Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * This program is free software; you can redistribute it and/or |
| 3 | * modify it under the terms of the GNU General Public License |
| 4 | * as published by the Free Software Foundation; either version |
| 5 | * 2 of the License, or (at your option) any later version. |
| 6 | * |
| 7 | * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> |
| 8 | * (c) Copyright 2000, 2001 Red Hat Inc |
| 9 | * |
| 10 | * Development of this driver was funded by Equiinet Ltd |
| 11 | * http://www.equiinet.com |
| 12 | * |
| 13 | * ChangeLog: |
| 14 | * |
| 15 | * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the |
| 16 | * unification of all the Z85x30 asynchronous drivers for real. |
| 17 | * |
| 18 | * DMA now uses get_free_page as kmalloc buffers may span a 64K |
| 19 | * boundary. |
| 20 | * |
| 21 | * Modified for SMP safety and SMP locking by Alan Cox |
| 22 | * <alan@lxorguk.ukuu.org.uk> |
| 23 | * |
| 24 | * Performance |
| 25 | * |
| 26 | * Z85230: |
| 27 | * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud |
| 28 | * X.25 is not unrealistic on all machines. DMA mode can in theory |
| 29 | * handle T1/E1 quite nicely. In practice the limit seems to be about |
| 30 | * 512Kbit->1Mbit depending on motherboard. |
| 31 | * |
| 32 | * Z85C30: |
| 33 | * 64K will take DMA, 9600 baud X.25 should be ok. |
| 34 | * |
| 35 | * Z8530: |
| 36 | * Synchronous mode without DMA is unlikely to pass about 2400 baud. |
| 37 | */ |
| 38 | |
| 39 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 40 | |
| 41 | #include <linux/module.h> |
| 42 | #include <linux/kernel.h> |
| 43 | #include <linux/mm.h> |
| 44 | #include <linux/net.h> |
| 45 | #include <linux/skbuff.h> |
| 46 | #include <linux/netdevice.h> |
| 47 | #include <linux/if_arp.h> |
| 48 | #include <linux/delay.h> |
| 49 | #include <linux/hdlc.h> |
| 50 | #include <linux/ioport.h> |
| 51 | #include <linux/init.h> |
| 52 | #include <linux/gfp.h> |
| 53 | #include <asm/dma.h> |
| 54 | #include <asm/io.h> |
| 55 | #define RT_LOCK |
| 56 | #define RT_UNLOCK |
| 57 | #include <linux/spinlock.h> |
| 58 | |
| 59 | #include "z85230.h" |
| 60 | |
| 61 | |
| 62 | /** |
| 63 | * z8530_read_port - Architecture specific interface function |
| 64 | * @p: port to read |
| 65 | * |
| 66 | * Provided port access methods. The Comtrol SV11 requires no delays |
| 67 | * between accesses and uses PC I/O. Some drivers may need a 5uS delay |
| 68 | * |
| 69 | * In the longer term this should become an architecture specific |
| 70 | * section so that this can become a generic driver interface for all |
| 71 | * platforms. For now we only handle PC I/O ports with or without the |
| 72 | * dread 5uS sanity delay. |
| 73 | * |
| 74 | * The caller must hold sufficient locks to avoid violating the horrible |
| 75 | * 5uS delay rule. |
| 76 | */ |
| 77 | |
| 78 | static inline int z8530_read_port(unsigned long p) |
| 79 | { |
| 80 | u8 r=inb(Z8530_PORT_OF(p)); |
| 81 | if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */ |
| 82 | udelay(5); |
| 83 | return r; |
| 84 | } |
| 85 | |
| 86 | /** |
| 87 | * z8530_write_port - Architecture specific interface function |
| 88 | * @p: port to write |
| 89 | * @d: value to write |
| 90 | * |
| 91 | * Write a value to a port with delays if need be. Note that the |
| 92 | * caller must hold locks to avoid read/writes from other contexts |
| 93 | * violating the 5uS rule |
| 94 | * |
| 95 | * In the longer term this should become an architecture specific |
| 96 | * section so that this can become a generic driver interface for all |
| 97 | * platforms. For now we only handle PC I/O ports with or without the |
| 98 | * dread 5uS sanity delay. |
| 99 | */ |
| 100 | |
| 101 | |
| 102 | static inline void z8530_write_port(unsigned long p, u8 d) |
| 103 | { |
| 104 | outb(d,Z8530_PORT_OF(p)); |
| 105 | if(p&Z8530_PORT_SLEEP) |
| 106 | udelay(5); |
| 107 | } |
| 108 | |
| 109 | |
| 110 | |
| 111 | static void z8530_rx_done(struct z8530_channel *c); |
| 112 | static void z8530_tx_done(struct z8530_channel *c); |
| 113 | |
| 114 | |
| 115 | /** |
| 116 | * read_zsreg - Read a register from a Z85230 |
| 117 | * @c: Z8530 channel to read from (2 per chip) |
| 118 | * @reg: Register to read |
| 119 | * FIXME: Use a spinlock. |
| 120 | * |
| 121 | * Most of the Z8530 registers are indexed off the control registers. |
| 122 | * A read is done by writing to the control register and reading the |
| 123 | * register back. The caller must hold the lock |
| 124 | */ |
| 125 | |
| 126 | static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) |
| 127 | { |
| 128 | if(reg) |
| 129 | z8530_write_port(c->ctrlio, reg); |
| 130 | return z8530_read_port(c->ctrlio); |
| 131 | } |
| 132 | |
| 133 | /** |
| 134 | * read_zsdata - Read the data port of a Z8530 channel |
| 135 | * @c: The Z8530 channel to read the data port from |
| 136 | * |
| 137 | * The data port provides fast access to some things. We still |
| 138 | * have all the 5uS delays to worry about. |
| 139 | */ |
| 140 | |
| 141 | static inline u8 read_zsdata(struct z8530_channel *c) |
| 142 | { |
| 143 | u8 r; |
| 144 | r=z8530_read_port(c->dataio); |
| 145 | return r; |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | * write_zsreg - Write to a Z8530 channel register |
| 150 | * @c: The Z8530 channel |
| 151 | * @reg: Register number |
| 152 | * @val: Value to write |
| 153 | * |
| 154 | * Write a value to an indexed register. The caller must hold the lock |
| 155 | * to honour the irritating delay rules. We know about register 0 |
| 156 | * being fast to access. |
| 157 | * |
| 158 | * Assumes c->lock is held. |
| 159 | */ |
| 160 | static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) |
| 161 | { |
| 162 | if(reg) |
| 163 | z8530_write_port(c->ctrlio, reg); |
| 164 | z8530_write_port(c->ctrlio, val); |
| 165 | |
| 166 | } |
| 167 | |
| 168 | /** |
| 169 | * write_zsctrl - Write to a Z8530 control register |
| 170 | * @c: The Z8530 channel |
| 171 | * @val: Value to write |
| 172 | * |
| 173 | * Write directly to the control register on the Z8530 |
| 174 | */ |
| 175 | |
| 176 | static inline void write_zsctrl(struct z8530_channel *c, u8 val) |
| 177 | { |
| 178 | z8530_write_port(c->ctrlio, val); |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * write_zsdata - Write to a Z8530 control register |
| 183 | * @c: The Z8530 channel |
| 184 | * @val: Value to write |
| 185 | * |
| 186 | * Write directly to the data register on the Z8530 |
| 187 | */ |
| 188 | |
| 189 | |
| 190 | static inline void write_zsdata(struct z8530_channel *c, u8 val) |
| 191 | { |
| 192 | z8530_write_port(c->dataio, val); |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * Register loading parameters for a dead port |
| 197 | */ |
| 198 | |
| 199 | u8 z8530_dead_port[]= |
| 200 | { |
| 201 | 255 |
| 202 | }; |
| 203 | |
| 204 | EXPORT_SYMBOL(z8530_dead_port); |
| 205 | |
| 206 | /* |
| 207 | * Register loading parameters for currently supported circuit types |
