blob: 3f61c647fc5c58f6fdf2455fe32904237ab38081 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/kmemcheck.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/bug.h>
22#include <linux/cache.h>
23#include <linux/rbtree.h>
24#include <linux/socket.h>
25
26#include <linux/atomic.h>
27#include <asm/types.h>
28#include <linux/spinlock.h>
29#include <linux/net.h>
30#include <linux/textsearch.h>
31#include <net/checksum.h>
32#include <linux/rcupdate.h>
33#include <linux/hrtimer.h>
34#include <linux/dma-mapping.h>
35#include <linux/netdev_features.h>
36#include <linux/sched.h>
37#include <net/flow_dissector.h>
38#include <linux/splice.h>
39#include <linux/in6.h>
40#include <net/flow.h>
41
42/* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
135/* Don't change this without changing skb_csum_unnecessary! */
136#define CHECKSUM_NONE 0
137#define CHECKSUM_UNNECESSARY 1
138#define CHECKSUM_COMPLETE 2
139#define CHECKSUM_PARTIAL 3
140
141/* Maximum value in skb->csum_level */
142#define SKB_MAX_CSUM_LEVEL 3
143
144#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
145#define SKB_WITH_OVERHEAD(X) \
146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147#define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
149#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
152/* return minimum truesize of one skb containing X bytes of data */
153#define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
157struct net_device;
158struct scatterlist;
159struct pipe_inode_info;
160struct iov_iter;
161struct napi_struct;
162
163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
164struct nf_conntrack {
165 atomic_t use;
166};
167#endif
168
169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
170struct nf_bridge_info {
171 atomic_t use;
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
176 } orig_proto:8;
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
180 __u16 frag_max_size;
181 struct net_device *physindev;
182
183 /* always valid & non-NULL from FORWARD on, for physdev match */
184 struct net_device *physoutdev;
185 union {
186 /* prerouting: detect dnat in orig/reply direction */
187 __be32 ipv4_daddr;
188 struct in6_addr ipv6_daddr;
189
190 /* after prerouting + nat detected: store original source
191 * mac since neigh resolution overwrites it, only used while
192 * skb is out in neigh layer.
193 */
194 char neigh_header[8];
195 };
196};
197#endif
198
199struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206};
207
208struct sk_buff;
209
210/* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
216 */
217#if (65536/PAGE_SIZE + 1) < 16
218#define MAX_SKB_FRAGS 16UL
219#else
220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221#endif
222extern int sysctl_max_skb_frags;
223
224typedef struct skb_frag_struct skb_frag_t;
225
226struct skb_frag_struct {
227 struct {
228 struct page *p;
229 } page;
230#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
231 __u32 page_offset;
232 __u32 size;
233#else
234 __u16 page_offset;
235 __u16 size;
236#endif
237};
238
239static inline unsigned int skb_frag_size(const skb_frag_t *frag)
240{
241 return frag->size;
242}
243
244static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
245{
246 frag->size = size;
247}
248
249static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
250{
251 frag->size += delta;
252}
253
254static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
255{
256 frag->size -= delta;
257}
258
259#define HAVE_HW_TIME_STAMP
260
261/**
262 * struct skb_shared_hwtstamps - hardware time stamps
263 * @hwtstamp: hardware time stamp transformed into duration
264 * since arbitrary point in time
265 *
266 * Software time stamps generated by ktime_get_real() are stored in
267 * skb->tstamp.
268 *
269 * hwtstamps can only be compared against other hwtstamps from
270 * the same device.
271 *
272 * This structure is attached to packets as part of the
273 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
274 */
275struct skb_shared_hwtstamps {
276 ktime_t hwtstamp;
277};
278
279/* Definitions for tx_flags in struct skb_shared_info */
280enum {
281 /* generate hardware time stamp */
282 SKBTX_HW_TSTAMP = 1 << 0,
283
284 /* generate software time stamp when queueing packet to NIC */
285 SKBTX_SW_TSTAMP = 1 << 1,
286
287 /* device driver is going to provide hardware time stamp */
288 SKBTX_IN_PROGRESS = 1 << 2,
289
290 /* device driver supports TX zero-copy buffers */
291 SKBTX_DEV_ZEROCOPY = 1 << 3,
292
293 /* generate wifi status information (where possible) */
294 SKBTX_WIFI_STATUS = 1 << 4,
295
296 /* This indicates at least one fragment might be overwritten
297 * (as in vmsplice(), sendfile() ...)
298 * If we need to compute a TX checksum, we'll need to copy
299 * all frags to avoid possible bad checksum
300 */
301 SKBTX_SHARED_FRAG = 1 << 5,
302
303 /* generate software time stamp when entering packet scheduling */
304 SKBTX_SCHED_TSTAMP = 1 << 6,
305
306 /* generate software timestamp on peer data acknowledgment */
307 SKBTX_ACK_TSTAMP = 1 << 7,
308};
309
310#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
311 SKBTX_SCHED_TSTAMP | \
312 SKBTX_ACK_TSTAMP)
313#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
314
315/*
316 * The callback notifies userspace to release buffers when skb DMA is done in
317 * lower device, the skb last reference should be 0 when calling this.
318 * The zerocopy_success argument is true if zero copy transmit occurred,
319 * false on data copy or out of memory error caused by data copy attempt.
320 * The ctx field is used to track device context.
321 * The desc field is used to track userspace buffer index.
322 */
323struct ubuf_info {
324 void (*callback)(struct ubuf_info *, bool zerocopy_success);
325 void *ctx;
326 unsigned long desc;
327};
328
329/* This data is invariant across clones and lives at
330 * the end of the header data, ie. at skb->end.
331 */
332struct skb_shared_info {
333 unsigned char nr_frags;
334 __u8 tx_flags;
335 unsigned short gso_size;
336 /* Warning: this field is not always filled in (UFO)! */
337 unsigned short gso_segs;
338 unsigned short gso_type;
339 struct sk_buff *frag_list;
340 struct skb_shared_hwtstamps hwtstamps;
341 u32 tskey;
342 __be32 ip6_frag_id;
343
344 /*
345 * Warning : all fields before dataref are cleared in __alloc_skb()
346 */
347 atomic_t dataref;
348
349 /* Intermediate layers must ensure that destructor_arg
350 * remains valid until skb destructor */
351 void * destructor_arg;
352
353 /* must be last field, see pskb_expand_head() */
354 skb_frag_t frags[MAX_SKB_FRAGS];
355};
356
357/* We divide dataref into two halves. The higher 16 bits hold references
358 * to the payload part of skb->data. The lower 16 bits hold references to
359 * the entire skb->data. A clone of a headerless skb holds the length of
360 * the header in skb->hdr_len.
361 *
362 * All users must obey the rule that the skb->data reference count must be
363 * greater than or equal to the payload reference count.
364 *
365 * Holding a reference to the payload part means that the user does not
366 * care about modifications to the header part of skb->data.
367 */
368#define SKB_DATAREF_SHIFT 16
369#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
370
371
372enum {
373 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
374 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
375 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
376};
377
378enum {
379 SKB_GSO_TCPV4 = 1 << 0,
380 SKB_GSO_UDP = 1 << 1,
381
382 /* This indicates the skb is from an untrusted source. */
383 SKB_GSO_DODGY = 1 << 2,
384
385 /* This indicates the tcp segment has CWR set. */
386 SKB_GSO_TCP_ECN = 1 << 3,
387
388 SKB_GSO_TCPV6 = 1 << 4,
389
390 SKB_GSO_FCOE = 1 << 5,
391
392 SKB_GSO_GRE = 1 << 6,
393
394 SKB_GSO_GRE_CSUM = 1 << 7,
395
396 SKB_GSO_IPIP = 1 << 8,
397
398 SKB_GSO_SIT = 1 << 9,
399
400 SKB_GSO_UDP_TUNNEL = 1 << 10,
401
402 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
403
404 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
405};
406
407#if BITS_PER_LONG > 32
408#define NET_SKBUFF_DATA_USES_OFFSET 1
409#endif
410
411#ifdef NET_SKBUFF_DATA_USES_OFFSET
412typedef unsigned int sk_buff_data_t;
413#else
414typedef unsigned char *sk_buff_data_t;
415#endif
416
417/**
418 * struct skb_mstamp - multi resolution time stamps
419 * @stamp_us: timestamp in us resolution
420 * @stamp_jiffies: timestamp in jiffies
421 */
422struct skb_mstamp {
423 union {
424 u64 v64;
425 struct {
426 u32 stamp_us;
427 u32 stamp_jiffies;
428 };
429 };
430};
431
432/**
433 * skb_mstamp_get - get current timestamp
434 * @cl: place to store timestamps
435 */
436static inline void skb_mstamp_get(struct skb_mstamp *cl)
437{
438 u64 val = local_clock();
439
440 do_div(val, NSEC_PER_USEC);
441 cl->stamp_us = (u32)val;
442 cl->stamp_jiffies = (u32)jiffies;
443}
444
445/**
446 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
447 * @t1: pointer to newest sample
448 * @t0: pointer to oldest sample
449 */
450static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
451 const struct skb_mstamp *t0)
452{
453 s32 delta_us = t1->stamp_us - t0->stamp_us;
454 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
455
456 /* If delta_us is negative, this might be because interval is too big,
457 * or local_clock() drift is too big : fallback using jiffies.
458 */
459 if (delta_us <= 0 ||
460 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
461
462 delta_us = jiffies_to_usecs(delta_jiffies);
463
464 return delta_us;
465}
466
467static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
468 const struct skb_mstamp *t0)
469{
470 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
471
472 if (!diff)
473 diff = t1->stamp_us - t0->stamp_us;
474 return diff > 0;
475}
476
477/**
478 * struct sk_buff - socket buffer
479 * @next: Next buffer in list
480 * @prev: Previous buffer in list
481 * @tstamp: Time we arrived/left
482 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
483 * @sk: Socket we are owned by
484 * @dev: Device we arrived on/are leaving by
485 * @cb: Control buffer. Free for use by every layer. Put private vars here
486 * @_skb_refdst: destination entry (with norefcount bit)
487 * @sp: the security path, used for xfrm
488 * @len: Length of actual data
489 * @data_len: Data length
490 * @mac_len: Length of link layer header
491 * @hdr_len: writable header length of cloned skb
492 * @csum: Checksum (must include start/offset pair)
493 * @csum_start: Offset from skb->head where checksumming should start
494 * @csum_offset: Offset from csum_start where checksum should be stored
495 * @priority: Packet queueing priority
496 * @ignore_df: allow local fragmentation
497 * @cloned: Head may be cloned (check refcnt to be sure)
498 * @ip_summed: Driver fed us an IP checksum
499 * @nohdr: Payload reference only, must not modify header
500 * @nfctinfo: Relationship of this skb to the connection
501 * @pkt_type: Packet class
502 * @fclone: skbuff clone status
503 * @ipvs_property: skbuff is owned by ipvs
504 * @peeked: this packet has been seen already, so stats have been
505 * done for it, don't do them again
506 * @nf_trace: netfilter packet trace flag
507 * @protocol: Packet protocol from driver
508 * @destructor: Destruct function
509 * @nfct: Associated connection, if any
510 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
511 * @skb_iif: ifindex of device we arrived on
512 * @tc_index: Traffic control index
513 * @tc_verd: traffic control verdict
514 * @hash: the packet hash
515 * @queue_mapping: Queue mapping for multiqueue devices
516 * @xmit_more: More SKBs are pending for this queue
517 * @ndisc_nodetype: router type (from link layer)
518 * @ooo_okay: allow the mapping of a socket to a queue to be changed
519 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
520 * ports.
