 4610 | err_setup_tx: |
| 4611 | e1000e_reset(adapter); |
| 4612 | pm_runtime_put_sync(&pdev->dev); |
| 4613 | |
| 4614 | return err; |
| 4615 | } |
| 4616 | |
| 4617 | /** |
| 4618 | * e1000_close - Disables a network interface |
| 4619 | * @netdev: network interface device structure |
| 4620 | * |
| 4621 | * Returns 0, this is not allowed to fail |
| 4622 | * |
| 4623 | * The close entry point is called when an interface is de-activated |
| 4624 | * by the OS. The hardware is still under the drivers control, but |
| 4625 | * needs to be disabled. A global MAC reset is issued to stop the |
| 4626 | * hardware, and all transmit and receive resources are freed. |
| 4627 | **/ |
| 4628 | static int e1000_close(struct net_device *netdev) |
| 4629 | { |
| 4630 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 4631 | struct pci_dev *pdev = adapter->pdev; |
| 4632 | int count = E1000_CHECK_RESET_COUNT; |
| 4633 | |
| 4634 | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| 4635 | usleep_range(10000, 20000); |
| 4636 | |
| 4637 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| 4638 | |
| 4639 | pm_runtime_get_sync(&pdev->dev); |
| 4640 | |
| 4641 | if (!test_bit(__E1000_DOWN, &adapter->state)) { |
| 4642 | e1000e_down(adapter, true); |
| 4643 | e1000_free_irq(adapter); |
| 4644 | |
| 4645 | /* Link status message must follow this format */ |
| 4646 | pr_info("%s NIC Link is Down\n", adapter->netdev->name); |
| 4647 | } |
| 4648 | |
| 4649 | napi_disable(&adapter->napi); |
| 4650 | |
| 4651 | e1000e_free_tx_resources(adapter->tx_ring); |
| 4652 | e1000e_free_rx_resources(adapter->rx_ring); |
| 4653 | |
| 4654 | /* kill manageability vlan ID if supported, but not if a vlan with |
| 4655 | * the same ID is registered on the host OS (let 8021q kill it) |
| 4656 | */ |
| 4657 | if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) |
| 4658 | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
| 4659 | adapter->mng_vlan_id); |
| 4660 | |
| 4661 | /* If AMT is enabled, let the firmware know that the network |
| 4662 | * interface is now closed |
| 4663 | */ |
| 4664 | if ((adapter->flags & FLAG_HAS_AMT) && |
| 4665 | !test_bit(__E1000_TESTING, &adapter->state)) |
| 4666 | e1000e_release_hw_control(adapter); |
| 4667 | |
| 4668 | pm_qos_remove_request(&adapter->pm_qos_req); |
| 4669 | |
| 4670 | pm_runtime_put_sync(&pdev->dev); |
| 4671 | |
| 4672 | return 0; |
| 4673 | } |
| 4674 | |
| 4675 | /** |
| 4676 | * e1000_set_mac - Change the Ethernet Address of the NIC |
| 4677 | * @netdev: network interface device structure |
| 4678 | * @p: pointer to an address structure |
| 4679 | * |
| 4680 | * Returns 0 on success, negative on failure |
| 4681 | **/ |
| 4682 | static int e1000_set_mac(struct net_device *netdev, void *p) |
| 4683 | { |
| 4684 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 4685 | struct e1000_hw *hw = &adapter->hw; |
| 4686 | struct sockaddr *addr = p; |
| 4687 | |
| 4688 | if (!is_valid_ether_addr(addr->sa_data)) |
| 4689 | return -EADDRNOTAVAIL; |
| 4690 | |
| 4691 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| 4692 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
| 4693 | |
| 4694 | hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
| 4695 | |
| 4696 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
| 4697 | /* activate the work around */ |
| 4698 | e1000e_set_laa_state_82571(&adapter->hw, 1); |
| 4699 | |
| 4700 | /* Hold a copy of the LAA in RAR[14] This is done so that |
| 4701 | * between the time RAR[0] gets clobbered and the time it |
| 4702 | * gets fixed (in e1000_watchdog), the actual LAA is in one |
| 4703 | * of the RARs and no incoming packets directed to this port |
| 4704 | * are dropped. Eventually the LAA will be in RAR[0] and |
| 4705 | * RAR[14] |
| 4706 | */ |
| 4707 | hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, |
| 4708 | adapter->hw.mac.rar_entry_count - 1); |
| 4709 | } |
| 4710 | |
| 4711 | return 0; |
| 4712 | } |
| 4713 | |
| 4714 | /** |
| 4715 | * e1000e_update_phy_task - work thread to update phy |
| 4716 | * @work: pointer to our work struct |
| 4717 | * |
| 4718 | * this worker thread exists because we must acquire a |
| 4719 | * semaphore to read the phy, which we could msleep while |
| 4720 | * waiting for it, and we can't msleep in a timer. |
| 4721 | **/ |
| 4722 | static void e1000e_update_phy_task(struct work_struct *work) |
| 4723 | { |
| 4724 | struct e1000_adapter *adapter = container_of(work, |
| 4725 | struct e1000_adapter, |
| 4726 | update_phy_task); |
| 4727 | struct e1000_hw *hw = &adapter->hw; |
| 4728 | |
| 4729 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 4730 | return; |
| 4731 | |
| 4732 | e1000_get_phy_info(hw); |
| 4733 | |
| 4734 | /* Enable EEE on 82579 after link up */ |
| 4735 | if (hw->phy.type >= e1000_phy_82579) |
| 4736 | e1000_set_eee_pchlan(hw); |
| 4737 | } |
| 4738 | |
| 4739 | /** |
| 4740 | * e1000_update_phy_info - timre call-back to update PHY info |
| 4741 | * @data: pointer to adapter cast into an unsigned long |
| 4742 | * |
| 4743 | * Need to wait a few seconds after link up to get diagnostic information from |
| 4744 | * the phy |
| 4745 | **/ |
| 4746 | static void e1000_update_phy_info(unsigned long data) |
| 4747 | { |
| 4748 | struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
| 4749 | |
| 4750 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 4751 | return; |
| 4752 | |
| 4753 | schedule_work(&adapter->update_phy_task); |
| 4754 | } |
| 4755 | |
| 4756 | /** |
| 4757 | * e1000e_update_phy_stats - Update the PHY statistics counters |
| 4758 | * @adapter: board private structure |
| 4759 | * |
| 4760 | * Read/clear the upper 16-bit PHY registers and read/accumulate lower |
| 4761 | **/ |
| 4762 | static void e1000e_update_phy_stats(struct e1000_adapter *adapter) |
| 4763 | { |
| 4764 | struct e1000_hw *hw = &adapter->hw; |
| 4765 | s32 ret_val; |
| 4766 | u16 phy_data; |
| 4767 | |
| 4768 | ret_val = hw->phy.ops.acquire(hw); |
| 4769 | if (ret_val) |
| 4770 | return; |
| 4771 | |
| 4772 | /* A page set is expensive so check if already on desired page. |
| 4773 | * If not, set to the page with the PHY status registers. |
| 4774 | */ |
| 4775 | hw->phy.addr = 1; |
| 4776 | ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, |
| 4777 | &phy_data); |
| 4778 | if (ret_val) |
| 4779 | goto release; |
| 4780 | if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { |
| 4781 | ret_val = hw->phy.ops.set_page(hw, |
| 4782 | HV_STATS_PAGE << IGP_PAGE_SHIFT); |
| 4783 | if (ret_val) |
| 4784 | goto release; |
| 4785 | } |
| 4786 | |
| 4787 | /* Single Collision Count */ |
| 4788 | hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); |
| 4789 | ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); |
| 4790 | if (!ret_val) |
| 4791 | adapter->stats.scc += phy_data; |
| 4792 | |
| 4793 | /* Excessive Collision Count */ |
| 4794 | hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); |
| 4795 | ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); |
| 4796 | if (!ret_val) |
| 4797 | adapter->stats.ecol += phy_data; |
| 4798 | |
| 4799 | /* Multiple Collision Count */ |
| 4800 | hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); |
| 4801 | ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); |
| 4802 | if (!ret_val) |
| 4803 | adapter->stats.mcc += phy_data; |
| 4804 | |
| 4805 | /* Late Collision Count */ |
| 4806 | hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); |
| 4807 | ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); |
| 4808 | if (!ret_val) |
| 4809 | adapter->stats.latecol += phy_data; |
| 4810 | |
| 4811 | /* Collision Count - also used for adaptive IFS */ |
| 4812 | hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); |
| 4813 | ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); |
| 4814 | if (!ret_val) |
| 4815 | hw->mac.collision_delta = phy_data; |
| 4816 | |
| 4817 | /* Defer Count */ |
| 4818 | hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); |
| 4819 | ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); |
| 4820 | if (!ret_val) |
| 4821 | adapter->stats.dc += phy_data; |
| 4822 | |
| 4823 | /* Transmit with no CRS */ |
| 4824 | hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); |
| 4825 | ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); |
| 4826 | if (!ret_val) |
| 4827 | adapter->stats.tncrs += phy_data; |
| 4828 | |
| 4829 | release: |
| 4830 | hw->phy.ops.release(hw); |
| 4831 | } |
| 4832 | |
| 4833 | /** |
| 4834 | * e1000e_update_stats - Update the board statistics counters |
| 4835 | * @adapter: board private structure |
| 4836 | **/ |
| 4837 | static void e1000e_update_stats(struct e1000_adapter *adapter) |
| 4838 | { |
| 4839 | struct net_device *netdev = adapter->netdev; |
| 4840 | struct e1000_hw *hw = &adapter->hw; |
| 4841 | struct pci_dev *pdev = adapter->pdev; |
| 4842 | |
| 4843 | /* Prevent stats update while adapter is being reset, or if the pci |
| 4844 | * connection is down. |
| 4845 | */ |
| 4846 | if (adapter->link_speed == 0) |
| 4847 | return; |
| 4848 | if (pci_channel_offline(pdev)) |
| 4849 | return; |
| 4850 | |
| 4851 | adapter->stats.crcerrs += er32(CRCERRS); |
| 4852 | adapter->stats.gprc += er32(GPRC); |
| 4853 | adapter->stats.gorc += er32(GORCL); |
| 4854 | er32(GORCH); /* Clear gorc */ |
| 4855 | adapter->stats.bprc += er32(BPRC); |
| 4856 | adapter->stats.mprc += er32(MPRC); |
| 4857 | adapter->stats.roc += er32(ROC); |
| 4858 | |
| 4859 | adapter->stats.mpc += er32(MPC); |
| 4860 | |
| 4861 | /* Half-duplex statistics */ |
| 4862 | if (adapter->link_duplex == HALF_DUPLEX) { |
| 4863 | if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { |
| 4864 | e1000e_update_phy_stats(adapter); |
| 4865 | } else { |
| 4866 | adapter->stats.scc += er32(SCC); |
| 4867 | adapter->stats.ecol += er32(ECOL); |
| 4868 | adapter->stats.mcc += er32(MCC); |
| 4869 | adapter->stats.latecol += er32(LATECOL); |
| 4870 | adapter->stats.dc += er32(DC); |
| 4871 | |
| 4872 | hw->mac.collision_delta = er32(COLC); |
| 4873 | |
| 4874 | if ((hw->mac.type != e1000_82574) && |
| 4875 | (hw->mac.type != e1000_82583)) |
| 4876 | adapter->stats.tncrs += er32(TNCRS); |
| 4877 | } |
| 4878 | adapter->stats.colc += hw->mac.collision_delta; |
| 4879 | } |
| 4880 | |
| 4881 | adapter->stats.xonrxc += er32(XONRXC); |
| 4882 | adapter->stats.xontxc += er32(XONTXC); |
| 4883 | adapter->stats.xoffrxc += er32(XOFFRXC); |
| 4884 | adapter->stats.xofftxc += er32(XOFFTXC); |
| 4885 | adapter->stats.gptc += er32(GPTC); |
| 4886 | adapter->stats.gotc += er32(GOTCL); |
| 4887 | er32(GOTCH); /* Clear gotc */ |
| 4888 | adapter->stats.rnbc += er32(RNBC); |
| 4889 | adapter->stats.ruc += er32(RUC); |
| 4890 | |
| 4891 | adapter->stats.mptc += er32(MPTC); |
| 4892 | adapter->stats.bptc += er32(BPTC); |
| 4893 | |
| 4894 | /* used for adaptive IFS */ |
| 4895 | |
| 4896 | hw->mac.tx_packet_delta = er32(TPT); |
| 4897 | adapter->stats.tpt += hw->mac.tx_packet_delta; |
| 4898 | |
| 4899 | adapter->stats.algnerrc += er32(ALGNERRC); |
| 4900 | adapter->stats.rxerrc += er32(RXERRC); |
| 4901 | adapter->stats.cexterr += er32(CEXTERR); |
| 4902 | adapter->stats.tsctc += er32(TSCTC); |
| 4903 | adapter->stats.tsctfc += er32(TSCTFC); |
| 4904 | |
| 4905 | /* Fill out the OS statistics structure */ |
| 4906 | netdev->stats.multicast = adapter->stats.mprc; |
| 4907 | netdev->stats.collisions = adapter->stats.colc; |
| 4908 | |
| 4909 | /* Rx Errors */ |
| 4910 | |
| 4911 | /* RLEC on some newer hardware can be incorrect so build |
| 4912 | * our own version based on RUC and ROC |
| 4913 | */ |
| 4914 | netdev->stats.rx_errors = adapter->stats.rxerrc + |
| 4915 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
| 4916 | adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; |
| 4917 | netdev->stats.rx_length_errors = adapter->stats.ruc + |
| 4918 | adapter->stats.roc; |
| 4919 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
| 4920 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
| 4921 | netdev->stats.rx_missed_errors = adapter->stats.mpc; |
| 4922 | |
| 4923 | /* Tx Errors */ |
| 4924 | netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; |
| 4925 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
| 4926 | netdev->stats.tx_window_errors = adapter->stats.latecol; |
| 4927 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
| 4928 | |
| 4929 | /* Tx Dropped needs to be maintained elsewhere */ |
| 4930 | |
| 4931 | /* Management Stats */ |
| 4932 | adapter->stats.mgptc += er32(MGTPTC); |
| 4933 | adapter->stats.mgprc += er32(MGTPRC); |
| 4934 | adapter->stats.mgpdc += er32(MGTPDC); |
| 4935 | |
| 4936 | /* Correctable ECC Errors */ |
| 4937 | if ((hw->mac.type == e1000_pch_lpt) || |
| 4938 | (hw->mac.type == e1000_pch_spt)) { |
| 4939 | u32 pbeccsts = er32(PBECCSTS); |
| 4940 | |
| 4941 | adapter->corr_errors += |
| 4942 | pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; |
| 4943 | adapter->uncorr_errors += |
| 4944 | (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> |
| 4945 | E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; |
| 4946 | } |
| 4947 | } |
| 4948 | |
| 4949 | /** |
| 4950 | * e1000_phy_read_status - Update the PHY register status snapshot |
| 4951 | * @adapter: board private structure |
| 4952 | **/ |
| 4953 | static void e1000_phy_read_status(struct e1000_adapter *adapter) |
| 4954 | { |
| 4955 | struct e1000_hw *hw = &adapter->hw; |
| 4956 | struct e1000_phy_regs *phy = &adapter->phy_regs; |
| 4957 | |
| 4958 | if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && |
| 4959 | (er32(STATUS) & E1000_STATUS_LU) && |
| 4960 | (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
| 4961 | int ret_val; |
| 4962 | |