| 208 | */ |
| 209 | |
| 210 | |
| 211 | /* |
| 212 | * Data clocked by telco end. This is the correct data for the UK |
| 213 | * "kilostream" service, and most other similar services. |
| 214 | */ |
| 215 | |
| 216 | u8 z8530_hdlc_kilostream[]= |
| 217 | { |
| 218 | 4, SYNC_ENAB|SDLC|X1CLK, |
| 219 | 2, 0, /* No vector */ |
| 220 | 1, 0, |
| 221 | 3, ENT_HM|RxCRC_ENAB|Rx8, |
| 222 | 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, |
| 223 | 9, 0, /* Disable interrupts */ |
| 224 | 6, 0xFF, |
| 225 | 7, FLAG, |
| 226 | 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ |
| 227 | 11, TCTRxCP, |
| 228 | 14, DISDPLL, |
| 229 | 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, |
| 230 | 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, |
| 231 | 9, NV|MIE|NORESET, |
| 232 | 255 |
| 233 | }; |
| 234 | |
| 235 | EXPORT_SYMBOL(z8530_hdlc_kilostream); |
| 236 | |
| 237 | /* |
| 238 | * As above but for enhanced chips. |
| 239 | */ |
| 240 | |
| 241 | u8 z8530_hdlc_kilostream_85230[]= |
| 242 | { |
| 243 | 4, SYNC_ENAB|SDLC|X1CLK, |
| 244 | 2, 0, /* No vector */ |
| 245 | 1, 0, |
| 246 | 3, ENT_HM|RxCRC_ENAB|Rx8, |
| 247 | 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, |
| 248 | 9, 0, /* Disable interrupts */ |
| 249 | 6, 0xFF, |
| 250 | 7, FLAG, |
| 251 | 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */ |
| 252 | 11, TCTRxCP, |
| 253 | 14, DISDPLL, |
| 254 | 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, |
| 255 | 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, |
| 256 | 9, NV|MIE|NORESET, |
| 257 | 23, 3, /* Extended mode AUTO TX and EOM*/ |
| 258 | |
| 259 | 255 |
| 260 | }; |
| 261 | |
| 262 | EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); |
| 263 | |
| 264 | /** |
| 265 | * z8530_flush_fifo - Flush on chip RX FIFO |
| 266 | * @c: Channel to flush |
| 267 | * |
| 268 | * Flush the receive FIFO. There is no specific option for this, we |
| 269 | * blindly read bytes and discard them. Reading when there is no data |
| 270 | * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. |
| 271 | * |
| 272 | * All locking is handled for the caller. On return data may still be |
| 273 | * present if it arrived during the flush. |
| 274 | */ |
| 275 | |
| 276 | static void z8530_flush_fifo(struct z8530_channel *c) |
| 277 | { |
| 278 | read_zsreg(c, R1); |
| 279 | read_zsreg(c, R1); |
| 280 | read_zsreg(c, R1); |
| 281 | read_zsreg(c, R1); |
| 282 | if(c->dev->type==Z85230) |
| 283 | { |
| 284 | read_zsreg(c, R1); |
| 285 | read_zsreg(c, R1); |
| 286 | read_zsreg(c, R1); |
| 287 | read_zsreg(c, R1); |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * z8530_rtsdtr - Control the outgoing DTS/RTS line |
| 293 | * @c: The Z8530 channel to control; |
| 294 | * @set: 1 to set, 0 to clear |
| 295 | * |
| 296 | * Sets or clears DTR/RTS on the requested line. All locking is handled |
| 297 | * by the caller. For now we assume all boards use the actual RTS/DTR |
| 298 | * on the chip. Apparently one or two don't. We'll scream about them |
| 299 | * later. |
| 300 | */ |
| 301 | |
| 302 | static void z8530_rtsdtr(struct z8530_channel *c, int set) |
| 303 | { |
| 304 | if (set) |
| 305 | c->regs[5] |= (RTS | DTR); |
| 306 | else |
| 307 | c->regs[5] &= ~(RTS | DTR); |
| 308 | write_zsreg(c, R5, c->regs[5]); |
| 309 | } |
| 310 | |
| 311 | /** |
| 312 | * z8530_rx - Handle a PIO receive event |
| 313 | * @c: Z8530 channel to process |
| 314 | * |
| 315 | * Receive handler for receiving in PIO mode. This is much like the |
| 316 | * async one but not quite the same or as complex |
| 317 | * |
| 318 | * Note: Its intended that this handler can easily be separated from |
| 319 | * the main code to run realtime. That'll be needed for some machines |
| 320 | * (eg to ever clock 64kbits on a sparc ;)). |
| 321 | * |
| 322 | * The RT_LOCK macros don't do anything now. Keep the code covered |
| 323 | * by them as short as possible in all circumstances - clocks cost |
| 324 | * baud. The interrupt handler is assumed to be atomic w.r.t. to |
| 325 | * other code - this is true in the RT case too. |
| 326 | * |
| 327 | * We only cover the sync cases for this. If you want 2Mbit async |
| 328 | * do it yourself but consider medical assistance first. This non DMA |
| 329 | * synchronous mode is portable code. The DMA mode assumes PCI like |
| 330 | * ISA DMA |
| 331 | * |
| 332 | * Called with the device lock held |
| 333 | */ |
| 334 | |
| 335 | static void z8530_rx(struct z8530_channel *c) |
| 336 | { |
| 337 | u8 ch,stat; |
| 338 | |
| 339 | while(1) |
| 340 | { |
| 341 | /* FIFO empty ? */ |
| 342 | if(!(read_zsreg(c, R0)&1)) |
| 343 | break; |
| 344 | ch=read_zsdata(c); |
| 345 | stat=read_zsreg(c, R1); |
| 346 | |
| 347 | /* |
| 348 | * Overrun ? |
| 349 | */ |
| 350 | if(c->count < c->max) |
| 351 | { |
| 352 | *c->dptr++=ch; |
| 353 | c->count++; |
| 354 | } |
| 355 | |
| 356 | if(stat&END_FR) |
| 357 | { |
| 358 | |
| 359 | /* |
| 360 | * Error ? |
| 361 | */ |
| 362 | if(stat&(Rx_OVR|CRC_ERR)) |
| 363 | { |
| 364 | /* Rewind the buffer and return */ |
| 365 | if(c->skb) |
| 366 | c->dptr=c->skb->data; |
| 367 | c->count=0; |
| 368 | if(stat&Rx_OVR) |
| 369 | { |
| 370 | pr_warn("%s: overrun\n", c->dev->name); |
| 371 | c->rx_overrun++; |
| 372 | } |
| 373 | if(stat&CRC_ERR) |
| 374 | { |
| 375 | c->rx_crc_err++; |
| 376 | /* printk("crc error\n"); */ |
| 377 | } |
| 378 | /* Shove the frame upstream */ |
| 379 | } |
| 380 | else |
| 381 | { |
| 382 | /* |
| 383 | * Drop the lock for RX processing, or |
| 384 | * there are deadlocks |
| 385 | */ |
| 386 | z8530_rx_done(c); |
| 387 | write_zsctrl(c, RES_Rx_CRC); |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | /* |
| 392 | * Clear irq |
| 393 | */ |
| 394 | write_zsctrl(c, ERR_RES); |
| 395 | write_zsctrl(c, RES_H_IUS); |
| 396 | } |
| 397 | |
| 398 | |
| 399 | /** |
| 400 | * z8530_tx - Handle a PIO transmit event |
| 401 | * @c: Z8530 channel to process |
| 402 | * |
| 403 | * Z8530 transmit interrupt handler for the PIO mode. The basic |
| 404 | * idea is to attempt to keep the FIFO fed. We fill as many bytes |
| 405 | * in as possible, its quite possible that we won't keep up with the |
| 406 | * data rate otherwise. |
| 407 | */ |
| 408 | |
| 409 | static void z8530_tx(struct z8530_channel *c) |
| 410 | { |
| 411 | while(c->txcount) { |
| 412 | /* FIFO full ? */ |
| 413 | if(!(read_zsreg(c, R0)&4)) |
| 414 | return; |
| 415 | c->txcount--; |
| 416 | /* |
| 417 | * Shovel out the byte |
| 418 | */ |
| 419 | write_zsreg(c, R8, *c->tx_ptr++); |
| 420 | write_zsctrl(c, RES_H_IUS); |
| 421 | /* We are about to underflow */ |
| 422 | if(c->txcount==0) |
| 423 | { |
| 424 | write_zsctrl(c, RES_EOM_L); |
| 425 | write_zsreg(c, R10, c->regs[10]&~ABUNDER); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | |
| 430 | /* |
| 431 | * End of frame TX - fire another one |
| 432 | */ |
| 433 | |
| 434 | write_zsctrl(c, RES_Tx_P); |
| 435 | |
| 436 | z8530_tx_done(c); |
| 437 | write_zsctrl(c, RES_H_IUS); |
