Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| 3 | <http://rt2x00.serialmonkey.com> |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 17 | */ |
| 18 | |
| 19 | /* |
| 20 | Module: rt2500pci |
| 21 | Abstract: rt2500pci device specific routines. |
| 22 | Supported chipsets: RT2560. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/etherdevice.h> |
| 27 | #include <linux/kernel.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/pci.h> |
| 30 | #include <linux/eeprom_93cx6.h> |
| 31 | #include <linux/slab.h> |
| 32 | |
| 33 | #include "rt2x00.h" |
| 34 | #include "rt2x00mmio.h" |
| 35 | #include "rt2x00pci.h" |
| 36 | #include "rt2500pci.h" |
| 37 | |
| 38 | /* |
| 39 | * Register access. |
| 40 | * All access to the CSR registers will go through the methods |
| 41 | * rt2x00mmio_register_read and rt2x00mmio_register_write. |
| 42 | * BBP and RF register require indirect register access, |
| 43 | * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| 44 | * These indirect registers work with busy bits, |
| 45 | * and we will try maximal REGISTER_BUSY_COUNT times to access |
| 46 | * the register while taking a REGISTER_BUSY_DELAY us delay |
| 47 | * between each attampt. When the busy bit is still set at that time, |
| 48 | * the access attempt is considered to have failed, |
| 49 | * and we will print an error. |
| 50 | */ |
| 51 | #define WAIT_FOR_BBP(__dev, __reg) \ |
| 52 | rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) |
| 53 | #define WAIT_FOR_RF(__dev, __reg) \ |
| 54 | rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) |
| 55 | |
| 56 | static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, |
| 57 | const unsigned int word, const u8 value) |
| 58 | { |
| 59 | u32 reg; |
| 60 | |
| 61 | mutex_lock(&rt2x00dev->csr_mutex); |
| 62 | |
| 63 | /* |
| 64 | * Wait until the BBP becomes available, afterwards we |
| 65 | * can safely write the new data into the register. |
| 66 | */ |
| 67 | if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| 68 | reg = 0; |
| 69 | rt2x00_set_field32(®, BBPCSR_VALUE, value); |
| 70 | rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| 71 | rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| 72 | rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); |
| 73 | |
| 74 | rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); |
| 75 | } |
| 76 | |
| 77 | mutex_unlock(&rt2x00dev->csr_mutex); |
| 78 | } |
| 79 | |
| 80 | static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, |
| 81 | const unsigned int word, u8 *value) |
| 82 | { |
| 83 | u32 reg; |
| 84 | |
| 85 | mutex_lock(&rt2x00dev->csr_mutex); |
| 86 | |
| 87 | /* |
| 88 | * Wait until the BBP becomes available, afterwards we |
| 89 | * can safely write the read request into the register. |
| 90 | * After the data has been written, we wait until hardware |
| 91 | * returns the correct value, if at any time the register |
| 92 | * doesn't become available in time, reg will be 0xffffffff |
| 93 | * which means we return 0xff to the caller. |
| 94 | */ |
| 95 | if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| 96 | reg = 0; |
| 97 | rt2x00_set_field32(®, BBPCSR_REGNUM, word); |
| 98 | rt2x00_set_field32(®, BBPCSR_BUSY, 1); |
| 99 | rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); |
| 100 | |
| 101 | rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); |
| 102 | |
| 103 | WAIT_FOR_BBP(rt2x00dev, ®); |
| 104 | } |
| 105 | |
| 106 | *value = rt2x00_get_field32(reg, BBPCSR_VALUE); |
| 107 | |
| 108 | mutex_unlock(&rt2x00dev->csr_mutex); |
| 109 | } |
| 110 | |
| 111 | static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, |
| 112 | const unsigned int word, const u32 value) |
| 113 | { |
| 114 | u32 reg; |
| 115 | |
| 116 | mutex_lock(&rt2x00dev->csr_mutex); |
| 117 | |
| 118 | /* |
| 119 | * Wait until the RF becomes available, afterwards we |
| 120 | * can safely write the new data into the register. |
| 121 | */ |
| 122 | if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| 123 | reg = 0; |
| 124 | rt2x00_set_field32(®, RFCSR_VALUE, value); |
| 125 | rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); |
| 126 | rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); |
| 127 | rt2x00_set_field32(®, RFCSR_BUSY, 1); |
| 128 | |
| 129 | rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); |
| 130 | rt2x00_rf_write(rt2x00dev, word, value); |
| 131 | } |
| 132 | |
| 133 | mutex_unlock(&rt2x00dev->csr_mutex); |
| 134 | } |
| 135 | |
| 136 | static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) |
| 137 | { |
| 138 | struct rt2x00_dev *rt2x00dev = eeprom->data; |
| 139 | u32 reg; |
| 140 | |
| 141 | rt2x00mmio_register_read(rt2x00dev, CSR21, ®); |
| 142 | |
| 143 | eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); |
| 144 | eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); |
| 145 | eeprom->reg_data_clock = |
| 146 | !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); |
| 147 | eeprom->reg_chip_select = |
| 148 | !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); |
| 149 | } |
| 150 | |
| 151 | static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) |
| 152 | { |
| 153 | struct rt2x00_dev *rt2x00dev = eeprom->data; |
| 154 | u32 reg = 0; |
| 155 | |
| 156 | rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); |
| 157 | rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); |
| 158 | rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, |
| 159 | !!eeprom->reg_data_clock); |
| 160 | rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, |
| 161 | !!eeprom->reg_chip_select); |
| 162 | |
| 163 | rt2x00mmio_register_write(rt2x00dev, CSR21, reg); |
| 164 | } |
| 165 | |
| 166 | #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| 167 | static const struct rt2x00debug rt2500pci_rt2x00debug = { |
| 168 | .owner = THIS_MODULE, |
| 169 | .csr = { |
| 170 | .read = rt2x00mmio_register_read, |
| 171 | .write = rt2x00mmio_register_write, |
| 172 | .flags = RT2X00DEBUGFS_OFFSET, |
| 173 | .word_base = CSR_REG_BASE, |
| 174 | .word_size = sizeof(u32), |
| 175 | .word_count = CSR_REG_SIZE / sizeof(u32), |
| 176 | }, |
| 177 | .eeprom = { |
| 178 | .read = rt2x00_eeprom_read, |
| 179 | .write = rt2x00_eeprom_write, |
| 180 | .word_base = EEPROM_BASE, |
| 181 | .word_size = sizeof(u16), |
| 182 | .word_count = EEPROM_SIZE / sizeof(u16), |
| 183 | }, |
| 184 | .bbp = { |
| 185 | .read = rt2500pci_bbp_read, |
| 186 | .write = rt2500pci_bbp_write, |
| 187 | .word_base = BBP_BASE, |
| 188 | .word_size = sizeof(u8), |
| 189 | .word_count = BBP_SIZE / sizeof(u8), |
| 190 | }, |
| 191 | .rf = { |
| 192 | .read = rt2x00_rf_read, |
| 193 | .write = rt2500pci_rf_write, |
| 194 | .word_base = RF_BASE, |
| 195 | .word_size = sizeof(u32), |
| 196 | .word_count = RF_SIZE / sizeof(u32), |
| 197 | }, |
| 198 | }; |
| 199 | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| 200 | |
| 201 | static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| 202 | { |
| 203 | u32 reg; |
| 204 | |
| 205 | rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); |
| 206 | return rt2x00_get_field32(reg, GPIOCSR_VAL0); |
| 207 | } |
| 208 | |
| 209 | #ifdef CONFIG_RT2X00_LIB_LEDS |
| 210 | static void rt2500pci_brightness_set(struct led_classdev *led_cdev, |
| 211 | enum led_brightness brightness) |
| 212 | { |
| 213 | struct rt2x00_led *led = |
| 214 | container_of(led_cdev, struct rt2x00_led, led_dev); |
| 215 | unsigned int enabled = brightness != LED_OFF; |
| 216 | u32 reg; |
| 217 | |
| 218 | rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); |
| 219 | |
| 220 | if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) |
| 221 | rt2x00_set_field32(®, LEDCSR_LINK, enabled); |
| 222 | else if (led->type == LED_TYPE_ACTIVITY) |
| 223 | rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); |
| 224 | |
| 225 | rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); |
| 226 | } |
| 227 | |
| 228 | static int rt2500pci_blink_set(struct led_classdev *led_cdev, |
| 229 | unsigned long *delay_on, |
| 230 | unsigned long *delay_off) |
| 231 | { |
| 232 | struct rt2x00_led *led = |
| 233 | container_of(led_cdev, struct rt2x00_led, led_dev); |
| 234 | u32 reg; |
| 235 | |
| 236 | rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); |
| 237 | rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); |
| 238 | rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); |
| 239 | rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); |
| 240 | |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, |
| 245 | struct rt2x00_led *led, |
| 246 | enum led_type type) |
| 247 | { |
| 248 | led->rt2x00dev = rt2x00dev; |
| 249 | led->type = type; |
| 250 | led->led_dev.brightness_set = rt2500pci_brightness_set; |
| 251 | led->led_dev.blink_set = rt2500pci_blink_set; |
| 252 | led->flags = LED_INITIALIZED; |
| 253 | } |
| 254 | #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| 255 | |
| 256 | /* |
| 257 | * Configuration handlers. |
| 258 | */ |
| 259 | static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, |
| 260 | const unsigned int filter_flags) |
| 261 | { |
| 262 | u32 reg; |
| 263 | |
| 264 | /* |
| 265 | * Start configuration steps. |
| 266 | * Note that the version error will always be dropped |
| 267 | * and broadcast frames will always be accepted since |
| 268 | * there is no filter for it at this time. |
| 269 | */ |
| 270 | rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); |
| 271 | rt2x00_set_field32(®, RXCSR0_DROP_CRC, |
| 272 | !(filter_flags & FIF_FCSFAIL)); |
| 273 | rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, |
| 274 | !(filter_flags & FIF_PLCPFAIL)); |
| 275 | rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, |
| 276 | !(filter_flags & FIF_CONTROL)); |
| 277 | rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, 1); |
| 278 | rt2x00_set_field32(®, RXCSR0_DROP_TODS, |
| 279 | !rt2x00dev->intf_ap_count); |
| 280 | rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); |
| 281 | rt2x00_set_field32(®, RXCSR0_DROP_MCAST, |
| 282 | !(filter_flags & FIF_ALLMULTI)); |
| 283 | rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); |
| 284 | rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| 285 | } |
| 286 | |
| 287 | static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, |
| 288 | struct rt2x00_intf *intf, |
| 289 | struct rt2x00intf_conf *conf, |
| 290 | const unsigned int flags) |
| 291 | { |
| 292 | struct data_queue *queue = rt2x00dev->bcn; |
| 293 | unsigned int bcn_preload; |
| 294 | u32 reg; |
| 295 | |
| 296 | if (flags & CONFIG_UPDATE_TYPE) { |
| 297 | /* |
| 298 | * Enable beacon config |
| 299 | */ |
| 300 | bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); |
