blob: ffba5df4abd54cd2dc146a09fa152ed84502e213 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/freezer.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct *tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78}
79
80/*
81 * This function expects the tasklist_lock write-locked.
82 */
83static void __exit_signal(struct task_struct *tsk)
84{
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads as they die. We could
122 * skip the group leader because it is the last user of signal_struct,
123 * but we want to avoid the race with thread_group_cputime() which can
124 * see the empty ->thread_head list.
125 */
126 task_cputime(tsk, &utime, &stime);
127 write_seqlock(&sig->stats_lock);
128 sig->utime += utime;
129 sig->stime += stime;
130 sig->gtime += task_gtime(tsk);
131 sig->min_flt += tsk->min_flt;
132 sig->maj_flt += tsk->maj_flt;
133 sig->nvcsw += tsk->nvcsw;
134 sig->nivcsw += tsk->nivcsw;
135 sig->inblock += task_io_get_inblock(tsk);
136 sig->oublock += task_io_get_oublock(tsk);
137 task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141 write_sequnlock(&sig->stats_lock);
142
143 /*
144 * Do this under ->siglock, we can race with another thread
145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146 */
147 flush_sigqueue(&tsk->pending);
148 tsk->sighand = NULL;
149 spin_unlock(&sighand->siglock);
150
151 __cleanup_sighand(sighand);
152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153 if (group_dead) {
154 flush_sigqueue(&sig->shared_pending);
155 tty_kref_put(tty);
156 }
157}
158
159static void delayed_put_task_struct(struct rcu_head *rhp)
160{
161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162
163 perf_event_delayed_put(tsk);
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
166}
167
168
169void release_task(struct task_struct *p)
170{
171 struct task_struct *leader;
172 int zap_leader;
173repeat:
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
179
180 proc_flush_task(p);
181
182 write_lock_irq(&tasklist_lock);
183 ptrace_release_task(p);
184 __exit_signal(p);
185
186 /*
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
190 */
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader)
194 && leader->exit_state == EXIT_ZOMBIE) {
195 /*
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
199 */
200 zap_leader = do_notify_parent(leader, leader->exit_signal);
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
203 }
204
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
208
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
212}
213
214/*
215 * Determine if a process group is "orphaned", according to the POSIX
216 * definition in 2.2.2.52. Orphaned process groups are not to be affected
217 * by terminal-generated stop signals. Newly orphaned process groups are
218 * to receive a SIGHUP and a SIGCONT.
219 *
220 * "I ask you, have you ever known what it is to be an orphan?"
221 */
222static int will_become_orphaned_pgrp(struct pid *pgrp,
223 struct task_struct *ignored_task)
224{
225 struct task_struct *p;
226
227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
228 if ((p == ignored_task) ||
229 (p->exit_state && thread_group_empty(p)) ||
230 is_global_init(p->real_parent))
231 continue;
232
233 if (task_pgrp(p->real_parent) != pgrp &&
234 task_session(p->real_parent) == task_session(p))
235 return 0;
236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
237
238 return 1;
239}
240
241int is_current_pgrp_orphaned(void)
242{
243 int retval;
244
245 read_lock(&tasklist_lock);
246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
247 read_unlock(&tasklist_lock);
248
249 return retval;
250}
251
252static bool has_stopped_jobs(struct pid *pgrp)
253{
254 struct task_struct *p;
255
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if (p->signal->flags & SIGNAL_STOP_STOPPED)
258 return true;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261 return false;
262}
263
264/*
265 * Check to see if any process groups have become orphaned as
266 * a result of our exiting, and if they have any stopped jobs,
267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
268 */
269static void
270kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
271{
272 struct pid *pgrp = task_pgrp(tsk);
273 struct task_struct *ignored_task = tsk;
274
275 if (!parent)
276 /* exit: our father is in a different pgrp than
277 * we are and we were the only connection outside.
278 */
279 parent = tsk->real_parent;
280 else
281 /* reparent: our child is in a different pgrp than
282 * we are, and it was the only connection outside.
283 */
284 ignored_task = NULL;
285
286 if (task_pgrp(parent) != pgrp &&
287 task_session(parent) == task_session(tsk) &&
288 will_become_orphaned_pgrp(pgrp, ignored_task) &&
289 has_stopped_jobs(pgrp)) {
290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
292 }
293}
294
295#ifdef CONFIG_MEMCG
296/*
297 * A task is exiting. If it owned this mm, find a new owner for the mm.
298 */
299void mm_update_next_owner(struct mm_struct *mm)
300{
301 struct task_struct *c, *g, *p = current;
302
303retry:
304 /*
305 * If the exiting or execing task is not the owner, it's
306 * someone else's problem.
307 */
308 if (mm->owner != p)
309 return;
310 /*
311 * The current owner is exiting/execing and there are no other
312 * candidates. Do not leave the mm pointing to a possibly
313 * freed task structure.
314 */
315 if (atomic_read(&mm->mm_users) <= 1) {
316 mm->owner = NULL;
317 return;
318 }
319
320 read_lock(&tasklist_lock);
321 /*
322 * Search in the children
323 */
324 list_for_each_entry(c, &p->children, sibling) {
325 if (c->mm == mm)
326 goto assign_new_owner;
327 }
328
329 /*
330 * Search in the siblings
331 */
332 list_for_each_entry(c, &p->real_parent->children, sibling) {
333 if (c->mm == mm)
334 goto assign_new_owner;
335 }
336
337 /*
338 * Search through everything else, we should not get here often.