| 438 | } |
| 439 | |
| 440 | /** |
| 441 | * z8530_status - Handle a PIO status exception |
| 442 | * @chan: Z8530 channel to process |
| 443 | * |
| 444 | * A status event occurred in PIO synchronous mode. There are several |
| 445 | * reasons the chip will bother us here. A transmit underrun means we |
| 446 | * failed to feed the chip fast enough and just broke a packet. A DCD |
| 447 | * change is a line up or down. |
| 448 | */ |
| 449 | |
| 450 | static void z8530_status(struct z8530_channel *chan) |
| 451 | { |
| 452 | u8 status, altered; |
| 453 | |
| 454 | status = read_zsreg(chan, R0); |
| 455 | altered = chan->status ^ status; |
| 456 | |
| 457 | chan->status = status; |
| 458 | |
| 459 | if (status & TxEOM) { |
| 460 | /* printk("%s: Tx underrun.\n", chan->dev->name); */ |
| 461 | chan->netdevice->stats.tx_fifo_errors++; |
| 462 | write_zsctrl(chan, ERR_RES); |
| 463 | z8530_tx_done(chan); |
| 464 | } |
| 465 | |
| 466 | if (altered & chan->dcdcheck) |
| 467 | { |
| 468 | if (status & chan->dcdcheck) { |
| 469 | pr_info("%s: DCD raised\n", chan->dev->name); |
| 470 | write_zsreg(chan, R3, chan->regs[3] | RxENABLE); |
| 471 | if (chan->netdevice) |
| 472 | netif_carrier_on(chan->netdevice); |
| 473 | } else { |
| 474 | pr_info("%s: DCD lost\n", chan->dev->name); |
| 475 | write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); |
| 476 | z8530_flush_fifo(chan); |
| 477 | if (chan->netdevice) |
| 478 | netif_carrier_off(chan->netdevice); |
| 479 | } |
| 480 | |
| 481 | } |
| 482 | write_zsctrl(chan, RES_EXT_INT); |
| 483 | write_zsctrl(chan, RES_H_IUS); |
| 484 | } |
| 485 | |
| 486 | struct z8530_irqhandler z8530_sync = |
| 487 | { |
| 488 | z8530_rx, |
| 489 | z8530_tx, |
| 490 | z8530_status |
| 491 | }; |
| 492 | |
| 493 | EXPORT_SYMBOL(z8530_sync); |
| 494 | |
| 495 | /** |
| 496 | * z8530_dma_rx - Handle a DMA RX event |
| 497 | * @chan: Channel to handle |
| 498 | * |
| 499 | * Non bus mastering DMA interfaces for the Z8x30 devices. This |
| 500 | * is really pretty PC specific. The DMA mode means that most receive |
| 501 | * events are handled by the DMA hardware. We get a kick here only if |
| 502 | * a frame ended. |
| 503 | */ |
| 504 | |
| 505 | static void z8530_dma_rx(struct z8530_channel *chan) |
| 506 | { |
| 507 | if(chan->rxdma_on) |
| 508 | { |
| 509 | /* Special condition check only */ |
| 510 | u8 status; |
| 511 | |
| 512 | read_zsreg(chan, R7); |
| 513 | read_zsreg(chan, R6); |
| 514 | |
| 515 | status=read_zsreg(chan, R1); |
| 516 | |
| 517 | if(status&END_FR) |
| 518 | { |
| 519 | z8530_rx_done(chan); /* Fire up the next one */ |
| 520 | } |
| 521 | write_zsctrl(chan, ERR_RES); |
| 522 | write_zsctrl(chan, RES_H_IUS); |
| 523 | } |
| 524 | else |
| 525 | { |
| 526 | /* DMA is off right now, drain the slow way */ |
| 527 | z8530_rx(chan); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | /** |
| 532 | * z8530_dma_tx - Handle a DMA TX event |
| 533 | * @chan: The Z8530 channel to handle |
| 534 | * |
| 535 | * We have received an interrupt while doing DMA transmissions. It |
| 536 | * shouldn't happen. Scream loudly if it does. |
| 537 | */ |
| 538 | |
| 539 | static void z8530_dma_tx(struct z8530_channel *chan) |
| 540 | { |
| 541 | if(!chan->dma_tx) |
| 542 | { |
| 543 | pr_warn("Hey who turned the DMA off?\n"); |
| 544 | z8530_tx(chan); |
| 545 | return; |
| 546 | } |
| 547 | /* This shouldn't occur in DMA mode */ |
| 548 | pr_err("DMA tx - bogus event!\n"); |
| 549 | z8530_tx(chan); |
| 550 | } |
| 551 | |
| 552 | /** |
| 553 | * z8530_dma_status - Handle a DMA status exception |
| 554 | * @chan: Z8530 channel to process |
| 555 | * |
| 556 | * A status event occurred on the Z8530. We receive these for two reasons |
| 557 | * when in DMA mode. Firstly if we finished a packet transfer we get one |
| 558 | * and kick the next packet out. Secondly we may see a DCD change. |
| 559 | * |
| 560 | */ |
| 561 | |
| 562 | static void z8530_dma_status(struct z8530_channel *chan) |
| 563 | { |
| 564 | u8 status, altered; |
| 565 | |
| 566 | status=read_zsreg(chan, R0); |
| 567 | altered=chan->status^status; |
| 568 | |
| 569 | chan->status=status; |
| 570 | |
| 571 | |
| 572 | if(chan->dma_tx) |
| 573 | { |
| 574 | if(status&TxEOM) |
| 575 | { |
| 576 | unsigned long flags; |
| 577 | |
| 578 | flags=claim_dma_lock(); |
| 579 | disable_dma(chan->txdma); |
| 580 | clear_dma_ff(chan->txdma); |
| 581 | chan->txdma_on=0; |
| 582 | release_dma_lock(flags); |
| 583 | z8530_tx_done(chan); |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | if (altered & chan->dcdcheck) |
| 588 | { |
| 589 | if (status & chan->dcdcheck) { |
| 590 | pr_info("%s: DCD raised\n", chan->dev->name); |
| 591 | write_zsreg(chan, R3, chan->regs[3] | RxENABLE); |
| 592 | if (chan->netdevice) |
| 593 | netif_carrier_on(chan->netdevice); |
| 594 | } else { |
| 595 | pr_info("%s: DCD lost\n", chan->dev->name); |
| 596 | write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); |
| 597 | z8530_flush_fifo(chan); |
| 598 | if (chan->netdevice) |
| 599 | netif_carrier_off(chan->netdevice); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | write_zsctrl(chan, RES_EXT_INT); |
| 604 | write_zsctrl(chan, RES_H_IUS); |
| 605 | } |
| 606 | |
| 607 | static struct z8530_irqhandler z8530_dma_sync = { |
| 608 | z8530_dma_rx, |
| 609 | z8530_dma_tx, |
| 610 | z8530_dma_status |
| 611 | }; |
| 612 | |
| 613 | static struct z8530_irqhandler z8530_txdma_sync = { |
| 614 | z8530_rx, |
| 615 | z8530_dma_tx, |
| 616 | z8530_dma_status |
| 617 | }; |
| 618 | |
| 619 | /** |
| 620 | * z8530_rx_clear - Handle RX events from a stopped chip |
| 621 | * @c: Z8530 channel to shut up |
| 622 | * |
| 623 | * Receive interrupt vectors for a Z8530 that is in 'parked' mode. |
| 624 | * For machines with PCI Z85x30 cards, or level triggered interrupts |
| 625 | * (eg the MacII) we must clear the interrupt cause or die. |
| 626 | */ |
| 627 | |
| 628 | |
| 629 | static void z8530_rx_clear(struct z8530_channel *c) |
| 630 | { |
| 631 | /* |
| 632 | * Data and status bytes |
| 633 | */ |
| 634 | u8 stat; |
| 635 | |
| 636 | read_zsdata(c); |
| 637 | stat=read_zsreg(c, R1); |
| 638 | |
| 639 | if(stat&END_FR) |
| 640 | write_zsctrl(c, RES_Rx_CRC); |
| 641 | /* |
| 642 | * Clear irq |
| 643 | */ |
| 644 | write_zsctrl(c, ERR_RES); |
| 645 | write_zsctrl(c, RES_H_IUS); |
| 646 | } |
| 647 | |
| 648 | /** |
| 649 | * z8530_tx_clear - Handle TX events from a stopped chip |
| 650 | * @c: Z8530 channel to shut up |
| 651 | * |
| 652 | * Transmit interrupt vectors for a Z8530 that is in 'parked' mode. |
| 653 | * For machines with PCI Z85x30 cards, or level triggered interrupts |
| 654 | * (eg the MacII) we must clear the interrupt cause or die. |
| 655 | */ |
| 656 | |
| 657 | static void z8530_tx_clear(struct z8530_channel *c) |
| 658 | { |
| 659 | write_zsctrl(c, RES_Tx_P); |
| 660 | write_zsctrl(c, RES_H_IUS); |
| 661 | } |
| 662 | |
| 663 | /** |
| 664 | * z8530_status_clear - Handle status events from a stopped chip |