| 301 | rt2x00mmio_register_read(rt2x00dev, BCNCSR1, ®); |
| 302 | rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); |
| 303 | rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); |
| 304 | rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); |
| 305 | |
| 306 | /* |
| 307 | * Enable synchronisation. |
| 308 | */ |
| 309 | rt2x00mmio_register_read(rt2x00dev, CSR14, ®); |
| 310 | rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); |
| 311 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 312 | } |
| 313 | |
| 314 | if (flags & CONFIG_UPDATE_MAC) |
| 315 | rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, |
| 316 | conf->mac, sizeof(conf->mac)); |
| 317 | |
| 318 | if (flags & CONFIG_UPDATE_BSSID) |
| 319 | rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, |
| 320 | conf->bssid, sizeof(conf->bssid)); |
| 321 | } |
| 322 | |
| 323 | static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, |
| 324 | struct rt2x00lib_erp *erp, |
| 325 | u32 changed) |
| 326 | { |
| 327 | int preamble_mask; |
| 328 | u32 reg; |
| 329 | |
| 330 | /* |
| 331 | * When short preamble is enabled, we should set bit 0x08 |
| 332 | */ |
| 333 | if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| 334 | preamble_mask = erp->short_preamble << 3; |
| 335 | |
| 336 | rt2x00mmio_register_read(rt2x00dev, TXCSR1, ®); |
| 337 | rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162); |
| 338 | rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2); |
| 339 | rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); |
| 340 | rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); |
| 341 | rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); |
| 342 | |
| 343 | rt2x00mmio_register_read(rt2x00dev, ARCSR2, ®); |
| 344 | rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); |
| 345 | rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); |
| 346 | rt2x00_set_field32(®, ARCSR2_LENGTH, |
| 347 | GET_DURATION(ACK_SIZE, 10)); |
| 348 | rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); |
| 349 | |
| 350 | rt2x00mmio_register_read(rt2x00dev, ARCSR3, ®); |
| 351 | rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); |
| 352 | rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); |
| 353 | rt2x00_set_field32(®, ARCSR2_LENGTH, |
| 354 | GET_DURATION(ACK_SIZE, 20)); |
| 355 | rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); |
| 356 | |
| 357 | rt2x00mmio_register_read(rt2x00dev, ARCSR4, ®); |
| 358 | rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); |
| 359 | rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); |
| 360 | rt2x00_set_field32(®, ARCSR2_LENGTH, |
| 361 | GET_DURATION(ACK_SIZE, 55)); |
| 362 | rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); |
| 363 | |
| 364 | rt2x00mmio_register_read(rt2x00dev, ARCSR5, ®); |
| 365 | rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); |
| 366 | rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); |
| 367 | rt2x00_set_field32(®, ARCSR2_LENGTH, |
| 368 | GET_DURATION(ACK_SIZE, 110)); |
| 369 | rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); |
| 370 | } |
| 371 | |
| 372 | if (changed & BSS_CHANGED_BASIC_RATES) |
| 373 | rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); |
| 374 | |
| 375 | if (changed & BSS_CHANGED_ERP_SLOT) { |
| 376 | rt2x00mmio_register_read(rt2x00dev, CSR11, ®); |
| 377 | rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); |
| 378 | rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| 379 | |
| 380 | rt2x00mmio_register_read(rt2x00dev, CSR18, ®); |
| 381 | rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); |
| 382 | rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); |
| 383 | rt2x00mmio_register_write(rt2x00dev, CSR18, reg); |
| 384 | |
| 385 | rt2x00mmio_register_read(rt2x00dev, CSR19, ®); |
| 386 | rt2x00_set_field32(®, CSR19_DIFS, erp->difs); |
| 387 | rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); |
| 388 | rt2x00mmio_register_write(rt2x00dev, CSR19, reg); |
| 389 | } |
| 390 | |
| 391 | if (changed & BSS_CHANGED_BEACON_INT) { |
| 392 | rt2x00mmio_register_read(rt2x00dev, CSR12, ®); |
| 393 | rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, |
| 394 | erp->beacon_int * 16); |
| 395 | rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, |
| 396 | erp->beacon_int * 16); |
| 397 | rt2x00mmio_register_write(rt2x00dev, CSR12, reg); |
| 398 | } |
| 399 | |
| 400 | } |
| 401 | |
| 402 | static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, |
| 403 | struct antenna_setup *ant) |
| 404 | { |
| 405 | u32 reg; |
| 406 | u8 r14; |
| 407 | u8 r2; |
| 408 | |
| 409 | /* |
| 410 | * We should never come here because rt2x00lib is supposed |
| 411 | * to catch this and send us the correct antenna explicitely. |
| 412 | */ |
| 413 | BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || |
| 414 | ant->tx == ANTENNA_SW_DIVERSITY); |
| 415 | |
| 416 | rt2x00mmio_register_read(rt2x00dev, BBPCSR1, ®); |
| 417 | rt2500pci_bbp_read(rt2x00dev, 14, &r14); |
| 418 | rt2500pci_bbp_read(rt2x00dev, 2, &r2); |
| 419 | |
| 420 | /* |
| 421 | * Configure the TX antenna. |
| 422 | */ |
| 423 | switch (ant->tx) { |
| 424 | case ANTENNA_A: |
| 425 | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); |
| 426 | rt2x00_set_field32(®, BBPCSR1_CCK, 0); |
| 427 | rt2x00_set_field32(®, BBPCSR1_OFDM, 0); |
| 428 | break; |
| 429 | case ANTENNA_B: |
| 430 | default: |
| 431 | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); |
| 432 | rt2x00_set_field32(®, BBPCSR1_CCK, 2); |
| 433 | rt2x00_set_field32(®, BBPCSR1_OFDM, 2); |
| 434 | break; |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Configure the RX antenna. |
| 439 | */ |
| 440 | switch (ant->rx) { |
| 441 | case ANTENNA_A: |
| 442 | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); |
| 443 | break; |
| 444 | case ANTENNA_B: |
| 445 | default: |
| 446 | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); |
| 447 | break; |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * RT2525E and RT5222 need to flip TX I/Q |
| 452 | */ |
| 453 | if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { |
| 454 | rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); |
| 455 | rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); |
| 456 | rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); |
| 457 | |
| 458 | /* |
| 459 | * RT2525E does not need RX I/Q Flip. |
| 460 | */ |
| 461 | if (rt2x00_rf(rt2x00dev, RF2525E)) |
| 462 | rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); |
| 463 | } else { |
| 464 | rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); |
| 465 | rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); |
| 466 | } |
| 467 | |
| 468 | rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg); |
| 469 | rt2500pci_bbp_write(rt2x00dev, 14, r14); |
| 470 | rt2500pci_bbp_write(rt2x00dev, 2, r2); |
| 471 | } |
| 472 | |
| 473 | static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, |
| 474 | struct rf_channel *rf, const int txpower) |
| 475 | { |
| 476 | u8 r70; |
| 477 | |
| 478 | /* |
| 479 | * Set TXpower. |
| 480 | */ |
| 481 | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| 482 | |
| 483 | /* |
| 484 | * Switch on tuning bits. |
| 485 | * For RT2523 devices we do not need to update the R1 register. |
| 486 | */ |
| 487 | if (!rt2x00_rf(rt2x00dev, RF2523)) |
| 488 | rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); |
| 489 | rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); |
| 490 | |
| 491 | /* |
| 492 | * For RT2525 we should first set the channel to half band higher. |
| 493 | */ |
| 494 | if (rt2x00_rf(rt2x00dev, RF2525)) { |
| 495 | static const u32 vals[] = { |
| 496 | 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, |
| 497 | 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, |
| 498 | 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, |
| 499 | 0x00080d2e, 0x00080d3a |
| 500 | }; |
| 501 | |
| 502 | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| 503 | rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); |
| 504 | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| 505 | if (rf->rf4) |
| 506 | rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| 507 | } |
| 508 | |
| 509 | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| 510 | rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); |
| 511 | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| 512 | if (rf->rf4) |
| 513 | rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); |
| 514 | |
| 515 | /* |
| 516 | * Channel 14 requires the Japan filter bit to be set. |
| 517 | */ |
| 518 | r70 = 0x46; |
| 519 | rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); |
| 520 | rt2500pci_bbp_write(rt2x00dev, 70, r70); |
| 521 | |
| 522 | msleep(1); |
| 523 | |
| 524 | /* |
| 525 | * Switch off tuning bits. |
| 526 | * For RT2523 devices we do not need to update the R1 register. |
| 527 | */ |
| 528 | if (!rt2x00_rf(rt2x00dev, RF2523)) { |
| 529 | rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); |
| 530 | rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); |
| 531 | } |
| 532 | |
| 533 | rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); |
| 534 | rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); |
| 535 | |
| 536 | /* |
| 537 | * Clear false CRC during channel switch. |
| 538 | */ |
| 539 | rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1); |
| 540 | } |
| 541 | |
| 542 | static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, |
| 543 | const int txpower) |
| 544 | { |
| 545 | u32 rf3; |
| 546 | |
| 547 | rt2x00_rf_read(rt2x00dev, 3, &rf3); |
| 548 | rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); |
| 549 | rt2500pci_rf_write(rt2x00dev, 3, rf3); |
| 550 | } |
| 551 | |
| 552 | static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| 553 | struct rt2x00lib_conf *libconf) |
| 554 | { |
| 555 | u32 reg; |
| 556 | |
| 557 | rt2x00mmio_register_read(rt2x00dev, CSR11, ®); |
| 558 | rt2x00_set_field32(®, CSR11_LONG_RETRY, |
| 559 | libconf->conf->long_frame_max_tx_count); |
| 560 | rt2x00_set_field32(®, CSR11_SHORT_RETRY, |
| 561 | libconf->conf->short_frame_max_tx_count); |
| 562 | rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| 563 | } |
| 564 | |
| 565 | static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, |
| 566 | struct rt2x00lib_conf *libconf) |
| 567 | { |
| 568 | enum dev_state state = |
| 569 | (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| 570 | STATE_SLEEP : STATE_AWAKE; |
| 571 | u32 reg; |
| 572 | |
| 573 | if (state == STATE_SLEEP) { |
| 574 | rt2x00mmio_register_read(rt2x00dev, CSR20, ®); |
| 575 | rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, |
| 576 | (rt2x00dev->beacon_int - 20) * 16); |