339 */
340 for_each_process(g) {
341 if (g->flags & PF_KTHREAD)
342 continue;
343 for_each_thread(g, c) {
344 if (c->mm == mm)
345 goto assign_new_owner;
346 if (c->mm)
347 break;
348 }
349 }
350 read_unlock(&tasklist_lock);
351 /*
352 * We found no owner yet mm_users > 1: this implies that we are
353 * most likely racing with swapoff (try_to_unuse()) or /proc or
354 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
355 */
356 mm->owner = NULL;
357 return;
358
359assign_new_owner:
360 BUG_ON(c == p);
361 get_task_struct(c);
362 /*
363 * The task_lock protects c->mm from changing.
364 * We always want mm->owner->mm == mm
365 */
366 task_lock(c);
367 /*
368 * Delay read_unlock() till we have the task_lock()
369 * to ensure that c does not slip away underneath us
370 */
371 read_unlock(&tasklist_lock);
372 if (c->mm != mm) {
373 task_unlock(c);
374 put_task_struct(c);
375 goto retry;
376 }
377 mm->owner = c;
378 task_unlock(c);
379 put_task_struct(c);
380}
381#endif /* CONFIG_MEMCG */
382
383/*
384 * Turn us into a lazy TLB process if we
385 * aren't already..
386 */
387static void exit_mm(struct task_struct *tsk)
388{
389 struct mm_struct *mm = tsk->mm;
390 struct core_state *core_state;
391
392 mm_release(tsk, mm);
393 if (!mm)
394 return;
395 sync_mm_rss(mm);
396 /*
397 * Serialize with any possible pending coredump.
398 * We must hold mmap_sem around checking core_state
399 * and clearing tsk->mm. The core-inducing thread
400 * will increment ->nr_threads for each thread in the
401 * group with ->mm != NULL.
402 */
403 down_read(&mm->mmap_sem);
404 core_state = mm->core_state;
405 if (core_state) {
406 struct core_thread self;
407
408 up_read(&mm->mmap_sem);
409
410 self.task = tsk;
411 self.next = xchg(&core_state->dumper.next, &self);
412 /*
413 * Implies mb(), the result of xchg() must be visible
414 * to core_state->dumper.
415 */
416 if (atomic_dec_and_test(&core_state->nr_threads))
417 complete(&core_state->startup);
418
419 for (;;) {
420 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
421 if (!self.task) /* see coredump_finish() */
422 break;
423 freezable_schedule();
424 }
425 __set_task_state(tsk, TASK_RUNNING);
426 down_read(&mm->mmap_sem);
427 }
428 atomic_inc(&mm->mm_count);
429 BUG_ON(mm != tsk->active_mm);
430 /* more a memory barrier than a real lock */
431 task_lock(tsk);
432 tsk->mm = NULL;
433 up_read(&mm->mmap_sem);
434 enter_lazy_tlb(mm, current);
435 task_unlock(tsk);
436 mm_update_next_owner(mm);
437 mmput(mm);
438 if (test_thread_flag(TIF_MEMDIE))
439 exit_oom_victim();
440}
441
442static struct task_struct *find_alive_thread(struct task_struct *p)
443{
444 struct task_struct *t;
445
446 for_each_thread(p, t) {
447 if (!(t->flags & PF_EXITING))
448 return t;
449 }
450 return NULL;
451}
452
453static struct task_struct *find_child_reaper(struct task_struct *father)
454 __releases(&tasklist_lock)
455 __acquires(&tasklist_lock)
456{
457 struct pid_namespace *pid_ns = task_active_pid_ns(father);
458 struct task_struct *reaper = pid_ns->child_reaper;
459
460 if (likely(reaper != father))
461 return reaper;
462
463 reaper = find_alive_thread(father);
464 if (reaper) {
465 pid_ns->child_reaper = reaper;
466 return reaper;
467 }
468
469 write_unlock_irq(&tasklist_lock);
470 if (unlikely(pid_ns == &init_pid_ns)) {
471 panic("Attempted to kill init! exitcode=0x%08x\n",
472 father->signal->group_exit_code ?: father->exit_code);
473 }
474 zap_pid_ns_processes(pid_ns);
475 write_lock_irq(&tasklist_lock);
476
477 return father;
478}
479
480/*
481 * When we die, we re-parent all our children, and try to:
482 * 1. give them to another thread in our thread group, if such a member exists
483 * 2. give it to the first ancestor process which prctl'd itself as a
484 * child_subreaper for its children (like a service manager)
485 * 3. give it to the init process (PID 1) in our pid namespace
486 */
487static struct task_struct *find_new_reaper(struct task_struct *father,
488 struct task_struct *child_reaper)
489{
490 struct task_struct *thread, *reaper;
491
492 thread = find_alive_thread(father);
493 if (thread)
494 return thread;
495
496 if (father->signal->has_child_subreaper) {
497 /*
498 * Find the first ->is_child_subreaper ancestor in our pid_ns.
499 * We start from father to ensure we can not look into another
500 * namespace, this is safe because all its threads are dead.
501 */
502 for (reaper = father;
503 !same_thread_group(reaper, child_reaper);
504 reaper = reaper->real_parent) {
505 /* call_usermodehelper() descendants need this check */
506 if (reaper == &init_task)
507 break;
508 if (!reaper->signal->is_child_subreaper)
509 continue;
510 thread = find_alive_thread(reaper);
511 if (thread)
512 return thread;
513 }
514 }
515
516 return child_reaper;
517}
518
519/*
520* Any that need to be release_task'd are put on the @dead list.