| 665 | * @chan: Z8530 channel to shut up |
| 666 | * |
| 667 | * Status interrupt vectors for a Z8530 that is in 'parked' mode. |
| 668 | * For machines with PCI Z85x30 cards, or level triggered interrupts |
| 669 | * (eg the MacII) we must clear the interrupt cause or die. |
| 670 | */ |
| 671 | |
| 672 | static void z8530_status_clear(struct z8530_channel *chan) |
| 673 | { |
| 674 | u8 status=read_zsreg(chan, R0); |
| 675 | if(status&TxEOM) |
| 676 | write_zsctrl(chan, ERR_RES); |
| 677 | write_zsctrl(chan, RES_EXT_INT); |
| 678 | write_zsctrl(chan, RES_H_IUS); |
| 679 | } |
| 680 | |
| 681 | struct z8530_irqhandler z8530_nop= |
| 682 | { |
| 683 | z8530_rx_clear, |
| 684 | z8530_tx_clear, |
| 685 | z8530_status_clear |
| 686 | }; |
| 687 | |
| 688 | |
| 689 | EXPORT_SYMBOL(z8530_nop); |
| 690 | |
| 691 | /** |
| 692 | * z8530_interrupt - Handle an interrupt from a Z8530 |
| 693 | * @irq: Interrupt number |
| 694 | * @dev_id: The Z8530 device that is interrupting. |
| 695 | * |
| 696 | * A Z85[2]30 device has stuck its hand in the air for attention. |
| 697 | * We scan both the channels on the chip for events and then call |
| 698 | * the channel specific call backs for each channel that has events. |
| 699 | * We have to use callback functions because the two channels can be |
| 700 | * in different modes. |
| 701 | * |
| 702 | * Locking is done for the handlers. Note that locking is done |
| 703 | * at the chip level (the 5uS delay issue is per chip not per |
| 704 | * channel). c->lock for both channels points to dev->lock |
| 705 | */ |
| 706 | |
| 707 | irqreturn_t z8530_interrupt(int irq, void *dev_id) |
| 708 | { |
| 709 | struct z8530_dev *dev=dev_id; |
| 710 | u8 uninitialized_var(intr); |
| 711 | static volatile int locker=0; |
| 712 | int work=0; |
| 713 | struct z8530_irqhandler *irqs; |
| 714 | |
| 715 | if(locker) |
| 716 | { |
| 717 | pr_err("IRQ re-enter\n"); |
| 718 | return IRQ_NONE; |
| 719 | } |
| 720 | locker=1; |
| 721 | |
| 722 | spin_lock(&dev->lock); |
| 723 | |
| 724 | while(++work<5000) |
| 725 | { |
| 726 | |
| 727 | intr = read_zsreg(&dev->chanA, R3); |
| 728 | if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) |
| 729 | break; |
| 730 | |
| 731 | /* This holds the IRQ status. On the 8530 you must read it from chan |
| 732 | A even though it applies to the whole chip */ |
| 733 | |
| 734 | /* Now walk the chip and see what it is wanting - it may be |
| 735 | an IRQ for someone else remember */ |
| 736 | |
| 737 | irqs=dev->chanA.irqs; |
| 738 | |
| 739 | if(intr & (CHARxIP|CHATxIP|CHAEXT)) |
| 740 | { |
| 741 | if(intr&CHARxIP) |
| 742 | irqs->rx(&dev->chanA); |
| 743 | if(intr&CHATxIP) |
| 744 | irqs->tx(&dev->chanA); |
| 745 | if(intr&CHAEXT) |
| 746 | irqs->status(&dev->chanA); |
| 747 | } |
| 748 | |
| 749 | irqs=dev->chanB.irqs; |
| 750 | |
| 751 | if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) |
| 752 | { |
| 753 | if(intr&CHBRxIP) |
| 754 | irqs->rx(&dev->chanB); |
| 755 | if(intr&CHBTxIP) |
| 756 | irqs->tx(&dev->chanB); |
| 757 | if(intr&CHBEXT) |
| 758 | irqs->status(&dev->chanB); |
| 759 | } |
| 760 | } |
| 761 | spin_unlock(&dev->lock); |
| 762 | if(work==5000) |
| 763 | pr_err("%s: interrupt jammed - abort(0x%X)!\n", |
| 764 | dev->name, intr); |
| 765 | /* Ok all done */ |
| 766 | locker=0; |
| 767 | return IRQ_HANDLED; |
| 768 | } |
| 769 | |
| 770 | EXPORT_SYMBOL(z8530_interrupt); |
| 771 | |
| 772 | static const u8 reg_init[16]= |
| 773 | { |
| 774 | 0,0,0,0, |
| 775 | 0,0,0,0, |
| 776 | 0,0,0,0, |
| 777 | 0x55,0,0,0 |
| 778 | }; |
| 779 | |
| 780 | |
| 781 | /** |
| 782 | * z8530_sync_open - Open a Z8530 channel for PIO |
| 783 | * @dev: The network interface we are using |
| 784 | * @c: The Z8530 channel to open in synchronous PIO mode |
| 785 | * |
| 786 | * Switch a Z8530 into synchronous mode without DMA assist. We |
| 787 | * raise the RTS/DTR and commence network operation. |
| 788 | */ |
| 789 | |
| 790 | int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) |
| 791 | { |
| 792 | unsigned long flags; |
| 793 | |
| 794 | spin_lock_irqsave(c->lock, flags); |
| 795 | |
| 796 | c->sync = 1; |
| 797 | c->mtu = dev->mtu+64; |
| 798 | c->count = 0; |
| 799 | c->skb = NULL; |
| 800 | c->skb2 = NULL; |
| 801 | c->irqs = &z8530_sync; |
| 802 | |
| 803 | /* This loads the double buffer up */ |
| 804 | z8530_rx_done(c); /* Load the frame ring */ |
| 805 | z8530_rx_done(c); /* Load the backup frame */ |
| 806 | z8530_rtsdtr(c,1); |
| 807 | c->dma_tx = 0; |
| 808 | c->regs[R1]|=TxINT_ENAB; |
| 809 | write_zsreg(c, R1, c->regs[R1]); |
| 810 | write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| 811 | |
| 812 | spin_unlock_irqrestore(c->lock, flags); |
| 813 | return 0; |
| 814 | } |
| 815 | |
| 816 | |
| 817 | EXPORT_SYMBOL(z8530_sync_open); |
| 818 | |
| 819 | /** |
| 820 | * z8530_sync_close - Close a PIO Z8530 channel |
| 821 | * @dev: Network device to close |
| 822 | * @c: Z8530 channel to disassociate and move to idle |
| 823 | * |
| 824 | * Close down a Z8530 interface and switch its interrupt handlers |
| 825 | * to discard future events. |
| 826 | */ |
| 827 | |
| 828 | int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) |
| 829 | { |
| 830 | u8 chk; |
| 831 | unsigned long flags; |
| 832 | |
| 833 | spin_lock_irqsave(c->lock, flags); |
| 834 | c->irqs = &z8530_nop; |
| 835 | c->max = 0; |
| 836 | c->sync = 0; |
| 837 | |
| 838 | chk=read_zsreg(c,R0); |
| 839 | write_zsreg(c, R3, c->regs[R3]); |
| 840 | z8530_rtsdtr(c,0); |
| 841 | |
| 842 | spin_unlock_irqrestore(c->lock, flags); |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | EXPORT_SYMBOL(z8530_sync_close); |
| 847 | |
| 848 | /** |
| 849 | * z8530_sync_dma_open - Open a Z8530 for DMA I/O |
| 850 | * @dev: The network device to attach |
| 851 | * @c: The Z8530 channel to configure in sync DMA mode. |
| 852 | * |
| 853 | * Set up a Z85x30 device for synchronous DMA in both directions. Two |
| 854 | * ISA DMA channels must be available for this to work. We assume ISA |
| 855 | * DMA driven I/O and PC limits on access. |
| 856 | */ |
| 857 | |
| 858 | int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) |
| 859 | { |
| 860 | unsigned long cflags, dflags; |
| 861 | |
| 862 | c->sync = 1; |
| 863 | c->mtu = dev->mtu+64; |
| 864 | c->count = 0; |
| 865 | c->skb = NULL; |
| 866 | c->skb2 = NULL; |
| 867 | /* |
| 868 | * Load the DMA interfaces up |
| 869 | */ |
| 870 | c->rxdma_on = 0; |
| 871 | c->txdma_on = 0; |
| 872 | |
| 873 | /* |
| 874 | * Allocate the DMA flip buffers. Limit by page size. |
| 875 | * Everyone runs 1500 mtu or less on wan links so this |
| 876 | * should be fine. |
| 877 | */ |
| 878 | |
| 879 | if(c->mtu > PAGE_SIZE/2) |
| 880 | return -EMSGSIZE; |
| 881 | |
| 882 | c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| 883 | if(c->rx_buf[0]==NULL) |
| 884 | return -ENOBUFS; |
| 885 | c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; |
| 886 | |
| 887 | c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| 888 | if(c->tx_dma_buf[0]==NULL) |