| 4963 | ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); |
| 4964 | ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); |
| 4965 | ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); |
| 4966 | ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); |
| 4967 | ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); |
| 4968 | ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); |
| 4969 | ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); |
| 4970 | ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); |
| 4971 | if (ret_val) |
| 4972 | e_warn("Error reading PHY register\n"); |
| 4973 | } else { |
| 4974 | /* Do not read PHY registers if link is not up |
| 4975 | * Set values to typical power-on defaults |
| 4976 | */ |
| 4977 | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
| 4978 | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
| 4979 | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
| 4980 | BMSR_ERCAP); |
| 4981 | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
| 4982 | ADVERTISE_ALL | ADVERTISE_CSMA); |
| 4983 | phy->lpa = 0; |
| 4984 | phy->expansion = EXPANSION_ENABLENPAGE; |
| 4985 | phy->ctrl1000 = ADVERTISE_1000FULL; |
| 4986 | phy->stat1000 = 0; |
| 4987 | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
| 4988 | } |
| 4989 | } |
| 4990 | |
| 4991 | static void e1000_print_link_info(struct e1000_adapter *adapter) |
| 4992 | { |
| 4993 | struct e1000_hw *hw = &adapter->hw; |
| 4994 | u32 ctrl = er32(CTRL); |
| 4995 | |
| 4996 | /* Link status message must follow this format for user tools */ |
| 4997 | pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", |
| 4998 | adapter->netdev->name, adapter->link_speed, |
| 4999 | adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", |
| 5000 | (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : |
| 5001 | (ctrl & E1000_CTRL_RFCE) ? "Rx" : |
| 5002 | (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); |
| 5003 | } |
| 5004 | |
| 5005 | static bool e1000e_has_link(struct e1000_adapter *adapter) |
| 5006 | { |
| 5007 | struct e1000_hw *hw = &adapter->hw; |
| 5008 | bool link_active = false; |
| 5009 | s32 ret_val = 0; |
| 5010 | |
| 5011 | /* get_link_status is set on LSC (link status) interrupt or |
| 5012 | * Rx sequence error interrupt. get_link_status will stay |
| 5013 | * false until the check_for_link establishes link |
| 5014 | * for copper adapters ONLY |
| 5015 | */ |
| 5016 | switch (hw->phy.media_type) { |
| 5017 | case e1000_media_type_copper: |
| 5018 | if (hw->mac.get_link_status) { |
| 5019 | ret_val = hw->mac.ops.check_for_link(hw); |
| 5020 | link_active = !hw->mac.get_link_status; |
| 5021 | } else { |
| 5022 | link_active = true; |
| 5023 | } |
| 5024 | break; |
| 5025 | case e1000_media_type_fiber: |
| 5026 | ret_val = hw->mac.ops.check_for_link(hw); |
| 5027 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
| 5028 | break; |
| 5029 | case e1000_media_type_internal_serdes: |
| 5030 | ret_val = hw->mac.ops.check_for_link(hw); |
| 5031 | link_active = adapter->hw.mac.serdes_has_link; |
| 5032 | break; |
| 5033 | default: |
| 5034 | case e1000_media_type_unknown: |
| 5035 | break; |
| 5036 | } |
| 5037 | |
| 5038 | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
| 5039 | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
| 5040 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
| 5041 | e_info("Gigabit has been disabled, downgrading speed\n"); |
| 5042 | } |
| 5043 | |
| 5044 | return link_active; |
| 5045 | } |
| 5046 | |
| 5047 | static void e1000e_enable_receives(struct e1000_adapter *adapter) |
| 5048 | { |
| 5049 | /* make sure the receive unit is started */ |
| 5050 | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
| 5051 | (adapter->flags & FLAG_RESTART_NOW)) { |
| 5052 | struct e1000_hw *hw = &adapter->hw; |
| 5053 | u32 rctl = er32(RCTL); |
| 5054 | |
| 5055 | ew32(RCTL, rctl | E1000_RCTL_EN); |
| 5056 | adapter->flags &= ~FLAG_RESTART_NOW; |
| 5057 | } |
| 5058 | } |
| 5059 | |
| 5060 | static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) |
| 5061 | { |
| 5062 | struct e1000_hw *hw = &adapter->hw; |
| 5063 | |
| 5064 | /* With 82574 controllers, PHY needs to be checked periodically |
| 5065 | * for hung state and reset, if two calls return true |
| 5066 | */ |
| 5067 | if (e1000_check_phy_82574(hw)) |
| 5068 | adapter->phy_hang_count++; |
| 5069 | else |
| 5070 | adapter->phy_hang_count = 0; |
| 5071 | |
| 5072 | if (adapter->phy_hang_count > 1) { |
| 5073 | adapter->phy_hang_count = 0; |
| 5074 | e_dbg("PHY appears hung - resetting\n"); |
| 5075 | schedule_work(&adapter->reset_task); |
| 5076 | } |
| 5077 | } |
| 5078 | |
| 5079 | /** |
| 5080 | * e1000_watchdog - Timer Call-back |
| 5081 | * @data: pointer to adapter cast into an unsigned long |
| 5082 | **/ |
| 5083 | static void e1000_watchdog(unsigned long data) |
| 5084 | { |
| 5085 | struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
| 5086 | |
| 5087 | /* Do the rest outside of interrupt context */ |
| 5088 | schedule_work(&adapter->watchdog_task); |
| 5089 | |
| 5090 | /* TODO: make this use queue_delayed_work() */ |
| 5091 | } |
| 5092 | |
| 5093 | static void e1000_watchdog_task(struct work_struct *work) |
| 5094 | { |
| 5095 | struct e1000_adapter *adapter = container_of(work, |
| 5096 | struct e1000_adapter, |
| 5097 | watchdog_task); |
| 5098 | struct net_device *netdev = adapter->netdev; |
| 5099 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 5100 | struct e1000_phy_info *phy = &adapter->hw.phy; |
| 5101 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 5102 | struct e1000_hw *hw = &adapter->hw; |
| 5103 | u32 link, tctl; |
| 5104 | |
| 5105 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 5106 | return; |
| 5107 | |
| 5108 | link = e1000e_has_link(adapter); |
| 5109 | if ((netif_carrier_ok(netdev)) && link) { |
| 5110 | /* Cancel scheduled suspend requests. */ |
| 5111 | pm_runtime_resume(netdev->dev.parent); |
| 5112 | |
| 5113 | e1000e_enable_receives(adapter); |
| 5114 | goto link_up; |
| 5115 | } |
| 5116 | |
| 5117 | if ((e1000e_enable_tx_pkt_filtering(hw)) && |
| 5118 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
| 5119 | e1000_update_mng_vlan(adapter); |
| 5120 | |
| 5121 | if (link) { |
| 5122 | if (!netif_carrier_ok(netdev)) { |
| 5123 | bool txb2b = true; |
| 5124 | |
| 5125 | /* Cancel scheduled suspend requests. */ |
| 5126 | pm_runtime_resume(netdev->dev.parent); |
| 5127 | |
| 5128 | /* update snapshot of PHY registers on LSC */ |
| 5129 | e1000_phy_read_status(adapter); |
| 5130 | mac->ops.get_link_up_info(&adapter->hw, |
| 5131 | &adapter->link_speed, |
| 5132 | &adapter->link_duplex); |
| 5133 | e1000_print_link_info(adapter); |
| 5134 | |
| 5135 | /* check if SmartSpeed worked */ |
| 5136 | e1000e_check_downshift(hw); |
| 5137 | if (phy->speed_downgraded) |
| 5138 | netdev_warn(netdev, |
| 5139 | "Link Speed was downgraded by SmartSpeed\n"); |
| 5140 | |
| 5141 | /* On supported PHYs, check for duplex mismatch only |
| 5142 | * if link has autonegotiated at 10/100 half |
| 5143 | */ |
| 5144 | if ((hw->phy.type == e1000_phy_igp_3 || |
| 5145 | hw->phy.type == e1000_phy_bm) && |
| 5146 | hw->mac.autoneg && |
| 5147 | (adapter->link_speed == SPEED_10 || |
| 5148 | adapter->link_speed == SPEED_100) && |
| 5149 | (adapter->link_duplex == HALF_DUPLEX)) { |
| 5150 | u16 autoneg_exp; |
| 5151 | |
| 5152 | e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); |
| 5153 | |
| 5154 | if (!(autoneg_exp & EXPANSION_NWAY)) |
| 5155 | e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); |
| 5156 | } |
| 5157 | |
| 5158 | /* adjust timeout factor according to speed/duplex */ |
| 5159 | adapter->tx_timeout_factor = 1; |
| 5160 | switch (adapter->link_speed) { |
| 5161 | case SPEED_10: |
| 5162 | txb2b = false; |
| 5163 | adapter->tx_timeout_factor = 16; |
| 5164 | break; |
| 5165 | case SPEED_100: |
| 5166 | txb2b = false; |
| 5167 | adapter->tx_timeout_factor = 10; |
| 5168 | break; |
| 5169 | } |
| 5170 | |
| 5171 | /* workaround: re-program speed mode bit after |
| 5172 | * link-up event |
| 5173 | */ |
| 5174 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
| 5175 | !txb2b) { |
| 5176 | u32 tarc0; |
| 5177 | |
| 5178 | tarc0 = er32(TARC(0)); |
| 5179 | tarc0 &= ~SPEED_MODE_BIT; |
| 5180 | ew32(TARC(0), tarc0); |
| 5181 | } |
| 5182 | |
| 5183 | /* disable TSO for pcie and 10/100 speeds, to avoid |
| 5184 | * some hardware issues |
| 5185 | */ |
| 5186 | if (!(adapter->flags & FLAG_TSO_FORCE)) { |
| 5187 | switch (adapter->link_speed) { |
| 5188 | case SPEED_10: |
| 5189 | case SPEED_100: |
| 5190 | e_info("10/100 speed: disabling TSO\n"); |
| 5191 | netdev->features &= ~NETIF_F_TSO; |
| 5192 | netdev->features &= ~NETIF_F_TSO6; |
| 5193 | break; |
| 5194 | case SPEED_1000: |
| 5195 | netdev->features |= NETIF_F_TSO; |
| 5196 | netdev->features |= NETIF_F_TSO6; |
| 5197 | break; |
| 5198 | default: |
| 5199 | /* oops */ |
| 5200 | break; |
| 5201 | } |
| 5202 | } |
| 5203 | |
| 5204 | /* enable transmits in the hardware, need to do this |
| 5205 | * after setting TARC(0) |
| 5206 | */ |
| 5207 | tctl = er32(TCTL); |
| 5208 | tctl |= E1000_TCTL_EN; |
| 5209 | ew32(TCTL, tctl); |
| 5210 | |
| 5211 | /* Perform any post-link-up configuration before |
| 5212 | * reporting link up. |
| 5213 | */ |
| 5214 | if (phy->ops.cfg_on_link_up) |
| 5215 | phy->ops.cfg_on_link_up(hw); |
| 5216 | |
| 5217 | netif_carrier_on(netdev); |
| 5218 | |
| 5219 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 5220 | mod_timer(&adapter->phy_info_timer, |
| 5221 | round_jiffies(jiffies + 2 * HZ)); |
| 5222 | } |
| 5223 | } else { |
| 5224 | if (netif_carrier_ok(netdev)) { |
| 5225 | adapter->link_speed = 0; |
| 5226 | adapter->link_duplex = 0; |
| 5227 | /* Link status message must follow this format */ |
| 5228 | pr_info("%s NIC Link is Down\n", adapter->netdev->name); |
| 5229 | netif_carrier_off(netdev); |
| 5230 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 5231 | mod_timer(&adapter->phy_info_timer, |
| 5232 | round_jiffies(jiffies + 2 * HZ)); |
| 5233 | |
| 5234 | /* 8000ES2LAN requires a Rx packet buffer work-around |
| 5235 | * on link down event; reset the controller to flush |
| 5236 | * the Rx packet buffer. |
| 5237 | */ |
| 5238 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
| 5239 | adapter->flags |= FLAG_RESTART_NOW; |
| 5240 | else |
| 5241 | pm_schedule_suspend(netdev->dev.parent, |
| 5242 | LINK_TIMEOUT); |
| 5243 | } |
| 5244 | } |
| 5245 | |
| 5246 | link_up: |
| 5247 | spin_lock(&adapter->stats64_lock); |
| 5248 | e1000e_update_stats(adapter); |
| 5249 | |
| 5250 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| 5251 | adapter->tpt_old = adapter->stats.tpt; |
| 5252 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
| 5253 | adapter->colc_old = adapter->stats.colc; |
| 5254 | |
| 5255 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
| 5256 | adapter->gorc_old = adapter->stats.gorc; |
| 5257 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
| 5258 | adapter->gotc_old = adapter->stats.gotc; |
| 5259 | spin_unlock(&adapter->stats64_lock); |
| 5260 | |
| 5261 | /* If the link is lost the controller stops DMA, but |
| 5262 | * if there is queued Tx work it cannot be done. So |
| 5263 | * reset the controller to flush the Tx packet buffers. |
| 5264 | */ |
| 5265 | if (!netif_carrier_ok(netdev) && |
| 5266 | (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) |
| 5267 | adapter->flags |= FLAG_RESTART_NOW; |
| 5268 | |
| 5269 | /* If reset is necessary, do it outside of interrupt context. */ |
| 5270 | if (adapter->flags & FLAG_RESTART_NOW) { |
| 5271 | schedule_work(&adapter->reset_task); |
| 5272 | /* return immediately since reset is imminent */ |
| 5273 | return; |
| 5274 | } |
| 5275 | |
| 5276 | e1000e_update_adaptive(&adapter->hw); |
| 5277 | |
| 5278 | /* Simple mode for Interrupt Throttle Rate (ITR) */ |
| 5279 | if (adapter->itr_setting == 4) { |
| 5280 | /* Symmetric Tx/Rx gets a reduced ITR=2000; |
| 5281 | * Total asymmetrical Tx or Rx gets ITR=8000; |
| 5282 | * everyone else is between 2000-8000. |
| 5283 | */ |
| 5284 | u32 goc = (adapter->gotc + adapter->gorc) / 10000; |
| 5285 | u32 dif = (adapter->gotc > adapter->gorc ? |
| 5286 | adapter->gotc - adapter->gorc : |
| 5287 | adapter->gorc - adapter->gotc) / 10000; |
| 5288 | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
| 5289 | |
| 5290 | e1000e_write_itr(adapter, itr); |
| 5291 | } |
| 5292 | |
| 5293 | /* Cause software interrupt to ensure Rx ring is cleaned */ |
| 5294 | if (adapter->msix_entries) |
| 5295 | ew32(ICS, adapter->rx_ring->ims_val); |
| 5296 | else |
| 5297 | ew32(ICS, E1000_ICS_RXDMT0); |
| 5298 | |
| 5299 | /* flush pending descriptors to memory before detecting Tx hang */ |
| 5300 | e1000e_flush_descriptors(adapter); |
| 5301 | |
| 5302 | /* Force detection of hung controller every watchdog period */ |
| 5303 | adapter->detect_tx_hung = true; |
| 5304 | |
| 5305 | /* With 82571 controllers, LAA may be overwritten due to controller |
| 5306 | * reset from the other port. Set the appropriate LAA in RAR[0] |
| 5307 | */ |
| 5308 | if (e1000e_get_laa_state_82571(hw)) |
| 5309 | hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); |
| 5310 | |
| 5311 | if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) |
| 5312 | e1000e_check_82574_phy_workaround(adapter); |
| 5313 | |
| 5314 | /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ |
| 5315 | if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { |
| 5316 | if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && |
| 5317 | (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { |
| 5318 | er32(RXSTMPH); |
| 5319 | adapter->rx_hwtstamp_cleared++; |