521 */
522static void reparent_leader(struct task_struct *father, struct task_struct *p,
523 struct list_head *dead)
524{
525 if (unlikely(p->exit_state == EXIT_DEAD))
526 return;
527
528 /* We don't want people slaying init. */
529 p->exit_signal = SIGCHLD;
530
531 /* If it has exited notify the new parent about this child's death. */
532 if (!p->ptrace &&
533 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
534 if (do_notify_parent(p, p->exit_signal)) {
535 p->exit_state = EXIT_DEAD;
536 list_add(&p->ptrace_entry, dead);
537 }
538 }
539
540 kill_orphaned_pgrp(p, father);
541}
542
543/*
544 * This does two things:
545 *
546 * A. Make init inherit all the child processes
547 * B. Check to see if any process groups have become orphaned
548 * as a result of our exiting, and if they have any stopped
549 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
550 */
551static void forget_original_parent(struct task_struct *father,
552 struct list_head *dead)
553{
554 struct task_struct *p, *t, *reaper;
555
556 if (unlikely(!list_empty(&father->ptraced)))
557 exit_ptrace(father, dead);
558
559 /* Can drop and reacquire tasklist_lock */
560 reaper = find_child_reaper(father);
561 if (list_empty(&father->children))
562 return;
563
564 reaper = find_new_reaper(father, reaper);
565 list_for_each_entry(p, &father->children, sibling) {
566 for_each_thread(p, t) {
567 t->real_parent = reaper;
568 BUG_ON((!t->ptrace) != (t->parent == father));
569 if (likely(!t->ptrace))
570 t->parent = t->real_parent;
571 if (t->pdeath_signal)
572 group_send_sig_info(t->pdeath_signal,
573 SEND_SIG_NOINFO, t);
574 }
575 /*
576 * If this is a threaded reparent there is no need to
577 * notify anyone anything has happened.
578 */
579 if (!same_thread_group(reaper, father))
580 reparent_leader(father, p, dead);
581 }
582 list_splice_tail_init(&father->children, &reaper->children);
583}
584
585/*
586 * Send signals to all our closest relatives so that they know
587 * to properly mourn us..
588 */
589static void exit_notify(struct task_struct *tsk, int group_dead)
590{
591 bool autoreap;
592 struct task_struct *p, *n;
593 LIST_HEAD(dead);
594
595 write_lock_irq(&tasklist_lock);
596 forget_original_parent(tsk, &dead);
597
598 if (group_dead)
599 kill_orphaned_pgrp(tsk->group_leader, NULL);
600
601 if (unlikely(tsk->ptrace)) {
602 int sig = thread_group_leader(tsk) &&
603 thread_group_empty(tsk) &&
604 !ptrace_reparented(tsk) ?
605 tsk->exit_signal : SIGCHLD;
606 autoreap = do_notify_parent(tsk, sig);
607 } else if (thread_group_leader(tsk)) {
608 autoreap = thread_group_empty(tsk) &&
609 do_notify_parent(tsk, tsk->exit_signal);
610 } else {
611 autoreap = true;
612 }
613
614 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
615 if (tsk->exit_state == EXIT_DEAD)
616 list_add(&tsk->ptrace_entry, &dead);
617
618 /* mt-exec, de_thread() is waiting for group leader */
619 if (unlikely(tsk->signal->notify_count < 0))
620 wake_up_process(tsk->signal->group_exit_task);
621 write_unlock_irq(&tasklist_lock);
622
623 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
624 list_del_init(&p->ptrace_entry);
625 release_task(p);
626 }
627}
628
629#ifdef CONFIG_DEBUG_STACK_USAGE
630static void check_stack_usage(void)
631{
632 static DEFINE_SPINLOCK(low_water_lock);
633 static int lowest_to_date = THREAD_SIZE;
634 unsigned long free;
635
636 free = stack_not_used(current);
637
638 if (free >= lowest_to_date)
639 return;
640
641 spin_lock(&low_water_lock);
642 if (free < lowest_to_date) {
643 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
644 current->comm, task_pid_nr(current), free);
645 lowest_to_date = free;
646 }
647 spin_unlock(&low_water_lock);
648}
649#else
650static inline void check_stack_usage(void) {}
651#endif
652
653void do_exit(long code)
654{
655 struct task_struct *tsk = current;
656 int group_dead;
657 TASKS_RCU(int tasks_rcu_i);
658
659 profile_task_exit(tsk);
660
661 WARN_ON(blk_needs_flush_plug(tsk));
662
663 if (unlikely(in_interrupt()))
664 panic("Aiee, killing interrupt handler!");
665 if (unlikely(!tsk->pid))
666 panic("Attempted to kill the idle task!");
667
668 /*
669 * If do_exit is called because this processes oopsed, it's possible
670 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
671 * continuing. Amongst other possible reasons, this is to prevent
672 * mm_release()->clear_child_tid() from writing to a user-controlled
673 * kernel address.
674 */
675 set_fs(USER_DS);
676
677 ptrace_event(PTRACE_EVENT_EXIT, code);
678
679 validate_creds_for_do_exit(tsk);
680
681 /*
682 * We're taking recursive faults here in do_exit. Safest is to just
683 * leave this task alone and wait for reboot.
684 */
685 if (unlikely(tsk->flags & PF_EXITING)) {
686 pr_alert("Fixing recursive fault but reboot is needed!\n");
687 /*
688 * We can do this unlocked here. The futex code uses
689 * this flag just to verify whether the pi state
690 * cleanup has been done or not. In the worst case it
691 * loops once more. We pretend that the cleanup was
692 * done as there is no way to return. Either the
693 * OWNER_DIED bit is set by now or we push the blocked
694 * task into the wait for ever nirwana as well.
695 */
696 tsk->flags |= PF_EXITPIDONE;
697 set_current_state(TASK_UNINTERRUPTIBLE);
698 schedule();
699 }
700
701 exit_signals(tsk); /* sets PF_EXITING */
702 /*
703 * tsk->flags are checked in the futex code to protect against
704 * an exiting task cleaning up the robust pi futexes.