| 889 | { |
| 890 | free_page((unsigned long)c->rx_buf[0]); |
| 891 | c->rx_buf[0]=NULL; |
| 892 | return -ENOBUFS; |
| 893 | } |
| 894 | c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; |
| 895 | |
| 896 | c->tx_dma_used=0; |
| 897 | c->dma_tx = 1; |
| 898 | c->dma_num=0; |
| 899 | c->dma_ready=1; |
| 900 | |
| 901 | /* |
| 902 | * Enable DMA control mode |
| 903 | */ |
| 904 | |
| 905 | spin_lock_irqsave(c->lock, cflags); |
| 906 | |
| 907 | /* |
| 908 | * TX DMA via DIR/REQ |
| 909 | */ |
| 910 | |
| 911 | c->regs[R14]|= DTRREQ; |
| 912 | write_zsreg(c, R14, c->regs[R14]); |
| 913 | |
| 914 | c->regs[R1]&= ~TxINT_ENAB; |
| 915 | write_zsreg(c, R1, c->regs[R1]); |
| 916 | |
| 917 | /* |
| 918 | * RX DMA via W/Req |
| 919 | */ |
| 920 | |
| 921 | c->regs[R1]|= WT_FN_RDYFN; |
| 922 | c->regs[R1]|= WT_RDY_RT; |
| 923 | c->regs[R1]|= INT_ERR_Rx; |
| 924 | c->regs[R1]&= ~TxINT_ENAB; |
| 925 | write_zsreg(c, R1, c->regs[R1]); |
| 926 | c->regs[R1]|= WT_RDY_ENAB; |
| 927 | write_zsreg(c, R1, c->regs[R1]); |
| 928 | |
| 929 | /* |
| 930 | * DMA interrupts |
| 931 | */ |
| 932 | |
| 933 | /* |
| 934 | * Set up the DMA configuration |
| 935 | */ |
| 936 | |
| 937 | dflags=claim_dma_lock(); |
| 938 | |
| 939 | disable_dma(c->rxdma); |
| 940 | clear_dma_ff(c->rxdma); |
| 941 | set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); |
| 942 | set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); |
| 943 | set_dma_count(c->rxdma, c->mtu); |
| 944 | enable_dma(c->rxdma); |
| 945 | |
| 946 | disable_dma(c->txdma); |
| 947 | clear_dma_ff(c->txdma); |
| 948 | set_dma_mode(c->txdma, DMA_MODE_WRITE); |
| 949 | disable_dma(c->txdma); |
| 950 | |
| 951 | release_dma_lock(dflags); |
| 952 | |
| 953 | /* |
| 954 | * Select the DMA interrupt handlers |
| 955 | */ |
| 956 | |
| 957 | c->rxdma_on = 1; |
| 958 | c->txdma_on = 1; |
| 959 | c->tx_dma_used = 1; |
| 960 | |
| 961 | c->irqs = &z8530_dma_sync; |
| 962 | z8530_rtsdtr(c,1); |
| 963 | write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| 964 | |
| 965 | spin_unlock_irqrestore(c->lock, cflags); |
| 966 | |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | EXPORT_SYMBOL(z8530_sync_dma_open); |
| 971 | |
| 972 | /** |
| 973 | * z8530_sync_dma_close - Close down DMA I/O |
| 974 | * @dev: Network device to detach |
| 975 | * @c: Z8530 channel to move into discard mode |
| 976 | * |
| 977 | * Shut down a DMA mode synchronous interface. Halt the DMA, and |
| 978 | * free the buffers. |
| 979 | */ |
| 980 | |
| 981 | int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) |
| 982 | { |
| 983 | u8 chk; |
| 984 | unsigned long flags; |
| 985 | |
| 986 | c->irqs = &z8530_nop; |
| 987 | c->max = 0; |
| 988 | c->sync = 0; |
| 989 | |
| 990 | /* |
| 991 | * Disable the PC DMA channels |
| 992 | */ |
| 993 | |
| 994 | flags=claim_dma_lock(); |
| 995 | disable_dma(c->rxdma); |
| 996 | clear_dma_ff(c->rxdma); |
| 997 | |
| 998 | c->rxdma_on = 0; |
| 999 | |
| 1000 | disable_dma(c->txdma); |
| 1001 | clear_dma_ff(c->txdma); |
| 1002 | release_dma_lock(flags); |
| 1003 | |
| 1004 | c->txdma_on = 0; |
| 1005 | c->tx_dma_used = 0; |
| 1006 | |
| 1007 | spin_lock_irqsave(c->lock, flags); |
| 1008 | |
| 1009 | /* |
| 1010 | * Disable DMA control mode |
| 1011 | */ |
| 1012 | |
| 1013 | c->regs[R1]&= ~WT_RDY_ENAB; |
| 1014 | write_zsreg(c, R1, c->regs[R1]); |
| 1015 | c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); |
| 1016 | c->regs[R1]|= INT_ALL_Rx; |
| 1017 | write_zsreg(c, R1, c->regs[R1]); |
| 1018 | c->regs[R14]&= ~DTRREQ; |
| 1019 | write_zsreg(c, R14, c->regs[R14]); |
| 1020 | |
| 1021 | if(c->rx_buf[0]) |
| 1022 | { |
| 1023 | free_page((unsigned long)c->rx_buf[0]); |
| 1024 | c->rx_buf[0]=NULL; |
| 1025 | } |
| 1026 | if(c->tx_dma_buf[0]) |
| 1027 | { |
| 1028 | free_page((unsigned long)c->tx_dma_buf[0]); |
| 1029 | c->tx_dma_buf[0]=NULL; |
| 1030 | } |
| 1031 | chk=read_zsreg(c,R0); |
| 1032 | write_zsreg(c, R3, c->regs[R3]); |
| 1033 | z8530_rtsdtr(c,0); |
| 1034 | |
| 1035 | spin_unlock_irqrestore(c->lock, flags); |
| 1036 | |
| 1037 | return 0; |
| 1038 | } |
| 1039 | |
| 1040 | EXPORT_SYMBOL(z8530_sync_dma_close); |
| 1041 | |
| 1042 | /** |
| 1043 | * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA |
| 1044 | * @dev: The network device to attach |
| 1045 | * @c: The Z8530 channel to configure in sync DMA mode. |
| 1046 | * |
| 1047 | * Set up a Z85x30 device for synchronous DMA transmission. One |
| 1048 | * ISA DMA channel must be available for this to work. The receive |
| 1049 | * side is run in PIO mode, but then it has the bigger FIFO. |
| 1050 | */ |
| 1051 | |
| 1052 | int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) |
| 1053 | { |
| 1054 | unsigned long cflags, dflags; |
| 1055 | |
| 1056 | printk("Opening sync interface for TX-DMA\n"); |
| 1057 | c->sync = 1; |
| 1058 | c->mtu = dev->mtu+64; |
| 1059 | c->count = 0; |
| 1060 | c->skb = NULL; |
| 1061 | c->skb2 = NULL; |
| 1062 | |
| 1063 | /* |
| 1064 | * Allocate the DMA flip buffers. Limit by page size. |
| 1065 | * Everyone runs 1500 mtu or less on wan links so this |
| 1066 | * should be fine. |
| 1067 | */ |
| 1068 | |
| 1069 | if(c->mtu > PAGE_SIZE/2) |
| 1070 | return -EMSGSIZE; |
| 1071 | |
| 1072 | c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); |
| 1073 | if(c->tx_dma_buf[0]==NULL) |
| 1074 | return -ENOBUFS; |
| 1075 | |
| 1076 | c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; |
| 1077 | |
| 1078 | |
| 1079 | spin_lock_irqsave(c->lock, cflags); |
| 1080 | |
| 1081 | /* |
| 1082 | * Load the PIO receive ring |
| 1083 | */ |
| 1084 | |
| 1085 | z8530_rx_done(c); |
| 1086 | z8530_rx_done(c); |
| 1087 | |
| 1088 | /* |
| 1089 | * Load the DMA interfaces up |
| 1090 | */ |
| 1091 | |
| 1092 | c->rxdma_on = 0; |
| 1093 | c->txdma_on = 0; |
| 1094 | |
| 1095 | c->tx_dma_used=0; |
| 1096 | c->dma_num=0; |
| 1097 | c->dma_ready=1; |
| 1098 | c->dma_tx = 1; |
| 1099 | |
| 1100 | /* |
| 1101 | * Enable DMA control mode |
| 1102 | */ |
| 1103 | |
| 1104 | /* |
| 1105 | * TX DMA via DIR/REQ |
| 1106 | */ |
| 1107 | c->regs[R14]|= DTRREQ; |
| 1108 | write_zsreg(c, R14, c->regs[R14]); |
| 1109 | |
| 1110 | c->regs[R1]&= ~TxINT_ENAB; |
| 1111 | write_zsreg(c, R1, c->regs[R1]); |
| 1112 | |
| 1113 | /* |
| 1114 | * Set up the DMA configuration |
| 1115 | */ |
| 1116 | |
| 1117 | dflags = claim_dma_lock(); |
| 1118 | |
| 1119 | disable_dma(c->txdma); |
| 1120 | clear_dma_ff(c->txdma); |
| 1121 | set_dma_mode(c->txdma, DMA_MODE_WRITE); |
| 1122 | disable_dma(c->txdma); |
| 1123 | |
| 1124 | release_dma_lock(dflags); |
| 1125 | |
| 1126 | /* |
| 1127 | * Select the DMA interrupt handlers |
| 1128 | */ |
| 1129 | |
| 1130 | c->rxdma_on = 0; |
| 1131 | c->txdma_on = 1; |
| 1132 | c->tx_dma_used = 1; |
| 1133 | |
| 1134 | c->irqs = &z8530_txdma_sync; |
| 1135 | z8530_rtsdtr(c,1); |
| 1136 | write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| 1137 | spin_unlock_irqrestore(c->lock, cflags); |
| 1138 | |
| 1139 | return 0; |