| 577 | rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, |
| 578 | libconf->conf->listen_interval - 1); |
| 579 | |
| 580 | /* We must first disable autowake before it can be enabled */ |
| 581 | rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); |
| 582 | rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| 583 | |
| 584 | rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); |
| 585 | rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| 586 | } else { |
| 587 | rt2x00mmio_register_read(rt2x00dev, CSR20, ®); |
| 588 | rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); |
| 589 | rt2x00mmio_register_write(rt2x00dev, CSR20, reg); |
| 590 | } |
| 591 | |
| 592 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| 593 | } |
| 594 | |
| 595 | static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, |
| 596 | struct rt2x00lib_conf *libconf, |
| 597 | const unsigned int flags) |
| 598 | { |
| 599 | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| 600 | rt2500pci_config_channel(rt2x00dev, &libconf->rf, |
| 601 | libconf->conf->power_level); |
| 602 | if ((flags & IEEE80211_CONF_CHANGE_POWER) && |
| 603 | !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) |
| 604 | rt2500pci_config_txpower(rt2x00dev, |
| 605 | libconf->conf->power_level); |
| 606 | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| 607 | rt2500pci_config_retry_limit(rt2x00dev, libconf); |
| 608 | if (flags & IEEE80211_CONF_CHANGE_PS) |
| 609 | rt2500pci_config_ps(rt2x00dev, libconf); |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Link tuning |
| 614 | */ |
| 615 | static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, |
| 616 | struct link_qual *qual) |
| 617 | { |
| 618 | u32 reg; |
| 619 | |
| 620 | /* |
| 621 | * Update FCS error count from register. |
| 622 | */ |
| 623 | rt2x00mmio_register_read(rt2x00dev, CNT0, ®); |
| 624 | qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); |
| 625 | |
| 626 | /* |
| 627 | * Update False CCA count from register. |
| 628 | */ |
| 629 | rt2x00mmio_register_read(rt2x00dev, CNT3, ®); |
| 630 | qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); |
| 631 | } |
| 632 | |
| 633 | static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, |
| 634 | struct link_qual *qual, u8 vgc_level) |
| 635 | { |
| 636 | if (qual->vgc_level_reg != vgc_level) { |
| 637 | rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); |
| 638 | qual->vgc_level = vgc_level; |
| 639 | qual->vgc_level_reg = vgc_level; |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, |
| 644 | struct link_qual *qual) |
| 645 | { |
| 646 | rt2500pci_set_vgc(rt2x00dev, qual, 0x48); |
| 647 | } |
| 648 | |
| 649 | static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, |
| 650 | struct link_qual *qual, const u32 count) |
| 651 | { |
| 652 | /* |
| 653 | * To prevent collisions with MAC ASIC on chipsets |
| 654 | * up to version C the link tuning should halt after 20 |
| 655 | * seconds while being associated. |
| 656 | */ |
| 657 | if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D && |
| 658 | rt2x00dev->intf_associated && count > 20) |
| 659 | return; |
| 660 | |
| 661 | /* |
| 662 | * Chipset versions C and lower should directly continue |
| 663 | * to the dynamic CCA tuning. Chipset version D and higher |
| 664 | * should go straight to dynamic CCA tuning when they |
| 665 | * are not associated. |
| 666 | */ |
| 667 | if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D || |
| 668 | !rt2x00dev->intf_associated) |
| 669 | goto dynamic_cca_tune; |
| 670 | |
| 671 | /* |
| 672 | * A too low RSSI will cause too much false CCA which will |
| 673 | * then corrupt the R17 tuning. To remidy this the tuning should |
| 674 | * be stopped (While making sure the R17 value will not exceed limits) |
| 675 | */ |
| 676 | if (qual->rssi < -80 && count > 20) { |
| 677 | if (qual->vgc_level_reg >= 0x41) |
| 678 | rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); |
| 679 | return; |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * Special big-R17 for short distance |
| 684 | */ |
| 685 | if (qual->rssi >= -58) { |
| 686 | rt2500pci_set_vgc(rt2x00dev, qual, 0x50); |
| 687 | return; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Special mid-R17 for middle distance |
| 692 | */ |
| 693 | if (qual->rssi >= -74) { |
| 694 | rt2500pci_set_vgc(rt2x00dev, qual, 0x41); |
| 695 | return; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Leave short or middle distance condition, restore r17 |
| 700 | * to the dynamic tuning range. |
| 701 | */ |
| 702 | if (qual->vgc_level_reg >= 0x41) { |
| 703 | rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); |
| 704 | return; |
| 705 | } |
| 706 | |
| 707 | dynamic_cca_tune: |
| 708 | |
| 709 | /* |
| 710 | * R17 is inside the dynamic tuning range, |
| 711 | * start tuning the link based on the false cca counter. |
| 712 | */ |
| 713 | if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) |
| 714 | rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); |
| 715 | else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) |
| 716 | rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); |
| 717 | } |
| 718 | |
| 719 | /* |
| 720 | * Queue handlers. |
| 721 | */ |
| 722 | static void rt2500pci_start_queue(struct data_queue *queue) |
| 723 | { |
| 724 | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| 725 | u32 reg; |
| 726 | |
| 727 | switch (queue->qid) { |
| 728 | case QID_RX: |
| 729 | rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); |
| 730 | rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); |
| 731 | rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| 732 | break; |
| 733 | case QID_BEACON: |
| 734 | rt2x00mmio_register_read(rt2x00dev, CSR14, ®); |
| 735 | rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); |
| 736 | rt2x00_set_field32(®, CSR14_TBCN, 1); |
| 737 | rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); |
| 738 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 739 | break; |
| 740 | default: |
| 741 | break; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | static void rt2500pci_kick_queue(struct data_queue *queue) |
| 746 | { |
| 747 | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| 748 | u32 reg; |
| 749 | |
| 750 | switch (queue->qid) { |
| 751 | case QID_AC_VO: |
| 752 | rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); |
| 753 | rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); |
| 754 | rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| 755 | break; |
| 756 | case QID_AC_VI: |
| 757 | rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); |
| 758 | rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); |
| 759 | rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| 760 | break; |
| 761 | case QID_ATIM: |
| 762 | rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); |
| 763 | rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); |
| 764 | rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| 765 | break; |
| 766 | default: |
| 767 | break; |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | static void rt2500pci_stop_queue(struct data_queue *queue) |
| 772 | { |
| 773 | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| 774 | u32 reg; |
| 775 | |
| 776 | switch (queue->qid) { |
| 777 | case QID_AC_VO: |
| 778 | case QID_AC_VI: |
| 779 | case QID_ATIM: |
| 780 | rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); |
| 781 | rt2x00_set_field32(®, TXCSR0_ABORT, 1); |
| 782 | rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); |
| 783 | break; |
| 784 | case QID_RX: |
| 785 | rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); |
| 786 | rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); |
| 787 | rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); |
| 788 | break; |
| 789 | case QID_BEACON: |
| 790 | rt2x00mmio_register_read(rt2x00dev, CSR14, ®); |
| 791 | rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); |
| 792 | rt2x00_set_field32(®, CSR14_TBCN, 0); |
| 793 | rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| 794 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 795 | |
| 796 | /* |
| 797 | * Wait for possibly running tbtt tasklets. |
| 798 | */ |
| 799 | tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| 800 | break; |
| 801 | default: |
| 802 | break; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | /* |
| 807 | * Initialization functions. |
| 808 | */ |
| 809 | static bool rt2500pci_get_entry_state(struct queue_entry *entry) |
| 810 | { |
| 811 | struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| 812 | u32 word; |
| 813 | |
| 814 | if (entry->queue->qid == QID_RX) { |
| 815 | rt2x00_desc_read(entry_priv->desc, 0, &word); |
| 816 | |
| 817 | return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); |
| 818 | } else { |
| 819 | rt2x00_desc_read(entry_priv->desc, 0, &word); |
| 820 | |
| 821 | return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| 822 | rt2x00_get_field32(word, TXD_W0_VALID)); |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | static void rt2500pci_clear_entry(struct queue_entry *entry) |
| 827 | { |
| 828 | struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| 829 | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| 830 | u32 word; |
| 831 | |
| 832 | if (entry->queue->qid == QID_RX) { |
| 833 | rt2x00_desc_read(entry_priv->desc, 1, &word); |
| 834 | rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); |
| 835 | rt2x00_desc_write(entry_priv->desc, 1, word); |
| 836 | |
| 837 | rt2x00_desc_read(entry_priv->desc, 0, &word); |
| 838 | rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); |
| 839 | rt2x00_desc_write(entry_priv->desc, 0, word); |
| 840 | } else { |
| 841 | rt2x00_desc_read(entry_priv->desc, 0, &word); |
| 842 | rt2x00_set_field32(&word, TXD_W0_VALID, 0); |
| 843 | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); |
| 844 | rt2x00_desc_write(entry_priv->desc, 0, word); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) |
| 849 | { |
| 850 | struct queue_entry_priv_mmio *entry_priv; |
| 851 | u32 reg; |
| 852 | |
| 853 | /* |
| 854 | * Initialize registers. |
| 855 | */ |
| 856 | rt2x00mmio_register_read(rt2x00dev, TXCSR2, ®); |
| 857 | rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); |
| 858 | rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); |
| 859 | rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); |
| 860 | rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); |
| 861 | rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); |
| 862 | |
| 863 | entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| 864 | rt2x00mmio_register_read(rt2x00dev, TXCSR3, ®); |
| 865 | rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, |