705 */
706 smp_mb();
707 raw_spin_unlock_wait(&tsk->pi_lock);
708
709 if (unlikely(in_atomic())) {
710 pr_info("note: %s[%d] exited with preempt_count %d\n",
711 current->comm, task_pid_nr(current),
712 preempt_count());
713 preempt_count_set(PREEMPT_ENABLED);
714 }
715
716 /* sync mm's RSS info before statistics gathering */
717 if (tsk->mm)
718 sync_mm_rss(tsk->mm);
719 acct_update_integrals(tsk);
720 group_dead = atomic_dec_and_test(&tsk->signal->live);
721 if (group_dead) {
722 hrtimer_cancel(&tsk->signal->real_timer);
723 exit_itimers(tsk->signal);
724 if (tsk->mm)
725 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
726 }
727 acct_collect(code, group_dead);
728 if (group_dead)
729 tty_audit_exit();
730 audit_free(tsk);
731
732 tsk->exit_code = code;
733 taskstats_exit(tsk, group_dead);
734
735 exit_mm(tsk);
736
737 if (group_dead)
738 acct_process();
739 trace_sched_process_exit(tsk);
740
741 exit_sem(tsk);
742 exit_shm(tsk);
743 exit_files(tsk);
744 exit_fs(tsk);
745 if (group_dead)
746 disassociate_ctty(1);
747 exit_task_namespaces(tsk);
748 exit_task_work(tsk);
749 exit_thread();
750
751 /*
752 * Flush inherited counters to the parent - before the parent
753 * gets woken up by child-exit notifications.
754 *
755 * because of cgroup mode, must be called before cgroup_exit()
756 */
757 perf_event_exit_task(tsk);
758
759 cgroup_exit(tsk);
760
761 /*
762 * FIXME: do that only when needed, using sched_exit tracepoint
763 */
764 flush_ptrace_hw_breakpoint(tsk);
765
766 TASKS_RCU(preempt_disable());
767 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
768 TASKS_RCU(preempt_enable());
769 exit_notify(tsk, group_dead);
770 proc_exit_connector(tsk);
771#ifdef CONFIG_NUMA
772 task_lock(tsk);
773 mpol_put(tsk->mempolicy);
774 tsk->mempolicy = NULL;
775 task_unlock(tsk);
776#endif
777#ifdef CONFIG_FUTEX
778 if (unlikely(current->pi_state_cache))
779 kfree(current->pi_state_cache);
780#endif
781 /*
782 * Make sure we are holding no locks:
783 */
784 debug_check_no_locks_held();
785 /*
786 * We can do this unlocked here. The futex code uses this flag
787 * just to verify whether the pi state cleanup has been done
788 * or not. In the worst case it loops once more.
789 */
790 tsk->flags |= PF_EXITPIDONE;
791
792 if (tsk->io_context)
793 exit_io_context(tsk);
794
795 if (tsk->splice_pipe)
796 free_pipe_info(tsk->splice_pipe);
797
798 if (tsk->task_frag.page)
799 put_page(tsk->task_frag.page);
800
801 validate_creds_for_do_exit(tsk);
802
803 check_stack_usage();
804 preempt_disable();
805 if (tsk->nr_dirtied)
806 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
807 exit_rcu();
808 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
809
810 /*
811 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
812 * when the following two conditions become true.
813 * - There is race condition of mmap_sem (It is acquired by
814 * exit_mm()), and
815 * - SMI occurs before setting TASK_RUNINNG.
816 * (or hypervisor of virtual machine switches to other guest)
817 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
818 *
819 * To avoid it, we have to wait for releasing tsk->pi_lock which
820 * is held by try_to_wake_up()
821 */
822 smp_mb();
823 raw_spin_unlock_wait(&tsk->pi_lock);
824
825 /* causes final put_task_struct in finish_task_switch(). */
826 tsk->state = TASK_DEAD;
827 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
828 schedule();
829 BUG();
830 /* Avoid "noreturn function does return". */
831 for (;;)
832 cpu_relax(); /* For when BUG is null */
833}
834EXPORT_SYMBOL_GPL(do_exit);
835
836void complete_and_exit(struct completion *comp, long code)
837{
838 if (comp)
839 complete(comp);
840
841 do_exit(code);
842}
843EXPORT_SYMBOL(complete_and_exit);
844
845SYSCALL_DEFINE1(exit, int, error_code)
846{
847 do_exit((error_code&0xff)<<8);
848}
849
850/*
851 * Take down every thread in the group. This is called by fatal signals
852 * as well as by sys_exit_group (below).
853 */
854void
855do_group_exit(int exit_code)
856{
857 struct signal_struct *sig = current->signal;
858
859 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
860
861 if (signal_group_exit(sig))
862 exit_code = sig->group_exit_code;
863 else if (!thread_group_empty(current)) {
864 struct sighand_struct *const sighand = current->sighand;
865
866 spin_lock_irq(&sighand->siglock);
867 if (signal_group_exit(sig))
868 /* Another thread got here before we took the lock. */
869 exit_code = sig->group_exit_code;
870 else {
871 sig->group_exit_code = exit_code;
872 sig->flags = SIGNAL_GROUP_EXIT;
873 zap_other_threads(current);
874 }
875 spin_unlock_irq(&sighand->siglock);
876 }
877
878 do_exit(exit_code);
879 /* NOTREACHED */
880}
881
882/*
883 * this kills every thread in the thread group. Note that any externally
884 * wait4()-ing process will get the correct exit code - even if this
885 * thread is not the thread group leader.