| 1140 | } |
| 1141 | |
| 1142 | EXPORT_SYMBOL(z8530_sync_txdma_open); |
| 1143 | |
| 1144 | /** |
| 1145 | * z8530_sync_txdma_close - Close down a TX driven DMA channel |
| 1146 | * @dev: Network device to detach |
| 1147 | * @c: Z8530 channel to move into discard mode |
| 1148 | * |
| 1149 | * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, |
| 1150 | * and free the buffers. |
| 1151 | */ |
| 1152 | |
| 1153 | int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) |
| 1154 | { |
| 1155 | unsigned long dflags, cflags; |
| 1156 | u8 chk; |
| 1157 | |
| 1158 | |
| 1159 | spin_lock_irqsave(c->lock, cflags); |
| 1160 | |
| 1161 | c->irqs = &z8530_nop; |
| 1162 | c->max = 0; |
| 1163 | c->sync = 0; |
| 1164 | |
| 1165 | /* |
| 1166 | * Disable the PC DMA channels |
| 1167 | */ |
| 1168 | |
| 1169 | dflags = claim_dma_lock(); |
| 1170 | |
| 1171 | disable_dma(c->txdma); |
| 1172 | clear_dma_ff(c->txdma); |
| 1173 | c->txdma_on = 0; |
| 1174 | c->tx_dma_used = 0; |
| 1175 | |
| 1176 | release_dma_lock(dflags); |
| 1177 | |
| 1178 | /* |
| 1179 | * Disable DMA control mode |
| 1180 | */ |
| 1181 | |
| 1182 | c->regs[R1]&= ~WT_RDY_ENAB; |
| 1183 | write_zsreg(c, R1, c->regs[R1]); |
| 1184 | c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); |
| 1185 | c->regs[R1]|= INT_ALL_Rx; |
| 1186 | write_zsreg(c, R1, c->regs[R1]); |
| 1187 | c->regs[R14]&= ~DTRREQ; |
| 1188 | write_zsreg(c, R14, c->regs[R14]); |
| 1189 | |
| 1190 | if(c->tx_dma_buf[0]) |
| 1191 | { |
| 1192 | free_page((unsigned long)c->tx_dma_buf[0]); |
| 1193 | c->tx_dma_buf[0]=NULL; |
| 1194 | } |
| 1195 | chk=read_zsreg(c,R0); |
| 1196 | write_zsreg(c, R3, c->regs[R3]); |
| 1197 | z8530_rtsdtr(c,0); |
| 1198 | |
| 1199 | spin_unlock_irqrestore(c->lock, cflags); |
| 1200 | return 0; |
| 1201 | } |
| 1202 | |
| 1203 | |
| 1204 | EXPORT_SYMBOL(z8530_sync_txdma_close); |
| 1205 | |
| 1206 | |
| 1207 | /* |
| 1208 | * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny |
| 1209 | * it exists... |
| 1210 | */ |
| 1211 | |
| 1212 | static const char *z8530_type_name[]={ |
| 1213 | "Z8530", |
| 1214 | "Z85C30", |
| 1215 | "Z85230" |
| 1216 | }; |
| 1217 | |
| 1218 | /** |
| 1219 | * z8530_describe - Uniformly describe a Z8530 port |
| 1220 | * @dev: Z8530 device to describe |
| 1221 | * @mapping: string holding mapping type (eg "I/O" or "Mem") |
| 1222 | * @io: the port value in question |
| 1223 | * |
| 1224 | * Describe a Z8530 in a standard format. We must pass the I/O as |
| 1225 | * the port offset isn't predictable. The main reason for this function |
| 1226 | * is to try and get a common format of report. |
| 1227 | */ |
| 1228 | |
| 1229 | void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) |
| 1230 | { |
| 1231 | pr_info("%s: %s found at %s 0x%lX, IRQ %d\n", |
| 1232 | dev->name, |
| 1233 | z8530_type_name[dev->type], |
| 1234 | mapping, |
| 1235 | Z8530_PORT_OF(io), |
| 1236 | dev->irq); |
| 1237 | } |
| 1238 | |
| 1239 | EXPORT_SYMBOL(z8530_describe); |
| 1240 | |
| 1241 | /* |
| 1242 | * Locked operation part of the z8530 init code |
| 1243 | */ |
| 1244 | |
| 1245 | static inline int do_z8530_init(struct z8530_dev *dev) |
| 1246 | { |
| 1247 | /* NOP the interrupt handlers first - we might get a |
| 1248 | floating IRQ transition when we reset the chip */ |
| 1249 | dev->chanA.irqs=&z8530_nop; |
| 1250 | dev->chanB.irqs=&z8530_nop; |
| 1251 | dev->chanA.dcdcheck=DCD; |
| 1252 | dev->chanB.dcdcheck=DCD; |
| 1253 | |
| 1254 | /* Reset the chip */ |
| 1255 | write_zsreg(&dev->chanA, R9, 0xC0); |
| 1256 | udelay(200); |
| 1257 | /* Now check its valid */ |
| 1258 | write_zsreg(&dev->chanA, R12, 0xAA); |
| 1259 | if(read_zsreg(&dev->chanA, R12)!=0xAA) |
| 1260 | return -ENODEV; |
| 1261 | write_zsreg(&dev->chanA, R12, 0x55); |
| 1262 | if(read_zsreg(&dev->chanA, R12)!=0x55) |
| 1263 | return -ENODEV; |
| 1264 | |
| 1265 | dev->type=Z8530; |
| 1266 | |
| 1267 | /* |
| 1268 | * See the application note. |
| 1269 | */ |
| 1270 | |
| 1271 | write_zsreg(&dev->chanA, R15, 0x01); |
| 1272 | |
| 1273 | /* |
| 1274 | * If we can set the low bit of R15 then |
| 1275 | * the chip is enhanced. |
| 1276 | */ |
| 1277 | |
| 1278 | if(read_zsreg(&dev->chanA, R15)==0x01) |
| 1279 | { |
| 1280 | /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ |
| 1281 | /* Put a char in the fifo */ |
| 1282 | write_zsreg(&dev->chanA, R8, 0); |
| 1283 | if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) |
| 1284 | dev->type = Z85230; /* Has a FIFO */ |
| 1285 | else |
| 1286 | dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * The code assumes R7' and friends are |
| 1291 | * off. Use write_zsext() for these and keep |
| 1292 | * this bit clear. |
| 1293 | */ |
| 1294 | |
| 1295 | write_zsreg(&dev->chanA, R15, 0); |
| 1296 | |
| 1297 | /* |
| 1298 | * At this point it looks like the chip is behaving |
| 1299 | */ |
| 1300 | |
| 1301 | memcpy(dev->chanA.regs, reg_init, 16); |
| 1302 | memcpy(dev->chanB.regs, reg_init ,16); |
| 1303 | |
| 1304 | return 0; |
| 1305 | } |
| 1306 | |
| 1307 | /** |
| 1308 | * z8530_init - Initialise a Z8530 device |
| 1309 | * @dev: Z8530 device to initialise. |
| 1310 | * |
| 1311 | * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device |
| 1312 | * is present, identify the type and then program it to hopefully |
| 1313 | * keep quite and behave. This matters a lot, a Z8530 in the wrong |
| 1314 | * state will sometimes get into stupid modes generating 10Khz |
| 1315 | * interrupt streams and the like. |
| 1316 | * |
| 1317 | * We set the interrupt handler up to discard any events, in case |
| 1318 | * we get them during reset or setp. |
| 1319 | * |
| 1320 | * Return 0 for success, or a negative value indicating the problem |
| 1321 | * in errno form. |
| 1322 | */ |
| 1323 | |
| 1324 | int z8530_init(struct z8530_dev *dev) |
| 1325 | { |
| 1326 | unsigned long flags; |
| 1327 | int ret; |
| 1328 | |
| 1329 | /* Set up the chip level lock */ |
| 1330 | spin_lock_init(&dev->lock); |
| 1331 | dev->chanA.lock = &dev->lock; |
| 1332 | dev->chanB.lock = &dev->lock; |
| 1333 | |
| 1334 | spin_lock_irqsave(&dev->lock, flags); |
| 1335 | ret = do_z8530_init(dev); |
| 1336 | spin_unlock_irqrestore(&dev->lock, flags); |
| 1337 | |
| 1338 | return ret; |
| 1339 | } |
| 1340 | |
| 1341 | |
| 1342 | EXPORT_SYMBOL(z8530_init); |
| 1343 | |
| 1344 | /** |
| 1345 | * z8530_shutdown - Shutdown a Z8530 device |
| 1346 | * @dev: The Z8530 chip to shutdown |
| 1347 | * |
| 1348 | * We set the interrupt handlers to silence any interrupts. We then |
| 1349 | * reset the chip and wait 100uS to be sure the reset completed. Just |
| 1350 | * in case the caller then tries to do stuff. |
| 1351 | * |
| 1352 | * This is called without the lock held |
| 1353 | */ |
| 1354 | |
| 1355 | int z8530_shutdown(struct z8530_dev *dev) |
| 1356 | { |
| 1357 | unsigned long flags; |
| 1358 | /* Reset the chip */ |
| 1359 | |
| 1360 | spin_lock_irqsave(&dev->lock, flags); |
| 1361 | dev->chanA.irqs=&z8530_nop; |
| 1362 | dev->chanB.irqs=&z8530_nop; |