521 * @sw_hash: indicates hash was computed in software stack
522 * @wifi_acked_valid: wifi_acked was set
523 * @wifi_acked: whether frame was acked on wifi or not
524 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
525 * @napi_id: id of the NAPI struct this skb came from
526 * @secmark: security marking
527 * @offload_fwd_mark: fwding offload mark
528 * @mark: Generic packet mark
529 * @vlan_proto: vlan encapsulation protocol
530 * @vlan_tci: vlan tag control information
531 * @inner_protocol: Protocol (encapsulation)
532 * @inner_transport_header: Inner transport layer header (encapsulation)
533 * @inner_network_header: Network layer header (encapsulation)
534 * @inner_mac_header: Link layer header (encapsulation)
535 * @transport_header: Transport layer header
536 * @network_header: Network layer header
537 * @mac_header: Link layer header
538 * @tail: Tail pointer
539 * @end: End pointer
540 * @head: Head of buffer
541 * @data: Data head pointer
542 * @truesize: Buffer size
543 * @users: User count - see {datagram,tcp}.c
544 */
545
546struct sk_buff {
547 union {
548 struct {
549 /* These two members must be first. */
550 struct sk_buff *next;
551 struct sk_buff *prev;
552
553 union {
554 ktime_t tstamp;
555 struct skb_mstamp skb_mstamp;
556 };
557 };
558 struct rb_node rbnode; /* used in netem & tcp stack */
559 };
560 struct sock *sk;
561 struct net_device *dev;
562
563 /*
564 * This is the control buffer. It is free to use for every
565 * layer. Please put your private variables there. If you
566 * want to keep them across layers you have to do a skb_clone()
567 * first. This is owned by whoever has the skb queued ATM.
568 */
569 char cb[48] __aligned(8);
570
571 unsigned long _skb_refdst;
572 void (*destructor)(struct sk_buff *skb);
573#ifdef CONFIG_XFRM
574 struct sec_path *sp;
575#endif
576#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
577 struct nf_conntrack *nfct;
578#endif
579#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
580 struct nf_bridge_info *nf_bridge;
581#endif
582 unsigned int len,
583 data_len;
584 __u16 mac_len,
585 hdr_len;
586
587 /* Following fields are _not_ copied in __copy_skb_header()
588 * Note that queue_mapping is here mostly to fill a hole.
589 */
590 kmemcheck_bitfield_begin(flags1);
591 __u16 queue_mapping;
592 __u8 cloned:1,
593 nohdr:1,
594 fclone:2,
595 peeked:1,
596 head_frag:1,
597 xmit_more:1;
598 /* one bit hole */
599 kmemcheck_bitfield_end(flags1);
600
601 /* fields enclosed in headers_start/headers_end are copied
602 * using a single memcpy() in __copy_skb_header()
603 */
604 /* private: */
605 __u32 headers_start[0];
606 /* public: */
607
608/* if you move pkt_type around you also must adapt those constants */
609#ifdef __BIG_ENDIAN_BITFIELD
610#define PKT_TYPE_MAX (7 << 5)
611#else
612#define PKT_TYPE_MAX 7
613#endif
614#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
615
616 __u8 __pkt_type_offset[0];
617 __u8 pkt_type:3;
618 __u8 pfmemalloc:1;
619 __u8 ignore_df:1;
620 __u8 nfctinfo:3;
621
622 __u8 nf_trace:1;
623 __u8 ip_summed:2;
624 __u8 ooo_okay:1;
625 __u8 l4_hash:1;
626 __u8 sw_hash:1;
627 __u8 wifi_acked_valid:1;
628 __u8 wifi_acked:1;
629
630 __u8 no_fcs:1;
631 /* Indicates the inner headers are valid in the skbuff. */
632 __u8 encapsulation:1;
633 __u8 encap_hdr_csum:1;
634 __u8 csum_valid:1;
635 __u8 csum_complete_sw:1;
636 __u8 csum_level:2;
637 __u8 csum_bad:1;
638
639#ifdef CONFIG_IPV6_NDISC_NODETYPE
640 __u8 ndisc_nodetype:2;
641#endif
642 __u8 ipvs_property:1;
643 __u8 inner_protocol_type:1;
644 __u8 remcsum_offload:1;
645 /* 3 or 5 bit hole */
646
647#ifdef CONFIG_NET_SCHED
648 __u16 tc_index; /* traffic control index */
649#ifdef CONFIG_NET_CLS_ACT
650 __u16 tc_verd; /* traffic control verdict */
651#endif
652#endif
653
654 union {
655 __wsum csum;
656 struct {
657 __u16 csum_start;
658 __u16 csum_offset;
659 };
660 };
661 __u32 priority;
662 int skb_iif;
663 __u32 hash;
664 __be16 vlan_proto;
665 __u16 vlan_tci;
666#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
667 union {
668 unsigned int napi_id;
669 unsigned int sender_cpu;
670 };
671#endif
672 union {
673#ifdef CONFIG_NETWORK_SECMARK
674 __u32 secmark;
675#endif
676#ifdef CONFIG_NET_SWITCHDEV
677 __u32 offload_fwd_mark;
678#endif
679 };
680
681 union {
682 __u32 mark;
683 __u32 reserved_tailroom;
684 };
685
686 union {
687 __be16 inner_protocol;
688 __u8 inner_ipproto;
689 };
690
691 __u16 inner_transport_header;
692 __u16 inner_network_header;
693 __u16 inner_mac_header;
694
695 __be16 protocol;
696 __u16 transport_header;
697 __u16 network_header;
698 __u16 mac_header;
699
700 /* private: */
701 __u32 headers_end[0];
702 /* public: */
703
704 /* These elements must be at the end, see alloc_skb() for details. */
705 sk_buff_data_t tail;
706 sk_buff_data_t end;
707 unsigned char *head,
708 *data;
709 unsigned int truesize;
710 atomic_t users;
711};
712
713#ifdef __KERNEL__
714/*
715 * Handling routines are only of interest to the kernel
716 */
717#include <linux/slab.h>
718
719
720#define SKB_ALLOC_FCLONE 0x01
721#define SKB_ALLOC_RX 0x02
722#define SKB_ALLOC_NAPI 0x04
723
724/* Returns true if the skb was allocated from PFMEMALLOC reserves */
725static inline bool skb_pfmemalloc(const struct sk_buff *skb)
726{
727 return unlikely(skb->pfmemalloc);
728}
729
730/*
731 * skb might have a dst pointer attached, refcounted or not.
732 * _skb_refdst low order bit is set if refcount was _not_ taken
733 */
734#define SKB_DST_NOREF 1UL
735#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
736
737/**
738 * skb_dst - returns skb dst_entry
739 * @skb: buffer
740 *
741 * Returns skb dst_entry, regardless of reference taken or not.
742 */
743static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
744{
745 /* If refdst was not refcounted, check we still are in a
746 * rcu_read_lock section
747 */
748 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
749 !rcu_read_lock_held() &&
750 !rcu_read_lock_bh_held());
751 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
752}
753
754/**
755 * skb_dst_set - sets skb dst
756 * @skb: buffer
757 * @dst: dst entry
758 *
759 * Sets skb dst, assuming a reference was taken on dst and should
760 * be released by skb_dst_drop()
761 */
762static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
763{
764 skb->_skb_refdst = (unsigned long)dst;
765}
766
767/**
768 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
769 * @skb: buffer
770 * @dst: dst entry
771 *
772 * Sets skb dst, assuming a reference was not taken on dst.
773 * If dst entry is cached, we do not take reference and dst_release
774 * will be avoided by refdst_drop. If dst entry is not cached, we take
775 * reference, so that last dst_release can destroy the dst immediately.
776 */
777static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
778{
779 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
780 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
781}
782
783/**
784 * skb_dst_is_noref - Test if skb dst isn't refcounted
785 * @skb: buffer
786 */
787static inline bool skb_dst_is_noref(const struct sk_buff *skb)
788{
789 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
790}
791
792static inline struct rtable *skb_rtable(const struct sk_buff *skb)
793{
794 return (struct rtable *)skb_dst(skb);
795}
796
797void kfree_skb(struct sk_buff *skb);
798void kfree_skb_list(struct sk_buff *segs);
799void skb_tx_error(struct sk_buff *skb);
800void consume_skb(struct sk_buff *skb);
801void __kfree_skb(struct sk_buff *skb);
802extern struct kmem_cache *skbuff_head_cache;
803
804void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
805bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
806 bool *fragstolen, int *delta_truesize);
807
808struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
809 int node);
810struct sk_buff *__build_skb(void *data, unsigned int frag_size);
811struct sk_buff *build_skb(void *data, unsigned int frag_size);
812static inline struct sk_buff *alloc_skb(unsigned int size,
813 gfp_t priority)
814{
815 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
816}
817
818struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
819 unsigned long data_len,
820 int max_page_order,
821 int *errcode,
822 gfp_t gfp_mask);
823
824/* Layout of fast clones : [skb1][skb2][fclone_ref] */
825struct sk_buff_fclones {
826 struct sk_buff skb1;
827
828 struct sk_buff skb2;
829
830 atomic_t fclone_ref;
831};
832
833/**
834 * skb_fclone_busy - check if fclone is busy
835 * @skb: buffer
836 *
837 * Returns true is skb is a fast clone, and its clone is not freed.
838 * Some drivers call skb_orphan() in their ndo_start_xmit(),
839 * so we also check that this didnt happen.
840 */
841static inline bool skb_fclone_busy(const struct sock *sk,
842 const struct sk_buff *skb)
843{
844 const struct sk_buff_fclones *fclones;
845
846 fclones = container_of(skb, struct sk_buff_fclones, skb1);
847
848 return skb->fclone == SKB_FCLONE_ORIG &&
849 atomic_read(&fclones->fclone_ref) > 1 &&
850 fclones->skb2.sk == sk;
851}
852
853static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
854 gfp_t priority)
855{
856 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
857}
858
859struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
860static inline struct sk_buff *alloc_skb_head(gfp_t priority)
861{
862 return __alloc_skb_head(priority, -1);
863}
864
865struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
866int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
867struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
868struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
869struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
870 gfp_t gfp_mask, bool fclone);
871static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
872 gfp_t gfp_mask)
873{
874 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
875}
876
877int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
878struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
879 unsigned int headroom);
880struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
881 int newtailroom, gfp_t priority);
882int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
883 int offset, int len);
884int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
885 int len);
886int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
887int skb_pad(struct sk_buff *skb, int pad);
888#define dev_kfree_skb(a) consume_skb(a)
889
890int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
891 int getfrag(void *from, char *to, int offset,
892 int len, int odd, struct sk_buff *skb),
893 void *from, int length);
894
895int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
896 int offset, size_t size);
897
898struct skb_seq_state {
899 __u32 lower_offset;
900 __u32 upper_offset;
901 __u32 frag_idx;
902 __u32 stepped_offset;
903 struct sk_buff *root_skb;
904 struct sk_buff *cur_skb;
905 __u8 *frag_data;
906};
907
908void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
909 unsigned int to, struct skb_seq_state *st);
910unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
911 struct skb_seq_state *st);
912void skb_abort_seq_read(struct skb_seq_state *st);
913
914unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
915 unsigned int to, struct ts_config *config);
916
917/*
918 * Packet hash types specify the type of hash in skb_set_hash.
919 *
920 * Hash types refer to the protocol layer addresses which are used to
921 * construct a packet's hash. The hashes are used to differentiate or identify
922 * flows of the protocol layer for the hash type. Hash types are either
923 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
924 *
925 * Properties of hashes:
926 *
927 * 1) Two packets in different flows have different hash values
928 * 2) Two packets in the same flow should have the same hash value
929 *
930 * A hash at a higher layer is considered to be more specific. A driver should
931 * set the most specific hash possible.
932 *
933 * A driver cannot indicate a more specific hash than the layer at which a hash
934 * was computed. For instance an L3 hash cannot be set as an L4 hash.
935 *
936 * A driver may indicate a hash level which is less specific than the
937 * actual layer the hash was computed on. For instance, a hash computed
938 * at L4 may be considered an L3 hash. This should only be done if the
939 * driver can't unambiguously determine that the HW computed the hash at
940 * the higher layer. Note that the "should" in the second property above
941 * permits this.