886 */
887SYSCALL_DEFINE1(exit_group, int, error_code)
888{
889 do_group_exit((error_code & 0xff) << 8);
890 /* NOTREACHED */
891 return 0;
892}
893
894struct wait_opts {
895 enum pid_type wo_type;
896 int wo_flags;
897 struct pid *wo_pid;
898
899 struct siginfo __user *wo_info;
900 int __user *wo_stat;
901 struct rusage __user *wo_rusage;
902
903 wait_queue_t child_wait;
904 int notask_error;
905};
906
907static inline
908struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
909{
910 if (type != PIDTYPE_PID)
911 task = task->group_leader;
912 return task->pids[type].pid;
913}
914
915static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
916{
917 return wo->wo_type == PIDTYPE_MAX ||
918 task_pid_type(p, wo->wo_type) == wo->wo_pid;
919}
920
921static int
922eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
923{
924 if (!eligible_pid(wo, p))
925 return 0;
926
927 /*
928 * Wait for all children (clone and not) if __WALL is set or
929 * if it is traced by us.
930 */
931 if (ptrace || (wo->wo_flags & __WALL))
932 return 1;
933
934 /*
935 * Otherwise, wait for clone children *only* if __WCLONE is set;
936 * otherwise, wait for non-clone children *only*.
937 *
938 * Note: a "clone" child here is one that reports to its parent
939 * using a signal other than SIGCHLD, or a non-leader thread which
940 * we can only see if it is traced by us.
941 */
942 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
943 return 0;
944
945 return 1;
946}
947
948static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
949 pid_t pid, uid_t uid, int why, int status)
950{
951 struct siginfo __user *infop;
952 int retval = wo->wo_rusage
953 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
954
955 put_task_struct(p);
956 infop = wo->wo_info;
957 if (infop) {
958 if (!retval)
959 retval = put_user(SIGCHLD, &infop->si_signo);
960 if (!retval)
961 retval = put_user(0, &infop->si_errno);
962 if (!retval)
963 retval = put_user((short)why, &infop->si_code);
964 if (!retval)
965 retval = put_user(pid, &infop->si_pid);
966 if (!retval)
967 retval = put_user(uid, &infop->si_uid);
968 if (!retval)
969 retval = put_user(status, &infop->si_status);
970 }
971 if (!retval)
972 retval = pid;
973 return retval;
974}
975
976/*
977 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
978 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
979 * the lock and this task is uninteresting. If we return nonzero, we have
980 * released the lock and the system call should return.
981 */
982static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
983{
984 int state, retval, status;
985 pid_t pid = task_pid_vnr(p);
986 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
987 struct siginfo __user *infop;
988
989 if (!likely(wo->wo_flags & WEXITED))
990 return 0;
991
992 if (unlikely(wo->wo_flags & WNOWAIT)) {
993 int exit_code = p->exit_code;
994 int why;
995
996 get_task_struct(p);
997 read_unlock(&tasklist_lock);
998 sched_annotate_sleep();
999
1000 if ((exit_code & 0x7f) == 0) {
1001 why = CLD_EXITED;
1002 status = exit_code >> 8;
1003 } else {
1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005 status = exit_code & 0x7f;
1006 }
1007 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008 }
1009 /*
1010 * Move the task's state to DEAD/TRACE, only one thread can do this.
1011 */
1012 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1013 EXIT_TRACE : EXIT_DEAD;
1014 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1015 return 0;
1016 /*
1017 * We own this thread, nobody else can reap it.
1018 */
1019 read_unlock(&tasklist_lock);
1020 sched_annotate_sleep();
1021
1022 /*
1023 * Check thread_group_leader() to exclude the traced sub-threads.
1024 */
1025 if (state == EXIT_DEAD && thread_group_leader(p)) {
1026 struct signal_struct *sig = p->signal;
1027 struct signal_struct *psig = current->signal;
1028 unsigned long maxrss;
1029 cputime_t tgutime, tgstime;
1030
1031 /*
1032 * The resource counters for the group leader are in its
1033 * own task_struct. Those for dead threads in the group
1034 * are in its signal_struct, as are those for the child
1035 * processes it has previously reaped. All these
1036 * accumulate in the parent's signal_struct c* fields.
1037 *
1038 * We don't bother to take a lock here to protect these
1039 * p->signal fields because the whole thread group is dead
1040 * and nobody can change them.
1041 *
1042 * psig->stats_lock also protects us from our sub-theads
1043 * which can reap other children at the same time. Until
1044 * we change k_getrusage()-like users to rely on this lock
1045 * we have to take ->siglock as well.
1046 *
1047 * We use thread_group_cputime_adjusted() to get times for
1048 * the thread group, which consolidates times for all threads
1049 * in the group including the group leader.