| 5320 | } else { |
| 5321 | adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; |
| 5322 | } |
| 5323 | } |
| 5324 | |
| 5325 | /* Reset the timer */ |
| 5326 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
| 5327 | mod_timer(&adapter->watchdog_timer, |
| 5328 | round_jiffies(jiffies + 2 * HZ)); |
| 5329 | } |
| 5330 | |
| 5331 | #define E1000_TX_FLAGS_CSUM 0x00000001 |
| 5332 | #define E1000_TX_FLAGS_VLAN 0x00000002 |
| 5333 | #define E1000_TX_FLAGS_TSO 0x00000004 |
| 5334 | #define E1000_TX_FLAGS_IPV4 0x00000008 |
| 5335 | #define E1000_TX_FLAGS_NO_FCS 0x00000010 |
| 5336 | #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 |
| 5337 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
| 5338 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
| 5339 | |
| 5340 | static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| 5341 | __be16 protocol) |
| 5342 | { |
| 5343 | struct e1000_context_desc *context_desc; |
| 5344 | struct e1000_buffer *buffer_info; |
| 5345 | unsigned int i; |
| 5346 | u32 cmd_length = 0; |
| 5347 | u16 ipcse = 0, mss; |
| 5348 | u8 ipcss, ipcso, tucss, tucso, hdr_len; |
| 5349 | int err; |
| 5350 | |
| 5351 | if (!skb_is_gso(skb)) |
| 5352 | return 0; |
| 5353 | |
| 5354 | err = skb_cow_head(skb, 0); |
| 5355 | if (err < 0) |
| 5356 | return err; |
| 5357 | |
| 5358 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| 5359 | mss = skb_shinfo(skb)->gso_size; |
| 5360 | if (protocol == htons(ETH_P_IP)) { |
| 5361 | struct iphdr *iph = ip_hdr(skb); |
| 5362 | iph->tot_len = 0; |
| 5363 | iph->check = 0; |
| 5364 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, |
| 5365 | 0, IPPROTO_TCP, 0); |
| 5366 | cmd_length = E1000_TXD_CMD_IP; |
| 5367 | ipcse = skb_transport_offset(skb) - 1; |
| 5368 | } else if (skb_is_gso_v6(skb)) { |
| 5369 | ipv6_hdr(skb)->payload_len = 0; |
| 5370 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| 5371 | &ipv6_hdr(skb)->daddr, |
| 5372 | 0, IPPROTO_TCP, 0); |
| 5373 | ipcse = 0; |
| 5374 | } |
| 5375 | ipcss = skb_network_offset(skb); |
| 5376 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
| 5377 | tucss = skb_transport_offset(skb); |
| 5378 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
| 5379 | |
| 5380 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
| 5381 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
| 5382 | |
| 5383 | i = tx_ring->next_to_use; |
| 5384 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| 5385 | buffer_info = &tx_ring->buffer_info[i]; |
| 5386 | |
| 5387 | context_desc->lower_setup.ip_fields.ipcss = ipcss; |
| 5388 | context_desc->lower_setup.ip_fields.ipcso = ipcso; |
| 5389 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
| 5390 | context_desc->upper_setup.tcp_fields.tucss = tucss; |
| 5391 | context_desc->upper_setup.tcp_fields.tucso = tucso; |
| 5392 | context_desc->upper_setup.tcp_fields.tucse = 0; |
| 5393 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
| 5394 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
| 5395 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
| 5396 | |
| 5397 | buffer_info->time_stamp = jiffies; |
| 5398 | buffer_info->next_to_watch = i; |
| 5399 | |
| 5400 | i++; |
| 5401 | if (i == tx_ring->count) |
| 5402 | i = 0; |
| 5403 | tx_ring->next_to_use = i; |
| 5404 | |
| 5405 | return 1; |
| 5406 | } |
| 5407 | |
| 5408 | static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| 5409 | __be16 protocol) |
| 5410 | { |
| 5411 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 5412 | struct e1000_context_desc *context_desc; |
| 5413 | struct e1000_buffer *buffer_info; |
| 5414 | unsigned int i; |
| 5415 | u8 css; |
| 5416 | u32 cmd_len = E1000_TXD_CMD_DEXT; |
| 5417 | |
| 5418 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 5419 | return false; |
| 5420 | |
| 5421 | switch (protocol) { |
| 5422 | case cpu_to_be16(ETH_P_IP): |
| 5423 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| 5424 | cmd_len |= E1000_TXD_CMD_TCP; |
| 5425 | break; |
| 5426 | case cpu_to_be16(ETH_P_IPV6): |
| 5427 | /* XXX not handling all IPV6 headers */ |
| 5428 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| 5429 | cmd_len |= E1000_TXD_CMD_TCP; |
| 5430 | break; |
| 5431 | default: |
| 5432 | if (unlikely(net_ratelimit())) |
| 5433 | e_warn("checksum_partial proto=%x!\n", |
| 5434 | be16_to_cpu(protocol)); |
| 5435 | break; |
| 5436 | } |
| 5437 | |
| 5438 | css = skb_checksum_start_offset(skb); |
| 5439 | |
| 5440 | i = tx_ring->next_to_use; |
| 5441 | buffer_info = &tx_ring->buffer_info[i]; |
| 5442 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| 5443 | |
| 5444 | context_desc->lower_setup.ip_config = 0; |
| 5445 | context_desc->upper_setup.tcp_fields.tucss = css; |
| 5446 | context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; |
| 5447 | context_desc->upper_setup.tcp_fields.tucse = 0; |
| 5448 | context_desc->tcp_seg_setup.data = 0; |
| 5449 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
| 5450 | |
| 5451 | buffer_info->time_stamp = jiffies; |
| 5452 | buffer_info->next_to_watch = i; |
| 5453 | |
| 5454 | i++; |
| 5455 | if (i == tx_ring->count) |
| 5456 | i = 0; |
| 5457 | tx_ring->next_to_use = i; |
| 5458 | |
| 5459 | return true; |
| 5460 | } |
| 5461 | |
| 5462 | static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, |
| 5463 | unsigned int first, unsigned int max_per_txd, |
| 5464 | unsigned int nr_frags) |
| 5465 | { |
| 5466 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 5467 | struct pci_dev *pdev = adapter->pdev; |
| 5468 | struct e1000_buffer *buffer_info; |
| 5469 | unsigned int len = skb_headlen(skb); |
| 5470 | unsigned int offset = 0, size, count = 0, i; |
| 5471 | unsigned int f, bytecount, segs; |
| 5472 | |
| 5473 | i = tx_ring->next_to_use; |
| 5474 | |
| 5475 | while (len) { |
| 5476 | buffer_info = &tx_ring->buffer_info[i]; |
| 5477 | size = min(len, max_per_txd); |
| 5478 | |
| 5479 | buffer_info->length = size; |
| 5480 | buffer_info->time_stamp = jiffies; |
| 5481 | buffer_info->next_to_watch = i; |
| 5482 | buffer_info->dma = dma_map_single(&pdev->dev, |
| 5483 | skb->data + offset, |
| 5484 | size, DMA_TO_DEVICE); |
| 5485 | buffer_info->mapped_as_page = false; |
| 5486 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| 5487 | goto dma_error; |
| 5488 | |
| 5489 | len -= size; |
| 5490 | offset += size; |
| 5491 | count++; |
| 5492 | |
| 5493 | if (len) { |
| 5494 | i++; |
| 5495 | if (i == tx_ring->count) |
| 5496 | i = 0; |
| 5497 | } |
| 5498 | } |
| 5499 | |
| 5500 | for (f = 0; f < nr_frags; f++) { |
| 5501 | const struct skb_frag_struct *frag; |
| 5502 | |
| 5503 | frag = &skb_shinfo(skb)->frags[f]; |
| 5504 | len = skb_frag_size(frag); |
| 5505 | offset = 0; |
| 5506 | |
| 5507 | while (len) { |
| 5508 | i++; |
| 5509 | if (i == tx_ring->count) |
| 5510 | i = 0; |
| 5511 | |
| 5512 | buffer_info = &tx_ring->buffer_info[i]; |
| 5513 | size = min(len, max_per_txd); |
| 5514 | |
| 5515 | buffer_info->length = size; |
| 5516 | buffer_info->time_stamp = jiffies; |
| 5517 | buffer_info->next_to_watch = i; |
| 5518 | buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, |
| 5519 | offset, size, |
| 5520 | DMA_TO_DEVICE); |
| 5521 | buffer_info->mapped_as_page = true; |
| 5522 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
| 5523 | goto dma_error; |
| 5524 | |
| 5525 | len -= size; |
| 5526 | offset += size; |
| 5527 | count++; |
| 5528 | } |
| 5529 | } |
| 5530 | |
| 5531 | segs = skb_shinfo(skb)->gso_segs ? : 1; |
| 5532 | /* multiply data chunks by size of headers */ |
| 5533 | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; |
| 5534 | |
| 5535 | tx_ring->buffer_info[i].skb = skb; |
| 5536 | tx_ring->buffer_info[i].segs = segs; |
| 5537 | tx_ring->buffer_info[i].bytecount = bytecount; |
| 5538 | tx_ring->buffer_info[first].next_to_watch = i; |
| 5539 | |
| 5540 | return count; |
| 5541 | |
| 5542 | dma_error: |
| 5543 | dev_err(&pdev->dev, "Tx DMA map failed\n"); |
| 5544 | buffer_info->dma = 0; |
| 5545 | if (count) |
| 5546 | count--; |
| 5547 | |
| 5548 | while (count--) { |
| 5549 | if (i == 0) |
| 5550 | i += tx_ring->count; |
| 5551 | i--; |
| 5552 | buffer_info = &tx_ring->buffer_info[i]; |
| 5553 | e1000_put_txbuf(tx_ring, buffer_info); |
| 5554 | } |
| 5555 | |
| 5556 | return 0; |
| 5557 | } |
| 5558 | |
| 5559 | static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) |
| 5560 | { |
| 5561 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 5562 | struct e1000_tx_desc *tx_desc = NULL; |
| 5563 | struct e1000_buffer *buffer_info; |
| 5564 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
| 5565 | unsigned int i; |
| 5566 | |
| 5567 | if (tx_flags & E1000_TX_FLAGS_TSO) { |
| 5568 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
| 5569 | E1000_TXD_CMD_TSE; |
| 5570 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| 5571 | |
| 5572 | if (tx_flags & E1000_TX_FLAGS_IPV4) |
| 5573 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
| 5574 | } |
| 5575 | |
| 5576 | if (tx_flags & E1000_TX_FLAGS_CSUM) { |
| 5577 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| 5578 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| 5579 | } |
| 5580 | |
| 5581 | if (tx_flags & E1000_TX_FLAGS_VLAN) { |
| 5582 | txd_lower |= E1000_TXD_CMD_VLE; |
| 5583 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
| 5584 | } |
| 5585 | |
| 5586 | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| 5587 | txd_lower &= ~(E1000_TXD_CMD_IFCS); |
| 5588 | |
| 5589 | if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { |
| 5590 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| 5591 | txd_upper |= E1000_TXD_EXTCMD_TSTAMP; |
| 5592 | } |
| 5593 | |
| 5594 | i = tx_ring->next_to_use; |
| 5595 | |
| 5596 | do { |
| 5597 | buffer_info = &tx_ring->buffer_info[i]; |
| 5598 | tx_desc = E1000_TX_DESC(*tx_ring, i); |
| 5599 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| 5600 | tx_desc->lower.data = cpu_to_le32(txd_lower | |
| 5601 | buffer_info->length); |
| 5602 | tx_desc->upper.data = cpu_to_le32(txd_upper); |
| 5603 | |
| 5604 | i++; |
| 5605 | if (i == tx_ring->count) |
| 5606 | i = 0; |
| 5607 | } while (--count > 0); |
| 5608 | |
| 5609 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
| 5610 | |
| 5611 | /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ |
| 5612 | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
| 5613 | tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); |
| 5614 | |
| 5615 | /* Force memory writes to complete before letting h/w |
| 5616 | * know there are new descriptors to fetch. (Only |
| 5617 | * applicable for weak-ordered memory model archs, |
| 5618 | * such as IA-64). |
| 5619 | */ |
| 5620 | wmb(); |
| 5621 | |
| 5622 | tx_ring->next_to_use = i; |
| 5623 | } |
| 5624 | |
| 5625 | #define MINIMUM_DHCP_PACKET_SIZE 282 |
| 5626 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
| 5627 | struct sk_buff *skb) |
| 5628 | { |
| 5629 | struct e1000_hw *hw = &adapter->hw; |
| 5630 | u16 length, offset; |
| 5631 | |
| 5632 | if (skb_vlan_tag_present(skb) && |
| 5633 | !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
| 5634 | (adapter->hw.mng_cookie.status & |
| 5635 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
| 5636 | return 0; |
| 5637 | |
| 5638 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
| 5639 | return 0; |
| 5640 | |
| 5641 | if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) |
| 5642 | return 0; |
| 5643 | |
| 5644 | { |
| 5645 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); |
| 5646 | struct udphdr *udp; |
| 5647 | |
| 5648 | if (ip->protocol != IPPROTO_UDP) |
| 5649 | return 0; |
| 5650 | |
| 5651 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
| 5652 | if (ntohs(udp->dest) != 67) |
| 5653 | return 0; |
| 5654 | |
| 5655 | offset = (u8 *)udp + 8 - skb->data; |
| 5656 | length = skb->len - offset; |
| 5657 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
| 5658 | } |
| 5659 | |
| 5660 | return 0; |
| 5661 | } |
| 5662 | |
| 5663 | static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) |
| 5664 | { |
| 5665 | struct e1000_adapter *adapter = tx_ring->adapter; |
| 5666 | |
| 5667 | netif_stop_queue(adapter->netdev); |
| 5668 | /* Herbert's original patch had: |
| 5669 | * smp_mb__after_netif_stop_queue(); |
| 5670 | * but since that doesn't exist yet, just open code it. |
| 5671 | */ |
| 5672 | smp_mb(); |
| 5673 | |
| 5674 | /* We need to check again in a case another CPU has just |
| 5675 | * made room available. |
| 5676 | */ |
| 5677 | if (e1000_desc_unused(tx_ring) < size) |
| 5678 | return -EBUSY; |
| 5679 | |
| 5680 | /* A reprieve! */ |
| 5681 | netif_start_queue(adapter->netdev); |
| 5682 | ++adapter->restart_queue; |
| 5683 | return 0; |
| 5684 | } |
| 5685 | |
| 5686 | static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) |
| 5687 | { |
| 5688 | BUG_ON(size > tx_ring->count); |
| 5689 | |
| 5690 | if (e1000_desc_unused(tx_ring) >= size) |
| 5691 | return 0; |
| 5692 | return __e1000_maybe_stop_tx(tx_ring, size); |
| 5693 | } |
| 5694 | |
| 5695 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
| 5696 | struct net_device *netdev) |
| 5697 | { |
| 5698 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 5699 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 5700 | unsigned int first; |
| 5701 | unsigned int tx_flags = 0; |
| 5702 | unsigned int len = skb_headlen(skb); |
| 5703 | unsigned int nr_frags; |
| 5704 | unsigned int mss; |
| 5705 | int count = 0; |
| 5706 | int tso; |
| 5707 | unsigned int f; |
| 5708 | __be16 protocol = vlan_get_protocol(skb); |
| 5709 | |
| 5710 | if (test_bit(__E1000_DOWN, &adapter->state)) { |
| 5711 | dev_kfree_skb_any(skb); |
| 5712 | return NETDEV_TX_OK; |
| 5713 | } |