942 */
943enum pkt_hash_types {
944 PKT_HASH_TYPE_NONE, /* Undefined type */
945 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
946 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
947 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
948};
949
950static inline void skb_clear_hash(struct sk_buff *skb)
951{
952 skb->hash = 0;
953 skb->sw_hash = 0;
954 skb->l4_hash = 0;
955}
956
957static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
958{
959 if (!skb->l4_hash)
960 skb_clear_hash(skb);
961}
962
963static inline void
964__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
965{
966 skb->l4_hash = is_l4;
967 skb->sw_hash = is_sw;
968 skb->hash = hash;
969}
970
971static inline void
972skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
973{
974 /* Used by drivers to set hash from HW */
975 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
976}
977
978static inline void
979__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
980{
981 __skb_set_hash(skb, hash, true, is_l4);
982}
983
984void __skb_get_hash(struct sk_buff *skb);
985u32 __skb_get_hash_symmetric(struct sk_buff *skb);
986u32 skb_get_poff(const struct sk_buff *skb);
987u32 __skb_get_poff(const struct sk_buff *skb, void *data,
988 const struct flow_keys *keys, int hlen);
989__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
990 void *data, int hlen_proto);
991
992static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
993 int thoff, u8 ip_proto)
994{
995 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
996}
997
998void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
999 const struct flow_dissector_key *key,
1000 unsigned int key_count);
1001
1002bool __skb_flow_dissect(const struct sk_buff *skb,
1003 struct flow_dissector *flow_dissector,
1004 void *target_container,
1005 void *data, __be16 proto, int nhoff, int hlen,
1006 unsigned int flags);
1007
1008static inline bool skb_flow_dissect(const struct sk_buff *skb,
1009 struct flow_dissector *flow_dissector,
1010 void *target_container, unsigned int flags)
1011{
1012 return __skb_flow_dissect(skb, flow_dissector, target_container,
1013 NULL, 0, 0, 0, flags);
1014}
1015
1016static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1017 struct flow_keys *flow,
1018 unsigned int flags)
1019{
1020 memset(flow, 0, sizeof(*flow));
1021 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1022 NULL, 0, 0, 0, flags);
1023}
1024
1025static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1026 void *data, __be16 proto,
1027 int nhoff, int hlen,
1028 unsigned int flags)
1029{
1030 memset(flow, 0, sizeof(*flow));
1031 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1032 data, proto, nhoff, hlen, flags);
1033}
1034
1035static inline __u32 skb_get_hash(struct sk_buff *skb)
1036{
1037 if (!skb->l4_hash && !skb->sw_hash)
1038 __skb_get_hash(skb);
1039
1040 return skb->hash;
1041}
1042
1043__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1044
1045static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1046{
1047 if (!skb->l4_hash && !skb->sw_hash) {
1048 struct flow_keys keys;
1049 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1050
1051 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1052 }
1053
1054 return skb->hash;
1055}
1056
1057__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1058
1059static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1060{
1061 if (!skb->l4_hash && !skb->sw_hash) {
1062 struct flow_keys keys;
1063 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1064
1065 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1066 }
1067
1068 return skb->hash;
1069}
1070
1071__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1072
1073static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1074{
1075 return skb->hash;
1076}
1077
1078static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1079{
1080 to->hash = from->hash;
1081 to->sw_hash = from->sw_hash;
1082 to->l4_hash = from->l4_hash;
1083};
1084
1085static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1086{
1087}
1088
1089#ifdef NET_SKBUFF_DATA_USES_OFFSET
1090static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1091{
1092 return skb->head + skb->end;
1093}
1094
1095static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1096{
1097 return skb->end;
1098}
1099#else
1100static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1101{
1102 return skb->end;
1103}
1104
1105static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1106{
1107 return skb->end - skb->head;
1108}
1109#endif
1110
1111/* Internal */
1112#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1113
1114static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1115{
1116 return &skb_shinfo(skb)->hwtstamps;
1117}
1118
1119/**
1120 * skb_queue_empty - check if a queue is empty
1121 * @list: queue head
1122 *
1123 * Returns true if the queue is empty, false otherwise.
1124 */
1125static inline int skb_queue_empty(const struct sk_buff_head *list)
1126{
1127 return list->next == (const struct sk_buff *) list;
1128}
1129
1130/**
1131 * skb_queue_is_last - check if skb is the last entry in the queue
1132 * @list: queue head
1133 * @skb: buffer
1134 *
1135 * Returns true if @skb is the last buffer on the list.
1136 */
1137static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1138 const struct sk_buff *skb)
1139{
1140 return skb->next == (const struct sk_buff *) list;
1141}
1142
1143/**
1144 * skb_queue_is_first - check if skb is the first entry in the queue
1145 * @list: queue head
1146 * @skb: buffer
1147 *
1148 * Returns true if @skb is the first buffer on the list.
1149 */
1150static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1151 const struct sk_buff *skb)
1152{
1153 return skb->prev == (const struct sk_buff *) list;
1154}
1155
1156/**
1157 * skb_queue_next - return the next packet in the queue
1158 * @list: queue head
1159 * @skb: current buffer
1160 *
1161 * Return the next packet in @list after @skb. It is only valid to
1162 * call this if skb_queue_is_last() evaluates to false.
1163 */
1164static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1165 const struct sk_buff *skb)
1166{
1167 /* This BUG_ON may seem severe, but if we just return then we
1168 * are going to dereference garbage.
1169 */
1170 BUG_ON(skb_queue_is_last(list, skb));
1171 return skb->next;
1172}
1173
1174/**
1175 * skb_queue_prev - return the prev packet in the queue
1176 * @list: queue head
1177 * @skb: current buffer
1178 *
1179 * Return the prev packet in @list before @skb. It is only valid to
1180 * call this if skb_queue_is_first() evaluates to false.
1181 */
1182static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1183 const struct sk_buff *skb)
1184{
1185 /* This BUG_ON may seem severe, but if we just return then we
1186 * are going to dereference garbage.
1187 */
1188 BUG_ON(skb_queue_is_first(list, skb));
1189 return skb->prev;
1190}
1191
1192/**
1193 * skb_get - reference buffer
1194 * @skb: buffer to reference
1195 *
1196 * Makes another reference to a socket buffer and returns a pointer
1197 * to the buffer.
1198 */
1199static inline struct sk_buff *skb_get(struct sk_buff *skb)
1200{
1201 atomic_inc(&skb->users);
1202 return skb;
1203}
1204
1205/*
1206 * If users == 1, we are the only owner and are can avoid redundant
1207 * atomic change.
1208 */
1209
1210/**
1211 * skb_cloned - is the buffer a clone
1212 * @skb: buffer to check
1213 *
1214 * Returns true if the buffer was generated with skb_clone() and is
1215 * one of multiple shared copies of the buffer. Cloned buffers are
1216 * shared data so must not be written to under normal circumstances.
1217 */
1218static inline int skb_cloned(const struct sk_buff *skb)
1219{
1220 return skb->cloned &&
1221 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1222}
1223
1224static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1225{
1226 might_sleep_if(gfpflags_allow_blocking(pri));
1227
1228 if (skb_cloned(skb))
1229 return pskb_expand_head(skb, 0, 0, pri);
1230
1231 return 0;
1232}
1233
1234/**
1235 * skb_header_cloned - is the header a clone
1236 * @skb: buffer to check
1237 *
1238 * Returns true if modifying the header part of the buffer requires
1239 * the data to be copied.
1240 */
1241static inline int skb_header_cloned(const struct sk_buff *skb)
1242{
1243 int dataref;
1244
1245 if (!skb->cloned)
1246 return 0;
1247
1248 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1249 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1250 return dataref != 1;
1251}
1252
1253/**
1254 * skb_header_release - release reference to header
1255 * @skb: buffer to operate on
1256 *
1257 * Drop a reference to the header part of the buffer. This is done
1258 * by acquiring a payload reference. You must not read from the header
1259 * part of skb->data after this.
1260 * Note : Check if you can use __skb_header_release() instead.
1261 */
1262static inline void skb_header_release(struct sk_buff *skb)
1263{
1264 BUG_ON(skb->nohdr);
1265 skb->nohdr = 1;
1266 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1267}
1268
1269/**
1270 * __skb_header_release - release reference to header
1271 * @skb: buffer to operate on
1272 *
1273 * Variant of skb_header_release() assuming skb is private to caller.
1274 * We can avoid one atomic operation.
1275 */
1276static inline void __skb_header_release(struct sk_buff *skb)
1277{
1278 skb->nohdr = 1;
1279 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1280}
1281
1282
1283/**
1284 * skb_shared - is the buffer shared
1285 * @skb: buffer to check
1286 *
1287 * Returns true if more than one person has a reference to this
1288 * buffer.
1289 */
1290static inline int skb_shared(const struct sk_buff *skb)
1291{
1292 return atomic_read(&skb->users) != 1;
1293}
1294
1295/**
1296 * skb_share_check - check if buffer is shared and if so clone it
1297 * @skb: buffer to check
1298 * @pri: priority for memory allocation
1299 *
1300 * If the buffer is shared the buffer is cloned and the old copy
1301 * drops a reference. A new clone with a single reference is returned.
1302 * If the buffer is not shared the original buffer is returned. When
1303 * being called from interrupt status or with spinlocks held pri must
1304 * be GFP_ATOMIC.
1305 *
1306 * NULL is returned on a memory allocation failure.
1307 */
1308static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1309{
1310 might_sleep_if(gfpflags_allow_blocking(pri));
1311 if (skb_shared(skb)) {
1312 struct sk_buff *nskb = skb_clone(skb, pri);
1313
1314 if (likely(nskb))
1315 consume_skb(skb);
1316 else
1317 kfree_skb(skb);
1318 skb = nskb;
1319 }
1320 return skb;
1321}
1322
1323/*
1324 * Copy shared buffers into a new sk_buff. We effectively do COW on
1325 * packets to handle cases where we have a local reader and forward
1326 * and a couple of other messy ones. The normal one is tcpdumping
1327 * a packet thats being forwarded.
1328 */
1329
1330/**
1331 * skb_unshare - make a copy of a shared buffer
1332 * @skb: buffer to check
1333 * @pri: priority for memory allocation
1334 *
1335 * If the socket buffer is a clone then this function creates a new
1336 * copy of the data, drops a reference count on the old copy and returns
1337 * the new copy with the reference count at 1. If the buffer is not a clone
1338 * the original buffer is returned. When called with a spinlock held or
1339 * from interrupt state @pri must be %GFP_ATOMIC
1340 *
1341 * %NULL is returned on a memory allocation failure.
1342 */
1343static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1344 gfp_t pri)
1345{
1346 might_sleep_if(gfpflags_allow_blocking(pri));
1347 if (skb_cloned(skb)) {
1348 struct sk_buff *nskb = skb_copy(skb, pri);
1349
1350 /* Free our shared copy */
1351 if (likely(nskb))
1352 consume_skb(skb);
1353 else
1354 kfree_skb(skb);
1355 skb = nskb;
1356 }
1357 return skb;
1358}
1359
1360/**
1361 * skb_peek - peek at the head of an &sk_buff_head
1362 * @list_: list to peek at
1363 *
1364 * Peek an &sk_buff. Unlike most other operations you _MUST_
1365 * be careful with this one. A peek leaves the buffer on the
1366 * list and someone else may run off with it. You must hold
1367 * the appropriate locks or have a private queue to do this.
1368 *
1369 * Returns %NULL for an empty list or a pointer to the head element.
1370 * The reference count is not incremented and the reference is therefore
1371 * volatile. Use with caution.
1372 */
1373static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1374{
1375 struct sk_buff *skb = list_->next;
1376
1377 if (skb == (struct sk_buff *)list_)
1378 skb = NULL;
1379 return skb;
1380}
1381
1382/**
1383 * skb_peek_next - peek skb following the given one from a queue
1384 * @skb: skb to start from
1385 * @list_: list to peek at
1386 *
1387 * Returns %NULL when the end of the list is met or a pointer to the
1388 * next element. The reference count is not incremented and the
1389 * reference is therefore volatile. Use with caution.
1390 */
1391static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1392 const struct sk_buff_head *list_)
1393{
1394 struct sk_buff *next = skb->next;
1395
1396 if (next == (struct sk_buff *)list_)
1397 next = NULL;
1398 return next;
1399}
1400
1401/**
1402 * skb_peek_tail - peek at the tail of an &sk_buff_head
1403 * @list_: list to peek at
1404 *
1405 * Peek an &sk_buff. Unlike most other operations you _MUST_
1406 * be careful with this one. A peek leaves the buffer on the
1407 * list and someone else may run off with it. You must hold
1408 * the appropriate locks or have a private queue to do this.
1409 *
1410 * Returns %NULL for an empty list or a pointer to the tail element.