1050 */
1051 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1052 spin_lock_irq(&current->sighand->siglock);
1053 write_seqlock(&psig->stats_lock);
1054 psig->cutime += tgutime + sig->cutime;
1055 psig->cstime += tgstime + sig->cstime;
1056 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1057 psig->cmin_flt +=
1058 p->min_flt + sig->min_flt + sig->cmin_flt;
1059 psig->cmaj_flt +=
1060 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1061 psig->cnvcsw +=
1062 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1063 psig->cnivcsw +=
1064 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1065 psig->cinblock +=
1066 task_io_get_inblock(p) +
1067 sig->inblock + sig->cinblock;
1068 psig->coublock +=
1069 task_io_get_oublock(p) +
1070 sig->oublock + sig->coublock;
1071 maxrss = max(sig->maxrss, sig->cmaxrss);
1072 if (psig->cmaxrss < maxrss)
1073 psig->cmaxrss = maxrss;
1074 task_io_accounting_add(&psig->ioac, &p->ioac);
1075 task_io_accounting_add(&psig->ioac, &sig->ioac);
1076 write_sequnlock(&psig->stats_lock);
1077 spin_unlock_irq(&current->sighand->siglock);
1078 }
1079
1080 retval = wo->wo_rusage
1081 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1082 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1083 ? p->signal->group_exit_code : p->exit_code;
1084 if (!retval && wo->wo_stat)
1085 retval = put_user(status, wo->wo_stat);
1086
1087 infop = wo->wo_info;
1088 if (!retval && infop)
1089 retval = put_user(SIGCHLD, &infop->si_signo);
1090 if (!retval && infop)
1091 retval = put_user(0, &infop->si_errno);
1092 if (!retval && infop) {
1093 int why;
1094
1095 if ((status & 0x7f) == 0) {
1096 why = CLD_EXITED;
1097 status >>= 8;
1098 } else {
1099 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1100 status &= 0x7f;
1101 }
1102 retval = put_user((short)why, &infop->si_code);
1103 if (!retval)
1104 retval = put_user(status, &infop->si_status);
1105 }
1106 if (!retval && infop)
1107 retval = put_user(pid, &infop->si_pid);
1108 if (!retval && infop)
1109 retval = put_user(uid, &infop->si_uid);
1110 if (!retval)
1111 retval = pid;
1112
1113 if (state == EXIT_TRACE) {
1114 write_lock_irq(&tasklist_lock);
1115 /* We dropped tasklist, ptracer could die and untrace */
1116 ptrace_unlink(p);
1117
1118 /* If parent wants a zombie, don't release it now */
1119 state = EXIT_ZOMBIE;
1120 if (do_notify_parent(p, p->exit_signal))
1121 state = EXIT_DEAD;
1122 p->exit_state = state;
1123 write_unlock_irq(&tasklist_lock);
1124 }
1125 if (state == EXIT_DEAD)
1126 release_task(p);
1127
1128 return retval;
1129}
1130
1131static int *task_stopped_code(struct task_struct *p, bool ptrace)
1132{
1133 if (ptrace) {
1134 if (task_is_stopped_or_traced(p) &&
1135 !(p->jobctl & JOBCTL_LISTENING))
1136 return &p->exit_code;
1137 } else {
1138 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1139 return &p->signal->group_exit_code;
1140 }
1141 return NULL;
1142}
1143
1144/**
1145 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1146 * @wo: wait options
1147 * @ptrace: is the wait for ptrace
1148 * @p: task to wait for
1149 *
1150 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1151 *
1152 * CONTEXT:
1153 * read_lock(&tasklist_lock), which is released if return value is
1154 * non-zero. Also, grabs and releases @p->sighand->siglock.
1155 *
1156 * RETURNS:
1157 * 0 if wait condition didn't exist and search for other wait conditions
1158 * should continue. Non-zero return, -errno on failure and @p's pid on
1159 * success, implies that tasklist_lock is released and wait condition
1160 * search should terminate.
1161 */
1162static int wait_task_stopped(struct wait_opts *wo,
1163 int ptrace, struct task_struct *p)
1164{
1165 struct siginfo __user *infop;
1166 int retval, exit_code, *p_code, why;
1167 uid_t uid = 0; /* unneeded, required by compiler */
1168 pid_t pid;
1169
1170 /*
1171 * Traditionally we see ptrace'd stopped tasks regardless of options.
1172 */
1173 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1174 return 0;
1175
1176 if (!task_stopped_code(p, ptrace))
1177 return 0;
1178
1179 exit_code = 0;
1180 spin_lock_irq(&p->sighand->siglock);
1181
1182 p_code = task_stopped_code(p, ptrace);
1183 if (unlikely(!p_code))
1184 goto unlock_sig;
1185
1186 exit_code = *p_code;
1187 if (!exit_code)
1188 goto unlock_sig;
1189
1190 if (!unlikely(wo->wo_flags & WNOWAIT))
1191 *p_code = 0;
1192
1193 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1194unlock_sig:
1195 spin_unlock_irq(&p->sighand->siglock);
1196 if (!exit_code)
1197 return 0;
1198
1199 /*
1200 * Now we are pretty sure this task is interesting.
1201 * Make sure it doesn't get reaped out from under us while we
1202 * give up the lock and then examine it below. We don't want to
1203 * keep holding onto the tasklist_lock while we call getrusage and
1204 * possibly take page faults for user memory.
1205 */
1206 get_task_struct(p);
1207 pid = task_pid_vnr(p);
1208 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1209 read_unlock(&tasklist_lock);
1210 sched_annotate_sleep();
1211
1212 if (unlikely(wo->wo_flags & WNOWAIT))
1213 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1214
1215 retval = wo->wo_rusage
1216 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1217 if (!retval && wo->wo_stat)
1218 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1219
1220 infop = wo->wo_info;
1221 if (!retval && infop)
1222 retval = put_user(SIGCHLD, &infop->si_signo);
1223 if (!retval && infop)
1224 retval = put_user(0, &infop->si_errno);
1225 if (!retval && infop)
1226 retval = put_user((short)why, &infop->si_code);
1227 if (!retval && infop)
1228 retval = put_user(exit_code, &infop->si_status);
1229 if (!retval && infop)
1230 retval = put_user(pid, &infop->si_pid);
1231 if (!retval && infop)
1232 retval = put_user(uid, &infop->si_uid);
1233 if (!retval)
1234 retval = pid;
1235 put_task_struct(p);
1236
1237 BUG_ON(!retval);
1238 return retval;
1239}
1240
1241/*
1242 * Handle do_wait work for one task in a live, non-stopped state.
1243 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1244 * the lock and this task is uninteresting. If we return nonzero, we have
1245 * released the lock and the system call should return.