| 5714 | |
| 5715 | if (skb->len <= 0) { |
| 5716 | dev_kfree_skb_any(skb); |
| 5717 | return NETDEV_TX_OK; |
| 5718 | } |
| 5719 | |
| 5720 | /* The minimum packet size with TCTL.PSP set is 17 bytes so |
| 5721 | * pad skb in order to meet this minimum size requirement |
| 5722 | */ |
| 5723 | if (skb_put_padto(skb, 17)) |
| 5724 | return NETDEV_TX_OK; |
| 5725 | |
| 5726 | mss = skb_shinfo(skb)->gso_size; |
| 5727 | if (mss) { |
| 5728 | u8 hdr_len; |
| 5729 | |
| 5730 | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
| 5731 | * points to just header, pull a few bytes of payload from |
| 5732 | * frags into skb->data |
| 5733 | */ |
| 5734 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| 5735 | /* we do this workaround for ES2LAN, but it is un-necessary, |
| 5736 | * avoiding it could save a lot of cycles |
| 5737 | */ |
| 5738 | if (skb->data_len && (hdr_len == len)) { |
| 5739 | unsigned int pull_size; |
| 5740 | |
| 5741 | pull_size = min_t(unsigned int, 4, skb->data_len); |
| 5742 | if (!__pskb_pull_tail(skb, pull_size)) { |
| 5743 | e_err("__pskb_pull_tail failed.\n"); |
| 5744 | dev_kfree_skb_any(skb); |
| 5745 | return NETDEV_TX_OK; |
| 5746 | } |
| 5747 | len = skb_headlen(skb); |
| 5748 | } |
| 5749 | } |
| 5750 | |
| 5751 | /* reserve a descriptor for the offload context */ |
| 5752 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
| 5753 | count++; |
| 5754 | count++; |
| 5755 | |
| 5756 | count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); |
| 5757 | |
| 5758 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 5759 | for (f = 0; f < nr_frags; f++) |
| 5760 | count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), |
| 5761 | adapter->tx_fifo_limit); |
| 5762 | |
| 5763 | if (adapter->hw.mac.tx_pkt_filtering) |
| 5764 | e1000_transfer_dhcp_info(adapter, skb); |
| 5765 | |
| 5766 | /* need: count + 2 desc gap to keep tail from touching |
| 5767 | * head, otherwise try next time |
| 5768 | */ |
| 5769 | if (e1000_maybe_stop_tx(tx_ring, count + 2)) |
| 5770 | return NETDEV_TX_BUSY; |
| 5771 | |
| 5772 | if (skb_vlan_tag_present(skb)) { |
| 5773 | tx_flags |= E1000_TX_FLAGS_VLAN; |
| 5774 | tx_flags |= (skb_vlan_tag_get(skb) << |
| 5775 | E1000_TX_FLAGS_VLAN_SHIFT); |
| 5776 | } |
| 5777 | |
| 5778 | first = tx_ring->next_to_use; |
| 5779 | |
| 5780 | tso = e1000_tso(tx_ring, skb, protocol); |
| 5781 | if (tso < 0) { |
| 5782 | dev_kfree_skb_any(skb); |
| 5783 | return NETDEV_TX_OK; |
| 5784 | } |
| 5785 | |
| 5786 | if (tso) |
| 5787 | tx_flags |= E1000_TX_FLAGS_TSO; |
| 5788 | else if (e1000_tx_csum(tx_ring, skb, protocol)) |
| 5789 | tx_flags |= E1000_TX_FLAGS_CSUM; |
| 5790 | |
| 5791 | /* Old method was to assume IPv4 packet by default if TSO was enabled. |
| 5792 | * 82571 hardware supports TSO capabilities for IPv6 as well... |
| 5793 | * no longer assume, we must. |
| 5794 | */ |
| 5795 | if (protocol == htons(ETH_P_IP)) |
| 5796 | tx_flags |= E1000_TX_FLAGS_IPV4; |
| 5797 | |
| 5798 | if (unlikely(skb->no_fcs)) |
| 5799 | tx_flags |= E1000_TX_FLAGS_NO_FCS; |
| 5800 | |
| 5801 | /* if count is 0 then mapping error has occurred */ |
| 5802 | count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, |
| 5803 | nr_frags); |
| 5804 | if (count) { |
| 5805 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| 5806 | (adapter->flags & FLAG_HAS_HW_TIMESTAMP) && |
| 5807 | !adapter->tx_hwtstamp_skb) { |
| 5808 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| 5809 | tx_flags |= E1000_TX_FLAGS_HWTSTAMP; |
| 5810 | adapter->tx_hwtstamp_skb = skb_get(skb); |
| 5811 | adapter->tx_hwtstamp_start = jiffies; |
| 5812 | schedule_work(&adapter->tx_hwtstamp_work); |
| 5813 | } else { |
| 5814 | skb_tx_timestamp(skb); |
| 5815 | } |
| 5816 | |
| 5817 | netdev_sent_queue(netdev, skb->len); |
| 5818 | e1000_tx_queue(tx_ring, tx_flags, count); |
| 5819 | /* Make sure there is space in the ring for the next send. */ |
| 5820 | e1000_maybe_stop_tx(tx_ring, |
| 5821 | (MAX_SKB_FRAGS * |
| 5822 | DIV_ROUND_UP(PAGE_SIZE, |
| 5823 | adapter->tx_fifo_limit) + 2)); |
| 5824 | |
| 5825 | if (!skb->xmit_more || |
| 5826 | netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { |
| 5827 | if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) |
| 5828 | e1000e_update_tdt_wa(tx_ring, |
| 5829 | tx_ring->next_to_use); |
| 5830 | else |
| 5831 | writel(tx_ring->next_to_use, tx_ring->tail); |
| 5832 | |
| 5833 | /* we need this if more than one processor can write |
| 5834 | * to our tail at a time, it synchronizes IO on |
| 5835 | *IA64/Altix systems |
| 5836 | */ |
| 5837 | mmiowb(); |
| 5838 | } |
| 5839 | } else { |
| 5840 | dev_kfree_skb_any(skb); |
| 5841 | tx_ring->buffer_info[first].time_stamp = 0; |
| 5842 | tx_ring->next_to_use = first; |
| 5843 | } |
| 5844 | |
| 5845 | return NETDEV_TX_OK; |
| 5846 | } |
| 5847 | |
| 5848 | /** |
| 5849 | * e1000_tx_timeout - Respond to a Tx Hang |
| 5850 | * @netdev: network interface device structure |
| 5851 | **/ |
| 5852 | static void e1000_tx_timeout(struct net_device *netdev) |
| 5853 | { |
| 5854 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 5855 | |
| 5856 | /* Do the reset outside of interrupt context */ |
| 5857 | adapter->tx_timeout_count++; |
| 5858 | schedule_work(&adapter->reset_task); |
| 5859 | } |
| 5860 | |
| 5861 | static void e1000_reset_task(struct work_struct *work) |
| 5862 | { |
| 5863 | struct e1000_adapter *adapter; |
| 5864 | adapter = container_of(work, struct e1000_adapter, reset_task); |
| 5865 | |
| 5866 | /* don't run the task if already down */ |
| 5867 | if (test_bit(__E1000_DOWN, &adapter->state)) |
| 5868 | return; |
| 5869 | |
| 5870 | if (!(adapter->flags & FLAG_RESTART_NOW)) { |
| 5871 | e1000e_dump(adapter); |
| 5872 | e_err("Reset adapter unexpectedly\n"); |
| 5873 | } |
| 5874 | e1000e_reinit_locked(adapter); |
| 5875 | } |
| 5876 | |
| 5877 | /** |
| 5878 | * e1000_get_stats64 - Get System Network Statistics |
| 5879 | * @netdev: network interface device structure |
| 5880 | * @stats: rtnl_link_stats64 pointer |
| 5881 | * |
| 5882 | * Returns the address of the device statistics structure. |
| 5883 | **/ |
| 5884 | struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, |
| 5885 | struct rtnl_link_stats64 *stats) |
| 5886 | { |
| 5887 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 5888 | |
| 5889 | memset(stats, 0, sizeof(struct rtnl_link_stats64)); |
| 5890 | spin_lock(&adapter->stats64_lock); |
| 5891 | e1000e_update_stats(adapter); |
| 5892 | /* Fill out the OS statistics structure */ |
| 5893 | stats->rx_bytes = adapter->stats.gorc; |
| 5894 | stats->rx_packets = adapter->stats.gprc; |
| 5895 | stats->tx_bytes = adapter->stats.gotc; |
| 5896 | stats->tx_packets = adapter->stats.gptc; |
| 5897 | stats->multicast = adapter->stats.mprc; |
| 5898 | stats->collisions = adapter->stats.colc; |
| 5899 | |
| 5900 | /* Rx Errors */ |
| 5901 | |
| 5902 | /* RLEC on some newer hardware can be incorrect so build |
| 5903 | * our own version based on RUC and ROC |
| 5904 | */ |
| 5905 | stats->rx_errors = adapter->stats.rxerrc + |
| 5906 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
| 5907 | adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; |
| 5908 | stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; |
| 5909 | stats->rx_crc_errors = adapter->stats.crcerrs; |
| 5910 | stats->rx_frame_errors = adapter->stats.algnerrc; |
| 5911 | stats->rx_missed_errors = adapter->stats.mpc; |
| 5912 | |
| 5913 | /* Tx Errors */ |
| 5914 | stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; |
| 5915 | stats->tx_aborted_errors = adapter->stats.ecol; |
| 5916 | stats->tx_window_errors = adapter->stats.latecol; |
| 5917 | stats->tx_carrier_errors = adapter->stats.tncrs; |
| 5918 | |
| 5919 | /* Tx Dropped needs to be maintained elsewhere */ |
| 5920 | |
| 5921 | spin_unlock(&adapter->stats64_lock); |
| 5922 | return stats; |
| 5923 | } |
| 5924 | |
| 5925 | /** |
| 5926 | * e1000_change_mtu - Change the Maximum Transfer Unit |
| 5927 | * @netdev: network interface device structure |
| 5928 | * @new_mtu: new value for maximum frame size |
| 5929 | * |
| 5930 | * Returns 0 on success, negative on failure |
| 5931 | **/ |
| 5932 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
| 5933 | { |
| 5934 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 5935 | int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; |
| 5936 | |
| 5937 | /* Jumbo frame support */ |
| 5938 | if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) && |
| 5939 | !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
| 5940 | e_err("Jumbo Frames not supported.\n"); |
| 5941 | return -EINVAL; |
| 5942 | } |
| 5943 | |
| 5944 | /* Supported frame sizes */ |
| 5945 | if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) || |
| 5946 | (max_frame > adapter->max_hw_frame_size)) { |
| 5947 | e_err("Unsupported MTU setting\n"); |
| 5948 | return -EINVAL; |
| 5949 | } |
| 5950 | |
| 5951 | /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ |
| 5952 | if ((adapter->hw.mac.type >= e1000_pch2lan) && |
| 5953 | !(adapter->flags2 & FLAG2_CRC_STRIPPING) && |
| 5954 | (new_mtu > ETH_DATA_LEN)) { |
| 5955 | e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); |
| 5956 | return -EINVAL; |
| 5957 | } |
| 5958 | |
| 5959 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| 5960 | usleep_range(1000, 2000); |
| 5961 | /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
| 5962 | adapter->max_frame_size = max_frame; |
| 5963 | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
| 5964 | netdev->mtu = new_mtu; |
| 5965 | |
| 5966 | pm_runtime_get_sync(netdev->dev.parent); |
| 5967 | |
| 5968 | if (netif_running(netdev)) |
| 5969 | e1000e_down(adapter, true); |
| 5970 | |
| 5971 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| 5972 | * means we reserve 2 more, this pushes us to allocate from the next |
| 5973 | * larger slab size. |
| 5974 | * i.e. RXBUFFER_2048 --> size-4096 slab |
| 5975 | * However with the new *_jumbo_rx* routines, jumbo receives will use |
| 5976 | * fragmented skbs |
| 5977 | */ |
| 5978 | |
| 5979 | if (max_frame <= 2048) |
| 5980 | adapter->rx_buffer_len = 2048; |
| 5981 | else |
| 5982 | adapter->rx_buffer_len = 4096; |
| 5983 | |
| 5984 | /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| 5985 | if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) |
| 5986 | adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; |
| 5987 | |
| 5988 | if (netif_running(netdev)) |
| 5989 | e1000e_up(adapter); |
| 5990 | else |
| 5991 | e1000e_reset(adapter); |
| 5992 | |
| 5993 | pm_runtime_put_sync(netdev->dev.parent); |
| 5994 | |
| 5995 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 5996 | |
| 5997 | return 0; |
| 5998 | } |
| 5999 | |
| 6000 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| 6001 | int cmd) |
| 6002 | { |
| 6003 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6004 | struct mii_ioctl_data *data = if_mii(ifr); |
| 6005 | |
| 6006 | if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| 6007 | return -EOPNOTSUPP; |
| 6008 | |
| 6009 | switch (cmd) { |
| 6010 | case SIOCGMIIPHY: |
| 6011 | data->phy_id = adapter->hw.phy.addr; |
| 6012 | break; |
| 6013 | case SIOCGMIIREG: |
| 6014 | e1000_phy_read_status(adapter); |
| 6015 | |
| 6016 | switch (data->reg_num & 0x1F) { |
| 6017 | case MII_BMCR: |
| 6018 | data->val_out = adapter->phy_regs.bmcr; |
| 6019 | break; |
| 6020 | case MII_BMSR: |
| 6021 | data->val_out = adapter->phy_regs.bmsr; |
| 6022 | break; |
| 6023 | case MII_PHYSID1: |
| 6024 | data->val_out = (adapter->hw.phy.id >> 16); |
| 6025 | break; |
| 6026 | case MII_PHYSID2: |
| 6027 | data->val_out = (adapter->hw.phy.id & 0xFFFF); |
| 6028 | break; |
| 6029 | case MII_ADVERTISE: |
| 6030 | data->val_out = adapter->phy_regs.advertise; |
| 6031 | break; |
| 6032 | case MII_LPA: |
| 6033 | data->val_out = adapter->phy_regs.lpa; |
| 6034 | break; |
| 6035 | case MII_EXPANSION: |
| 6036 | data->val_out = adapter->phy_regs.expansion; |
| 6037 | break; |
| 6038 | case MII_CTRL1000: |
| 6039 | data->val_out = adapter->phy_regs.ctrl1000; |
| 6040 | break; |
| 6041 | case MII_STAT1000: |
| 6042 | data->val_out = adapter->phy_regs.stat1000; |
| 6043 | break; |
| 6044 | case MII_ESTATUS: |
| 6045 | data->val_out = adapter->phy_regs.estatus; |
| 6046 | break; |
| 6047 | default: |
| 6048 | return -EIO; |
| 6049 | } |
| 6050 | break; |
| 6051 | case SIOCSMIIREG: |
| 6052 | default: |
| 6053 | return -EOPNOTSUPP; |
| 6054 | } |
| 6055 | return 0; |
| 6056 | } |
| 6057 | |
| 6058 | /** |
| 6059 | * e1000e_hwtstamp_ioctl - control hardware time stamping |
| 6060 | * @netdev: network interface device structure |
| 6061 | * @ifreq: interface request |
| 6062 | * |
| 6063 | * Outgoing time stamping can be enabled and disabled. Play nice and |
| 6064 | * disable it when requested, although it shouldn't cause any overhead |
| 6065 | * when no packet needs it. At most one packet in the queue may be |
| 6066 | * marked for time stamping, otherwise it would be impossible to tell |
| 6067 | * for sure to which packet the hardware time stamp belongs. |
| 6068 | * |
| 6069 | * Incoming time stamping has to be configured via the hardware filters. |
| 6070 | * Not all combinations are supported, in particular event type has to be |
| 6071 | * specified. Matching the kind of event packet is not supported, with the |
| 6072 | * exception of "all V2 events regardless of level 2 or 4". |
| 6073 | **/ |
| 6074 | static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) |
| 6075 | { |
| 6076 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6077 | struct hwtstamp_config config; |
| 6078 | int ret_val; |
| 6079 | |