1411 * The reference count is not incremented and the reference is therefore
1412 * volatile. Use with caution.
1413 */
1414static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1415{
1416 struct sk_buff *skb = list_->prev;
1417
1418 if (skb == (struct sk_buff *)list_)
1419 skb = NULL;
1420 return skb;
1421
1422}
1423
1424/**
1425 * skb_queue_len - get queue length
1426 * @list_: list to measure
1427 *
1428 * Return the length of an &sk_buff queue.
1429 */
1430static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1431{
1432 return list_->qlen;
1433}
1434
1435/**
1436 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1437 * @list: queue to initialize
1438 *
1439 * This initializes only the list and queue length aspects of
1440 * an sk_buff_head object. This allows to initialize the list
1441 * aspects of an sk_buff_head without reinitializing things like
1442 * the spinlock. It can also be used for on-stack sk_buff_head
1443 * objects where the spinlock is known to not be used.
1444 */
1445static inline void __skb_queue_head_init(struct sk_buff_head *list)
1446{
1447 list->prev = list->next = (struct sk_buff *)list;
1448 list->qlen = 0;
1449}
1450
1451/*
1452 * This function creates a split out lock class for each invocation;
1453 * this is needed for now since a whole lot of users of the skb-queue
1454 * infrastructure in drivers have different locking usage (in hardirq)
1455 * than the networking core (in softirq only). In the long run either the
1456 * network layer or drivers should need annotation to consolidate the
1457 * main types of usage into 3 classes.
1458 */
1459static inline void skb_queue_head_init(struct sk_buff_head *list)
1460{
1461 spin_lock_init(&list->lock);
1462 __skb_queue_head_init(list);
1463}
1464
1465static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1466 struct lock_class_key *class)
1467{
1468 skb_queue_head_init(list);
1469 lockdep_set_class(&list->lock, class);
1470}
1471
1472/*
1473 * Insert an sk_buff on a list.
1474 *
1475 * The "__skb_xxxx()" functions are the non-atomic ones that
1476 * can only be called with interrupts disabled.
1477 */
1478void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1479 struct sk_buff_head *list);
1480static inline void __skb_insert(struct sk_buff *newsk,
1481 struct sk_buff *prev, struct sk_buff *next,
1482 struct sk_buff_head *list)
1483{
1484 newsk->next = next;
1485 newsk->prev = prev;
1486 next->prev = prev->next = newsk;
1487 list->qlen++;
1488}
1489
1490static inline void __skb_queue_splice(const struct sk_buff_head *list,
1491 struct sk_buff *prev,
1492 struct sk_buff *next)
1493{
1494 struct sk_buff *first = list->next;
1495 struct sk_buff *last = list->prev;
1496
1497 first->prev = prev;
1498 prev->next = first;
1499
1500 last->next = next;
1501 next->prev = last;
1502}
1503
1504/**
1505 * skb_queue_splice - join two skb lists, this is designed for stacks
1506 * @list: the new list to add
1507 * @head: the place to add it in the first list
1508 */
1509static inline void skb_queue_splice(const struct sk_buff_head *list,
1510 struct sk_buff_head *head)
1511{
1512 if (!skb_queue_empty(list)) {
1513 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1514 head->qlen += list->qlen;
1515 }
1516}
1517
1518/**
1519 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1520 * @list: the new list to add
1521 * @head: the place to add it in the first list
1522 *
1523 * The list at @list is reinitialised
1524 */
1525static inline void skb_queue_splice_init(struct sk_buff_head *list,
1526 struct sk_buff_head *head)
1527{
1528 if (!skb_queue_empty(list)) {
1529 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1530 head->qlen += list->qlen;
1531 __skb_queue_head_init(list);
1532 }
1533}
1534
1535/**
1536 * skb_queue_splice_tail - join two skb lists, each list being a queue
1537 * @list: the new list to add
1538 * @head: the place to add it in the first list
1539 */
1540static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1541 struct sk_buff_head *head)
1542{
1543 if (!skb_queue_empty(list)) {
1544 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1545 head->qlen += list->qlen;
1546 }
1547}
1548
1549/**
1550 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1551 * @list: the new list to add
1552 * @head: the place to add it in the first list
1553 *
1554 * Each of the lists is a queue.
1555 * The list at @list is reinitialised
1556 */
1557static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1558 struct sk_buff_head *head)
1559{
1560 if (!skb_queue_empty(list)) {
1561 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1562 head->qlen += list->qlen;
1563 __skb_queue_head_init(list);
1564 }
1565}
1566
1567/**
1568 * __skb_queue_after - queue a buffer at the list head
1569 * @list: list to use
1570 * @prev: place after this buffer
1571 * @newsk: buffer to queue
1572 *
1573 * Queue a buffer int the middle of a list. This function takes no locks
1574 * and you must therefore hold required locks before calling it.
1575 *
1576 * A buffer cannot be placed on two lists at the same time.
1577 */
1578static inline void __skb_queue_after(struct sk_buff_head *list,
1579 struct sk_buff *prev,
1580 struct sk_buff *newsk)
1581{
1582 __skb_insert(newsk, prev, prev->next, list);
1583}
1584
1585void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1586 struct sk_buff_head *list);
1587
1588static inline void __skb_queue_before(struct sk_buff_head *list,
1589 struct sk_buff *next,
1590 struct sk_buff *newsk)
1591{
1592 __skb_insert(newsk, next->prev, next, list);
1593}
1594
1595/**
1596 * __skb_queue_head - queue a buffer at the list head
1597 * @list: list to use
1598 * @newsk: buffer to queue
1599 *
1600 * Queue a buffer at the start of a list. This function takes no locks
1601 * and you must therefore hold required locks before calling it.
1602 *
1603 * A buffer cannot be placed on two lists at the same time.
1604 */
1605void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1606static inline void __skb_queue_head(struct sk_buff_head *list,
1607 struct sk_buff *newsk)
1608{
1609 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1610}
1611
1612/**
1613 * __skb_queue_tail - queue a buffer at the list tail
1614 * @list: list to use
1615 * @newsk: buffer to queue
1616 *
1617 * Queue a buffer at the end of a list. This function takes no locks
1618 * and you must therefore hold required locks before calling it.
1619 *
1620 * A buffer cannot be placed on two lists at the same time.
1621 */
1622void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1623static inline void __skb_queue_tail(struct sk_buff_head *list,
1624 struct sk_buff *newsk)
1625{
1626 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1627}
1628
1629/*
1630 * remove sk_buff from list. _Must_ be called atomically, and with
1631 * the list known..
1632 */
1633void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1634static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1635{
1636 struct sk_buff *next, *prev;
1637
1638 list->qlen--;
1639 next = skb->next;
1640 prev = skb->prev;
1641 skb->next = skb->prev = NULL;
1642 next->prev = prev;
1643 prev->next = next;
1644}
1645
1646/**
1647 * __skb_dequeue - remove from the head of the queue
1648 * @list: list to dequeue from
1649 *
1650 * Remove the head of the list. This function does not take any locks
1651 * so must be used with appropriate locks held only. The head item is
1652 * returned or %NULL if the list is empty.
1653 */
1654struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1655static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1656{
1657 struct sk_buff *skb = skb_peek(list);
1658 if (skb)
1659 __skb_unlink(skb, list);
1660 return skb;
1661}
1662
1663/**
1664 * __skb_dequeue_tail - remove from the tail of the queue
1665 * @list: list to dequeue from
1666 *
1667 * Remove the tail of the list. This function does not take any locks
1668 * so must be used with appropriate locks held only. The tail item is
1669 * returned or %NULL if the list is empty.
1670 */
1671struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1672static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1673{
1674 struct sk_buff *skb = skb_peek_tail(list);
1675 if (skb)
1676 __skb_unlink(skb, list);
1677 return skb;
1678}
1679
1680
1681static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1682{
1683 return skb->data_len;
1684}
1685
1686static inline unsigned int skb_headlen(const struct sk_buff *skb)
1687{
1688 return skb->len - skb->data_len;
1689}
1690
1691static inline int skb_pagelen(const struct sk_buff *skb)
1692{
1693 int i, len = 0;
1694
1695 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1696 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697 return len + skb_headlen(skb);
1698}
1699
1700/**
1701 * __skb_fill_page_desc - initialise a paged fragment in an skb
1702 * @skb: buffer containing fragment to be initialised
1703 * @i: paged fragment index to initialise
1704 * @page: the page to use for this fragment
1705 * @off: the offset to the data with @page
1706 * @size: the length of the data
1707 *
1708 * Initialises the @i'th fragment of @skb to point to &size bytes at
1709 * offset @off within @page.
1710 *
1711 * Does not take any additional reference on the fragment.
1712 */
1713static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1714 struct page *page, int off, int size)
1715{
1716 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1717
1718 /*
1719 * Propagate page pfmemalloc to the skb if we can. The problem is
1720 * that not all callers have unique ownership of the page but rely
1721 * on page_is_pfmemalloc doing the right thing(tm).
1722 */
1723 frag->page.p = page;
1724 frag->page_offset = off;
1725 skb_frag_size_set(frag, size);
1726
1727 page = compound_head(page);
1728 if (page_is_pfmemalloc(page))
1729 skb->pfmemalloc = true;
1730}
1731
1732/**
1733 * skb_fill_page_desc - initialise a paged fragment in an skb
1734 * @skb: buffer containing fragment to be initialised
1735 * @i: paged fragment index to initialise
1736 * @page: the page to use for this fragment
1737 * @off: the offset to the data with @page
1738 * @size: the length of the data
1739 *
1740 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1741 * @skb to point to @size bytes at offset @off within @page. In
1742 * addition updates @skb such that @i is the last fragment.
1743 *
1744 * Does not take any additional reference on the fragment.
1745 */
1746static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1747 struct page *page, int off, int size)
1748{
1749 __skb_fill_page_desc(skb, i, page, off, size);
1750 skb_shinfo(skb)->nr_frags = i + 1;
1751}
1752
1753void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1754 int size, unsigned int truesize);
1755
1756void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1757 unsigned int truesize);
1758
1759#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1760#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1761#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1762
1763#ifdef NET_SKBUFF_DATA_USES_OFFSET
1764static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1765{
1766 return skb->head + skb->tail;
1767}
1768
1769static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1770{
1771 skb->tail = skb->data - skb->head;
1772}
1773
1774static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1775{
1776 skb_reset_tail_pointer(skb);
1777 skb->tail += offset;
1778}
1779
1780#else /* NET_SKBUFF_DATA_USES_OFFSET */
1781static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1782{
1783 return skb->tail;
1784}
1785
1786static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1787{
1788 skb->tail = skb->data;
1789}
1790
1791static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1792{
1793 skb->tail = skb->data + offset;
1794}
1795
1796#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1797
1798/*
1799 * Add data to an sk_buff
1800 */
1801unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1802unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1803static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1804{
1805 unsigned char *tmp = skb_tail_pointer(skb);
1806 SKB_LINEAR_ASSERT(skb);
1807 skb->tail += len;
1808 skb->len += len;
1809 return tmp;
1810}
1811
1812unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1813static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1814{
1815 skb->data -= len;
1816 skb->len += len;
1817 return skb->data;
1818}
1819
1820unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1821static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1822{
1823 skb->len -= len;
1824 BUG_ON(skb->len < skb->data_len);
1825 return skb->data += len;
1826}
1827
1828static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1829{
1830 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1831}
1832
1833unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1834
1835static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1836{
1837 if (len > skb_headlen(skb) &&
1838 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1839 return NULL;
1840 skb->len -= len;
1841 return skb->data += len;
1842}
1843
1844static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1845{
1846 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1847}
1848
1849static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1850{
1851 if (likely(len <= skb_headlen(skb)))
1852 return 1;
1853 if (unlikely(len > skb->len))
1854 return 0;
1855 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1856}
1857
1858/**
1859 * skb_headroom - bytes at buffer head
1860 * @skb: buffer to check
1861 *
1862 * Return the number of bytes of free space at the head of an &sk_buff.