| 866 | entry_priv->desc_dma); |
| 867 | rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); |
| 868 | |
| 869 | entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| 870 | rt2x00mmio_register_read(rt2x00dev, TXCSR5, ®); |
| 871 | rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, |
| 872 | entry_priv->desc_dma); |
| 873 | rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); |
| 874 | |
| 875 | entry_priv = rt2x00dev->atim->entries[0].priv_data; |
| 876 | rt2x00mmio_register_read(rt2x00dev, TXCSR4, ®); |
| 877 | rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, |
| 878 | entry_priv->desc_dma); |
| 879 | rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); |
| 880 | |
| 881 | entry_priv = rt2x00dev->bcn->entries[0].priv_data; |
| 882 | rt2x00mmio_register_read(rt2x00dev, TXCSR6, ®); |
| 883 | rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, |
| 884 | entry_priv->desc_dma); |
| 885 | rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); |
| 886 | |
| 887 | rt2x00mmio_register_read(rt2x00dev, RXCSR1, ®); |
| 888 | rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); |
| 889 | rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); |
| 890 | rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); |
| 891 | |
| 892 | entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| 893 | rt2x00mmio_register_read(rt2x00dev, RXCSR2, ®); |
| 894 | rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, |
| 895 | entry_priv->desc_dma); |
| 896 | rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); |
| 897 | |
| 898 | return 0; |
| 899 | } |
| 900 | |
| 901 | static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) |
| 902 | { |
| 903 | u32 reg; |
| 904 | |
| 905 | rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); |
| 906 | rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); |
| 907 | rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002); |
| 908 | rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); |
| 909 | |
| 910 | rt2x00mmio_register_read(rt2x00dev, TIMECSR, ®); |
| 911 | rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); |
| 912 | rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); |
| 913 | rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); |
| 914 | rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); |
| 915 | |
| 916 | rt2x00mmio_register_read(rt2x00dev, CSR9, ®); |
| 917 | rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, |
| 918 | rt2x00dev->rx->data_size / 128); |
| 919 | rt2x00mmio_register_write(rt2x00dev, CSR9, reg); |
| 920 | |
| 921 | /* |
| 922 | * Always use CWmin and CWmax set in descriptor. |
| 923 | */ |
| 924 | rt2x00mmio_register_read(rt2x00dev, CSR11, ®); |
| 925 | rt2x00_set_field32(®, CSR11_CW_SELECT, 0); |
| 926 | rt2x00mmio_register_write(rt2x00dev, CSR11, reg); |
| 927 | |
| 928 | rt2x00mmio_register_read(rt2x00dev, CSR14, ®); |
| 929 | rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); |
| 930 | rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); |
| 931 | rt2x00_set_field32(®, CSR14_TBCN, 0); |
| 932 | rt2x00_set_field32(®, CSR14_TCFP, 0); |
| 933 | rt2x00_set_field32(®, CSR14_TATIMW, 0); |
| 934 | rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| 935 | rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); |
| 936 | rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); |
| 937 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 938 | |
| 939 | rt2x00mmio_register_write(rt2x00dev, CNT3, 0); |
| 940 | |
| 941 | rt2x00mmio_register_read(rt2x00dev, TXCSR8, ®); |
| 942 | rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); |
| 943 | rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); |
| 944 | rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); |
| 945 | rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); |
| 946 | rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); |
| 947 | rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); |
| 948 | rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); |
| 949 | rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); |
| 950 | rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg); |
| 951 | |
| 952 | rt2x00mmio_register_read(rt2x00dev, ARTCSR0, ®); |
| 953 | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); |
| 954 | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); |
| 955 | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); |
| 956 | rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); |
| 957 | rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg); |
| 958 | |
| 959 | rt2x00mmio_register_read(rt2x00dev, ARTCSR1, ®); |
| 960 | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); |
| 961 | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); |
| 962 | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); |
| 963 | rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); |
| 964 | rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg); |
| 965 | |
| 966 | rt2x00mmio_register_read(rt2x00dev, ARTCSR2, ®); |
| 967 | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); |
| 968 | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); |
| 969 | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); |
| 970 | rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); |
| 971 | rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg); |
| 972 | |
| 973 | rt2x00mmio_register_read(rt2x00dev, RXCSR3, ®); |
| 974 | rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ |
| 975 | rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); |
| 976 | rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ |
| 977 | rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); |
| 978 | rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ |
| 979 | rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); |
| 980 | rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ |
| 981 | rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); |
| 982 | rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); |
| 983 | |
| 984 | rt2x00mmio_register_read(rt2x00dev, PCICSR, ®); |
| 985 | rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); |
| 986 | rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); |
| 987 | rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); |
| 988 | rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); |
| 989 | rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); |
| 990 | rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); |
| 991 | rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); |
| 992 | rt2x00mmio_register_write(rt2x00dev, PCICSR, reg); |
| 993 | |
| 994 | rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); |
| 995 | |
| 996 | rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); |
| 997 | rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0); |
| 998 | |
| 999 | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| 1000 | return -EBUSY; |
| 1001 | |
| 1002 | rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223); |
| 1003 | rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); |
| 1004 | |
| 1005 | rt2x00mmio_register_read(rt2x00dev, MACCSR2, ®); |
| 1006 | rt2x00_set_field32(®, MACCSR2_DELAY, 64); |
| 1007 | rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); |
| 1008 | |
| 1009 | rt2x00mmio_register_read(rt2x00dev, RALINKCSR, ®); |
| 1010 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); |
| 1011 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); |
| 1012 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); |
| 1013 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); |
| 1014 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); |
| 1015 | rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); |
| 1016 | rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); |
| 1017 | |
| 1018 | rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200); |
| 1019 | |
| 1020 | rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020); |
| 1021 | |
| 1022 | rt2x00mmio_register_read(rt2x00dev, CSR1, ®); |
| 1023 | rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); |
| 1024 | rt2x00_set_field32(®, CSR1_BBP_RESET, 0); |
| 1025 | rt2x00_set_field32(®, CSR1_HOST_READY, 0); |
| 1026 | rt2x00mmio_register_write(rt2x00dev, CSR1, reg); |
| 1027 | |
| 1028 | rt2x00mmio_register_read(rt2x00dev, CSR1, ®); |
| 1029 | rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); |
| 1030 | rt2x00_set_field32(®, CSR1_HOST_READY, 1); |
| 1031 | rt2x00mmio_register_write(rt2x00dev, CSR1, reg); |
| 1032 | |
| 1033 | /* |
| 1034 | * We must clear the FCS and FIFO error count. |
| 1035 | * These registers are cleared on read, |
| 1036 | * so we may pass a useless variable to store the value. |
| 1037 | */ |
| 1038 | rt2x00mmio_register_read(rt2x00dev, CNT0, ®); |
| 1039 | rt2x00mmio_register_read(rt2x00dev, CNT4, ®); |
| 1040 | |
| 1041 | return 0; |
| 1042 | } |
| 1043 | |
| 1044 | static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| 1045 | { |
| 1046 | unsigned int i; |
| 1047 | u8 value; |
| 1048 | |
| 1049 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| 1050 | rt2500pci_bbp_read(rt2x00dev, 0, &value); |
| 1051 | if ((value != 0xff) && (value != 0x00)) |
| 1052 | return 0; |
| 1053 | udelay(REGISTER_BUSY_DELAY); |
| 1054 | } |
| 1055 | |
| 1056 | rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); |
| 1057 | return -EACCES; |
| 1058 | } |
| 1059 | |
| 1060 | static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) |
| 1061 | { |
| 1062 | unsigned int i; |
| 1063 | u16 eeprom; |
| 1064 | u8 reg_id; |
| 1065 | u8 value; |
| 1066 | |
| 1067 | if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) |
| 1068 | return -EACCES; |
| 1069 | |
| 1070 | rt2500pci_bbp_write(rt2x00dev, 3, 0x02); |
| 1071 | rt2500pci_bbp_write(rt2x00dev, 4, 0x19); |
| 1072 | rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); |
| 1073 | rt2500pci_bbp_write(rt2x00dev, 15, 0x30); |
| 1074 | rt2500pci_bbp_write(rt2x00dev, 16, 0xac); |
| 1075 | rt2500pci_bbp_write(rt2x00dev, 18, 0x18); |
| 1076 | rt2500pci_bbp_write(rt2x00dev, 19, 0xff); |
| 1077 | rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); |
| 1078 | rt2500pci_bbp_write(rt2x00dev, 21, 0x08); |
| 1079 | rt2500pci_bbp_write(rt2x00dev, 22, 0x08); |
| 1080 | rt2500pci_bbp_write(rt2x00dev, 23, 0x08); |
| 1081 | rt2500pci_bbp_write(rt2x00dev, 24, 0x70); |
| 1082 | rt2500pci_bbp_write(rt2x00dev, 25, 0x40); |
| 1083 | rt2500pci_bbp_write(rt2x00dev, 26, 0x08); |
| 1084 | rt2500pci_bbp_write(rt2x00dev, 27, 0x23); |
| 1085 | rt2500pci_bbp_write(rt2x00dev, 30, 0x10); |
| 1086 | rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); |
| 1087 | rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); |