| 6080 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| 6081 | return -EFAULT; |
| 6082 | |
| 6083 | ret_val = e1000e_config_hwtstamp(adapter, &config); |
| 6084 | if (ret_val) |
| 6085 | return ret_val; |
| 6086 | |
| 6087 | switch (config.rx_filter) { |
| 6088 | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| 6089 | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| 6090 | case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| 6091 | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| 6092 | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| 6093 | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| 6094 | /* With V2 type filters which specify a Sync or Delay Request, |
| 6095 | * Path Delay Request/Response messages are also time stamped |
| 6096 | * by hardware so notify the caller the requested packets plus |
| 6097 | * some others are time stamped. |
| 6098 | */ |
| 6099 | config.rx_filter = HWTSTAMP_FILTER_SOME; |
| 6100 | break; |
| 6101 | default: |
| 6102 | break; |
| 6103 | } |
| 6104 | |
| 6105 | return copy_to_user(ifr->ifr_data, &config, |
| 6106 | sizeof(config)) ? -EFAULT : 0; |
| 6107 | } |
| 6108 | |
| 6109 | static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) |
| 6110 | { |
| 6111 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6112 | |
| 6113 | return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, |
| 6114 | sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; |
| 6115 | } |
| 6116 | |
| 6117 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| 6118 | { |
| 6119 | switch (cmd) { |
| 6120 | case SIOCGMIIPHY: |
| 6121 | case SIOCGMIIREG: |
| 6122 | case SIOCSMIIREG: |
| 6123 | return e1000_mii_ioctl(netdev, ifr, cmd); |
| 6124 | case SIOCSHWTSTAMP: |
| 6125 | return e1000e_hwtstamp_set(netdev, ifr); |
| 6126 | case SIOCGHWTSTAMP: |
| 6127 | return e1000e_hwtstamp_get(netdev, ifr); |
| 6128 | default: |
| 6129 | return -EOPNOTSUPP; |
| 6130 | } |
| 6131 | } |
| 6132 | |
| 6133 | static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
| 6134 | { |
| 6135 | struct e1000_hw *hw = &adapter->hw; |
| 6136 | u32 i, mac_reg, wuc; |
| 6137 | u16 phy_reg, wuc_enable; |
| 6138 | int retval; |
| 6139 | |
| 6140 | /* copy MAC RARs to PHY RARs */ |
| 6141 | e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
| 6142 | |
| 6143 | retval = hw->phy.ops.acquire(hw); |
| 6144 | if (retval) { |
| 6145 | e_err("Could not acquire PHY\n"); |
| 6146 | return retval; |
| 6147 | } |
| 6148 | |
| 6149 | /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ |
| 6150 | retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); |
| 6151 | if (retval) |
| 6152 | goto release; |
| 6153 | |
| 6154 | /* copy MAC MTA to PHY MTA - only needed for pchlan */ |
| 6155 | for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { |
| 6156 | mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); |
| 6157 | hw->phy.ops.write_reg_page(hw, BM_MTA(i), |
| 6158 | (u16)(mac_reg & 0xFFFF)); |
| 6159 | hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, |
| 6160 | (u16)((mac_reg >> 16) & 0xFFFF)); |
| 6161 | } |
| 6162 | |
| 6163 | /* configure PHY Rx Control register */ |
| 6164 | hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); |
| 6165 | mac_reg = er32(RCTL); |
| 6166 | if (mac_reg & E1000_RCTL_UPE) |
| 6167 | phy_reg |= BM_RCTL_UPE; |
| 6168 | if (mac_reg & E1000_RCTL_MPE) |
| 6169 | phy_reg |= BM_RCTL_MPE; |
| 6170 | phy_reg &= ~(BM_RCTL_MO_MASK); |
| 6171 | if (mac_reg & E1000_RCTL_MO_3) |
| 6172 | phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) |
| 6173 | << BM_RCTL_MO_SHIFT); |
| 6174 | if (mac_reg & E1000_RCTL_BAM) |
| 6175 | phy_reg |= BM_RCTL_BAM; |
| 6176 | if (mac_reg & E1000_RCTL_PMCF) |
| 6177 | phy_reg |= BM_RCTL_PMCF; |
| 6178 | mac_reg = er32(CTRL); |
| 6179 | if (mac_reg & E1000_CTRL_RFCE) |
| 6180 | phy_reg |= BM_RCTL_RFCE; |
| 6181 | hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); |
| 6182 | |
| 6183 | wuc = E1000_WUC_PME_EN; |
| 6184 | if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) |
| 6185 | wuc |= E1000_WUC_APME; |
| 6186 | |
| 6187 | /* enable PHY wakeup in MAC register */ |
| 6188 | ew32(WUFC, wufc); |
| 6189 | ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | |
| 6190 | E1000_WUC_PME_STATUS | wuc)); |
| 6191 | |
| 6192 | /* configure and enable PHY wakeup in PHY registers */ |
| 6193 | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); |
| 6194 | hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); |
| 6195 | |
| 6196 | /* activate PHY wakeup */ |
| 6197 | wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; |
| 6198 | retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); |
| 6199 | if (retval) |
| 6200 | e_err("Could not set PHY Host Wakeup bit\n"); |
| 6201 | release: |
| 6202 | hw->phy.ops.release(hw); |
| 6203 | |
| 6204 | return retval; |
| 6205 | } |
| 6206 | |
| 6207 | static void e1000e_flush_lpic(struct pci_dev *pdev) |
| 6208 | { |
| 6209 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6210 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6211 | struct e1000_hw *hw = &adapter->hw; |
| 6212 | u32 ret_val; |
| 6213 | |
| 6214 | pm_runtime_get_sync(netdev->dev.parent); |
| 6215 | |
| 6216 | ret_val = hw->phy.ops.acquire(hw); |
| 6217 | if (ret_val) |
| 6218 | goto fl_out; |
| 6219 | |
| 6220 | pr_info("EEE TX LPI TIMER: %08X\n", |
| 6221 | er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); |
| 6222 | |
| 6223 | hw->phy.ops.release(hw); |
| 6224 | |
| 6225 | fl_out: |
| 6226 | pm_runtime_put_sync(netdev->dev.parent); |
| 6227 | } |
| 6228 | |
| 6229 | static int e1000e_pm_freeze(struct device *dev) |
| 6230 | { |
| 6231 | struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); |
| 6232 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6233 | |
| 6234 | netif_device_detach(netdev); |
| 6235 | |
| 6236 | if (netif_running(netdev)) { |
| 6237 | int count = E1000_CHECK_RESET_COUNT; |
| 6238 | |
| 6239 | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| 6240 | usleep_range(10000, 20000); |
| 6241 | |
| 6242 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| 6243 | |
| 6244 | /* Quiesce the device without resetting the hardware */ |
| 6245 | e1000e_down(adapter, false); |
| 6246 | e1000_free_irq(adapter); |
| 6247 | } |
| 6248 | e1000e_reset_interrupt_capability(adapter); |
| 6249 | |
| 6250 | /* Allow time for pending master requests to run */ |
| 6251 | e1000e_disable_pcie_master(&adapter->hw); |
| 6252 | |
| 6253 | return 0; |
| 6254 | } |
| 6255 | |
| 6256 | static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) |
| 6257 | { |
| 6258 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6259 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6260 | struct e1000_hw *hw = &adapter->hw; |
| 6261 | u32 ctrl, ctrl_ext, rctl, status; |
| 6262 | /* Runtime suspend should only enable wakeup for link changes */ |
| 6263 | u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; |
| 6264 | int retval = 0; |
| 6265 | |
| 6266 | status = er32(STATUS); |
| 6267 | if (status & E1000_STATUS_LU) |
| 6268 | wufc &= ~E1000_WUFC_LNKC; |
| 6269 | |
| 6270 | if (wufc) { |
| 6271 | e1000_setup_rctl(adapter); |
| 6272 | e1000e_set_rx_mode(netdev); |
| 6273 | |
| 6274 | /* turn on all-multi mode if wake on multicast is enabled */ |
| 6275 | if (wufc & E1000_WUFC_MC) { |
| 6276 | rctl = er32(RCTL); |
| 6277 | rctl |= E1000_RCTL_MPE; |
| 6278 | ew32(RCTL, rctl); |
| 6279 | } |
| 6280 | |
| 6281 | ctrl = er32(CTRL); |
| 6282 | ctrl |= E1000_CTRL_ADVD3WUC; |
| 6283 | if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) |
| 6284 | ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; |
| 6285 | ew32(CTRL, ctrl); |
| 6286 | |
| 6287 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
| 6288 | adapter->hw.phy.media_type == |
| 6289 | e1000_media_type_internal_serdes) { |
| 6290 | /* keep the laser running in D3 */ |
| 6291 | ctrl_ext = er32(CTRL_EXT); |
| 6292 | ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
| 6293 | ew32(CTRL_EXT, ctrl_ext); |
| 6294 | } |
| 6295 | |
| 6296 | if (!runtime) |
| 6297 | e1000e_power_up_phy(adapter); |
| 6298 | |
| 6299 | if (adapter->flags & FLAG_IS_ICH) |
| 6300 | e1000_suspend_workarounds_ich8lan(&adapter->hw); |
| 6301 | |
| 6302 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
| 6303 | /* enable wakeup by the PHY */ |
| 6304 | retval = e1000_init_phy_wakeup(adapter, wufc); |
| 6305 | if (retval) |
| 6306 | return retval; |
| 6307 | } else { |
| 6308 | /* enable wakeup by the MAC */ |
| 6309 | ew32(WUFC, wufc); |
| 6310 | ew32(WUC, E1000_WUC_PME_EN); |
| 6311 | } |
| 6312 | } else { |
| 6313 | ew32(WUC, 0); |
| 6314 | ew32(WUFC, 0); |
| 6315 | |
| 6316 | e1000_power_down_phy(adapter); |
| 6317 | } |
| 6318 | |
| 6319 | if (adapter->hw.phy.type == e1000_phy_igp_3) { |
| 6320 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
| 6321 | } else if ((hw->mac.type == e1000_pch_lpt) || |
| 6322 | (hw->mac.type == e1000_pch_spt)) { |
| 6323 | if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) |
| 6324 | /* ULP does not support wake from unicast, multicast |
| 6325 | * or broadcast. |
| 6326 | */ |
| 6327 | retval = e1000_enable_ulp_lpt_lp(hw, !runtime); |
| 6328 | |
| 6329 | if (retval) |
| 6330 | return retval; |
| 6331 | } |
| 6332 | |
| 6333 | /* Ensure that the appropriate bits are set in LPI_CTRL |
| 6334 | * for EEE in Sx |
| 6335 | */ |
| 6336 | if ((hw->phy.type >= e1000_phy_i217) && |
| 6337 | adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { |
| 6338 | u16 lpi_ctrl = 0; |
| 6339 | |
| 6340 | retval = hw->phy.ops.acquire(hw); |
| 6341 | if (!retval) { |
| 6342 | retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, |
| 6343 | &lpi_ctrl); |
| 6344 | if (!retval) { |
| 6345 | if (adapter->eee_advert & |
| 6346 | hw->dev_spec.ich8lan.eee_lp_ability & |
| 6347 | I82579_EEE_100_SUPPORTED) |
| 6348 | lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; |
| 6349 | if (adapter->eee_advert & |
| 6350 | hw->dev_spec.ich8lan.eee_lp_ability & |
| 6351 | I82579_EEE_1000_SUPPORTED) |
| 6352 | lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; |
| 6353 | |
| 6354 | retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, |
| 6355 | lpi_ctrl); |
| 6356 | } |
| 6357 | } |
| 6358 | hw->phy.ops.release(hw); |
| 6359 | } |
| 6360 | |
| 6361 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| 6362 | * would have already happened in close and is redundant. |
| 6363 | */ |
| 6364 | e1000e_release_hw_control(adapter); |
| 6365 | |
| 6366 | pci_clear_master(pdev); |
| 6367 | |
| 6368 | /* The pci-e switch on some quad port adapters will report a |
| 6369 | * correctable error when the MAC transitions from D0 to D3. To |
| 6370 | * prevent this we need to mask off the correctable errors on the |
| 6371 | * downstream port of the pci-e switch. |
| 6372 | * |
| 6373 | * We don't have the associated upstream bridge while assigning |
| 6374 | * the PCI device into guest. For example, the KVM on power is |
| 6375 | * one of the cases. |
| 6376 | */ |
| 6377 | if (adapter->flags & FLAG_IS_QUAD_PORT) { |
| 6378 | struct pci_dev *us_dev = pdev->bus->self; |
| 6379 | u16 devctl; |
| 6380 | |
| 6381 | if (!us_dev) |
| 6382 | return 0; |
| 6383 | |
| 6384 | pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); |
| 6385 | pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, |
| 6386 | (devctl & ~PCI_EXP_DEVCTL_CERE)); |
| 6387 | |
| 6388 | pci_save_state(pdev); |
| 6389 | pci_prepare_to_sleep(pdev); |
| 6390 | |
| 6391 | pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); |
| 6392 | } |
| 6393 | |
| 6394 | return 0; |
| 6395 | } |
| 6396 | |
| 6397 | /** |
| 6398 | * __e1000e_disable_aspm - Disable ASPM states |
| 6399 | * @pdev: pointer to PCI device struct |
| 6400 | * @state: bit-mask of ASPM states to disable |
| 6401 | * @locked: indication if this context holds pci_bus_sem locked. |
| 6402 | * |
| 6403 | * Some devices *must* have certain ASPM states disabled per hardware errata. |
| 6404 | **/ |
| 6405 | static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) |
| 6406 | { |
| 6407 | struct pci_dev *parent = pdev->bus->self; |
| 6408 | u16 aspm_dis_mask = 0; |
| 6409 | u16 pdev_aspmc, parent_aspmc; |
| 6410 | |
| 6411 | switch (state) { |
| 6412 | case PCIE_LINK_STATE_L0S: |
| 6413 | case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: |
| 6414 | aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; |
| 6415 | /* fall-through - can't have L1 without L0s */ |
| 6416 | case PCIE_LINK_STATE_L1: |
| 6417 | aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; |
| 6418 | break; |
| 6419 | default: |
| 6420 | return; |
| 6421 | } |
| 6422 | |
| 6423 | pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); |
| 6424 | pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| 6425 | |
| 6426 | if (parent) { |
| 6427 | pcie_capability_read_word(parent, PCI_EXP_LNKCTL, |
| 6428 | &parent_aspmc); |
| 6429 | parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| 6430 | } |
| 6431 | |
| 6432 | /* Nothing to do if the ASPM states to be disabled already are */ |
| 6433 | if (!(pdev_aspmc & aspm_dis_mask) && |
| 6434 | (!parent || !(parent_aspmc & aspm_dis_mask))) |
| 6435 | return; |
| 6436 | |
| 6437 | dev_info(&pdev->dev, "Disabling ASPM %s %s\n", |
| 6438 | (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? |
| 6439 | "L0s" : "", |
| 6440 | (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? |
| 6441 | "L1" : ""); |
| 6442 | |
| 6443 | #ifdef CONFIG_PCIEASPM |
| 6444 | if (locked) |
| 6445 | pci_disable_link_state_locked(pdev, state); |
| 6446 | else |
| 6447 | pci_disable_link_state(pdev, state); |
| 6448 | |
| 6449 | /* Double-check ASPM control. If not disabled by the above, the |
| 6450 | * BIOS is preventing that from happening (or CONFIG_PCIEASPM is |