1863 */
1864static inline unsigned int skb_headroom(const struct sk_buff *skb)
1865{
1866 return skb->data - skb->head;
1867}
1868
1869/**
1870 * skb_tailroom - bytes at buffer end
1871 * @skb: buffer to check
1872 *
1873 * Return the number of bytes of free space at the tail of an sk_buff
1874 */
1875static inline int skb_tailroom(const struct sk_buff *skb)
1876{
1877 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1878}
1879
1880/**
1881 * skb_availroom - bytes at buffer end
1882 * @skb: buffer to check
1883 *
1884 * Return the number of bytes of free space at the tail of an sk_buff
1885 * allocated by sk_stream_alloc()
1886 */
1887static inline int skb_availroom(const struct sk_buff *skb)
1888{
1889 if (skb_is_nonlinear(skb))
1890 return 0;
1891
1892 return skb->end - skb->tail - skb->reserved_tailroom;
1893}
1894
1895/**
1896 * skb_reserve - adjust headroom
1897 * @skb: buffer to alter
1898 * @len: bytes to move
1899 *
1900 * Increase the headroom of an empty &sk_buff by reducing the tail
1901 * room. This is only allowed for an empty buffer.
1902 */
1903static inline void skb_reserve(struct sk_buff *skb, int len)
1904{
1905 skb->data += len;
1906 skb->tail += len;
1907}
1908
1909/**
1910 * skb_tailroom_reserve - adjust reserved_tailroom
1911 * @skb: buffer to alter
1912 * @mtu: maximum amount of headlen permitted
1913 * @needed_tailroom: minimum amount of reserved_tailroom
1914 *
1915 * Set reserved_tailroom so that headlen can be as large as possible but
1916 * not larger than mtu and tailroom cannot be smaller than
1917 * needed_tailroom.
1918 * The required headroom should already have been reserved before using
1919 * this function.
1920 */
1921static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
1922 unsigned int needed_tailroom)
1923{
1924 SKB_LINEAR_ASSERT(skb);
1925 if (mtu < skb_tailroom(skb) - needed_tailroom)
1926 /* use at most mtu */
1927 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
1928 else
1929 /* use up to all available space */
1930 skb->reserved_tailroom = needed_tailroom;
1931}
1932
1933#define ENCAP_TYPE_ETHER 0
1934#define ENCAP_TYPE_IPPROTO 1
1935
1936static inline void skb_set_inner_protocol(struct sk_buff *skb,
1937 __be16 protocol)
1938{
1939 skb->inner_protocol = protocol;
1940 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1941}
1942
1943static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1944 __u8 ipproto)
1945{
1946 skb->inner_ipproto = ipproto;
1947 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1948}
1949
1950static inline void skb_reset_inner_headers(struct sk_buff *skb)
1951{
1952 skb->inner_mac_header = skb->mac_header;
1953 skb->inner_network_header = skb->network_header;
1954 skb->inner_transport_header = skb->transport_header;
1955}
1956
1957static inline void skb_reset_mac_len(struct sk_buff *skb)
1958{
1959 skb->mac_len = skb->network_header - skb->mac_header;
1960}
1961
1962static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1963 *skb)
1964{
1965 return skb->head + skb->inner_transport_header;
1966}
1967
1968static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1969{
1970 skb->inner_transport_header = skb->data - skb->head;
1971}
1972
1973static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1974 const int offset)
1975{
1976 skb_reset_inner_transport_header(skb);
1977 skb->inner_transport_header += offset;
1978}
1979
1980static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1981{
1982 return skb->head + skb->inner_network_header;
1983}
1984
1985static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1986{
1987 skb->inner_network_header = skb->data - skb->head;
1988}
1989
1990static inline void skb_set_inner_network_header(struct sk_buff *skb,
1991 const int offset)
1992{
1993 skb_reset_inner_network_header(skb);
1994 skb->inner_network_header += offset;
1995}
1996
1997static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1998{
1999 return skb->head + skb->inner_mac_header;
2000}
2001
2002static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2003{
2004 skb->inner_mac_header = skb->data - skb->head;
2005}
2006
2007static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2008 const int offset)
2009{
2010 skb_reset_inner_mac_header(skb);
2011 skb->inner_mac_header += offset;
2012}
2013static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2014{
2015 return skb->transport_header != (typeof(skb->transport_header))~0U;
2016}
2017
2018static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2019{
2020 return skb->head + skb->transport_header;
2021}
2022
2023static inline void skb_reset_transport_header(struct sk_buff *skb)
2024{
2025 skb->transport_header = skb->data - skb->head;
2026}
2027
2028static inline void skb_set_transport_header(struct sk_buff *skb,
2029 const int offset)
2030{
2031 skb_reset_transport_header(skb);
2032 skb->transport_header += offset;
2033}
2034
2035static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2036{
2037 return skb->head + skb->network_header;
2038}
2039
2040static inline void skb_reset_network_header(struct sk_buff *skb)
2041{
2042 skb->network_header = skb->data - skb->head;
2043}
2044
2045static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2046{
2047 skb_reset_network_header(skb);
2048 skb->network_header += offset;
2049}
2050
2051static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2052{
2053 return skb->head + skb->mac_header;
2054}
2055
2056static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2057{
2058 return skb->mac_header != (typeof(skb->mac_header))~0U;
2059}
2060
2061static inline void skb_reset_mac_header(struct sk_buff *skb)
2062{
2063 skb->mac_header = skb->data - skb->head;
2064}
2065
2066static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2067{
2068 skb_reset_mac_header(skb);
2069 skb->mac_header += offset;
2070}
2071
2072static inline void skb_pop_mac_header(struct sk_buff *skb)
2073{
2074 skb->mac_header = skb->network_header;
2075}
2076
2077static inline void skb_probe_transport_header(struct sk_buff *skb,
2078 const int offset_hint)
2079{
2080 struct flow_keys keys;
2081
2082 if (skb_transport_header_was_set(skb))
2083 return;
2084 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2085 skb_set_transport_header(skb, keys.control.thoff);
2086 else
2087 skb_set_transport_header(skb, offset_hint);
2088}
2089
2090static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2091{
2092 if (skb_mac_header_was_set(skb)) {
2093 const unsigned char *old_mac = skb_mac_header(skb);
2094
2095 skb_set_mac_header(skb, -skb->mac_len);
2096 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2097 }
2098}
2099
2100static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2101{
2102 return skb->csum_start - skb_headroom(skb);
2103}
2104
2105static inline int skb_transport_offset(const struct sk_buff *skb)
2106{
2107 return skb_transport_header(skb) - skb->data;
2108}
2109
2110static inline u32 skb_network_header_len(const struct sk_buff *skb)
2111{
2112 return skb->transport_header - skb->network_header;
2113}
2114
2115static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2116{
2117 return skb->inner_transport_header - skb->inner_network_header;
2118}
2119
2120static inline int skb_network_offset(const struct sk_buff *skb)
2121{
2122 return skb_network_header(skb) - skb->data;
2123}
2124
2125static inline int skb_inner_network_offset(const struct sk_buff *skb)
2126{
2127 return skb_inner_network_header(skb) - skb->data;
2128}
2129
2130static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2131{
2132 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2133}
2134
2135/*
2136 * CPUs often take a performance hit when accessing unaligned memory
2137 * locations. The actual performance hit varies, it can be small if the
2138 * hardware handles it or large if we have to take an exception and fix it
2139 * in software.
2140 *
2141 * Since an ethernet header is 14 bytes network drivers often end up with
2142 * the IP header at an unaligned offset. The IP header can be aligned by
2143 * shifting the start of the packet by 2 bytes. Drivers should do this
2144 * with:
2145 *
2146 * skb_reserve(skb, NET_IP_ALIGN);
2147 *
2148 * The downside to this alignment of the IP header is that the DMA is now
2149 * unaligned. On some architectures the cost of an unaligned DMA is high
2150 * and this cost outweighs the gains made by aligning the IP header.
2151 *
2152 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2153 * to be overridden.
2154 */
2155#ifndef NET_IP_ALIGN
2156#define NET_IP_ALIGN 2
2157#endif
2158
2159/*
2160 * The networking layer reserves some headroom in skb data (via
2161 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2162 * the header has to grow. In the default case, if the header has to grow
2163 * 32 bytes or less we avoid the reallocation.
2164 *
2165 * Unfortunately this headroom changes the DMA alignment of the resulting
2166 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2167 * on some architectures. An architecture can override this value,
2168 * perhaps setting it to a cacheline in size (since that will maintain
2169 * cacheline alignment of the DMA). It must be a power of 2.
2170 *
2171 * Various parts of the networking layer expect at least 32 bytes of
2172 * headroom, you should not reduce this.
2173 *
2174 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2175 * to reduce average number of cache lines per packet.
2176 * get_rps_cpus() for example only access one 64 bytes aligned block :
2177 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2178 */
2179#ifndef NET_SKB_PAD
2180#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2181#endif
2182
2183int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2184
2185static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2186{
2187 if (unlikely(skb_is_nonlinear(skb))) {
2188 WARN_ON(1);
2189 return;
2190 }
2191 skb->len = len;
2192 skb_set_tail_pointer(skb, len);
2193}
2194
2195void skb_trim(struct sk_buff *skb, unsigned int len);
2196
2197static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2198{
2199 if (skb->data_len)
2200 return ___pskb_trim(skb, len);
2201 __skb_trim(skb, len);
2202 return 0;
2203}
2204
2205static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2206{
2207 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2208}
2209
2210/**
2211 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2212 * @skb: buffer to alter
2213 * @len: new length
2214 *
2215 * This is identical to pskb_trim except that the caller knows that
2216 * the skb is not cloned so we should never get an error due to out-
2217 * of-memory.
2218 */
2219static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2220{
2221 int err = pskb_trim(skb, len);
2222 BUG_ON(err);
2223}
2224
2225/**
2226 * skb_orphan - orphan a buffer
2227 * @skb: buffer to orphan
2228 *
2229 * If a buffer currently has an owner then we call the owner's
2230 * destructor function and make the @skb unowned. The buffer continues
2231 * to exist but is no longer charged to its former owner.
2232 */
2233static inline void skb_orphan(struct sk_buff *skb)
2234{
2235 if (skb->destructor) {
2236 skb->destructor(skb);
2237 skb->destructor = NULL;
2238 skb->sk = NULL;
2239 } else {
2240 BUG_ON(skb->sk);
2241 }
2242}
2243
2244/**
2245 * skb_orphan_frags - orphan the frags contained in a buffer
2246 * @skb: buffer to orphan frags from
2247 * @gfp_mask: allocation mask for replacement pages
2248 *
2249 * For each frag in the SKB which needs a destructor (i.e. has an
2250 * owner) create a copy of that frag and release the original
2251 * page by calling the destructor.
2252 */
2253static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2254{
2255 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2256 return 0;
2257 return skb_copy_ubufs(skb, gfp_mask);
2258}
2259
2260/**
2261 * __skb_queue_purge - empty a list
2262 * @list: list to empty
2263 *
2264 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2265 * the list and one reference dropped. This function does not take the
2266 * list lock and the caller must hold the relevant locks to use it.
2267 */
2268void skb_queue_purge(struct sk_buff_head *list);
2269static inline void __skb_queue_purge(struct sk_buff_head *list)
2270{
2271 struct sk_buff *skb;
2272 while ((skb = __skb_dequeue(list)) != NULL)
2273 kfree_skb(skb);
2274}
2275
2276void *netdev_alloc_frag(unsigned int fragsz);
2277
2278struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2279 gfp_t gfp_mask);
2280
2281/**
2282 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2283 * @dev: network device to receive on
2284 * @length: length to allocate
2285 *
2286 * Allocate a new &sk_buff and assign it a usage count of one. The
2287 * buffer has unspecified headroom built in. Users should allocate
2288 * the headroom they think they need without accounting for the
2289 * built in space. The built in space is used for optimisations.
2290 *
2291 * %NULL is returned if there is no free memory. Although this function
2292 * allocates memory it can be called from an interrupt.