| 1088 | rt2500pci_bbp_write(rt2x00dev, 34, 0x12); |
| 1089 | rt2500pci_bbp_write(rt2x00dev, 35, 0x50); |
| 1090 | rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); |
| 1091 | rt2500pci_bbp_write(rt2x00dev, 40, 0x02); |
| 1092 | rt2500pci_bbp_write(rt2x00dev, 41, 0x60); |
| 1093 | rt2500pci_bbp_write(rt2x00dev, 53, 0x10); |
| 1094 | rt2500pci_bbp_write(rt2x00dev, 54, 0x18); |
| 1095 | rt2500pci_bbp_write(rt2x00dev, 56, 0x08); |
| 1096 | rt2500pci_bbp_write(rt2x00dev, 57, 0x10); |
| 1097 | rt2500pci_bbp_write(rt2x00dev, 58, 0x08); |
| 1098 | rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); |
| 1099 | rt2500pci_bbp_write(rt2x00dev, 62, 0x10); |
| 1100 | |
| 1101 | for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| 1102 | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| 1103 | |
| 1104 | if (eeprom != 0xffff && eeprom != 0x0000) { |
| 1105 | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| 1106 | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| 1107 | rt2500pci_bbp_write(rt2x00dev, reg_id, value); |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | /* |
| 1115 | * Device state switch handlers. |
| 1116 | */ |
| 1117 | static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| 1118 | enum dev_state state) |
| 1119 | { |
| 1120 | int mask = (state == STATE_RADIO_IRQ_OFF); |
| 1121 | u32 reg; |
| 1122 | unsigned long flags; |
| 1123 | |
| 1124 | /* |
| 1125 | * When interrupts are being enabled, the interrupt registers |
| 1126 | * should clear the register to assure a clean state. |
| 1127 | */ |
| 1128 | if (state == STATE_RADIO_IRQ_ON) { |
| 1129 | rt2x00mmio_register_read(rt2x00dev, CSR7, ®); |
| 1130 | rt2x00mmio_register_write(rt2x00dev, CSR7, reg); |
| 1131 | } |
| 1132 | |
| 1133 | /* |
| 1134 | * Only toggle the interrupts bits we are going to use. |
| 1135 | * Non-checked interrupt bits are disabled by default. |
| 1136 | */ |
| 1137 | spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); |
| 1138 | |
| 1139 | rt2x00mmio_register_read(rt2x00dev, CSR8, ®); |
| 1140 | rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); |
| 1141 | rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); |
| 1142 | rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); |
| 1143 | rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); |
| 1144 | rt2x00_set_field32(®, CSR8_RXDONE, mask); |
| 1145 | rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| 1146 | |
| 1147 | spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); |
| 1148 | |
| 1149 | if (state == STATE_RADIO_IRQ_OFF) { |
| 1150 | /* |
| 1151 | * Ensure that all tasklets are finished. |
| 1152 | */ |
| 1153 | tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| 1154 | tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| 1155 | tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) |
| 1160 | { |
| 1161 | /* |
| 1162 | * Initialize all registers. |
| 1163 | */ |
| 1164 | if (unlikely(rt2500pci_init_queues(rt2x00dev) || |
| 1165 | rt2500pci_init_registers(rt2x00dev) || |
| 1166 | rt2500pci_init_bbp(rt2x00dev))) |
| 1167 | return -EIO; |
| 1168 | |
| 1169 | return 0; |
| 1170 | } |
| 1171 | |
| 1172 | static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) |
| 1173 | { |
| 1174 | /* |
| 1175 | * Disable power |
| 1176 | */ |
| 1177 | rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); |
| 1178 | } |
| 1179 | |
| 1180 | static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, |
| 1181 | enum dev_state state) |
| 1182 | { |
| 1183 | u32 reg, reg2; |
| 1184 | unsigned int i; |
| 1185 | char put_to_sleep; |
| 1186 | char bbp_state; |
| 1187 | char rf_state; |
| 1188 | |
| 1189 | put_to_sleep = (state != STATE_AWAKE); |
| 1190 | |
| 1191 | rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®); |
| 1192 | rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); |
| 1193 | rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); |
| 1194 | rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); |
| 1195 | rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); |
| 1196 | rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); |
| 1197 | |
| 1198 | /* |
| 1199 | * Device is not guaranteed to be in the requested state yet. |
| 1200 | * We must wait until the register indicates that the |
| 1201 | * device has entered the correct state. |
| 1202 | */ |
| 1203 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| 1204 | rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®2); |
| 1205 | bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); |
| 1206 | rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); |
| 1207 | if (bbp_state == state && rf_state == state) |
| 1208 | return 0; |
| 1209 | rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); |
| 1210 | msleep(10); |
| 1211 | } |
| 1212 | |
| 1213 | return -EBUSY; |
| 1214 | } |
| 1215 | |
| 1216 | static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, |
| 1217 | enum dev_state state) |
| 1218 | { |
| 1219 | int retval = 0; |
| 1220 | |
| 1221 | switch (state) { |
| 1222 | case STATE_RADIO_ON: |
| 1223 | retval = rt2500pci_enable_radio(rt2x00dev); |
| 1224 | break; |
| 1225 | case STATE_RADIO_OFF: |
| 1226 | rt2500pci_disable_radio(rt2x00dev); |
| 1227 | break; |
| 1228 | case STATE_RADIO_IRQ_ON: |
| 1229 | case STATE_RADIO_IRQ_OFF: |
| 1230 | rt2500pci_toggle_irq(rt2x00dev, state); |
| 1231 | break; |
| 1232 | case STATE_DEEP_SLEEP: |
| 1233 | case STATE_SLEEP: |
| 1234 | case STATE_STANDBY: |
| 1235 | case STATE_AWAKE: |
| 1236 | retval = rt2500pci_set_state(rt2x00dev, state); |
| 1237 | break; |
| 1238 | default: |
| 1239 | retval = -ENOTSUPP; |
| 1240 | break; |
| 1241 | } |
| 1242 | |
| 1243 | if (unlikely(retval)) |
| 1244 | rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", |
| 1245 | state, retval); |
| 1246 | |
| 1247 | return retval; |
| 1248 | } |
| 1249 | |
| 1250 | /* |
| 1251 | * TX descriptor initialization |
| 1252 | */ |
| 1253 | static void rt2500pci_write_tx_desc(struct queue_entry *entry, |
| 1254 | struct txentry_desc *txdesc) |
| 1255 | { |
| 1256 | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| 1257 | struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| 1258 | __le32 *txd = entry_priv->desc; |
| 1259 | u32 word; |
| 1260 | |
| 1261 | /* |
| 1262 | * Start writing the descriptor words. |
| 1263 | */ |
| 1264 | rt2x00_desc_read(txd, 1, &word); |
| 1265 | rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); |
| 1266 | rt2x00_desc_write(txd, 1, word); |
| 1267 | |
| 1268 | rt2x00_desc_read(txd, 2, &word); |
| 1269 | rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); |
| 1270 | rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs); |
| 1271 | rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min); |
| 1272 | rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max); |
| 1273 | rt2x00_desc_write(txd, 2, word); |
| 1274 | |
| 1275 | rt2x00_desc_read(txd, 3, &word); |
| 1276 | rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); |
| 1277 | rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); |
| 1278 | rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, |
| 1279 | txdesc->u.plcp.length_low); |
| 1280 | rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, |
| 1281 | txdesc->u.plcp.length_high); |
| 1282 | rt2x00_desc_write(txd, 3, word); |
| 1283 | |
| 1284 | rt2x00_desc_read(txd, 10, &word); |
| 1285 | rt2x00_set_field32(&word, TXD_W10_RTS, |
| 1286 | test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); |
| 1287 | rt2x00_desc_write(txd, 10, word); |
| 1288 | |
| 1289 | /* |
| 1290 | * Writing TXD word 0 must the last to prevent a race condition with |
| 1291 | * the device, whereby the device may take hold of the TXD before we |
| 1292 | * finished updating it. |
| 1293 | */ |
| 1294 | rt2x00_desc_read(txd, 0, &word); |
| 1295 | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); |
| 1296 | rt2x00_set_field32(&word, TXD_W0_VALID, 1); |
| 1297 | rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, |
| 1298 | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| 1299 | rt2x00_set_field32(&word, TXD_W0_ACK, |
| 1300 | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| 1301 | rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, |
| 1302 | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| 1303 | rt2x00_set_field32(&word, TXD_W0_OFDM, |
| 1304 | (txdesc->rate_mode == RATE_MODE_OFDM)); |
| 1305 | rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); |
| 1306 | rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); |
| 1307 | rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, |
| 1308 | test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); |
| 1309 | rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); |
| 1310 | rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); |
| 1311 | rt2x00_desc_write(txd, 0, word); |
| 1312 | |
| 1313 | /* |
| 1314 | * Register descriptor details in skb frame descriptor. |
| 1315 | */ |
| 1316 | skbdesc->desc = txd; |
| 1317 | skbdesc->desc_len = TXD_DESC_SIZE; |
| 1318 | } |
| 1319 | |
| 1320 | /* |
| 1321 | * TX data initialization |
| 1322 | */ |
| 1323 | static void rt2500pci_write_beacon(struct queue_entry *entry, |
| 1324 | struct txentry_desc *txdesc) |
| 1325 | { |
| 1326 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| 1327 | u32 reg; |
| 1328 | |
| 1329 | /* |
| 1330 | * Disable beaconing while we are reloading the beacon data, |
| 1331 | * otherwise we might be sending out invalid data. |
| 1332 | */ |
| 1333 | rt2x00mmio_register_read(rt2x00dev, CSR14, ®); |
| 1334 | rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); |
| 1335 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 1336 | |
| 1337 | if (rt2x00queue_map_txskb(entry)) { |
| 1338 | rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); |
| 1339 | goto out; |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Write the TX descriptor for the beacon. |
| 1344 | */ |
| 1345 | rt2500pci_write_tx_desc(entry, txdesc); |
| 1346 | |
| 1347 | /* |
| 1348 | * Dump beacon to userspace through debugfs. |
| 1349 | */ |
| 1350 | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); |
| 1351 | out: |
| 1352 | /* |
| 1353 | * Enable beaconing again. |
| 1354 | */ |
| 1355 | rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); |
| 1356 | rt2x00mmio_register_write(rt2x00dev, CSR14, reg); |
| 1357 | } |
| 1358 | |
| 1359 | /* |
| 1360 | * RX control handlers |
| 1361 | */ |
| 1362 | static void rt2500pci_fill_rxdone(struct queue_entry *entry, |
| 1363 | struct rxdone_entry_desc *rxdesc) |
| 1364 | { |
| 1365 | struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| 1366 | u32 word0; |
| 1367 | u32 word2; |
| 1368 | |
