Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * net/sched/sch_netem.c Network emulator |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License. |
| 8 | * |
| 9 | * Many of the algorithms and ideas for this came from |
| 10 | * NIST Net which is not copyrighted. |
| 11 | * |
| 12 | * Authors: Stephen Hemminger <shemminger@osdl.org> |
| 13 | * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> |
| 14 | */ |
| 15 | |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/types.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/skbuff.h> |
| 23 | #include <linux/vmalloc.h> |
| 24 | #include <linux/rtnetlink.h> |
| 25 | #include <linux/reciprocal_div.h> |
| 26 | #include <linux/rbtree.h> |
| 27 | |
| 28 | #include <net/netlink.h> |
| 29 | #include <net/pkt_sched.h> |
| 30 | #include <net/inet_ecn.h> |
| 31 | |
| 32 | #define VERSION "1.3" |
| 33 | |
| 34 | /* Network Emulation Queuing algorithm. |
| 35 | ==================================== |
| 36 | |
| 37 | Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based |
| 38 | Network Emulation Tool |
| 39 | [2] Luigi Rizzo, DummyNet for FreeBSD |
| 40 | |
| 41 | ---------------------------------------------------------------- |
| 42 | |
| 43 | This started out as a simple way to delay outgoing packets to |
| 44 | test TCP but has grown to include most of the functionality |
| 45 | of a full blown network emulator like NISTnet. It can delay |
| 46 | packets and add random jitter (and correlation). The random |
| 47 | distribution can be loaded from a table as well to provide |
| 48 | normal, Pareto, or experimental curves. Packet loss, |
| 49 | duplication, and reordering can also be emulated. |
| 50 | |
| 51 | This qdisc does not do classification that can be handled in |
| 52 | layering other disciplines. It does not need to do bandwidth |
| 53 | control either since that can be handled by using token |
| 54 | bucket or other rate control. |
| 55 | |
| 56 | Correlated Loss Generator models |
| 57 | |
| 58 | Added generation of correlated loss according to the |
| 59 | "Gilbert-Elliot" model, a 4-state markov model. |
| 60 | |
| 61 | References: |
| 62 | [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG |
| 63 | [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general |
| 64 | and intuitive loss model for packet networks and its implementation |
| 65 | in the Netem module in the Linux kernel", available in [1] |
| 66 | |
| 67 | Authors: Stefano Salsano <stefano.salsano at uniroma2.it |
| 68 | Fabio Ludovici <fabio.ludovici at yahoo.it> |
| 69 | */ |
| 70 | |
| 71 | struct netem_sched_data { |
| 72 | /* internal t(ime)fifo qdisc uses t_root and sch->limit */ |
| 73 | struct rb_root t_root; |
| 74 | |
| 75 | /* optional qdisc for classful handling (NULL at netem init) */ |
| 76 | struct Qdisc *qdisc; |
| 77 | |
| 78 | struct qdisc_watchdog watchdog; |
| 79 | |
| 80 | psched_tdiff_t latency; |
| 81 | psched_tdiff_t jitter; |
| 82 | |
| 83 | u32 loss; |
| 84 | u32 ecn; |
| 85 | u32 limit; |
| 86 | u32 counter; |
| 87 | u32 gap; |
| 88 | u32 duplicate; |
| 89 | u32 reorder; |
| 90 | u32 corrupt; |
| 91 | u64 rate; |
| 92 | s32 packet_overhead; |
| 93 | u32 cell_size; |
| 94 | struct reciprocal_value cell_size_reciprocal; |
| 95 | s32 cell_overhead; |
| 96 | |
| 97 | struct crndstate { |
| 98 | u32 last; |
| 99 | u32 rho; |
| 100 | } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; |
| 101 | |
| 102 | struct disttable { |
| 103 | u32 size; |
| 104 | s16 table[0]; |
| 105 | } *delay_dist; |
| 106 | |
| 107 | enum { |
| 108 | CLG_RANDOM, |
| 109 | CLG_4_STATES, |
| 110 | CLG_GILB_ELL, |
| 111 | } loss_model; |
| 112 | |
| 113 | enum { |
| 114 | TX_IN_GAP_PERIOD = 1, |
| 115 | TX_IN_BURST_PERIOD, |
| 116 | LOST_IN_GAP_PERIOD, |
| 117 | LOST_IN_BURST_PERIOD, |
| 118 | } _4_state_model; |
| 119 | |
| 120 | enum { |
| 121 | GOOD_STATE = 1, |
| 122 | BAD_STATE, |
| 123 | } GE_state_model; |
| 124 | |
| 125 | /* Correlated Loss Generation models */ |
| 126 | struct clgstate { |
| 127 | /* state of the Markov chain */ |
| 128 | u8 state; |
| 129 | |
| 130 | /* 4-states and Gilbert-Elliot models */ |
| 131 | u32 a1; /* p13 for 4-states or p for GE */ |
| 132 | u32 a2; /* p31 for 4-states or r for GE */ |
| 133 | u32 a3; /* p32 for 4-states or h for GE */ |