1246 */
1247static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1248{
1249 int retval;
1250 pid_t pid;
1251 uid_t uid;
1252
1253 if (!unlikely(wo->wo_flags & WCONTINUED))
1254 return 0;
1255
1256 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1257 return 0;
1258
1259 spin_lock_irq(&p->sighand->siglock);
1260 /* Re-check with the lock held. */
1261 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1262 spin_unlock_irq(&p->sighand->siglock);
1263 return 0;
1264 }
1265 if (!unlikely(wo->wo_flags & WNOWAIT))
1266 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1267 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1268 spin_unlock_irq(&p->sighand->siglock);
1269
1270 pid = task_pid_vnr(p);
1271 get_task_struct(p);
1272 read_unlock(&tasklist_lock);
1273 sched_annotate_sleep();
1274
1275 if (!wo->wo_info) {
1276 retval = wo->wo_rusage
1277 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1278 put_task_struct(p);
1279 if (!retval && wo->wo_stat)
1280 retval = put_user(0xffff, wo->wo_stat);
1281 if (!retval)
1282 retval = pid;
1283 } else {
1284 retval = wait_noreap_copyout(wo, p, pid, uid,
1285 CLD_CONTINUED, SIGCONT);
1286 BUG_ON(retval == 0);
1287 }
1288
1289 return retval;
1290}
1291
1292/*
1293 * Consider @p for a wait by @parent.
1294 *
1295 * -ECHILD should be in ->notask_error before the first call.
1296 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1297 * Returns zero if the search for a child should continue;
1298 * then ->notask_error is 0 if @p is an eligible child,
1299 * or another error from security_task_wait(), or still -ECHILD.
1300 */
1301static int wait_consider_task(struct wait_opts *wo, int ptrace,
1302 struct task_struct *p)
1303{
1304 /*
1305 * We can race with wait_task_zombie() from another thread.
1306 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1307 * can't confuse the checks below.
1308 */
1309 int exit_state = ACCESS_ONCE(p->exit_state);
1310 int ret;
1311
1312 if (unlikely(exit_state == EXIT_DEAD))
1313 return 0;
1314
1315 ret = eligible_child(wo, ptrace, p);
1316 if (!ret)
1317 return ret;
1318
1319 ret = security_task_wait(p);
1320 if (unlikely(ret < 0)) {
1321 /*
1322 * If we have not yet seen any eligible child,
1323 * then let this error code replace -ECHILD.
1324 * A permission error will give the user a clue
1325 * to look for security policy problems, rather
1326 * than for mysterious wait bugs.
1327 */
1328 if (wo->notask_error)
1329 wo->notask_error = ret;
1330 return 0;
1331 }
1332
1333 if (unlikely(exit_state == EXIT_TRACE)) {
1334 /*
1335 * ptrace == 0 means we are the natural parent. In this case
1336 * we should clear notask_error, debugger will notify us.
1337 */
1338 if (likely(!ptrace))
1339 wo->notask_error = 0;
1340 return 0;
1341 }
1342
1343 if (likely(!ptrace) && unlikely(p->ptrace)) {
1344 /*
1345 * If it is traced by its real parent's group, just pretend
1346 * the caller is ptrace_do_wait() and reap this child if it
1347 * is zombie.
1348 *
1349 * This also hides group stop state from real parent; otherwise
1350 * a single stop can be reported twice as group and ptrace stop.
1351 * If a ptracer wants to distinguish these two events for its
1352 * own children it should create a separate process which takes
1353 * the role of real parent.
1354 */
1355 if (!ptrace_reparented(p))
1356 ptrace = 1;
1357 }
1358
1359 /* slay zombie? */
1360 if (exit_state == EXIT_ZOMBIE) {
1361 /* we don't reap group leaders with subthreads */
1362 if (!delay_group_leader(p)) {
1363 /*
1364 * A zombie ptracee is only visible to its ptracer.
1365 * Notification and reaping will be cascaded to the
1366 * real parent when the ptracer detaches.
1367 */
1368 if (unlikely(ptrace) || likely(!p->ptrace))
1369 return wait_task_zombie(wo, p);
1370 }
1371
1372 /*
1373 * Allow access to stopped/continued state via zombie by
1374 * falling through. Clearing of notask_error is complex.
1375 *
1376 * When !@ptrace:
1377 *
1378 * If WEXITED is set, notask_error should naturally be
1379 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1380 * so, if there are live subthreads, there are events to
1381 * wait for. If all subthreads are dead, it's still safe
1382 * to clear - this function will be called again in finite
1383 * amount time once all the subthreads are released and
1384 * will then return without clearing.
1385 *
1386 * When @ptrace:
1387 *
1388 * Stopped state is per-task and thus can't change once the
1389 * target task dies. Only continued and exited can happen.
1390 * Clear notask_error if WCONTINUED | WEXITED.
1391 */
1392 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1393 wo->notask_error = 0;
1394 } else {
1395 /*
1396 * @p is alive and it's gonna stop, continue or exit, so
1397 * there always is something to wait for.
1398 */
1399 wo->notask_error = 0;
1400 }
1401
1402 /*
1403 * Wait for stopped. Depending on @ptrace, different stopped state
1404 * is used and the two don't interact with each other.
1405 */
1406 ret = wait_task_stopped(wo, ptrace, p);
1407 if (ret)
1408 return ret;
1409
1410 /*
1411 * Wait for continued. There's only one continued state and the
1412 * ptracer can consume it which can confuse the real parent. Don't
1413 * use WCONTINUED from ptracer. You don't need or want it.
1414 */
1415 return wait_task_continued(wo, p);
1416}
1417
1418/*
1419 * Do the work of do_wait() for one thread in the group, @tsk.
1420 *
1421 * -ECHILD should be in ->notask_error before the first call.
1422 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1423 * Returns zero if the search for a child should continue; then
1424 * ->notask_error is 0 if there were any eligible children,
1425 * or another error from security_task_wait(), or still -ECHILD.