2293 */
2294static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2295 unsigned int length)
2296{
2297 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2298}
2299
2300/* legacy helper around __netdev_alloc_skb() */
2301static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2302 gfp_t gfp_mask)
2303{
2304 return __netdev_alloc_skb(NULL, length, gfp_mask);
2305}
2306
2307/* legacy helper around netdev_alloc_skb() */
2308static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2309{
2310 return netdev_alloc_skb(NULL, length);
2311}
2312
2313
2314static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2315 unsigned int length, gfp_t gfp)
2316{
2317 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2318
2319 if (NET_IP_ALIGN && skb)
2320 skb_reserve(skb, NET_IP_ALIGN);
2321 return skb;
2322}
2323
2324static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2325 unsigned int length)
2326{
2327 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2328}
2329
2330static inline void skb_free_frag(void *addr)
2331{
2332 __free_page_frag(addr);
2333}
2334
2335void *napi_alloc_frag(unsigned int fragsz);
2336struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2337 unsigned int length, gfp_t gfp_mask);
2338static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2339 unsigned int length)
2340{
2341 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2342}
2343
2344/**
2345 * __dev_alloc_pages - allocate page for network Rx
2346 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2347 * @order: size of the allocation
2348 *
2349 * Allocate a new page.
2350 *
2351 * %NULL is returned if there is no free memory.
2352*/
2353static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2354 unsigned int order)
2355{
2356 /* This piece of code contains several assumptions.
2357 * 1. This is for device Rx, therefor a cold page is preferred.
2358 * 2. The expectation is the user wants a compound page.
2359 * 3. If requesting a order 0 page it will not be compound
2360 * due to the check to see if order has a value in prep_new_page
2361 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2362 * code in gfp_to_alloc_flags that should be enforcing this.
2363 */
2364 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2365
2366 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2367}
2368
2369static inline struct page *dev_alloc_pages(unsigned int order)
2370{
2371 return __dev_alloc_pages(GFP_ATOMIC, order);
2372}
2373
2374/**
2375 * __dev_alloc_page - allocate a page for network Rx
2376 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2377 *
2378 * Allocate a new page.
2379 *
2380 * %NULL is returned if there is no free memory.
2381 */
2382static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2383{
2384 return __dev_alloc_pages(gfp_mask, 0);
2385}
2386
2387static inline struct page *dev_alloc_page(void)
2388{
2389 return __dev_alloc_page(GFP_ATOMIC);
2390}
2391
2392/**
2393 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2394 * @page: The page that was allocated from skb_alloc_page
2395 * @skb: The skb that may need pfmemalloc set
2396 */
2397static inline void skb_propagate_pfmemalloc(struct page *page,
2398 struct sk_buff *skb)
2399{
2400 if (page_is_pfmemalloc(page))
2401 skb->pfmemalloc = true;
2402}
2403
2404/**
2405 * skb_frag_page - retrieve the page referred to by a paged fragment
2406 * @frag: the paged fragment
2407 *
2408 * Returns the &struct page associated with @frag.
2409 */
2410static inline struct page *skb_frag_page(const skb_frag_t *frag)
2411{
2412 return frag->page.p;
2413}
2414
2415/**
2416 * __skb_frag_ref - take an addition reference on a paged fragment.
2417 * @frag: the paged fragment
2418 *
2419 * Takes an additional reference on the paged fragment @frag.
2420 */
2421static inline void __skb_frag_ref(skb_frag_t *frag)
2422{
2423 get_page(skb_frag_page(frag));
2424}
2425
2426/**
2427 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2428 * @skb: the buffer
2429 * @f: the fragment offset.
2430 *
2431 * Takes an additional reference on the @f'th paged fragment of @skb.
2432 */
2433static inline void skb_frag_ref(struct sk_buff *skb, int f)
2434{
2435 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2436}
2437
2438/**
2439 * __skb_frag_unref - release a reference on a paged fragment.
2440 * @frag: the paged fragment
2441 *
2442 * Releases a reference on the paged fragment @frag.
2443 */
2444static inline void __skb_frag_unref(skb_frag_t *frag)
2445{
2446 put_page(skb_frag_page(frag));
2447}
2448
2449/**
2450 * skb_frag_unref - release a reference on a paged fragment of an skb.
2451 * @skb: the buffer
2452 * @f: the fragment offset
2453 *
2454 * Releases a reference on the @f'th paged fragment of @skb.
2455 */
2456static inline void skb_frag_unref(struct sk_buff *skb, int f)
2457{
2458 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2459}
2460
2461/**
2462 * skb_frag_address - gets the address of the data contained in a paged fragment
2463 * @frag: the paged fragment buffer
2464 *
2465 * Returns the address of the data within @frag. The page must already
2466 * be mapped.
2467 */
2468static inline void *skb_frag_address(const skb_frag_t *frag)
2469{
2470 return page_address(skb_frag_page(frag)) + frag->page_offset;
2471}
2472
2473/**
2474 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2475 * @frag: the paged fragment buffer
2476 *
2477 * Returns the address of the data within @frag. Checks that the page
2478 * is mapped and returns %NULL otherwise.
2479 */
2480static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2481{
2482 void *ptr = page_address(skb_frag_page(frag));
2483 if (unlikely(!ptr))
2484 return NULL;
2485
2486 return ptr + frag->page_offset;
2487}
2488
2489/**
2490 * __skb_frag_set_page - sets the page contained in a paged fragment
2491 * @frag: the paged fragment
2492 * @page: the page to set
2493 *
2494 * Sets the fragment @frag to contain @page.
2495 */
2496static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2497{
2498 frag->page.p = page;
2499}
2500
2501/**
2502 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2503 * @skb: the buffer
2504 * @f: the fragment offset
2505 * @page: the page to set
2506 *
2507 * Sets the @f'th fragment of @skb to contain @page.
2508 */
2509static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2510 struct page *page)
2511{
2512 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2513}
2514
2515bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2516
2517/**
2518 * skb_frag_dma_map - maps a paged fragment via the DMA API
2519 * @dev: the device to map the fragment to
2520 * @frag: the paged fragment to map
2521 * @offset: the offset within the fragment (starting at the
2522 * fragment's own offset)
2523 * @size: the number of bytes to map
2524 * @dir: the direction of the mapping (%PCI_DMA_*)
2525 *
2526 * Maps the page associated with @frag to @device.
2527 */
2528static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2529 const skb_frag_t *frag,
2530 size_t offset, size_t size,
2531 enum dma_data_direction dir)
2532{
2533 return dma_map_page(dev, skb_frag_page(frag),
2534 frag->page_offset + offset, size, dir);
2535}
2536
2537static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2538 gfp_t gfp_mask)
2539{
2540 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2541}
2542
2543
2544static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2545 gfp_t gfp_mask)
2546{
2547 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2548}
2549
2550
2551/**
2552 * skb_clone_writable - is the header of a clone writable
2553 * @skb: buffer to check
2554 * @len: length up to which to write
2555 *
2556 * Returns true if modifying the header part of the cloned buffer
2557 * does not requires the data to be copied.
2558 */
2559static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2560{
2561 return !skb_header_cloned(skb) &&
2562 skb_headroom(skb) + len <= skb->hdr_len;
2563}
2564
2565static inline int skb_try_make_writable(struct sk_buff *skb,
2566 unsigned int write_len)
2567{
2568 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2569 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2570}
2571
2572static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2573 int cloned)
2574{
2575 int delta = 0;
2576
2577 if (headroom > skb_headroom(skb))
2578 delta = headroom - skb_headroom(skb);
2579
2580 if (delta || cloned)
2581 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2582 GFP_ATOMIC);
2583 return 0;
2584}
2585
2586/**
2587 * skb_cow - copy header of skb when it is required
2588 * @skb: buffer to cow
2589 * @headroom: needed headroom
2590 *
2591 * If the skb passed lacks sufficient headroom or its data part
2592 * is shared, data is reallocated. If reallocation fails, an error
2593 * is returned and original skb is not changed.
2594 *
2595 * The result is skb with writable area skb->head...skb->tail
2596 * and at least @headroom of space at head.
2597 */
2598static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2599{
2600 return __skb_cow(skb, headroom, skb_cloned(skb));
2601}
2602
2603/**
2604 * skb_cow_head - skb_cow but only making the head writable
2605 * @skb: buffer to cow
2606 * @headroom: needed headroom
2607 *
2608 * This function is identical to skb_cow except that we replace the
2609 * skb_cloned check by skb_header_cloned. It should be used when
2610 * you only need to push on some header and do not need to modify
2611 * the data.
2612 */
2613static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2614{
2615 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2616}
2617
2618/**
2619 * skb_padto - pad an skbuff up to a minimal size
2620 * @skb: buffer to pad
2621 * @len: minimal length
2622 *
2623 * Pads up a buffer to ensure the trailing bytes exist and are
2624 * blanked. If the buffer already contains sufficient data it
2625 * is untouched. Otherwise it is extended. Returns zero on
2626 * success. The skb is freed on error.
2627 */
2628static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2629{
2630 unsigned int size = skb->len;
2631 if (likely(size >= len))
2632 return 0;
2633 return skb_pad(skb, len - size);
2634}
2635
2636/**
2637 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2638 * @skb: buffer to pad
2639 * @len: minimal length
2640 *
2641 * Pads up a buffer to ensure the trailing bytes exist and are
2642 * blanked. If the buffer already contains sufficient data it
2643 * is untouched. Otherwise it is extended. Returns zero on
2644 * success. The skb is freed on error.
2645 */
2646static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2647{
2648 unsigned int size = skb->len;
2649
2650 if (unlikely(size < len)) {
2651 len -= size;
2652 if (skb_pad(skb, len))
2653 return -ENOMEM;
2654 __skb_put(skb, len);
2655 }
2656 return 0;
2657}
2658
2659static inline int skb_add_data(struct sk_buff *skb,
2660 struct iov_iter *from, int copy)
2661{
2662 const int off = skb->len;
2663
2664 if (skb->ip_summed == CHECKSUM_NONE) {
2665 __wsum csum = 0;
2666 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2667 &csum, from) == copy) {
2668 skb->csum = csum_block_add(skb->csum, csum, off);
2669 return 0;
2670 }
2671 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2672 return 0;
2673
2674 __skb_trim(skb, off);
2675 return -EFAULT;
2676}
2677
2678static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2679 const struct page *page, int off)
2680{
2681 if (i) {
2682 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2683
2684 return page == skb_frag_page(frag) &&
2685 off == frag->page_offset + skb_frag_size(frag);
2686 }
2687 return false;
2688}
2689
2690static inline int __skb_linearize(struct sk_buff *skb)
2691{
2692 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2693}
2694
2695/**
2696 * skb_linearize - convert paged skb to linear one
2697 * @skb: buffer to linarize
2698 *
2699 * If there is no free memory -ENOMEM is returned, otherwise zero
2700 * is returned and the old skb data released.
2701 */
2702static inline int skb_linearize(struct sk_buff *skb)
2703{
2704 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2705}
2706
2707/**
2708 * skb_has_shared_frag - can any frag be overwritten
2709 * @skb: buffer to test
2710 *
2711 * Return true if the skb has at least one frag that might be modified
2712 * by an external entity (as in vmsplice()/sendfile())
2713 */
2714static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2715{
2716 return skb_is_nonlinear(skb) &&
2717 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2718}
2719
2720/**
2721 * skb_linearize_cow - make sure skb is linear and writable
2722 * @skb: buffer to process
2723 *
2724 * If there is no free memory -ENOMEM is returned, otherwise zero
2725 * is returned and the old skb data released.
2726 */
2727static inline int skb_linearize_cow(struct sk_buff *skb)
2728{
2729 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2730 __skb_linearize(skb) : 0;
2731}
2732
2733/**
2734 * skb_postpull_rcsum - update checksum for received skb after pull
2735 * @skb: buffer to update
2736 * @start: start of data before pull
2737 * @len: length of data pulled
2738 *
2739 * After doing a pull on a received packet, you need to call this to
2740 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2741 * CHECKSUM_NONE so that it can be recomputed from scratch.
2742 */
2743
2744static inline void skb_postpull_rcsum(struct sk_buff *skb,
2745 const void *start, unsigned int len)
2746{
2747 if (skb->ip_summed == CHECKSUM_COMPLETE)
2748 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2749 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2750 skb_checksum_start_offset(skb) < 0)
2751 skb->ip_summed = CHECKSUM_NONE;
2752}
2753
2754unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2755
2756static inline void skb_postpush_rcsum(struct sk_buff *skb,
2757 const void *start, unsigned int len)
2758{
2759 /* For performing the reverse operation to skb_postpull_rcsum(),
2760 * we can instead of ...