| 1369 | rt2x00_desc_read(entry_priv->desc, 0, &word0); |
| 1370 | rt2x00_desc_read(entry_priv->desc, 2, &word2); |
| 1371 | |
| 1372 | if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) |
| 1373 | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| 1374 | if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) |
| 1375 | rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; |
| 1376 | |
| 1377 | /* |
| 1378 | * Obtain the status about this packet. |
| 1379 | * When frame was received with an OFDM bitrate, |
| 1380 | * the signal is the PLCP value. If it was received with |
| 1381 | * a CCK bitrate the signal is the rate in 100kbit/s. |
| 1382 | */ |
| 1383 | rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); |
| 1384 | rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - |
| 1385 | entry->queue->rt2x00dev->rssi_offset; |
| 1386 | rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); |
| 1387 | |
| 1388 | if (rt2x00_get_field32(word0, RXD_W0_OFDM)) |
| 1389 | rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; |
| 1390 | else |
| 1391 | rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; |
| 1392 | if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) |
| 1393 | rxdesc->dev_flags |= RXDONE_MY_BSS; |
| 1394 | } |
| 1395 | |
| 1396 | /* |
| 1397 | * Interrupt functions. |
| 1398 | */ |
| 1399 | static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, |
| 1400 | const enum data_queue_qid queue_idx) |
| 1401 | { |
| 1402 | struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); |
| 1403 | struct queue_entry_priv_mmio *entry_priv; |
| 1404 | struct queue_entry *entry; |
| 1405 | struct txdone_entry_desc txdesc; |
| 1406 | u32 word; |
| 1407 | |
| 1408 | while (!rt2x00queue_empty(queue)) { |
| 1409 | entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); |
| 1410 | entry_priv = entry->priv_data; |
| 1411 | rt2x00_desc_read(entry_priv->desc, 0, &word); |
| 1412 | |
| 1413 | if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || |
| 1414 | !rt2x00_get_field32(word, TXD_W0_VALID)) |
| 1415 | break; |
| 1416 | |
| 1417 | /* |
| 1418 | * Obtain the status about this packet. |
| 1419 | */ |
| 1420 | txdesc.flags = 0; |
| 1421 | switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { |
| 1422 | case 0: /* Success */ |
| 1423 | case 1: /* Success with retry */ |
| 1424 | __set_bit(TXDONE_SUCCESS, &txdesc.flags); |
| 1425 | break; |
| 1426 | case 2: /* Failure, excessive retries */ |
| 1427 | __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); |
| 1428 | /* Don't break, this is a failed frame! */ |
| 1429 | default: /* Failure */ |
| 1430 | __set_bit(TXDONE_FAILURE, &txdesc.flags); |
| 1431 | } |
| 1432 | txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); |
| 1433 | |
| 1434 | rt2x00lib_txdone(entry, &txdesc); |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, |
| 1439 | struct rt2x00_field32 irq_field) |
| 1440 | { |
| 1441 | u32 reg; |
| 1442 | |
| 1443 | /* |
| 1444 | * Enable a single interrupt. The interrupt mask register |
| 1445 | * access needs locking. |
| 1446 | */ |
| 1447 | spin_lock_irq(&rt2x00dev->irqmask_lock); |
| 1448 | |
| 1449 | rt2x00mmio_register_read(rt2x00dev, CSR8, ®); |
| 1450 | rt2x00_set_field32(®, irq_field, 0); |
| 1451 | rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| 1452 | |
| 1453 | spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| 1454 | } |
| 1455 | |
| 1456 | static void rt2500pci_txstatus_tasklet(unsigned long data) |
| 1457 | { |
| 1458 | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| 1459 | u32 reg; |
| 1460 | |
| 1461 | /* |
| 1462 | * Handle all tx queues. |
| 1463 | */ |
| 1464 | rt2500pci_txdone(rt2x00dev, QID_ATIM); |
| 1465 | rt2500pci_txdone(rt2x00dev, QID_AC_VO); |
| 1466 | rt2500pci_txdone(rt2x00dev, QID_AC_VI); |
| 1467 | |
| 1468 | /* |
| 1469 | * Enable all TXDONE interrupts again. |
| 1470 | */ |
| 1471 | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { |
| 1472 | spin_lock_irq(&rt2x00dev->irqmask_lock); |
| 1473 | |
| 1474 | rt2x00mmio_register_read(rt2x00dev, CSR8, ®); |
| 1475 | rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); |
| 1476 | rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); |
| 1477 | rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); |
| 1478 | rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| 1479 | |
| 1480 | spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | static void rt2500pci_tbtt_tasklet(unsigned long data) |
| 1485 | { |
| 1486 | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| 1487 | rt2x00lib_beacondone(rt2x00dev); |
| 1488 | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 1489 | rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); |
| 1490 | } |
| 1491 | |
| 1492 | static void rt2500pci_rxdone_tasklet(unsigned long data) |
| 1493 | { |
| 1494 | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| 1495 | if (rt2x00mmio_rxdone(rt2x00dev)) |
| 1496 | tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| 1497 | else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 1498 | rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); |
| 1499 | } |
| 1500 | |
| 1501 | static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) |
| 1502 | { |
| 1503 | struct rt2x00_dev *rt2x00dev = dev_instance; |
| 1504 | u32 reg, mask; |
| 1505 | |
| 1506 | /* |
| 1507 | * Get the interrupt sources & saved to local variable. |
| 1508 | * Write register value back to clear pending interrupts. |
| 1509 | */ |
| 1510 | rt2x00mmio_register_read(rt2x00dev, CSR7, ®); |
| 1511 | rt2x00mmio_register_write(rt2x00dev, CSR7, reg); |
| 1512 | |
| 1513 | if (!reg) |
| 1514 | return IRQ_NONE; |
| 1515 | |
| 1516 | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 1517 | return IRQ_HANDLED; |
| 1518 | |
| 1519 | mask = reg; |
| 1520 | |
| 1521 | /* |
| 1522 | * Schedule tasklets for interrupt handling. |
| 1523 | */ |
| 1524 | if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) |
| 1525 | tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); |
| 1526 | |
| 1527 | if (rt2x00_get_field32(reg, CSR7_RXDONE)) |
| 1528 | tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| 1529 | |
| 1530 | if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || |
| 1531 | rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || |
| 1532 | rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { |
| 1533 | tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| 1534 | /* |
| 1535 | * Mask out all txdone interrupts. |
| 1536 | */ |
| 1537 | rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); |
| 1538 | rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); |
| 1539 | rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Disable all interrupts for which a tasklet was scheduled right now, |
| 1544 | * the tasklet will reenable the appropriate interrupts. |
| 1545 | */ |
| 1546 | spin_lock(&rt2x00dev->irqmask_lock); |
| 1547 | |
| 1548 | rt2x00mmio_register_read(rt2x00dev, CSR8, ®); |
| 1549 | reg |= mask; |
| 1550 | rt2x00mmio_register_write(rt2x00dev, CSR8, reg); |
| 1551 | |
| 1552 | spin_unlock(&rt2x00dev->irqmask_lock); |
| 1553 | |
| 1554 | return IRQ_HANDLED; |
| 1555 | } |
| 1556 | |
| 1557 | /* |
| 1558 | * Device probe functions. |
| 1559 | */ |
| 1560 | static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| 1561 | { |
| 1562 | struct eeprom_93cx6 eeprom; |
| 1563 | u32 reg; |
| 1564 | u16 word; |
| 1565 | u8 *mac; |
| 1566 | |
| 1567 | rt2x00mmio_register_read(rt2x00dev, CSR21, ®); |
| 1568 | |
| 1569 | eeprom.data = rt2x00dev; |
| 1570 | eeprom.register_read = rt2500pci_eepromregister_read; |
| 1571 | eeprom.register_write = rt2500pci_eepromregister_write; |
| 1572 | eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? |
| 1573 | PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; |
| 1574 | eeprom.reg_data_in = 0; |
| 1575 | eeprom.reg_data_out = 0; |
| 1576 | eeprom.reg_data_clock = 0; |
| 1577 | eeprom.reg_chip_select = 0; |
| 1578 | |
| 1579 | eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, |
| 1580 | EEPROM_SIZE / sizeof(u16)); |
| 1581 | |
| 1582 | /* |
| 1583 | * Start validation of the data that has been read. |
| 1584 | */ |
| 1585 | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| 1586 | if (!is_valid_ether_addr(mac)) { |
| 1587 | eth_random_addr(mac); |
| 1588 | rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); |
| 1589 | } |
| 1590 | |
| 1591 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); |
| 1592 | if (word == 0xffff) { |
| 1593 | rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); |
| 1594 | rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, |
| 1595 | ANTENNA_SW_DIVERSITY); |
| 1596 | rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, |
| 1597 | ANTENNA_SW_DIVERSITY); |
| 1598 | rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, |
| 1599 | LED_MODE_DEFAULT); |
| 1600 | rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); |
| 1601 | rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); |
| 1602 | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); |
| 1603 | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| 1604 | rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); |
| 1605 | } |
| 1606 | |
| 1607 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); |
| 1608 | if (word == 0xffff) { |
| 1609 | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| 1610 | rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); |
| 1611 | rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); |
| 1612 | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| 1613 | rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); |
| 1614 | } |
| 1615 | |
| 1616 | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); |
| 1617 | if (word == 0xffff) { |
| 1618 | rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, |
| 1619 | DEFAULT_RSSI_OFFSET); |
| 1620 | rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); |
| 1621 | rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", |
| 1622 | word); |
| 1623 | } |
| 1624 | |
| 1625 | return 0; |
| 1626 | } |
| 1627 | |
| 1628 | static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| 1629 | { |
| 1630 | u32 reg; |
| 1631 | u16 value; |
| 1632 | u16 eeprom; |
| 1633 | |
| 1634 | /* |
| 1635 | * Read EEPROM word for configuration. |
| 1636 | */ |
| 1637 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| 1638 | |
| 1639 | /* |
| 1640 | * Identify RF chipset. |
| 1641 | */ |
| 1642 | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| 1643 | rt2x00mmio_register_read(rt2x00dev, CSR0, ®); |
| 1644 | rt2x00_set_chip(rt2x00dev, RT2560, value, |
| 1645 | rt2x00_get_field32(reg, CSR0_REVISION)); |
| 1646 | |
| 1647 | if (!rt2x00_rf(rt2x00dev, RF2522) && |