| 1363 | write_zsreg(&dev->chanA, R9, 0xC0); |
| 1364 | /* We must lock the udelay, the chip is offlimits here */ |
| 1365 | udelay(100); |
| 1366 | spin_unlock_irqrestore(&dev->lock, flags); |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | EXPORT_SYMBOL(z8530_shutdown); |
| 1371 | |
| 1372 | /** |
| 1373 | * z8530_channel_load - Load channel data |
| 1374 | * @c: Z8530 channel to configure |
| 1375 | * @rtable: table of register, value pairs |
| 1376 | * FIXME: ioctl to allow user uploaded tables |
| 1377 | * |
| 1378 | * Load a Z8530 channel up from the system data. We use +16 to |
| 1379 | * indicate the "prime" registers. The value 255 terminates the |
| 1380 | * table. |
| 1381 | */ |
| 1382 | |
| 1383 | int z8530_channel_load(struct z8530_channel *c, u8 *rtable) |
| 1384 | { |
| 1385 | unsigned long flags; |
| 1386 | |
| 1387 | spin_lock_irqsave(c->lock, flags); |
| 1388 | |
| 1389 | while(*rtable!=255) |
| 1390 | { |
| 1391 | int reg=*rtable++; |
| 1392 | if(reg>0x0F) |
| 1393 | write_zsreg(c, R15, c->regs[15]|1); |
| 1394 | write_zsreg(c, reg&0x0F, *rtable); |
| 1395 | if(reg>0x0F) |
| 1396 | write_zsreg(c, R15, c->regs[15]&~1); |
| 1397 | c->regs[reg]=*rtable++; |
| 1398 | } |
| 1399 | c->rx_function=z8530_null_rx; |
| 1400 | c->skb=NULL; |
| 1401 | c->tx_skb=NULL; |
| 1402 | c->tx_next_skb=NULL; |
| 1403 | c->mtu=1500; |
| 1404 | c->max=0; |
| 1405 | c->count=0; |
| 1406 | c->status=read_zsreg(c, R0); |
| 1407 | c->sync=1; |
| 1408 | write_zsreg(c, R3, c->regs[R3]|RxENABLE); |
| 1409 | |
| 1410 | spin_unlock_irqrestore(c->lock, flags); |
| 1411 | return 0; |
| 1412 | } |
| 1413 | |
| 1414 | EXPORT_SYMBOL(z8530_channel_load); |
| 1415 | |
| 1416 | |
| 1417 | /** |
| 1418 | * z8530_tx_begin - Begin packet transmission |
| 1419 | * @c: The Z8530 channel to kick |
| 1420 | * |
| 1421 | * This is the speed sensitive side of transmission. If we are called |
| 1422 | * and no buffer is being transmitted we commence the next buffer. If |
| 1423 | * nothing is queued we idle the sync. |
| 1424 | * |
| 1425 | * Note: We are handling this code path in the interrupt path, keep it |
| 1426 | * fast or bad things will happen. |
| 1427 | * |
| 1428 | * Called with the lock held. |
| 1429 | */ |
| 1430 | |
| 1431 | static void z8530_tx_begin(struct z8530_channel *c) |
| 1432 | { |
| 1433 | unsigned long flags; |
| 1434 | if(c->tx_skb) |
| 1435 | return; |
| 1436 | |
| 1437 | c->tx_skb=c->tx_next_skb; |
| 1438 | c->tx_next_skb=NULL; |
| 1439 | c->tx_ptr=c->tx_next_ptr; |
| 1440 | |
| 1441 | if(c->tx_skb==NULL) |
| 1442 | { |
| 1443 | /* Idle on */ |
| 1444 | if(c->dma_tx) |
| 1445 | { |
| 1446 | flags=claim_dma_lock(); |
| 1447 | disable_dma(c->txdma); |
| 1448 | /* |
| 1449 | * Check if we crapped out. |
| 1450 | */ |
| 1451 | if (get_dma_residue(c->txdma)) |
| 1452 | { |
| 1453 | c->netdevice->stats.tx_dropped++; |
| 1454 | c->netdevice->stats.tx_fifo_errors++; |
| 1455 | } |
| 1456 | release_dma_lock(flags); |
| 1457 | } |
| 1458 | c->txcount=0; |
| 1459 | } |
| 1460 | else |
| 1461 | { |
| 1462 | c->txcount=c->tx_skb->len; |
| 1463 | |
| 1464 | |
| 1465 | if(c->dma_tx) |
| 1466 | { |
| 1467 | /* |
| 1468 | * FIXME. DMA is broken for the original 8530, |
| 1469 | * on the older parts we need to set a flag and |
| 1470 | * wait for a further TX interrupt to fire this |
| 1471 | * stage off |
| 1472 | */ |
| 1473 | |
| 1474 | flags=claim_dma_lock(); |
| 1475 | disable_dma(c->txdma); |
| 1476 | |
| 1477 | /* |
| 1478 | * These two are needed by the 8530/85C30 |
| 1479 | * and must be issued when idling. |
| 1480 | */ |
| 1481 | |
| 1482 | if(c->dev->type!=Z85230) |
| 1483 | { |
| 1484 | write_zsctrl(c, RES_Tx_CRC); |
| 1485 | write_zsctrl(c, RES_EOM_L); |
| 1486 | } |
| 1487 | write_zsreg(c, R10, c->regs[10]&~ABUNDER); |
| 1488 | clear_dma_ff(c->txdma); |
| 1489 | set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); |
| 1490 | set_dma_count(c->txdma, c->txcount); |
| 1491 | enable_dma(c->txdma); |
| 1492 | release_dma_lock(flags); |
| 1493 | write_zsctrl(c, RES_EOM_L); |
| 1494 | write_zsreg(c, R5, c->regs[R5]|TxENAB); |
| 1495 | } |
| 1496 | else |
| 1497 | { |
| 1498 | |
| 1499 | /* ABUNDER off */ |
| 1500 | write_zsreg(c, R10, c->regs[10]); |
| 1501 | write_zsctrl(c, RES_Tx_CRC); |
| 1502 | |
| 1503 | while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) |
| 1504 | { |
| 1505 | write_zsreg(c, R8, *c->tx_ptr++); |
| 1506 | c->txcount--; |
| 1507 | } |
| 1508 | |
| 1509 | } |
| 1510 | } |
| 1511 | /* |
| 1512 | * Since we emptied tx_skb we can ask for more |
| 1513 | */ |
| 1514 | netif_wake_queue(c->netdevice); |
| 1515 | } |
| 1516 | |
| 1517 | /** |
| 1518 | * z8530_tx_done - TX complete callback |
| 1519 | * @c: The channel that completed a transmit. |
| 1520 | * |
| 1521 | * This is called when we complete a packet send. We wake the queue, |
| 1522 | * start the next packet going and then free the buffer of the existing |
| 1523 | * packet. This code is fairly timing sensitive. |
| 1524 | * |
| 1525 | * Called with the register lock held. |
| 1526 | */ |
| 1527 | |
| 1528 | static void z8530_tx_done(struct z8530_channel *c) |
| 1529 | { |
| 1530 | struct sk_buff *skb; |
| 1531 | |
| 1532 | /* Actually this can happen.*/ |
| 1533 | if (c->tx_skb == NULL) |
| 1534 | return; |
| 1535 | |
| 1536 | skb = c->tx_skb; |
| 1537 | c->tx_skb = NULL; |
| 1538 | z8530_tx_begin(c); |
| 1539 | c->netdevice->stats.tx_packets++; |
| 1540 | c->netdevice->stats.tx_bytes += skb->len; |
| 1541 | dev_kfree_skb_irq(skb); |
| 1542 | } |
| 1543 | |
| 1544 | /** |
| 1545 | * z8530_null_rx - Discard a packet |
| 1546 | * @c: The channel the packet arrived on |
| 1547 | * @skb: The buffer |
| 1548 | * |
| 1549 | * We point the receive handler at this function when idle. Instead |
| 1550 | * of processing the frames we get to throw them away. |
| 1551 | */ |
| 1552 | |
| 1553 | void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) |
| 1554 | { |
| 1555 | dev_kfree_skb_any(skb); |
| 1556 | } |
| 1557 | |
| 1558 | EXPORT_SYMBOL(z8530_null_rx); |
| 1559 | |
| 1560 | /** |
| 1561 | * z8530_rx_done - Receive completion callback |
| 1562 | * @c: The channel that completed a receive |
| 1563 | * |
| 1564 | * A new packet is complete. Our goal here is to get back into receive |
| 1565 | * mode as fast as possible. On the Z85230 we could change to using |
| 1566 | * ESCC mode, but on the older chips we have no choice. We flip to the |
| 1567 | * new buffer immediately in DMA mode so that the DMA of the next |
| 1568 | * frame can occur while we are copying the previous buffer to an sk_buff |
| 1569 | * |
| 1570 | * Called with the lock held |
| 1571 | */ |
| 1572 | |
| 1573 | static void z8530_rx_done(struct z8530_channel *c) |
| 1574 | { |
| 1575 | struct sk_buff *skb; |
| 1576 | int ct; |
| 1577 | |
| 1578 | /* |
| 1579 | * Is our receive engine in DMA mode |
| 1580 | */ |
| 1581 | |
| 1582 | if(c->rxdma_on) |
| 1583 | { |
| 1584 | /* |
| 1585 | * Save the ready state and the buffer currently |