| 6451 | * not enabled); override by writing PCI config space directly. |
| 6452 | */ |
| 6453 | pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); |
| 6454 | pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; |
| 6455 | |
| 6456 | if (!(aspm_dis_mask & pdev_aspmc)) |
| 6457 | return; |
| 6458 | #endif |
| 6459 | |
| 6460 | /* Both device and parent should have the same ASPM setting. |
| 6461 | * Disable ASPM in downstream component first and then upstream. |
| 6462 | */ |
| 6463 | pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); |
| 6464 | |
| 6465 | if (parent) |
| 6466 | pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, |
| 6467 | aspm_dis_mask); |
| 6468 | } |
| 6469 | |
| 6470 | /** |
| 6471 | * e1000e_disable_aspm - Disable ASPM states. |
| 6472 | * @pdev: pointer to PCI device struct |
| 6473 | * @state: bit-mask of ASPM states to disable |
| 6474 | * |
| 6475 | * This function acquires the pci_bus_sem! |
| 6476 | * Some devices *must* have certain ASPM states disabled per hardware errata. |
| 6477 | **/ |
| 6478 | static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) |
| 6479 | { |
| 6480 | __e1000e_disable_aspm(pdev, state, 0); |
| 6481 | } |
| 6482 | |
| 6483 | /** |
| 6484 | * e1000e_disable_aspm_locked Disable ASPM states. |
| 6485 | * @pdev: pointer to PCI device struct |
| 6486 | * @state: bit-mask of ASPM states to disable |
| 6487 | * |
| 6488 | * This function must be called with pci_bus_sem acquired! |
| 6489 | * Some devices *must* have certain ASPM states disabled per hardware errata. |
| 6490 | **/ |
| 6491 | static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) |
| 6492 | { |
| 6493 | __e1000e_disable_aspm(pdev, state, 1); |
| 6494 | } |
| 6495 | |
| 6496 | #ifdef CONFIG_PM |
| 6497 | static int __e1000_resume(struct pci_dev *pdev) |
| 6498 | { |
| 6499 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6500 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6501 | struct e1000_hw *hw = &adapter->hw; |
| 6502 | u16 aspm_disable_flag = 0; |
| 6503 | |
| 6504 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| 6505 | aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| 6506 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
| 6507 | aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| 6508 | if (aspm_disable_flag) |
| 6509 | e1000e_disable_aspm(pdev, aspm_disable_flag); |
| 6510 | |
| 6511 | pci_set_master(pdev); |
| 6512 | |
| 6513 | if (hw->mac.type >= e1000_pch2lan) |
| 6514 | e1000_resume_workarounds_pchlan(&adapter->hw); |
| 6515 | |
| 6516 | e1000e_power_up_phy(adapter); |
| 6517 | |
| 6518 | /* report the system wakeup cause from S3/S4 */ |
| 6519 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
| 6520 | u16 phy_data; |
| 6521 | |
| 6522 | e1e_rphy(&adapter->hw, BM_WUS, &phy_data); |
| 6523 | if (phy_data) { |
| 6524 | e_info("PHY Wakeup cause - %s\n", |
| 6525 | phy_data & E1000_WUS_EX ? "Unicast Packet" : |
| 6526 | phy_data & E1000_WUS_MC ? "Multicast Packet" : |
| 6527 | phy_data & E1000_WUS_BC ? "Broadcast Packet" : |
| 6528 | phy_data & E1000_WUS_MAG ? "Magic Packet" : |
| 6529 | phy_data & E1000_WUS_LNKC ? |
| 6530 | "Link Status Change" : "other"); |
| 6531 | } |
| 6532 | e1e_wphy(&adapter->hw, BM_WUS, ~0); |
| 6533 | } else { |
| 6534 | u32 wus = er32(WUS); |
| 6535 | |
| 6536 | if (wus) { |
| 6537 | e_info("MAC Wakeup cause - %s\n", |
| 6538 | wus & E1000_WUS_EX ? "Unicast Packet" : |
| 6539 | wus & E1000_WUS_MC ? "Multicast Packet" : |
| 6540 | wus & E1000_WUS_BC ? "Broadcast Packet" : |
| 6541 | wus & E1000_WUS_MAG ? "Magic Packet" : |
| 6542 | wus & E1000_WUS_LNKC ? "Link Status Change" : |
| 6543 | "other"); |
| 6544 | } |
| 6545 | ew32(WUS, ~0); |
| 6546 | } |
| 6547 | |
| 6548 | e1000e_reset(adapter); |
| 6549 | |
| 6550 | e1000_init_manageability_pt(adapter); |
| 6551 | |
| 6552 | /* If the controller has AMT, do not set DRV_LOAD until the interface |
| 6553 | * is up. For all other cases, let the f/w know that the h/w is now |
| 6554 | * under the control of the driver. |
| 6555 | */ |
| 6556 | if (!(adapter->flags & FLAG_HAS_AMT)) |
| 6557 | e1000e_get_hw_control(adapter); |
| 6558 | |
| 6559 | return 0; |
| 6560 | } |
| 6561 | |
| 6562 | #ifdef CONFIG_PM_SLEEP |
| 6563 | static int e1000e_pm_thaw(struct device *dev) |
| 6564 | { |
| 6565 | struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); |
| 6566 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6567 | |
| 6568 | e1000e_set_interrupt_capability(adapter); |
| 6569 | if (netif_running(netdev)) { |
| 6570 | u32 err = e1000_request_irq(adapter); |
| 6571 | |
| 6572 | if (err) |
| 6573 | return err; |
| 6574 | |
| 6575 | e1000e_up(adapter); |
| 6576 | } |
| 6577 | |
| 6578 | netif_device_attach(netdev); |
| 6579 | |
| 6580 | return 0; |
| 6581 | } |
| 6582 | |
| 6583 | static int e1000e_pm_suspend(struct device *dev) |
| 6584 | { |
| 6585 | struct pci_dev *pdev = to_pci_dev(dev); |
| 6586 | |
| 6587 | e1000e_flush_lpic(pdev); |
| 6588 | |
| 6589 | e1000e_pm_freeze(dev); |
| 6590 | |
| 6591 | return __e1000_shutdown(pdev, false); |
| 6592 | } |
| 6593 | |
| 6594 | static int e1000e_pm_resume(struct device *dev) |
| 6595 | { |
| 6596 | struct pci_dev *pdev = to_pci_dev(dev); |
| 6597 | int rc; |
| 6598 | |
| 6599 | rc = __e1000_resume(pdev); |
| 6600 | if (rc) |
| 6601 | return rc; |
| 6602 | |
| 6603 | return e1000e_pm_thaw(dev); |
| 6604 | } |
| 6605 | #endif /* CONFIG_PM_SLEEP */ |
| 6606 | |
| 6607 | static int e1000e_pm_runtime_idle(struct device *dev) |
| 6608 | { |
| 6609 | struct pci_dev *pdev = to_pci_dev(dev); |
| 6610 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6611 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6612 | u16 eee_lp; |
| 6613 | |
| 6614 | eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; |
| 6615 | |
| 6616 | if (!e1000e_has_link(adapter)) { |
| 6617 | adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; |
| 6618 | pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); |
| 6619 | } |
| 6620 | |
| 6621 | return -EBUSY; |
| 6622 | } |
| 6623 | |
| 6624 | static int e1000e_pm_runtime_resume(struct device *dev) |
| 6625 | { |
| 6626 | struct pci_dev *pdev = to_pci_dev(dev); |
| 6627 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6628 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6629 | int rc; |
| 6630 | |
| 6631 | rc = __e1000_resume(pdev); |
| 6632 | if (rc) |
| 6633 | return rc; |
| 6634 | |
| 6635 | if (netdev->flags & IFF_UP) |
| 6636 | rc = e1000e_up(adapter); |
| 6637 | |
| 6638 | return rc; |
| 6639 | } |
| 6640 | |
| 6641 | static int e1000e_pm_runtime_suspend(struct device *dev) |
| 6642 | { |
| 6643 | struct pci_dev *pdev = to_pci_dev(dev); |
| 6644 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6645 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6646 | |
| 6647 | if (netdev->flags & IFF_UP) { |
| 6648 | int count = E1000_CHECK_RESET_COUNT; |
| 6649 | |
| 6650 | while (test_bit(__E1000_RESETTING, &adapter->state) && count--) |
| 6651 | usleep_range(10000, 20000); |
| 6652 | |
| 6653 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| 6654 | |
| 6655 | /* Down the device without resetting the hardware */ |
| 6656 | e1000e_down(adapter, false); |
| 6657 | } |
| 6658 | |
| 6659 | if (__e1000_shutdown(pdev, true)) { |
| 6660 | e1000e_pm_runtime_resume(dev); |
| 6661 | return -EBUSY; |
| 6662 | } |
| 6663 | |
| 6664 | return 0; |
| 6665 | } |
| 6666 | #endif /* CONFIG_PM */ |
| 6667 | |
| 6668 | static void e1000_shutdown(struct pci_dev *pdev) |
| 6669 | { |
| 6670 | e1000e_flush_lpic(pdev); |
| 6671 | |
| 6672 | e1000e_pm_freeze(&pdev->dev); |
| 6673 | |
| 6674 | __e1000_shutdown(pdev, false); |
| 6675 | } |
| 6676 | |
| 6677 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 6678 | |
| 6679 | static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) |
| 6680 | { |
| 6681 | struct net_device *netdev = data; |
| 6682 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6683 | |
| 6684 | if (adapter->msix_entries) { |
| 6685 | int vector, msix_irq; |
| 6686 | |
| 6687 | vector = 0; |
| 6688 | msix_irq = adapter->msix_entries[vector].vector; |
| 6689 | disable_irq(msix_irq); |
| 6690 | e1000_intr_msix_rx(msix_irq, netdev); |
| 6691 | enable_irq(msix_irq); |
| 6692 | |
| 6693 | vector++; |
| 6694 | msix_irq = adapter->msix_entries[vector].vector; |
| 6695 | disable_irq(msix_irq); |
| 6696 | e1000_intr_msix_tx(msix_irq, netdev); |
| 6697 | enable_irq(msix_irq); |
| 6698 | |
| 6699 | vector++; |
| 6700 | msix_irq = adapter->msix_entries[vector].vector; |
| 6701 | disable_irq(msix_irq); |
| 6702 | e1000_msix_other(msix_irq, netdev); |
| 6703 | enable_irq(msix_irq); |
| 6704 | } |
| 6705 | |
| 6706 | return IRQ_HANDLED; |
| 6707 | } |
| 6708 | |
| 6709 | /** |
| 6710 | * e1000_netpoll |
| 6711 | * @netdev: network interface device structure |
| 6712 | * |
| 6713 | * Polling 'interrupt' - used by things like netconsole to send skbs |
| 6714 | * without having to re-enable interrupts. It's not called while |
| 6715 | * the interrupt routine is executing. |
| 6716 | */ |
| 6717 | static void e1000_netpoll(struct net_device *netdev) |
| 6718 | { |
| 6719 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6720 | |
| 6721 | switch (adapter->int_mode) { |
| 6722 | case E1000E_INT_MODE_MSIX: |
| 6723 | e1000_intr_msix(adapter->pdev->irq, netdev); |
| 6724 | break; |
| 6725 | case E1000E_INT_MODE_MSI: |
| 6726 | disable_irq(adapter->pdev->irq); |
| 6727 | e1000_intr_msi(adapter->pdev->irq, netdev); |
| 6728 | enable_irq(adapter->pdev->irq); |
| 6729 | break; |
| 6730 | default: /* E1000E_INT_MODE_LEGACY */ |
| 6731 | disable_irq(adapter->pdev->irq); |
| 6732 | e1000_intr(adapter->pdev->irq, netdev); |
| 6733 | enable_irq(adapter->pdev->irq); |
| 6734 | break; |
| 6735 | } |
| 6736 | } |
| 6737 | #endif |
| 6738 | |
| 6739 | /** |
| 6740 | * e1000_io_error_detected - called when PCI error is detected |
| 6741 | * @pdev: Pointer to PCI device |
| 6742 | * @state: The current pci connection state |
| 6743 | * |
| 6744 | * This function is called after a PCI bus error affecting |
| 6745 | * this device has been detected. |
| 6746 | */ |
| 6747 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| 6748 | pci_channel_state_t state) |
| 6749 | { |
| 6750 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6751 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6752 | |
| 6753 | netif_device_detach(netdev); |
| 6754 | |
| 6755 | if (state == pci_channel_io_perm_failure) |
| 6756 | return PCI_ERS_RESULT_DISCONNECT; |
| 6757 | |
| 6758 | if (netif_running(netdev)) |
| 6759 | e1000e_down(adapter, true); |
| 6760 | pci_disable_device(pdev); |
| 6761 | |
| 6762 | /* Request a slot slot reset. */ |
| 6763 | return PCI_ERS_RESULT_NEED_RESET; |
| 6764 | } |
| 6765 | |
| 6766 | /** |
| 6767 | * e1000_io_slot_reset - called after the pci bus has been reset. |
| 6768 | * @pdev: Pointer to PCI device |
| 6769 | * |
| 6770 | * Restart the card from scratch, as if from a cold-boot. Implementation |
| 6771 | * resembles the first-half of the e1000e_pm_resume routine. |
| 6772 | */ |
| 6773 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
| 6774 | { |
| 6775 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6776 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6777 | struct e1000_hw *hw = &adapter->hw; |
| 6778 | u16 aspm_disable_flag = 0; |
| 6779 | int err; |
| 6780 | pci_ers_result_t result; |
| 6781 | |
| 6782 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| 6783 | aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| 6784 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
| 6785 | aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| 6786 | if (aspm_disable_flag) |
| 6787 | e1000e_disable_aspm_locked(pdev, aspm_disable_flag); |
| 6788 | |
| 6789 | err = pci_enable_device_mem(pdev); |
| 6790 | if (err) { |
| 6791 | dev_err(&pdev->dev, |
| 6792 | "Cannot re-enable PCI device after reset.\n"); |
| 6793 | result = PCI_ERS_RESULT_DISCONNECT; |
| 6794 | } else { |
| 6795 | pdev->state_saved = true; |
| 6796 | pci_restore_state(pdev); |
| 6797 | pci_set_master(pdev); |
| 6798 | |
| 6799 | pci_enable_wake(pdev, PCI_D3hot, 0); |
| 6800 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 6801 | |
| 6802 | e1000e_reset(adapter); |
| 6803 | ew32(WUS, ~0); |
| 6804 | result = PCI_ERS_RESULT_RECOVERED; |
| 6805 | } |
| 6806 | |
| 6807 | pci_cleanup_aer_uncorrect_error_status(pdev); |
| 6808 | |
| 6809 | return result; |
| 6810 | } |
| 6811 | |
| 6812 | /** |
| 6813 | * e1000_io_resume - called when traffic can start flowing again. |
| 6814 | * @pdev: Pointer to PCI device |
| 6815 | * |
| 6816 | * This callback is called when the error recovery driver tells us that |
| 6817 | * its OK to resume normal operation. Implementation resembles the |
| 6818 | * second-half of the e1000e_pm_resume routine. |
| 6819 | */ |
| 6820 | static void e1000_io_resume(struct pci_dev *pdev) |
| 6821 | { |
| 6822 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 6823 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6824 | |
| 6825 | e1000_init_manageability_pt(adapter); |
| 6826 | |
| 6827 | if (netif_running(netdev)) { |
| 6828 | if (e1000e_up(adapter)) { |
| 6829 | dev_err(&pdev->dev, |
| 6830 | "can't bring device back up after reset\n"); |
| 6831 | return; |
| 6832 | } |
| 6833 | } |
| 6834 | |
| 6835 | netif_device_attach(netdev); |
| 6836 | |
| 6837 | /* If the controller has AMT, do not set DRV_LOAD until the interface |
| 6838 | * is up. For all other cases, let the f/w know that the h/w is now |
| 6839 | * under the control of the driver. |
| 6840 | */ |
| 6841 | if (!(adapter->flags & FLAG_HAS_AMT)) |
| 6842 | e1000e_get_hw_control(adapter); |