| 1648 | !rt2x00_rf(rt2x00dev, RF2523) && |
| 1649 | !rt2x00_rf(rt2x00dev, RF2524) && |
| 1650 | !rt2x00_rf(rt2x00dev, RF2525) && |
| 1651 | !rt2x00_rf(rt2x00dev, RF2525E) && |
| 1652 | !rt2x00_rf(rt2x00dev, RF5222)) { |
| 1653 | rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); |
| 1654 | return -ENODEV; |
| 1655 | } |
| 1656 | |
| 1657 | /* |
| 1658 | * Identify default antenna configuration. |
| 1659 | */ |
| 1660 | rt2x00dev->default_ant.tx = |
| 1661 | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); |
| 1662 | rt2x00dev->default_ant.rx = |
| 1663 | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); |
| 1664 | |
| 1665 | /* |
| 1666 | * Store led mode, for correct led behaviour. |
| 1667 | */ |
| 1668 | #ifdef CONFIG_RT2X00_LIB_LEDS |
| 1669 | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); |
| 1670 | |
| 1671 | rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| 1672 | if (value == LED_MODE_TXRX_ACTIVITY || |
| 1673 | value == LED_MODE_DEFAULT || |
| 1674 | value == LED_MODE_ASUS) |
| 1675 | rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, |
| 1676 | LED_TYPE_ACTIVITY); |
| 1677 | #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| 1678 | |
| 1679 | /* |
| 1680 | * Detect if this device has an hardware controlled radio. |
| 1681 | */ |
| 1682 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) { |
| 1683 | __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); |
| 1684 | /* |
| 1685 | * On this device RFKILL initialized during probe does not work. |
| 1686 | */ |
| 1687 | __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags); |
| 1688 | } |
| 1689 | |
| 1690 | /* |
| 1691 | * Check if the BBP tuning should be enabled. |
| 1692 | */ |
| 1693 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); |
| 1694 | if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) |
| 1695 | __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); |
| 1696 | |
| 1697 | /* |
| 1698 | * Read the RSSI <-> dBm offset information. |
| 1699 | */ |
| 1700 | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); |
| 1701 | rt2x00dev->rssi_offset = |
| 1702 | rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); |
| 1703 | |
| 1704 | return 0; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * RF value list for RF2522 |
| 1709 | * Supports: 2.4 GHz |
| 1710 | */ |
| 1711 | static const struct rf_channel rf_vals_bg_2522[] = { |
| 1712 | { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, |
| 1713 | { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, |
| 1714 | { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, |
| 1715 | { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, |
| 1716 | { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, |
| 1717 | { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, |
| 1718 | { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, |
| 1719 | { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, |
| 1720 | { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, |
| 1721 | { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, |
| 1722 | { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, |
| 1723 | { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, |
| 1724 | { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, |
| 1725 | { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, |
| 1726 | }; |
| 1727 | |
| 1728 | /* |
| 1729 | * RF value list for RF2523 |
| 1730 | * Supports: 2.4 GHz |
| 1731 | */ |
| 1732 | static const struct rf_channel rf_vals_bg_2523[] = { |
| 1733 | { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, |
| 1734 | { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, |
| 1735 | { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, |
| 1736 | { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, |
| 1737 | { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, |
| 1738 | { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, |
| 1739 | { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, |
| 1740 | { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, |
| 1741 | { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, |
| 1742 | { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, |
| 1743 | { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, |
| 1744 | { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, |
| 1745 | { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, |
| 1746 | { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, |
| 1747 | }; |
| 1748 | |
| 1749 | /* |
| 1750 | * RF value list for RF2524 |
| 1751 | * Supports: 2.4 GHz |
| 1752 | */ |
| 1753 | static const struct rf_channel rf_vals_bg_2524[] = { |
| 1754 | { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, |
| 1755 | { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, |
| 1756 | { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, |
| 1757 | { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, |
| 1758 | { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, |
| 1759 | { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, |
| 1760 | { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, |
| 1761 | { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, |
| 1762 | { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, |
| 1763 | { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, |
| 1764 | { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, |
| 1765 | { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, |
| 1766 | { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, |
| 1767 | { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, |
| 1768 | }; |
| 1769 | |
| 1770 | /* |
| 1771 | * RF value list for RF2525 |
| 1772 | * Supports: 2.4 GHz |
| 1773 | */ |
| 1774 | static const struct rf_channel rf_vals_bg_2525[] = { |
| 1775 | { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, |
| 1776 | { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, |
| 1777 | { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, |
| 1778 | { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, |
| 1779 | { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, |
| 1780 | { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, |
| 1781 | { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, |
| 1782 | { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, |
| 1783 | { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, |
| 1784 | { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, |
| 1785 | { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, |
| 1786 | { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, |
| 1787 | { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, |
| 1788 | { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, |
| 1789 | }; |
| 1790 | |
| 1791 | /* |
| 1792 | * RF value list for RF2525e |
| 1793 | * Supports: 2.4 GHz |
| 1794 | */ |
| 1795 | static const struct rf_channel rf_vals_bg_2525e[] = { |
| 1796 | { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, |
| 1797 | { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, |
| 1798 | { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, |
| 1799 | { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, |
| 1800 | { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, |
| 1801 | { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, |
| 1802 | { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, |
| 1803 | { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, |
| 1804 | { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, |
| 1805 | { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, |
| 1806 | { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, |
| 1807 | { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, |
| 1808 | { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, |
| 1809 | { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, |
| 1810 | }; |
| 1811 | |
| 1812 | /* |
| 1813 | * RF value list for RF5222 |
| 1814 | * Supports: 2.4 GHz & 5.2 GHz |
| 1815 | */ |
| 1816 | static const struct rf_channel rf_vals_5222[] = { |
| 1817 | { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, |
| 1818 | { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, |
| 1819 | { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, |
| 1820 | { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, |
| 1821 | { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, |
| 1822 | { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, |
| 1823 | { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, |
| 1824 | { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, |
| 1825 | { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, |
| 1826 | { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, |
| 1827 | { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, |
| 1828 | { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, |
| 1829 | { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, |
| 1830 | { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, |
| 1831 | |
| 1832 | /* 802.11 UNI / HyperLan 2 */ |
| 1833 | { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, |
| 1834 | { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, |
| 1835 | { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, |
| 1836 | { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, |
| 1837 | { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, |
| 1838 | { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, |
| 1839 | { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, |
| 1840 | { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, |
| 1841 | |
| 1842 | /* 802.11 HyperLan 2 */ |
| 1843 | { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, |
| 1844 | { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, |
| 1845 | { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, |
| 1846 | { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, |
| 1847 | { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, |
| 1848 | { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, |
| 1849 | { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, |
| 1850 | { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, |
| 1851 | { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, |
| 1852 | { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, |
| 1853 | |
| 1854 | /* 802.11 UNII */ |
| 1855 | { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, |
| 1856 | { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, |
| 1857 | { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, |
| 1858 | { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, |
| 1859 | { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, |
| 1860 | }; |
| 1861 | |