| 1586 | * being used as the DMA target |
| 1587 | */ |
| 1588 | |
| 1589 | int ready=c->dma_ready; |
| 1590 | unsigned char *rxb=c->rx_buf[c->dma_num]; |
| 1591 | unsigned long flags; |
| 1592 | |
| 1593 | /* |
| 1594 | * Complete this DMA. Necessary to find the length |
| 1595 | */ |
| 1596 | |
| 1597 | flags=claim_dma_lock(); |
| 1598 | |
| 1599 | disable_dma(c->rxdma); |
| 1600 | clear_dma_ff(c->rxdma); |
| 1601 | c->rxdma_on=0; |
| 1602 | ct=c->mtu-get_dma_residue(c->rxdma); |
| 1603 | if(ct<0) |
| 1604 | ct=2; /* Shit happens.. */ |
| 1605 | c->dma_ready=0; |
| 1606 | |
| 1607 | /* |
| 1608 | * Normal case: the other slot is free, start the next DMA |
| 1609 | * into it immediately. |
| 1610 | */ |
| 1611 | |
| 1612 | if(ready) |
| 1613 | { |
| 1614 | c->dma_num^=1; |
| 1615 | set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); |
| 1616 | set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); |
| 1617 | set_dma_count(c->rxdma, c->mtu); |
| 1618 | c->rxdma_on = 1; |
| 1619 | enable_dma(c->rxdma); |
| 1620 | /* Stop any frames that we missed the head of |
| 1621 | from passing */ |
| 1622 | write_zsreg(c, R0, RES_Rx_CRC); |
| 1623 | } |
| 1624 | else |
| 1625 | /* Can't occur as we dont reenable the DMA irq until |
| 1626 | after the flip is done */ |
| 1627 | netdev_warn(c->netdevice, "DMA flip overrun!\n"); |
| 1628 | |
| 1629 | release_dma_lock(flags); |
| 1630 | |
| 1631 | /* |
| 1632 | * Shove the old buffer into an sk_buff. We can't DMA |
| 1633 | * directly into one on a PC - it might be above the 16Mb |
| 1634 | * boundary. Optimisation - we could check to see if we |
| 1635 | * can avoid the copy. Optimisation 2 - make the memcpy |
| 1636 | * a copychecksum. |
| 1637 | */ |
| 1638 | |
| 1639 | skb = dev_alloc_skb(ct); |
| 1640 | if (skb == NULL) { |
| 1641 | c->netdevice->stats.rx_dropped++; |
| 1642 | netdev_warn(c->netdevice, "Memory squeeze\n"); |
| 1643 | } else { |
| 1644 | skb_put(skb, ct); |
| 1645 | skb_copy_to_linear_data(skb, rxb, ct); |
| 1646 | c->netdevice->stats.rx_packets++; |
| 1647 | c->netdevice->stats.rx_bytes += ct; |
| 1648 | } |
| 1649 | c->dma_ready = 1; |
| 1650 | } else { |
| 1651 | RT_LOCK; |
| 1652 | skb = c->skb; |
| 1653 | |
| 1654 | /* |
| 1655 | * The game we play for non DMA is similar. We want to |
| 1656 | * get the controller set up for the next packet as fast |
| 1657 | * as possible. We potentially only have one byte + the |
| 1658 | * fifo length for this. Thus we want to flip to the new |
| 1659 | * buffer and then mess around copying and allocating |
| 1660 | * things. For the current case it doesn't matter but |
| 1661 | * if you build a system where the sync irq isn't blocked |
| 1662 | * by the kernel IRQ disable then you need only block the |
| 1663 | * sync IRQ for the RT_LOCK area. |
| 1664 | * |
| 1665 | */ |
| 1666 | ct=c->count; |
| 1667 | |
| 1668 | c->skb = c->skb2; |
| 1669 | c->count = 0; |
| 1670 | c->max = c->mtu; |
| 1671 | if (c->skb) { |
| 1672 | c->dptr = c->skb->data; |
| 1673 | c->max = c->mtu; |
| 1674 | } else { |
| 1675 | c->count = 0; |
| 1676 | c->max = 0; |
| 1677 | } |
| 1678 | RT_UNLOCK; |
| 1679 | |
| 1680 | c->skb2 = dev_alloc_skb(c->mtu); |
| 1681 | if (c->skb2 == NULL) |
| 1682 | netdev_warn(c->netdevice, "memory squeeze\n"); |
| 1683 | else |
| 1684 | skb_put(c->skb2, c->mtu); |
| 1685 | c->netdevice->stats.rx_packets++; |
| 1686 | c->netdevice->stats.rx_bytes += ct; |
| 1687 | } |
| 1688 | /* |
| 1689 | * If we received a frame we must now process it. |
| 1690 | */ |
| 1691 | if (skb) { |
| 1692 | skb_trim(skb, ct); |
| 1693 | c->rx_function(c, skb); |
| 1694 | } else { |
| 1695 | c->netdevice->stats.rx_dropped++; |
| 1696 | netdev_err(c->netdevice, "Lost a frame\n"); |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | /** |
| 1701 | * spans_boundary - Check a packet can be ISA DMA'd |
| 1702 | * @skb: The buffer to check |
| 1703 | * |
| 1704 | * Returns true if the buffer cross a DMA boundary on a PC. The poor |
| 1705 | * thing can only DMA within a 64K block not across the edges of it. |
| 1706 | */ |
| 1707 | |
| 1708 | static inline int spans_boundary(struct sk_buff *skb) |
| 1709 | { |
| 1710 | unsigned long a=(unsigned long)skb->data; |
| 1711 | a^=(a+skb->len); |
| 1712 | if(a&0x00010000) /* If the 64K bit is different.. */ |
| 1713 | return 1; |
| 1714 | return 0; |
| 1715 | } |
| 1716 | |
| 1717 | /** |
| 1718 | * z8530_queue_xmit - Queue a packet |
| 1719 | * @c: The channel to use |
| 1720 | * @skb: The packet to kick down the channel |
| 1721 | * |
| 1722 | * Queue a packet for transmission. Because we have rather |
| 1723 | * hard to hit interrupt latencies for the Z85230 per packet |
| 1724 | * even in DMA mode we do the flip to DMA buffer if needed here |
| 1725 | * not in the IRQ. |
| 1726 | * |
| 1727 | * Called from the network code. The lock is not held at this |
| 1728 | * point. |
| 1729 | */ |
| 1730 | |
| 1731 | netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) |
| 1732 | { |
| 1733 | unsigned long flags; |
| 1734 | |
| 1735 | netif_stop_queue(c->netdevice); |
| 1736 | if(c->tx_next_skb) |
| 1737 | return NETDEV_TX_BUSY; |
| 1738 | |
| 1739 | |
| 1740 | /* PC SPECIFIC - DMA limits */ |
| 1741 | |
| 1742 | /* |
| 1743 | * If we will DMA the transmit and its gone over the ISA bus |
| 1744 | * limit, then copy to the flip buffer |
| 1745 | */ |
| 1746 | |
| 1747 | if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) |
| 1748 | { |
| 1749 | /* |
| 1750 | * Send the flip buffer, and flip the flippy bit. |
| 1751 | * We don't care which is used when just so long as |
| 1752 | * we never use the same buffer twice in a row. Since |
| 1753 | * only one buffer can be going out at a time the other |
| 1754 | * has to be safe. |
| 1755 | */ |
| 1756 | c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; |
| 1757 | c->tx_dma_used^=1; /* Flip temp buffer */ |
| 1758 | skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); |
| 1759 | } |
| 1760 | else |
| 1761 | c->tx_next_ptr=skb->data; |
| 1762 | RT_LOCK; |
| 1763 | c->tx_next_skb=skb; |
| 1764 | RT_UNLOCK; |
| 1765 | |
| 1766 | spin_lock_irqsave(c->lock, flags); |
| 1767 | z8530_tx_begin(c); |
| 1768 | spin_unlock_irqrestore(c->lock, flags); |
| 1769 | |
| 1770 | return NETDEV_TX_OK; |
| 1771 | } |
| 1772 | |
| 1773 | EXPORT_SYMBOL(z8530_queue_xmit); |
| 1774 | |
| 1775 | /* |
| 1776 | * Module support |
| 1777 | */ |
| 1778 | static const char banner[] __initconst = |
| 1779 | KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; |
| 1780 | |
| 1781 | static int __init z85230_init_driver(void) |
| 1782 | { |
| 1783 | printk(banner); |
| 1784 | return 0; |
| 1785 | } |
| 1786 | module_init(z85230_init_driver); |
| 1787 | |
| 1788 | static void __exit z85230_cleanup_driver(void) |
| 1789 | { |
| 1790 | } |
| 1791 | module_exit(z85230_cleanup_driver); |
| 1792 | |
| 1793 | MODULE_AUTHOR("Red Hat Inc."); |
| 1794 | MODULE_DESCRIPTION("Z85x30 synchronous driver core"); |
| 1795 | MODULE_LICENSE("GPL"); |