| 6843 | } |
| 6844 | |
| 6845 | static void e1000_print_device_info(struct e1000_adapter *adapter) |
| 6846 | { |
| 6847 | struct e1000_hw *hw = &adapter->hw; |
| 6848 | struct net_device *netdev = adapter->netdev; |
| 6849 | u32 ret_val; |
| 6850 | u8 pba_str[E1000_PBANUM_LENGTH]; |
| 6851 | |
| 6852 | /* print bus type/speed/width info */ |
| 6853 | e_info("(PCI Express:2.5GT/s:%s) %pM\n", |
| 6854 | /* bus width */ |
| 6855 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
| 6856 | "Width x1"), |
| 6857 | /* MAC address */ |
| 6858 | netdev->dev_addr); |
| 6859 | e_info("Intel(R) PRO/%s Network Connection\n", |
| 6860 | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
| 6861 | ret_val = e1000_read_pba_string_generic(hw, pba_str, |
| 6862 | E1000_PBANUM_LENGTH); |
| 6863 | if (ret_val) |
| 6864 | strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); |
| 6865 | e_info("MAC: %d, PHY: %d, PBA No: %s\n", |
| 6866 | hw->mac.type, hw->phy.type, pba_str); |
| 6867 | } |
| 6868 | |
| 6869 | static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
| 6870 | { |
| 6871 | struct e1000_hw *hw = &adapter->hw; |
| 6872 | int ret_val; |
| 6873 | u16 buf = 0; |
| 6874 | |
| 6875 | if (hw->mac.type != e1000_82573) |
| 6876 | return; |
| 6877 | |
| 6878 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
| 6879 | le16_to_cpus(&buf); |
| 6880 | if (!ret_val && (!(buf & (1 << 0)))) { |
| 6881 | /* Deep Smart Power Down (DSPD) */ |
| 6882 | dev_warn(&adapter->pdev->dev, |
| 6883 | "Warning: detected DSPD enabled in EEPROM\n"); |
| 6884 | } |
| 6885 | } |
| 6886 | |
| 6887 | static netdev_features_t e1000_fix_features(struct net_device *netdev, |
| 6888 | netdev_features_t features) |
| 6889 | { |
| 6890 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6891 | struct e1000_hw *hw = &adapter->hw; |
| 6892 | |
| 6893 | /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ |
| 6894 | if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) |
| 6895 | features &= ~NETIF_F_RXFCS; |
| 6896 | |
| 6897 | return features; |
| 6898 | } |
| 6899 | |
| 6900 | static int e1000_set_features(struct net_device *netdev, |
| 6901 | netdev_features_t features) |
| 6902 | { |
| 6903 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 6904 | netdev_features_t changed = features ^ netdev->features; |
| 6905 | |
| 6906 | if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) |
| 6907 | adapter->flags |= FLAG_TSO_FORCE; |
| 6908 | |
| 6909 | if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | |
| 6910 | NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | |
| 6911 | NETIF_F_RXALL))) |
| 6912 | return 0; |
| 6913 | |
| 6914 | if (changed & NETIF_F_RXFCS) { |
| 6915 | if (features & NETIF_F_RXFCS) { |
| 6916 | adapter->flags2 &= ~FLAG2_CRC_STRIPPING; |
| 6917 | } else { |
| 6918 | /* We need to take it back to defaults, which might mean |
| 6919 | * stripping is still disabled at the adapter level. |
| 6920 | */ |
| 6921 | if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) |
| 6922 | adapter->flags2 |= FLAG2_CRC_STRIPPING; |
| 6923 | else |
| 6924 | adapter->flags2 &= ~FLAG2_CRC_STRIPPING; |
| 6925 | } |
| 6926 | } |
| 6927 | |
| 6928 | netdev->features = features; |
| 6929 | |
| 6930 | if (netif_running(netdev)) |
| 6931 | e1000e_reinit_locked(adapter); |
| 6932 | else |
| 6933 | e1000e_reset(adapter); |
| 6934 | |
| 6935 | return 0; |
| 6936 | } |
| 6937 | |
| 6938 | static const struct net_device_ops e1000e_netdev_ops = { |
| 6939 | .ndo_open = e1000_open, |
| 6940 | .ndo_stop = e1000_close, |
| 6941 | .ndo_start_xmit = e1000_xmit_frame, |
| 6942 | .ndo_get_stats64 = e1000e_get_stats64, |
| 6943 | .ndo_set_rx_mode = e1000e_set_rx_mode, |
| 6944 | .ndo_set_mac_address = e1000_set_mac, |
| 6945 | .ndo_change_mtu = e1000_change_mtu, |
| 6946 | .ndo_do_ioctl = e1000_ioctl, |
| 6947 | .ndo_tx_timeout = e1000_tx_timeout, |
| 6948 | .ndo_validate_addr = eth_validate_addr, |
| 6949 | |
| 6950 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
| 6951 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
| 6952 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 6953 | .ndo_poll_controller = e1000_netpoll, |
| 6954 | #endif |
| 6955 | .ndo_set_features = e1000_set_features, |
| 6956 | .ndo_fix_features = e1000_fix_features, |
| 6957 | .ndo_features_check = passthru_features_check, |
| 6958 | }; |
| 6959 | |
| 6960 | /** |
| 6961 | * e1000_probe - Device Initialization Routine |
| 6962 | * @pdev: PCI device information struct |
| 6963 | * @ent: entry in e1000_pci_tbl |
| 6964 | * |
| 6965 | * Returns 0 on success, negative on failure |
| 6966 | * |
| 6967 | * e1000_probe initializes an adapter identified by a pci_dev structure. |
| 6968 | * The OS initialization, configuring of the adapter private structure, |
| 6969 | * and a hardware reset occur. |
| 6970 | **/ |
| 6971 | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
| 6972 | { |
| 6973 | struct net_device *netdev; |
| 6974 | struct e1000_adapter *adapter; |
| 6975 | struct e1000_hw *hw; |
| 6976 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
| 6977 | resource_size_t mmio_start, mmio_len; |
| 6978 | resource_size_t flash_start, flash_len; |
| 6979 | static int cards_found; |
| 6980 | u16 aspm_disable_flag = 0; |
| 6981 | int bars, i, err, pci_using_dac; |
| 6982 | u16 eeprom_data = 0; |
| 6983 | u16 eeprom_apme_mask = E1000_EEPROM_APME; |
| 6984 | s32 rval = 0; |
| 6985 | |
| 6986 | if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) |
| 6987 | aspm_disable_flag = PCIE_LINK_STATE_L0S; |
| 6988 | if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) |
| 6989 | aspm_disable_flag |= PCIE_LINK_STATE_L1; |
| 6990 | if (aspm_disable_flag) |
| 6991 | e1000e_disable_aspm(pdev, aspm_disable_flag); |
| 6992 | |
| 6993 | err = pci_enable_device_mem(pdev); |
| 6994 | if (err) |
| 6995 | return err; |
| 6996 | |
| 6997 | pci_using_dac = 0; |
| 6998 | err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); |
| 6999 | if (!err) { |
| 7000 | pci_using_dac = 1; |
| 7001 | } else { |
| 7002 | err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| 7003 | if (err) { |
| 7004 | dev_err(&pdev->dev, |
| 7005 | "No usable DMA configuration, aborting\n"); |
| 7006 | goto err_dma; |
| 7007 | } |
| 7008 | } |
| 7009 | |
| 7010 | bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| 7011 | err = pci_request_selected_regions_exclusive(pdev, bars, |
| 7012 | e1000e_driver_name); |
| 7013 | if (err) |
| 7014 | goto err_pci_reg; |
| 7015 | |
| 7016 | /* AER (Advanced Error Reporting) hooks */ |
| 7017 | pci_enable_pcie_error_reporting(pdev); |
| 7018 | |
| 7019 | pci_set_master(pdev); |
| 7020 | /* PCI config space info */ |
| 7021 | err = pci_save_state(pdev); |
| 7022 | if (err) |
| 7023 | goto err_alloc_etherdev; |
| 7024 | |
| 7025 | err = -ENOMEM; |
| 7026 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
| 7027 | if (!netdev) |
| 7028 | goto err_alloc_etherdev; |
| 7029 | |
| 7030 | SET_NETDEV_DEV(netdev, &pdev->dev); |
| 7031 | |
| 7032 | netdev->irq = pdev->irq; |
| 7033 | |
| 7034 | pci_set_drvdata(pdev, netdev); |
| 7035 | adapter = netdev_priv(netdev); |
| 7036 | hw = &adapter->hw; |
| 7037 | adapter->netdev = netdev; |
| 7038 | adapter->pdev = pdev; |
| 7039 | adapter->ei = ei; |
| 7040 | adapter->pba = ei->pba; |
| 7041 | adapter->flags = ei->flags; |
| 7042 | adapter->flags2 = ei->flags2; |
| 7043 | adapter->hw.adapter = adapter; |
| 7044 | adapter->hw.mac.type = ei->mac; |
| 7045 | adapter->max_hw_frame_size = ei->max_hw_frame_size; |
| 7046 | adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); |
| 7047 | |
| 7048 | mmio_start = pci_resource_start(pdev, 0); |
| 7049 | mmio_len = pci_resource_len(pdev, 0); |
| 7050 | |
| 7051 | err = -EIO; |
| 7052 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
| 7053 | if (!adapter->hw.hw_addr) |
| 7054 | goto err_ioremap; |
| 7055 | |
| 7056 | if ((adapter->flags & FLAG_HAS_FLASH) && |
| 7057 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && |
| 7058 | (hw->mac.type < e1000_pch_spt)) { |
| 7059 | flash_start = pci_resource_start(pdev, 1); |
| 7060 | flash_len = pci_resource_len(pdev, 1); |
| 7061 | adapter->hw.flash_address = ioremap(flash_start, flash_len); |
| 7062 | if (!adapter->hw.flash_address) |
| 7063 | goto err_flashmap; |
| 7064 | } |
| 7065 | |
| 7066 | /* Set default EEE advertisement */ |
| 7067 | if (adapter->flags2 & FLAG2_HAS_EEE) |
| 7068 | adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; |
| 7069 | |
| 7070 | /* construct the net_device struct */ |
| 7071 | netdev->netdev_ops = &e1000e_netdev_ops; |
| 7072 | e1000e_set_ethtool_ops(netdev); |
| 7073 | netdev->watchdog_timeo = 5 * HZ; |
| 7074 | netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); |
| 7075 | strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); |
| 7076 | |
| 7077 | netdev->mem_start = mmio_start; |
| 7078 | netdev->mem_end = mmio_start + mmio_len; |
| 7079 | |
| 7080 | adapter->bd_number = cards_found++; |
| 7081 | |
| 7082 | e1000e_check_options(adapter); |
| 7083 | |
| 7084 | /* setup adapter struct */ |
| 7085 | err = e1000_sw_init(adapter); |
| 7086 | if (err) |
| 7087 | goto err_sw_init; |
| 7088 | |
| 7089 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| 7090 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| 7091 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| 7092 | |
| 7093 | err = ei->get_variants(adapter); |
| 7094 | if (err) |
| 7095 | goto err_hw_init; |
| 7096 | |
| 7097 | if ((adapter->flags & FLAG_IS_ICH) && |
| 7098 | (adapter->flags & FLAG_READ_ONLY_NVM) && |
| 7099 | (hw->mac.type < e1000_pch_spt)) |
| 7100 | e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
| 7101 | |
| 7102 | hw->mac.ops.get_bus_info(&adapter->hw); |
| 7103 | |
| 7104 | adapter->hw.phy.autoneg_wait_to_complete = 0; |
| 7105 | |
| 7106 | /* Copper options */ |
| 7107 | if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
| 7108 | adapter->hw.phy.mdix = AUTO_ALL_MODES; |
| 7109 | adapter->hw.phy.disable_polarity_correction = 0; |
| 7110 | adapter->hw.phy.ms_type = e1000_ms_hw_default; |
| 7111 | } |
| 7112 | |
| 7113 | if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) |
| 7114 | dev_info(&pdev->dev, |
| 7115 | "PHY reset is blocked due to SOL/IDER session.\n"); |
| 7116 | |
| 7117 | /* Set initial default active device features */ |
| 7118 | netdev->features = (NETIF_F_SG | |
| 7119 | NETIF_F_HW_VLAN_CTAG_RX | |
| 7120 | NETIF_F_HW_VLAN_CTAG_TX | |
| 7121 | NETIF_F_TSO | |
| 7122 | NETIF_F_TSO6 | |
| 7123 | NETIF_F_RXHASH | |
| 7124 | NETIF_F_RXCSUM | |
| 7125 | NETIF_F_HW_CSUM); |
| 7126 | |
| 7127 | /* Set user-changeable features (subset of all device features) */ |
| 7128 | netdev->hw_features = netdev->features; |
| 7129 | netdev->hw_features |= NETIF_F_RXFCS; |
| 7130 | netdev->priv_flags |= IFF_SUPP_NOFCS; |
| 7131 | netdev->hw_features |= NETIF_F_RXALL; |
| 7132 | |
| 7133 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
| 7134 | netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; |
| 7135 | |
| 7136 | netdev->vlan_features |= (NETIF_F_SG | |
| 7137 | NETIF_F_TSO | |
| 7138 | NETIF_F_TSO6 | |
| 7139 | NETIF_F_HW_CSUM); |
| 7140 | |
| 7141 | netdev->priv_flags |= IFF_UNICAST_FLT; |
| 7142 | |
| 7143 | if (pci_using_dac) { |
| 7144 | netdev->features |= NETIF_F_HIGHDMA; |
| 7145 | netdev->vlan_features |= NETIF_F_HIGHDMA; |
| 7146 | } |
| 7147 | |
| 7148 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
| 7149 | adapter->flags |= FLAG_MNG_PT_ENABLED; |
| 7150 | |
| 7151 | /* before reading the NVM, reset the controller to |
| 7152 | * put the device in a known good starting state |
| 7153 | */ |
| 7154 | adapter->hw.mac.ops.reset_hw(&adapter->hw); |
| 7155 | |
| 7156 | /* systems with ASPM and others may see the checksum fail on the first |
| 7157 | * attempt. Let's give it a few tries |
| 7158 | */ |
| 7159 | for (i = 0;; i++) { |
| 7160 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
| 7161 | break; |
| 7162 | if (i == 2) { |
| 7163 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); |
| 7164 | err = -EIO; |
| 7165 | goto err_eeprom; |
| 7166 | } |
| 7167 | } |
| 7168 | |
| 7169 | e1000_eeprom_checks(adapter); |
| 7170 | |
| 7171 | /* copy the MAC address */ |
| 7172 | if (e1000e_read_mac_addr(&adapter->hw)) |
| 7173 | dev_err(&pdev->dev, |
| 7174 | "NVM Read Error while reading MAC address\n"); |
| 7175 | |
| 7176 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
| 7177 | |
| 7178 | if (!is_valid_ether_addr(netdev->dev_addr)) { |
| 7179 | dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", |
| 7180 | netdev->dev_addr); |
| 7181 | err = -EIO; |
| 7182 | goto err_eeprom; |
| 7183 | } |
| 7184 | |
| 7185 | init_timer(&adapter->watchdog_timer); |
| 7186 | adapter->watchdog_timer.function = e1000_watchdog; |
| 7187 | adapter->watchdog_timer.data = (unsigned long)adapter; |
| 7188 | |
| 7189 | init_timer(&adapter->phy_info_timer); |
| 7190 | adapter->phy_info_timer.function = e1000_update_phy_info; |
| 7191 | adapter->phy_info_timer.data = (unsigned long)adapter; |
| 7192 | |
| 7193 | INIT_WORK(&adapter->reset_task, e1000_reset_task); |
| 7194 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
| 7195 | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
| 7196 | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
| 7197 | INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
| 7198 | |
| 7199 | /* Initialize link parameters. User can change them with ethtool */ |
| 7200 | adapter->hw.mac.autoneg = 1; |
| 7201 | adapter->fc_autoneg = true; |
| 7202 | adapter->hw.fc.requested_mode = e1000_fc_default; |
| 7203 | adapter->hw.fc.current_mode = e1000_fc_default; |
| 7204 | adapter->hw.phy.autoneg_advertised = 0x2f; |