| 1862 | static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| 1863 | { |
| 1864 | struct hw_mode_spec *spec = &rt2x00dev->spec; |
| 1865 | struct channel_info *info; |
| 1866 | char *tx_power; |
| 1867 | unsigned int i; |
| 1868 | |
| 1869 | /* |
| 1870 | * Initialize all hw fields. |
| 1871 | */ |
| 1872 | ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); |
| 1873 | ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); |
| 1874 | ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); |
| 1875 | ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); |
| 1876 | |
| 1877 | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| 1878 | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| 1879 | rt2x00_eeprom_addr(rt2x00dev, |
| 1880 | EEPROM_MAC_ADDR_0)); |
| 1881 | |
| 1882 | /* |
| 1883 | * Disable powersaving as default. |
| 1884 | */ |
| 1885 | rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; |
| 1886 | |
| 1887 | /* |
| 1888 | * Initialize hw_mode information. |
| 1889 | */ |
| 1890 | spec->supported_bands = SUPPORT_BAND_2GHZ; |
| 1891 | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| 1892 | |
| 1893 | if (rt2x00_rf(rt2x00dev, RF2522)) { |
| 1894 | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); |
| 1895 | spec->channels = rf_vals_bg_2522; |
| 1896 | } else if (rt2x00_rf(rt2x00dev, RF2523)) { |
| 1897 | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); |
| 1898 | spec->channels = rf_vals_bg_2523; |
| 1899 | } else if (rt2x00_rf(rt2x00dev, RF2524)) { |
| 1900 | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); |
| 1901 | spec->channels = rf_vals_bg_2524; |
| 1902 | } else if (rt2x00_rf(rt2x00dev, RF2525)) { |
| 1903 | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); |
| 1904 | spec->channels = rf_vals_bg_2525; |
| 1905 | } else if (rt2x00_rf(rt2x00dev, RF2525E)) { |
| 1906 | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); |
| 1907 | spec->channels = rf_vals_bg_2525e; |
| 1908 | } else if (rt2x00_rf(rt2x00dev, RF5222)) { |
| 1909 | spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| 1910 | spec->num_channels = ARRAY_SIZE(rf_vals_5222); |
| 1911 | spec->channels = rf_vals_5222; |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * Create channel information array |
| 1916 | */ |
| 1917 | info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); |
| 1918 | if (!info) |
| 1919 | return -ENOMEM; |
| 1920 | |
| 1921 | spec->channels_info = info; |
| 1922 | |
| 1923 | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); |
| 1924 | for (i = 0; i < 14; i++) { |
| 1925 | info[i].max_power = MAX_TXPOWER; |
| 1926 | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); |
| 1927 | } |
| 1928 | |
| 1929 | if (spec->num_channels > 14) { |
| 1930 | for (i = 14; i < spec->num_channels; i++) { |
| 1931 | info[i].max_power = MAX_TXPOWER; |
| 1932 | info[i].default_power1 = DEFAULT_TXPOWER; |
| 1933 | } |
| 1934 | } |
| 1935 | |
| 1936 | return 0; |
| 1937 | } |
| 1938 | |
| 1939 | static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) |
| 1940 | { |
| 1941 | int retval; |
| 1942 | u32 reg; |
| 1943 | |
| 1944 | /* |
| 1945 | * Allocate eeprom data. |
| 1946 | */ |
| 1947 | retval = rt2500pci_validate_eeprom(rt2x00dev); |
| 1948 | if (retval) |
| 1949 | return retval; |
| 1950 | |
| 1951 | retval = rt2500pci_init_eeprom(rt2x00dev); |
| 1952 | if (retval) |
| 1953 | return retval; |
| 1954 | |
| 1955 | /* |
| 1956 | * Enable rfkill polling by setting GPIO direction of the |
| 1957 | * rfkill switch GPIO pin correctly. |
| 1958 | */ |
| 1959 | rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); |
| 1960 | rt2x00_set_field32(®, GPIOCSR_DIR0, 1); |
| 1961 | rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); |
| 1962 | |
| 1963 | /* |
| 1964 | * Initialize hw specifications. |
| 1965 | */ |
| 1966 | retval = rt2500pci_probe_hw_mode(rt2x00dev); |
| 1967 | if (retval) |
| 1968 | return retval; |
| 1969 | |
| 1970 | /* |
| 1971 | * This device requires the atim queue and DMA-mapped skbs. |
| 1972 | */ |
| 1973 | __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); |
| 1974 | __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); |
| 1975 | __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); |
| 1976 | |
| 1977 | /* |
| 1978 | * Set the rssi offset. |
| 1979 | */ |
| 1980 | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; |
| 1981 | |
| 1982 | return 0; |
| 1983 | } |
| 1984 | |
| 1985 | /* |
| 1986 | * IEEE80211 stack callback functions. |
| 1987 | */ |
| 1988 | static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw, |
| 1989 | struct ieee80211_vif *vif) |
| 1990 | { |
| 1991 | struct rt2x00_dev *rt2x00dev = hw->priv; |
| 1992 | u64 tsf; |
| 1993 | u32 reg; |
| 1994 | |
| 1995 | rt2x00mmio_register_read(rt2x00dev, CSR17, ®); |
| 1996 | tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; |
| 1997 | rt2x00mmio_register_read(rt2x00dev, CSR16, ®); |
| 1998 | tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); |
| 1999 | |
| 2000 | return tsf; |
| 2001 | } |
| 2002 | |
| 2003 | static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) |
| 2004 | { |
| 2005 | struct rt2x00_dev *rt2x00dev = hw->priv; |
| 2006 | u32 reg; |
| 2007 | |
| 2008 | rt2x00mmio_register_read(rt2x00dev, CSR15, ®); |
| 2009 | return rt2x00_get_field32(reg, CSR15_BEACON_SENT); |
| 2010 | } |
| 2011 | |
| 2012 | static const struct ieee80211_ops rt2500pci_mac80211_ops = { |
| 2013 | .tx = rt2x00mac_tx, |
| 2014 | .start = rt2x00mac_start, |
| 2015 | .stop = rt2x00mac_stop, |
| 2016 | .add_interface = rt2x00mac_add_interface, |
| 2017 | .remove_interface = rt2x00mac_remove_interface, |
| 2018 | .config = rt2x00mac_config, |
| 2019 | .configure_filter = rt2x00mac_configure_filter, |
| 2020 | .sw_scan_start = rt2x00mac_sw_scan_start, |
| 2021 | .sw_scan_complete = rt2x00mac_sw_scan_complete, |
| 2022 | .get_stats = rt2x00mac_get_stats, |
| 2023 | .bss_info_changed = rt2x00mac_bss_info_changed, |
| 2024 | .conf_tx = rt2x00mac_conf_tx, |
| 2025 | .get_tsf = rt2500pci_get_tsf, |
| 2026 | .tx_last_beacon = rt2500pci_tx_last_beacon, |
| 2027 | .rfkill_poll = rt2x00mac_rfkill_poll, |
| 2028 | .flush = rt2x00mac_flush, |
| 2029 | .set_antenna = rt2x00mac_set_antenna, |
| 2030 | .get_antenna = rt2x00mac_get_antenna, |
| 2031 | .get_ringparam = rt2x00mac_get_ringparam, |
| 2032 | .tx_frames_pending = rt2x00mac_tx_frames_pending, |
| 2033 | }; |
| 2034 | |
| 2035 | static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { |
| 2036 | .irq_handler = rt2500pci_interrupt, |
| 2037 | .txstatus_tasklet = rt2500pci_txstatus_tasklet, |
| 2038 | .tbtt_tasklet = rt2500pci_tbtt_tasklet, |
| 2039 | .rxdone_tasklet = rt2500pci_rxdone_tasklet, |
| 2040 | .probe_hw = rt2500pci_probe_hw, |
| 2041 | .initialize = rt2x00mmio_initialize, |
| 2042 | .uninitialize = rt2x00mmio_uninitialize, |
| 2043 | .get_entry_state = rt2500pci_get_entry_state, |
| 2044 | .clear_entry = rt2500pci_clear_entry, |
| 2045 | .set_device_state = rt2500pci_set_device_state, |
| 2046 | .rfkill_poll = rt2500pci_rfkill_poll, |
| 2047 | .link_stats = rt2500pci_link_stats, |
| 2048 | .reset_tuner = rt2500pci_reset_tuner, |
| 2049 | .link_tuner = rt2500pci_link_tuner, |
| 2050 | .start_queue = rt2500pci_start_queue, |
| 2051 | .kick_queue = rt2500pci_kick_queue, |
| 2052 | .stop_queue = rt2500pci_stop_queue, |
| 2053 | .flush_queue = rt2x00mmio_flush_queue, |
| 2054 | .write_tx_desc = rt2500pci_write_tx_desc, |
| 2055 | .write_beacon = rt2500pci_write_beacon, |
| 2056 | .fill_rxdone = rt2500pci_fill_rxdone, |
| 2057 | .config_filter = rt2500pci_config_filter, |
| 2058 | .config_intf = rt2500pci_config_intf, |
| 2059 | .config_erp = rt2500pci_config_erp, |
| 2060 | .config_ant = rt2500pci_config_ant, |
| 2061 | .config = rt2500pci_config, |
| 2062 | }; |
| 2063 | |
| 2064 | static void rt2500pci_queue_init(struct data_queue *queue) |
| 2065 | { |
| 2066 | switch (queue->qid) { |
| 2067 | case QID_RX: |
| 2068 | queue->limit = 32; |
| 2069 | queue->data_size = DATA_FRAME_SIZE; |
| 2070 | queue->desc_size = RXD_DESC_SIZE; |
| 2071 | queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| 2072 | break; |
| 2073 | |
| 2074 | case QID_AC_VO: |
| 2075 | case QID_AC_VI: |
| 2076 | case QID_AC_BE: |
| 2077 | case QID_AC_BK: |
| 2078 | queue->limit = 32; |
| 2079 | queue->data_size = DATA_FRAME_SIZE; |
| 2080 | queue->desc_size = TXD_DESC_SIZE; |
| 2081 | queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| 2082 | break; |
| 2083 | |
| 2084 | case QID_BEACON: |
| 2085 | queue->limit = 1; |
| 2086 | queue->data_size = MGMT_FRAME_SIZE; |
| 2087 | queue->desc_size = TXD_DESC_SIZE; |
| 2088 | queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| 2089 | break; |
| 2090 | |
| 2091 | case QID_ATIM: |
| 2092 | queue->limit = 8; |
| 2093 | queue->data_size = DATA_FRAME_SIZE; |
| 2094 | queue->desc_size = TXD_DESC_SIZE; |
| 2095 | queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| 2096 | break; |
| 2097 | |
| 2098 | default: |
| 2099 | BUG(); |
| 2100 | break; |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | static const struct rt2x00_ops rt2500pci_ops = { |
| 2105 | .name = KBUILD_MODNAME, |
| 2106 | .max_ap_intf = 1, |
| 2107 | .eeprom_size = EEPROM_SIZE, |
| 2108 | .rf_size = RF_SIZE, |
| 2109 | .tx_queues = NUM_TX_QUEUES, |
| 2110 | .queue_init = rt2500pci_queue_init, |
| 2111 | .lib = &rt2500pci_rt2x00_ops, |
| 2112 | .hw = &rt2500pci_mac80211_ops, |
| 2113 | #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| 2114 | .debugfs = &rt2500pci_rt2x00debug, |
| 2115 | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| 2116 | }; |
| 2117 | |
| 2118 | /* |
| 2119 | * RT2500pci module information. |
| 2120 | */ |
| 2121 | static const struct pci_device_id rt2500pci_device_table[] = { |
| 2122 | { PCI_DEVICE(0x1814, 0x0201) }, |
| 2123 | { 0, } |
| 2124 | }; |
| 2125 | |
| 2126 | MODULE_AUTHOR(DRV_PROJECT); |
| 2127 | MODULE_VERSION(DRV_VERSION); |
| 2128 | MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); |
| 2129 | MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); |
| 2130 | MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); |
| 2131 | MODULE_LICENSE("GPL"); |
| 2132 | |
| 2133 | static int rt2500pci_probe(struct pci_dev *pci_dev, |
| 2134 | const struct pci_device_id *id) |
| 2135 | { |
| 2136 | return rt2x00pci_probe(pci_dev, &rt2500pci_ops); |
| 2137 | } |
| 2138 | |
| 2139 | static struct pci_driver rt2500pci_driver = { |
| 2140 | .name = KBUILD_MODNAME, |
| 2141 | .id_table = rt2500pci_device_table, |
| 2142 | .probe = rt2500pci_probe, |
| 2143 | .remove = rt2x00pci_remove, |
| 2144 | .suspend = rt2x00pci_suspend, |
| 2145 | .resume = rt2x00pci_resume, |
| 2146 | }; |
| 2147 | |
| 2148 | module_pci_driver(rt2500pci_driver); |