2761 *
2762 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2763 *
2764 * ... just use this equivalent version here to save a few
2765 * instructions. Feeding csum of 0 in csum_partial() and later
2766 * on adding skb->csum is equivalent to feed skb->csum in the
2767 * first place.
2768 */
2769 if (skb->ip_summed == CHECKSUM_COMPLETE)
2770 skb->csum = csum_partial(start, len, skb->csum);
2771}
2772
2773/**
2774 * skb_push_rcsum - push skb and update receive checksum
2775 * @skb: buffer to update
2776 * @len: length of data pulled
2777 *
2778 * This function performs an skb_push on the packet and updates
2779 * the CHECKSUM_COMPLETE checksum. It should be used on
2780 * receive path processing instead of skb_push unless you know
2781 * that the checksum difference is zero (e.g., a valid IP header)
2782 * or you are setting ip_summed to CHECKSUM_NONE.
2783 */
2784static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2785 unsigned int len)
2786{
2787 skb_push(skb, len);
2788 skb_postpush_rcsum(skb, skb->data, len);
2789 return skb->data;
2790}
2791
2792/**
2793 * pskb_trim_rcsum - trim received skb and update checksum
2794 * @skb: buffer to trim
2795 * @len: new length
2796 *
2797 * This is exactly the same as pskb_trim except that it ensures the
2798 * checksum of received packets are still valid after the operation.
2799 */
2800
2801static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2802{
2803 if (likely(len >= skb->len))
2804 return 0;
2805 if (skb->ip_summed == CHECKSUM_COMPLETE)
2806 skb->ip_summed = CHECKSUM_NONE;
2807 return __pskb_trim(skb, len);
2808}
2809
2810#define skb_queue_walk(queue, skb) \
2811 for (skb = (queue)->next; \
2812 skb != (struct sk_buff *)(queue); \
2813 skb = skb->next)
2814
2815#define skb_queue_walk_safe(queue, skb, tmp) \
2816 for (skb = (queue)->next, tmp = skb->next; \
2817 skb != (struct sk_buff *)(queue); \
2818 skb = tmp, tmp = skb->next)
2819
2820#define skb_queue_walk_from(queue, skb) \
2821 for (; skb != (struct sk_buff *)(queue); \
2822 skb = skb->next)
2823
2824#define skb_queue_walk_from_safe(queue, skb, tmp) \
2825 for (tmp = skb->next; \
2826 skb != (struct sk_buff *)(queue); \
2827 skb = tmp, tmp = skb->next)
2828
2829#define skb_queue_reverse_walk(queue, skb) \
2830 for (skb = (queue)->prev; \
2831 skb != (struct sk_buff *)(queue); \
2832 skb = skb->prev)
2833
2834#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2835 for (skb = (queue)->prev, tmp = skb->prev; \
2836 skb != (struct sk_buff *)(queue); \
2837 skb = tmp, tmp = skb->prev)
2838
2839#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2840 for (tmp = skb->prev; \
2841 skb != (struct sk_buff *)(queue); \
2842 skb = tmp, tmp = skb->prev)
2843
2844static inline bool skb_has_frag_list(const struct sk_buff *skb)
2845{
2846 return skb_shinfo(skb)->frag_list != NULL;
2847}
2848
2849static inline void skb_frag_list_init(struct sk_buff *skb)
2850{
2851 skb_shinfo(skb)->frag_list = NULL;
2852}
2853
2854#define skb_walk_frags(skb, iter) \
2855 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2856
2857struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2858 int *peeked, int *off, int *err);
2859struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2860 int *err);
2861unsigned int datagram_poll(struct file *file, struct socket *sock,
2862 struct poll_table_struct *wait);
2863int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2864 struct iov_iter *to, int size);
2865static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2866 struct msghdr *msg, int size)
2867{
2868 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2869}
2870int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2871 struct msghdr *msg);
2872int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2873 struct iov_iter *from, int len);
2874int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2875void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2876void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2877int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2878int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2879int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2880__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2881 int len, __wsum csum);
2882ssize_t skb_socket_splice(struct sock *sk,
2883 struct pipe_inode_info *pipe,
2884 struct splice_pipe_desc *spd);
2885int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2886 struct pipe_inode_info *pipe, unsigned int len,
2887 unsigned int flags,
2888 ssize_t (*splice_cb)(struct sock *,
2889 struct pipe_inode_info *,
2890 struct splice_pipe_desc *));
2891void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2892unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2893int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2894 int len, int hlen);
2895void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2896int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2897void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2898unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2899struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2900struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2901int skb_ensure_writable(struct sk_buff *skb, int write_len);
2902int skb_vlan_pop(struct sk_buff *skb);
2903int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2904
2905static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2906{
2907 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2908}
2909
2910static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2911{
2912 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2913}
2914
2915struct skb_checksum_ops {
2916 __wsum (*update)(const void *mem, int len, __wsum wsum);
2917 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2918};
2919
2920__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2921 __wsum csum, const struct skb_checksum_ops *ops);
2922__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2923 __wsum csum);
2924
2925static inline void * __must_check
2926__skb_header_pointer(const struct sk_buff *skb, int offset,
2927 int len, void *data, int hlen, void *buffer)
2928{
2929 if (hlen - offset >= len)
2930 return data + offset;
2931
2932 if (!skb ||
2933 skb_copy_bits(skb, offset, buffer, len) < 0)
2934 return NULL;
2935
2936 return buffer;
2937}
2938
2939static inline void * __must_check
2940skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2941{
2942 return __skb_header_pointer(skb, offset, len, skb->data,
2943 skb_headlen(skb), buffer);
2944}
2945
2946/**
2947 * skb_needs_linearize - check if we need to linearize a given skb
2948 * depending on the given device features.
2949 * @skb: socket buffer to check
2950 * @features: net device features
2951 *
2952 * Returns true if either:
2953 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2954 * 2. skb is fragmented and the device does not support SG.
2955 */
2956static inline bool skb_needs_linearize(struct sk_buff *skb,
2957 netdev_features_t features)
2958{
2959 return skb_is_nonlinear(skb) &&
2960 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2961 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2962}
2963
2964static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2965 void *to,
2966 const unsigned int len)
2967{
2968 memcpy(to, skb->data, len);
2969}
2970
2971static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2972 const int offset, void *to,
2973 const unsigned int len)
2974{
2975 memcpy(to, skb->data + offset, len);
2976}
2977
2978static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2979 const void *from,
2980 const unsigned int len)
2981{
2982 memcpy(skb->data, from, len);
2983}
2984
2985static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2986 const int offset,
2987 const void *from,
2988 const unsigned int len)
2989{
2990 memcpy(skb->data + offset, from, len);
2991}
2992
2993void skb_init(void);
2994
2995static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2996{
2997 return skb->tstamp;
2998}
2999
3000/**
3001 * skb_get_timestamp - get timestamp from a skb
3002 * @skb: skb to get stamp from
3003 * @stamp: pointer to struct timeval to store stamp in
3004 *
3005 * Timestamps are stored in the skb as offsets to a base timestamp.
3006 * This function converts the offset back to a struct timeval and stores
3007 * it in stamp.
3008 */
3009static inline void skb_get_timestamp(const struct sk_buff *skb,
3010 struct timeval *stamp)
3011{
3012 *stamp = ktime_to_timeval(skb->tstamp);
3013}
3014
3015static inline void skb_get_timestampns(const struct sk_buff *skb,
3016 struct timespec *stamp)
3017{
3018 *stamp = ktime_to_timespec(skb->tstamp);
3019}
3020
3021static inline void __net_timestamp(struct sk_buff *skb)
3022{
3023 skb->tstamp = ktime_get_real();
3024}
3025
3026static inline ktime_t net_timedelta(ktime_t t)
3027{
3028 return ktime_sub(ktime_get_real(), t);
3029}
3030
3031static inline ktime_t net_invalid_timestamp(void)
3032{
3033 return ktime_set(0, 0);
3034}
3035
3036struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3037
3038#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3039
3040void skb_clone_tx_timestamp(struct sk_buff *skb);
3041bool skb_defer_rx_timestamp(struct sk_buff *skb);
3042
3043#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3044
3045static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3046{
3047}
3048
3049static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3050{
3051 return false;
3052}
3053
3054#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3055
3056/**
3057 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3058 *
3059 * PHY drivers may accept clones of transmitted packets for
3060 * timestamping via their phy_driver.txtstamp method. These drivers
3061 * must call this function to return the skb back to the stack with a
3062 * timestamp.
3063 *
3064 * @skb: clone of the the original outgoing packet
3065 * @hwtstamps: hardware time stamps
3066 *
3067 */
3068void skb_complete_tx_timestamp(struct sk_buff *skb,
3069 struct skb_shared_hwtstamps *hwtstamps);
3070
3071void __skb_tstamp_tx(struct sk_buff *orig_skb,
3072 struct skb_shared_hwtstamps *hwtstamps,
3073 struct sock *sk, int tstype);
3074
3075/**
3076 * skb_tstamp_tx - queue clone of skb with send time stamps
3077 * @orig_skb: the original outgoing packet
3078 * @hwtstamps: hardware time stamps, may be NULL if not available
3079 *
3080 * If the skb has a socket associated, then this function clones the
3081 * skb (thus sharing the actual data and optional structures), stores
3082 * the optional hardware time stamping information (if non NULL) or
3083 * generates a software time stamp (otherwise), then queues the clone
3084 * to the error queue of the socket. Errors are silently ignored.
3085 */
3086void skb_tstamp_tx(struct sk_buff *orig_skb,
3087 struct skb_shared_hwtstamps *hwtstamps);
3088
3089static inline void sw_tx_timestamp(struct sk_buff *skb)
3090{
3091 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3092 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3093 skb_tstamp_tx(skb, NULL);
3094}
3095
3096/**
3097 * skb_tx_timestamp() - Driver hook for transmit timestamping
3098 *
3099 * Ethernet MAC Drivers should call this function in their hard_xmit()
3100 * function immediately before giving the sk_buff to the MAC hardware.
3101 *
3102 * Specifically, one should make absolutely sure that this function is
3103 * called before TX completion of this packet can trigger. Otherwise
3104 * the packet could potentially already be freed.
3105 *
3106 * @skb: A socket buffer.
3107 */
3108static inline void skb_tx_timestamp(struct sk_buff *skb)
3109{
3110 skb_clone_tx_timestamp(skb);
3111 sw_tx_timestamp(skb);
3112}
3113
3114/**
3115 * skb_complete_wifi_ack - deliver skb with wifi status
3116 *
3117 * @skb: the original outgoing packet
3118 * @acked: ack status
3119 *
3120 */
3121void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3122
3123__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3124__sum16 __skb_checksum_complete(struct sk_buff *skb);
3125
3126static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3127{
3128 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3129 skb->csum_valid ||
3130 (skb->ip_summed == CHECKSUM_PARTIAL &&
3131 skb_checksum_start_offset(skb) >= 0));
3132}
3133
3134/**
3135 * skb_checksum_complete - Calculate checksum of an entire packet
3136 * @skb: packet to process
3137 *
3138 * This function calculates the checksum over the entire packet plus
3139 * the value of skb->csum. The latter can be used to supply the
3140 * checksum of a pseudo header as used by TCP/UDP. It returns the
3141 * checksum.
3142 *
3143 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3144 * this function can be used to verify that checksum on received
3145 * packets. In that case the function should return zero if the
3146 * checksum is correct. In particular, this function will return zero
3147 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3148 * hardware has already verified the correctness of the checksum.
3149 */
3150static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3151{
3152 return skb_csum_unnecessary(skb) ?
3153 0 : __skb_checksum_complete(skb);
3154}
3155
3156static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3157{
3158 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3159 if (skb->csum_level == 0)
3160 skb->ip_summed = CHECKSUM_NONE;
3161 else
3162 skb->csum_level--;
3163 }
3164}
3165
3166static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3167{
3168 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3169 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3170 skb->csum_level++;
3171 } else if (skb->ip_summed == CHECKSUM_NONE) {
3172 skb->ip_summed = CHECKSUM_UNNECESSARY;
3173 skb->csum_level = 0;
3174 }
3175}
3176
3177static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3178{
3179 /* Mark current checksum as bad (typically called from GRO
3180 * path). In the case that ip_summed is CHECKSUM_NONE
3181 * this must be the first checksum encountered in the packet.