| 7205 | |
| 7206 | /* Initial Wake on LAN setting - If APM wake is enabled in |
| 7207 | * the EEPROM, enable the ACPI Magic Packet filter |
| 7208 | */ |
| 7209 | if (adapter->flags & FLAG_APME_IN_WUC) { |
| 7210 | /* APME bit in EEPROM is mapped to WUC.APME */ |
| 7211 | eeprom_data = er32(WUC); |
| 7212 | eeprom_apme_mask = E1000_WUC_APME; |
| 7213 | if ((hw->mac.type > e1000_ich10lan) && |
| 7214 | (eeprom_data & E1000_WUC_PHY_WAKE)) |
| 7215 | adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; |
| 7216 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
| 7217 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
| 7218 | (adapter->hw.bus.func == 1)) |
| 7219 | rval = e1000_read_nvm(&adapter->hw, |
| 7220 | NVM_INIT_CONTROL3_PORT_B, |
| 7221 | 1, &eeprom_data); |
| 7222 | else |
| 7223 | rval = e1000_read_nvm(&adapter->hw, |
| 7224 | NVM_INIT_CONTROL3_PORT_A, |
| 7225 | 1, &eeprom_data); |
| 7226 | } |
| 7227 | |
| 7228 | /* fetch WoL from EEPROM */ |
| 7229 | if (rval) |
| 7230 | e_dbg("NVM read error getting WoL initial values: %d\n", rval); |
| 7231 | else if (eeprom_data & eeprom_apme_mask) |
| 7232 | adapter->eeprom_wol |= E1000_WUFC_MAG; |
| 7233 | |
| 7234 | /* now that we have the eeprom settings, apply the special cases |
| 7235 | * where the eeprom may be wrong or the board simply won't support |
| 7236 | * wake on lan on a particular port |
| 7237 | */ |
| 7238 | if (!(adapter->flags & FLAG_HAS_WOL)) |
| 7239 | adapter->eeprom_wol = 0; |
| 7240 | |
| 7241 | /* initialize the wol settings based on the eeprom settings */ |
| 7242 | adapter->wol = adapter->eeprom_wol; |
| 7243 | |
| 7244 | /* make sure adapter isn't asleep if manageability is enabled */ |
| 7245 | if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || |
| 7246 | (hw->mac.ops.check_mng_mode(hw))) |
| 7247 | device_wakeup_enable(&pdev->dev); |
| 7248 | |
| 7249 | /* save off EEPROM version number */ |
| 7250 | rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); |
| 7251 | |
| 7252 | if (rval) { |
| 7253 | e_dbg("NVM read error getting EEPROM version: %d\n", rval); |
| 7254 | adapter->eeprom_vers = 0; |
| 7255 | } |
| 7256 | |
| 7257 | /* reset the hardware with the new settings */ |
| 7258 | e1000e_reset(adapter); |
| 7259 | |
| 7260 | /* If the controller has AMT, do not set DRV_LOAD until the interface |
| 7261 | * is up. For all other cases, let the f/w know that the h/w is now |
| 7262 | * under the control of the driver. |
| 7263 | */ |
| 7264 | if (!(adapter->flags & FLAG_HAS_AMT)) |
| 7265 | e1000e_get_hw_control(adapter); |
| 7266 | |
| 7267 | strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); |
| 7268 | err = register_netdev(netdev); |
| 7269 | if (err) |
| 7270 | goto err_register; |
| 7271 | |
| 7272 | /* carrier off reporting is important to ethtool even BEFORE open */ |
| 7273 | netif_carrier_off(netdev); |
| 7274 | |
| 7275 | /* init PTP hardware clock */ |
| 7276 | e1000e_ptp_init(adapter); |
| 7277 | |
| 7278 | e1000_print_device_info(adapter); |
| 7279 | |
| 7280 | if (pci_dev_run_wake(pdev)) |
| 7281 | pm_runtime_put_noidle(&pdev->dev); |
| 7282 | |
| 7283 | return 0; |
| 7284 | |
| 7285 | err_register: |
| 7286 | if (!(adapter->flags & FLAG_HAS_AMT)) |
| 7287 | e1000e_release_hw_control(adapter); |
| 7288 | err_eeprom: |
| 7289 | if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) |
| 7290 | e1000_phy_hw_reset(&adapter->hw); |
| 7291 | err_hw_init: |
| 7292 | kfree(adapter->tx_ring); |
| 7293 | kfree(adapter->rx_ring); |
| 7294 | err_sw_init: |
| 7295 | if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) |
| 7296 | iounmap(adapter->hw.flash_address); |
| 7297 | e1000e_reset_interrupt_capability(adapter); |
| 7298 | err_flashmap: |
| 7299 | iounmap(adapter->hw.hw_addr); |
| 7300 | err_ioremap: |
| 7301 | free_netdev(netdev); |
| 7302 | err_alloc_etherdev: |
| 7303 | pci_release_selected_regions(pdev, |
| 7304 | pci_select_bars(pdev, IORESOURCE_MEM)); |
| 7305 | err_pci_reg: |
| 7306 | err_dma: |
| 7307 | pci_disable_device(pdev); |
| 7308 | return err; |
| 7309 | } |
| 7310 | |
| 7311 | /** |
| 7312 | * e1000_remove - Device Removal Routine |
| 7313 | * @pdev: PCI device information struct |
| 7314 | * |
| 7315 | * e1000_remove is called by the PCI subsystem to alert the driver |
| 7316 | * that it should release a PCI device. The could be caused by a |
| 7317 | * Hot-Plug event, or because the driver is going to be removed from |
| 7318 | * memory. |
| 7319 | **/ |
| 7320 | static void e1000_remove(struct pci_dev *pdev) |
| 7321 | { |
| 7322 | struct net_device *netdev = pci_get_drvdata(pdev); |
| 7323 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 7324 | bool down = test_bit(__E1000_DOWN, &adapter->state); |
| 7325 | |
| 7326 | e1000e_ptp_remove(adapter); |
| 7327 | |
| 7328 | /* The timers may be rescheduled, so explicitly disable them |
| 7329 | * from being rescheduled. |
| 7330 | */ |
| 7331 | if (!down) |
| 7332 | set_bit(__E1000_DOWN, &adapter->state); |
| 7333 | del_timer_sync(&adapter->watchdog_timer); |
| 7334 | del_timer_sync(&adapter->phy_info_timer); |
| 7335 | |
| 7336 | cancel_work_sync(&adapter->reset_task); |
| 7337 | cancel_work_sync(&adapter->watchdog_task); |
| 7338 | cancel_work_sync(&adapter->downshift_task); |
| 7339 | cancel_work_sync(&adapter->update_phy_task); |
| 7340 | cancel_work_sync(&adapter->print_hang_task); |
| 7341 | |
| 7342 | if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { |
| 7343 | cancel_work_sync(&adapter->tx_hwtstamp_work); |
| 7344 | if (adapter->tx_hwtstamp_skb) { |
| 7345 | dev_kfree_skb_any(adapter->tx_hwtstamp_skb); |
| 7346 | adapter->tx_hwtstamp_skb = NULL; |
| 7347 | } |
| 7348 | } |
| 7349 | |
| 7350 | /* Don't lie to e1000_close() down the road. */ |
| 7351 | if (!down) |
| 7352 | clear_bit(__E1000_DOWN, &adapter->state); |
| 7353 | unregister_netdev(netdev); |
| 7354 | |
| 7355 | if (pci_dev_run_wake(pdev)) |
| 7356 | pm_runtime_get_noresume(&pdev->dev); |
| 7357 | |
| 7358 | /* Release control of h/w to f/w. If f/w is AMT enabled, this |
| 7359 | * would have already happened in close and is redundant. |
| 7360 | */ |
| 7361 | e1000e_release_hw_control(adapter); |
| 7362 | |
| 7363 | e1000e_reset_interrupt_capability(adapter); |
| 7364 | kfree(adapter->tx_ring); |
| 7365 | kfree(adapter->rx_ring); |
| 7366 | |
| 7367 | iounmap(adapter->hw.hw_addr); |
| 7368 | if ((adapter->hw.flash_address) && |
| 7369 | (adapter->hw.mac.type < e1000_pch_spt)) |
| 7370 | iounmap(adapter->hw.flash_address); |
| 7371 | pci_release_selected_regions(pdev, |
| 7372 | pci_select_bars(pdev, IORESOURCE_MEM)); |
| 7373 | |
| 7374 | free_netdev(netdev); |
| 7375 | |
| 7376 | /* AER disable */ |
| 7377 | pci_disable_pcie_error_reporting(pdev); |
| 7378 | |
| 7379 | pci_disable_device(pdev); |
| 7380 | } |
| 7381 | |
| 7382 | /* PCI Error Recovery (ERS) */ |
| 7383 | static const struct pci_error_handlers e1000_err_handler = { |
| 7384 | .error_detected = e1000_io_error_detected, |
| 7385 | .slot_reset = e1000_io_slot_reset, |
| 7386 | .resume = e1000_io_resume, |
| 7387 | }; |
| 7388 | |
| 7389 | static const struct pci_device_id e1000_pci_tbl[] = { |
| 7390 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
| 7391 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
| 7392 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
| 7393 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), |
| 7394 | board_82571 }, |
| 7395 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
| 7396 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
| 7397 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
| 7398 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
| 7399 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
| 7400 | |
| 7401 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
| 7402 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
| 7403 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
| 7404 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
| 7405 | |
| 7406 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
| 7407 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
| 7408 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
| 7409 | |
| 7410 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
| 7411 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
| 7412 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
| 7413 | |
| 7414 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
| 7415 | board_80003es2lan }, |
| 7416 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
| 7417 | board_80003es2lan }, |
| 7418 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
| 7419 | board_80003es2lan }, |
| 7420 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
| 7421 | board_80003es2lan }, |
| 7422 | |
| 7423 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
| 7424 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
| 7425 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
| 7426 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
| 7427 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
| 7428 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
| 7429 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
| 7430 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
| 7431 | |
| 7432 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
| 7433 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
| 7434 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
| 7435 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
| 7436 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
| 7437 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
| 7438 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
| 7439 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
| 7440 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
| 7441 | |
| 7442 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
| 7443 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
| 7444 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
| 7445 | |
| 7446 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
| 7447 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
| 7448 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, |
| 7449 | |
| 7450 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
| 7451 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, |
| 7452 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, |
| 7453 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, |
| 7454 | |
| 7455 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, |
| 7456 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, |
| 7457 | |
| 7458 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, |
| 7459 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, |
| 7460 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, |
| 7461 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, |
| 7462 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, |
| 7463 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, |
| 7464 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, |
| 7465 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, |
| 7466 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, |
| 7467 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, |
| 7468 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, |
| 7469 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, |
| 7470 | |
| 7471 | { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ |
| 7472 | }; |
| 7473 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
| 7474 | |
| 7475 | static const struct dev_pm_ops e1000_pm_ops = { |
| 7476 | #ifdef CONFIG_PM_SLEEP |
| 7477 | .suspend = e1000e_pm_suspend, |
| 7478 | .resume = e1000e_pm_resume, |
| 7479 | .freeze = e1000e_pm_freeze, |
| 7480 | .thaw = e1000e_pm_thaw, |
| 7481 | .poweroff = e1000e_pm_suspend, |
| 7482 | .restore = e1000e_pm_resume, |
| 7483 | #endif |
| 7484 | SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, |
| 7485 | e1000e_pm_runtime_idle) |
| 7486 | }; |
| 7487 | |
| 7488 | /* PCI Device API Driver */ |
| 7489 | static struct pci_driver e1000_driver = { |
| 7490 | .name = e1000e_driver_name, |
| 7491 | .id_table = e1000_pci_tbl, |
| 7492 | .probe = e1000_probe, |
| 7493 | .remove = e1000_remove, |
| 7494 | .driver = { |
| 7495 | .pm = &e1000_pm_ops, |
| 7496 | }, |
| 7497 | .shutdown = e1000_shutdown, |
| 7498 | .err_handler = &e1000_err_handler |
| 7499 | }; |
| 7500 | |
| 7501 | /** |
| 7502 | * e1000_init_module - Driver Registration Routine |
| 7503 | * |
| 7504 | * e1000_init_module is the first routine called when the driver is |
| 7505 | * loaded. All it does is register with the PCI subsystem. |
| 7506 | **/ |
| 7507 | static int __init e1000_init_module(void) |
| 7508 | { |
| 7509 | int ret; |
| 7510 | |
| 7511 | pr_info("Intel(R) PRO/1000 Network Driver - %s\n", |
| 7512 | e1000e_driver_version); |
| 7513 | pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); |
| 7514 | ret = pci_register_driver(&e1000_driver); |
| 7515 | |
| 7516 | return ret; |
| 7517 | } |
| 7518 | module_init(e1000_init_module); |
| 7519 | |
| 7520 | /** |
| 7521 | * e1000_exit_module - Driver Exit Cleanup Routine |
| 7522 | * |
| 7523 | * e1000_exit_module is called just before the driver is removed |
| 7524 | * from memory. |
| 7525 | **/ |
| 7526 | static void __exit e1000_exit_module(void) |
| 7527 | { |
| 7528 | pci_unregister_driver(&e1000_driver); |
| 7529 | } |
| 7530 | module_exit(e1000_exit_module); |
| 7531 | |
| 7532 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| 7533 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
| 7534 | MODULE_LICENSE("GPL"); |
| 7535 | MODULE_VERSION(DRV_VERSION); |
| 7536 | |
| 7537 | /* netdev.c */ |