1426 */
1427static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1428{
1429 struct task_struct *p;
1430
1431 list_for_each_entry(p, &tsk->children, sibling) {
1432 int ret = wait_consider_task(wo, 0, p);
1433
1434 if (ret)
1435 return ret;
1436 }
1437
1438 return 0;
1439}
1440
1441static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1442{
1443 struct task_struct *p;
1444
1445 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1446 int ret = wait_consider_task(wo, 1, p);
1447
1448 if (ret)
1449 return ret;
1450 }
1451
1452 return 0;
1453}
1454
1455static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1456 int sync, void *key)
1457{
1458 struct wait_opts *wo = container_of(wait, struct wait_opts,
1459 child_wait);
1460 struct task_struct *p = key;
1461
1462 if (!eligible_pid(wo, p))
1463 return 0;
1464
1465 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1466 return 0;
1467
1468 return default_wake_function(wait, mode, sync, key);
1469}
1470
1471void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1472{
1473 __wake_up_sync_key(&parent->signal->wait_chldexit,
1474 TASK_INTERRUPTIBLE, 1, p);
1475}
1476
1477static long do_wait(struct wait_opts *wo)
1478{
1479 struct task_struct *tsk;
1480 int retval;
1481
1482 trace_sched_process_wait(wo->wo_pid);
1483
1484 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1485 wo->child_wait.private = current;
1486 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1487repeat:
1488 /*
1489 * If there is nothing that can match our criteria, just get out.
1490 * We will clear ->notask_error to zero if we see any child that
1491 * might later match our criteria, even if we are not able to reap
1492 * it yet.
1493 */
1494 wo->notask_error = -ECHILD;
1495 if ((wo->wo_type < PIDTYPE_MAX) &&
1496 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1497 goto notask;
1498
1499 set_current_state(TASK_INTERRUPTIBLE);
1500 read_lock(&tasklist_lock);
1501 tsk = current;
1502 do {
1503 retval = do_wait_thread(wo, tsk);
1504 if (retval)
1505 goto end;
1506
1507 retval = ptrace_do_wait(wo, tsk);
1508 if (retval)
1509 goto end;
1510
1511 if (wo->wo_flags & __WNOTHREAD)
1512 break;
1513 } while_each_thread(current, tsk);
1514 read_unlock(&tasklist_lock);
1515
1516notask:
1517 retval = wo->notask_error;
1518 if (!retval && !(wo->wo_flags & WNOHANG)) {
1519 retval = -ERESTARTSYS;
1520 if (!signal_pending(current)) {
1521 schedule();
1522 goto repeat;
1523 }
1524 }
1525end:
1526 __set_current_state(TASK_RUNNING);
1527 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1528 return retval;
1529}
1530
1531SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1532 infop, int, options, struct rusage __user *, ru)
1533{
1534 struct wait_opts wo;
1535 struct pid *pid = NULL;
1536 enum pid_type type;
1537 long ret;
1538
1539 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1540 return -EINVAL;
1541 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1542 return -EINVAL;
1543
1544 switch (which) {
1545 case P_ALL:
1546 type = PIDTYPE_MAX;
1547 break;
1548 case P_PID:
1549 type = PIDTYPE_PID;
1550 if (upid <= 0)
1551 return -EINVAL;
1552 break;
1553 case P_PGID:
1554 type = PIDTYPE_PGID;
1555 if (upid <= 0)
1556 return -EINVAL;
1557 break;
1558 default:
1559 return -EINVAL;
1560 }
1561
1562 if (type < PIDTYPE_MAX)
1563 pid = find_get_pid(upid);
1564
1565 wo.wo_type = type;
1566 wo.wo_pid = pid;
1567 wo.wo_flags = options;
1568 wo.wo_info = infop;
1569 wo.wo_stat = NULL;
1570 wo.wo_rusage = ru;
1571 ret = do_wait(&wo);
1572
1573 if (ret > 0) {
1574 ret = 0;
1575 } else if (infop) {
1576 /*
1577 * For a WNOHANG return, clear out all the fields
1578 * we would set so the user can easily tell the
1579 * difference.
1580 */
1581 if (!ret)
1582 ret = put_user(0, &infop->si_signo);
1583 if (!ret)
1584 ret = put_user(0, &infop->si_errno);
1585 if (!ret)
1586 ret = put_user(0, &infop->si_code);
1587 if (!ret)
1588 ret = put_user(0, &infop->si_pid);
1589 if (!ret)
1590 ret = put_user(0, &infop->si_uid);
1591 if (!ret)
1592 ret = put_user(0, &infop->si_status);
1593 }
1594
1595 put_pid(pid);
1596 return ret;
1597}
1598
1599SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1600 int, options, struct rusage __user *, ru)
1601{
1602 struct wait_opts wo;
1603 struct pid *pid = NULL;
1604 enum pid_type type;
1605 long ret;
1606
1607 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1608 __WNOTHREAD|__WCLONE|__WALL))
1609 return -EINVAL;
1610
1611 if (upid == -1)
1612 type = PIDTYPE_MAX;
1613 else if (upid < 0) {
1614 type = PIDTYPE_PGID;
1615 pid = find_get_pid(-upid);
1616 } else if (upid == 0) {
1617 type = PIDTYPE_PGID;
1618 pid = get_task_pid(current, PIDTYPE_PGID);
1619 } else /* upid > 0 */ {
1620 type = PIDTYPE_PID;
1621 pid = find_get_pid(upid);
1622 }
1623
1624 wo.wo_type = type;
1625 wo.wo_pid = pid;
1626 wo.wo_flags = options | WEXITED;
1627 wo.wo_info = NULL;
1628 wo.wo_stat = stat_addr;
1629 wo.wo_rusage = ru;
1630 ret = do_wait(&wo);
1631 put_pid(pid);
1632
1633 return ret;
1634}
1635
1636#ifdef __ARCH_WANT_SYS_WAITPID
1637
1638/*
1639 * sys_waitpid() remains for compatibility. waitpid() should be
1640 * implemented by calling sys_wait4() from libc.a.
1641 */
1642SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1643{
1644 return sys_wait4(pid, stat_addr, options, NULL);
1645}
1646
1647#endif