3182 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3183 * checksum after the last one validated. For UDP, a zero
3184 * checksum can not be marked as bad.
3185 */
3186
3187 if (skb->ip_summed == CHECKSUM_NONE ||
3188 skb->ip_summed == CHECKSUM_UNNECESSARY)
3189 skb->csum_bad = 1;
3190}
3191
3192/* Check if we need to perform checksum complete validation.
3193 *
3194 * Returns true if checksum complete is needed, false otherwise
3195 * (either checksum is unnecessary or zero checksum is allowed).
3196 */
3197static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3198 bool zero_okay,
3199 __sum16 check)
3200{
3201 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3202 skb->csum_valid = 1;
3203 __skb_decr_checksum_unnecessary(skb);
3204 return false;
3205 }
3206
3207 return true;
3208}
3209
3210/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3211 * in checksum_init.
3212 */
3213#define CHECKSUM_BREAK 76
3214
3215/* Unset checksum-complete
3216 *
3217 * Unset checksum complete can be done when packet is being modified
3218 * (uncompressed for instance) and checksum-complete value is
3219 * invalidated.
3220 */
3221static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3222{
3223 if (skb->ip_summed == CHECKSUM_COMPLETE)
3224 skb->ip_summed = CHECKSUM_NONE;
3225}
3226
3227/* Validate (init) checksum based on checksum complete.
3228 *
3229 * Return values:
3230 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3231 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3232 * checksum is stored in skb->csum for use in __skb_checksum_complete
3233 * non-zero: value of invalid checksum
3234 *
3235 */
3236static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3237 bool complete,
3238 __wsum psum)
3239{
3240 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3241 if (!csum_fold(csum_add(psum, skb->csum))) {
3242 skb->csum_valid = 1;
3243 return 0;
3244 }
3245 } else if (skb->csum_bad) {
3246 /* ip_summed == CHECKSUM_NONE in this case */
3247 return (__force __sum16)1;
3248 }
3249
3250 skb->csum = psum;
3251
3252 if (complete || skb->len <= CHECKSUM_BREAK) {
3253 __sum16 csum;
3254
3255 csum = __skb_checksum_complete(skb);
3256 skb->csum_valid = !csum;
3257 return csum;
3258 }
3259
3260 return 0;
3261}
3262
3263static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3264{
3265 return 0;
3266}
3267
3268/* Perform checksum validate (init). Note that this is a macro since we only
3269 * want to calculate the pseudo header which is an input function if necessary.
3270 * First we try to validate without any computation (checksum unnecessary) and
3271 * then calculate based on checksum complete calling the function to compute
3272 * pseudo header.
3273 *
3274 * Return values:
3275 * 0: checksum is validated or try to in skb_checksum_complete
3276 * non-zero: value of invalid checksum
3277 */
3278#define __skb_checksum_validate(skb, proto, complete, \
3279 zero_okay, check, compute_pseudo) \
3280({ \
3281 __sum16 __ret = 0; \
3282 skb->csum_valid = 0; \
3283 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3284 __ret = __skb_checksum_validate_complete(skb, \
3285 complete, compute_pseudo(skb, proto)); \
3286 __ret; \
3287})
3288
3289#define skb_checksum_init(skb, proto, compute_pseudo) \
3290 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3291
3292#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3293 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3294
3295#define skb_checksum_validate(skb, proto, compute_pseudo) \
3296 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3297
3298#define skb_checksum_validate_zero_check(skb, proto, check, \
3299 compute_pseudo) \
3300 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3301
3302#define skb_checksum_simple_validate(skb) \
3303 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3304
3305static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3306{
3307 return (skb->ip_summed == CHECKSUM_NONE &&
3308 skb->csum_valid && !skb->csum_bad);
3309}
3310
3311static inline void __skb_checksum_convert(struct sk_buff *skb,
3312 __sum16 check, __wsum pseudo)
3313{
3314 skb->csum = ~pseudo;
3315 skb->ip_summed = CHECKSUM_COMPLETE;
3316}
3317
3318#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3319do { \
3320 if (__skb_checksum_convert_check(skb)) \
3321 __skb_checksum_convert(skb, check, \
3322 compute_pseudo(skb, proto)); \
3323} while (0)
3324
3325static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3326 u16 start, u16 offset)
3327{
3328 skb->ip_summed = CHECKSUM_PARTIAL;
3329 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3330 skb->csum_offset = offset - start;
3331}
3332
3333/* Update skbuf and packet to reflect the remote checksum offload operation.
3334 * When called, ptr indicates the starting point for skb->csum when
3335 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3336 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3337 */
3338static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3339 int start, int offset, bool nopartial)
3340{
3341 __wsum delta;
3342
3343 if (!nopartial) {
3344 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3345 return;
3346 }
3347
3348 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3349 __skb_checksum_complete(skb);
3350 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3351 }
3352
3353 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3354
3355 /* Adjust skb->csum since we changed the packet */
3356 skb->csum = csum_add(skb->csum, delta);
3357}
3358
3359#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3360void nf_conntrack_destroy(struct nf_conntrack *nfct);
3361static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3362{
3363 if (nfct && atomic_dec_and_test(&nfct->use))
3364 nf_conntrack_destroy(nfct);
3365}
3366static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3367{
3368 if (nfct)
3369 atomic_inc(&nfct->use);
3370}
3371#endif
3372#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3373static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3374{
3375 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3376 kfree(nf_bridge);
3377}
3378static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3379{
3380 if (nf_bridge)
3381 atomic_inc(&nf_bridge->use);
3382}
3383#endif /* CONFIG_BRIDGE_NETFILTER */
3384static inline void nf_reset(struct sk_buff *skb)
3385{
3386#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3387 nf_conntrack_put(skb->nfct);
3388 skb->nfct = NULL;
3389#endif
3390#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3391 nf_bridge_put(skb->nf_bridge);
3392 skb->nf_bridge = NULL;
3393#endif
3394}
3395
3396static inline void nf_reset_trace(struct sk_buff *skb)
3397{
3398#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3399 skb->nf_trace = 0;
3400#endif
3401}
3402
3403/* Note: This doesn't put any conntrack and bridge info in dst. */
3404static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3405 bool copy)
3406{
3407#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3408 dst->nfct = src->nfct;
3409 nf_conntrack_get(src->nfct);
3410 if (copy)
3411 dst->nfctinfo = src->nfctinfo;
3412#endif
3413#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3414 dst->nf_bridge = src->nf_bridge;
3415 nf_bridge_get(src->nf_bridge);
3416#endif
3417#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3418 if (copy)
3419 dst->nf_trace = src->nf_trace;
3420#endif
3421}
3422
3423static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3424{
3425#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3426 nf_conntrack_put(dst->nfct);
3427#endif
3428#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3429 nf_bridge_put(dst->nf_bridge);
3430#endif
3431 __nf_copy(dst, src, true);
3432}
3433
3434#ifdef CONFIG_NETWORK_SECMARK
3435static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3436{
3437 to->secmark = from->secmark;
3438}
3439
3440static inline void skb_init_secmark(struct sk_buff *skb)
3441{
3442 skb->secmark = 0;
3443}
3444#else
3445static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3446{ }
3447
3448static inline void skb_init_secmark(struct sk_buff *skb)
3449{ }
3450#endif
3451
3452static inline bool skb_irq_freeable(const struct sk_buff *skb)
3453{
3454 return !skb->destructor &&
3455#if IS_ENABLED(CONFIG_XFRM)
3456 !skb->sp &&
3457#endif
3458#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3459 !skb->nfct &&
3460#endif
3461 !skb->_skb_refdst &&
3462 !skb_has_frag_list(skb);
3463}
3464
3465static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3466{
3467 skb->queue_mapping = queue_mapping;
3468}
3469
3470static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3471{
3472 return skb->queue_mapping;
3473}
3474
3475static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3476{
3477 to->queue_mapping = from->queue_mapping;
3478}
3479
3480static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3481{
3482 skb->queue_mapping = rx_queue + 1;
3483}
3484
3485static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3486{
3487 return skb->queue_mapping - 1;
3488}
3489
3490static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3491{
3492 return skb->queue_mapping != 0;
3493}
3494
3495static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3496{
3497#ifdef CONFIG_XFRM
3498 return skb->sp;
3499#else
3500 return NULL;
3501#endif
3502}
3503
3504/* Keeps track of mac header offset relative to skb->head.
3505 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3506 * For non-tunnel skb it points to skb_mac_header() and for
3507 * tunnel skb it points to outer mac header.
3508 * Keeps track of level of encapsulation of network headers.
3509 */
3510struct skb_gso_cb {
3511 int mac_offset;
3512 int encap_level;
3513 __u16 csum_start;
3514};
3515#define SKB_SGO_CB_OFFSET 32
3516#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3517
3518static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3519{
3520 return (skb_mac_header(inner_skb) - inner_skb->head) -
3521 SKB_GSO_CB(inner_skb)->mac_offset;
3522}
3523
3524static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3525{
3526 int new_headroom, headroom;
3527 int ret;
3528
3529 headroom = skb_headroom(skb);
3530 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3531 if (ret)
3532 return ret;
3533
3534 new_headroom = skb_headroom(skb);
3535 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3536 return 0;
3537}
3538
3539/* Compute the checksum for a gso segment. First compute the checksum value
3540 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3541 * then add in skb->csum (checksum from csum_start to end of packet).
3542 * skb->csum and csum_start are then updated to reflect the checksum of the
3543 * resultant packet starting from the transport header-- the resultant checksum
3544 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3545 * header.
3546 */
3547static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3548{
3549 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3550 skb_transport_offset(skb);
3551 __wsum partial;
3552
3553 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3554 skb->csum = res;
3555 SKB_GSO_CB(skb)->csum_start -= plen;
3556
3557 return csum_fold(partial);
3558}
3559
3560static inline bool skb_is_gso(const struct sk_buff *skb)
3561{
3562 return skb_shinfo(skb)->gso_size;
3563}
3564
3565/* Note: Should be called only if skb_is_gso(skb) is true */
3566static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3567{
3568 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3569}
3570
3571void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3572
3573static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3574{
3575 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3576 * wanted then gso_type will be set. */
3577 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3578
3579 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3580 unlikely(shinfo->gso_type == 0)) {
3581 __skb_warn_lro_forwarding(skb);
3582 return true;
3583 }
3584 return false;
3585}
3586
3587static inline void skb_forward_csum(struct sk_buff *skb)
3588{
3589 /* Unfortunately we don't support this one. Any brave souls? */
3590 if (skb->ip_summed == CHECKSUM_COMPLETE)
3591 skb->ip_summed = CHECKSUM_NONE;
3592}
3593
3594/**
3595 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3596 * @skb: skb to check
3597 *
3598 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3599 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3600 * use this helper, to document places where we make this assertion.
3601 */
3602static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3603{
3604#ifdef DEBUG
3605 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3606#endif
3607}
3608
3609bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3610
3611int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3612struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3613 unsigned int transport_len,
3614 __sum16(*skb_chkf)(struct sk_buff *skb));
3615
3616/**
3617 * skb_head_is_locked - Determine if the skb->head is locked down
3618 * @skb: skb to check
3619 *
3620 * The head on skbs build around a head frag can be removed if they are
3621 * not cloned. This function returns true if the skb head is locked down
3622 * due to either being allocated via kmalloc, or by being a clone with
3623 * multiple references to the head.
3624 */
3625static inline bool skb_head_is_locked(const struct sk_buff *skb)
3626{
3627 return !skb->head_frag || skb_cloned(skb);
3628}
3629
3630/**
3631 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3632 *
3633 * @skb: GSO skb
3634 *
3635 * skb_gso_network_seglen is used to determine the real size of the
3636 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3637 *
3638 * The MAC/L2 header is not accounted for.
3639 */
3640static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3641{
3642 unsigned int hdr_len = skb_transport_header(skb) -
3643 skb_network_header(skb);
3644 return hdr_len + skb_gso_transport_seglen(skb);
3645}
3646
3647#endif /* __KERNEL__ */
3648#endif /* _LINUX_SKBUFF_H */