| 134 | u32 a4; /* p14 for 4-states or 1-k for GE */ |
| 135 | u32 a5; /* p23 used only in 4-states */ |
| 136 | } clg; |
| 137 | |
| 138 | }; |
| 139 | |
| 140 | /* Time stamp put into socket buffer control block |
| 141 | * Only valid when skbs are in our internal t(ime)fifo queue. |
| 142 | * |
| 143 | * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, |
| 144 | * and skb->next & skb->prev are scratch space for a qdisc, |
| 145 | * we save skb->tstamp value in skb->cb[] before destroying it. |
| 146 | */ |
| 147 | struct netem_skb_cb { |
| 148 | psched_time_t time_to_send; |
| 149 | ktime_t tstamp_save; |
| 150 | }; |
| 151 | |
| 152 | |
| 153 | static struct sk_buff *netem_rb_to_skb(struct rb_node *rb) |
| 154 | { |
| 155 | return container_of(rb, struct sk_buff, rbnode); |
| 156 | } |
| 157 | |
| 158 | static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) |
| 159 | { |
| 160 | /* we assume we can use skb next/prev/tstamp as storage for rb_node */ |
| 161 | qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); |
| 162 | return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; |
| 163 | } |
| 164 | |
| 165 | /* init_crandom - initialize correlated random number generator |
| 166 | * Use entropy source for initial seed. |
| 167 | */ |
| 168 | static void init_crandom(struct crndstate *state, unsigned long rho) |
| 169 | { |
| 170 | state->rho = rho; |
| 171 | state->last = prandom_u32(); |
| 172 | } |
| 173 | |
| 174 | /* get_crandom - correlated random number generator |
| 175 | * Next number depends on last value. |
| 176 | * rho is scaled to avoid floating point. |
| 177 | */ |
| 178 | static u32 get_crandom(struct crndstate *state) |
| 179 | { |
| 180 | u64 value, rho; |
| 181 | unsigned long answer; |
| 182 | |
| 183 | if (state->rho == 0) /* no correlation */ |
| 184 | return prandom_u32(); |
| 185 | |
| 186 | value = prandom_u32(); |
| 187 | rho = (u64)state->rho + 1; |
| 188 | answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; |
| 189 | state->last = answer; |
| 190 | return answer; |
| 191 | } |
| 192 | |
| 193 | /* loss_4state - 4-state model loss generator |
| 194 | * Generates losses according to the 4-state Markov chain adopted in |
| 195 | * the GI (General and Intuitive) loss model. |
| 196 | */ |
| 197 | static bool loss_4state(struct netem_sched_data *q) |
| 198 | { |
| 199 | struct clgstate *clg = &q->clg; |
| 200 | u32 rnd = prandom_u32(); |
| 201 | |
| 202 | /* |
| 203 | * Makes a comparison between rnd and the transition |
| 204 | * probabilities outgoing from the current state, then decides the |
| 205 | * next state and if the next packet has to be transmitted or lost. |
| 206 | * The four states correspond to: |
| 207 | * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period |
| 208 | * LOST_IN_BURST_PERIOD => isolated losses within a gap period |
| 209 | * LOST_IN_GAP_PERIOD => lost packets within a burst period |
| 210 | * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period |
| 211 | */ |
| 212 | switch (clg->state) { |
| 213 | case TX_IN_GAP_PERIOD: |
| 214 | if (rnd < clg->a4) { |
| 215 | clg->state = LOST_IN_BURST_PERIOD; |
| 216 | return true; |
| 217 | } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { |
| 218 | clg->state = LOST_IN_GAP_PERIOD; |
| 219 | return true; |
| 220 | } else if (clg->a1 + clg->a4 < rnd) { |
| 221 | clg->state = TX_IN_GAP_PERIOD; |
| 222 | } |
| 223 | |
| 224 | break; |
| 225 | case TX_IN_BURST_PERIOD: |
| 226 | if (rnd < clg->a5) { |
| 227 | clg->state = LOST_IN_GAP_PERIOD; |
| 228 | return true; |
| 229 | } else { |
| 230 | clg->state = TX_IN_BURST_PERIOD; |
| 231 | } |
| 232 | |
| 233 | break; |
| 234 | case LOST_IN_GAP_PERIOD: |
| 235 | if (rnd < clg->a3) |
| 236 | clg->state = TX_IN_BURST_PERIOD; |
| 237 | else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { |
| 238 | clg->state = TX_IN_GAP_PERIOD; |
| 239 | } else if (clg->a2 + clg->a3 < rnd) { |
| 240 | clg->state = LOST_IN_GAP_PERIOD; |
| 241 | return true; |
| 242 | } |
| 243 | break; |
| 244 | case LOST_IN_BURST_PERIOD: |
| 245 | clg->state = TX_IN_GAP_PERIOD; |
| 246 | break; |
| 247 | } |
| 248 | |
| 249 | return false; |
| 250 | } |
| 251 | |
| 252 | /* loss_gilb_ell - Gilbert-Elliot model loss generator |
| 253 | * Generates losses according to the Gilbert-Elliot loss model or |
| 254 | * its special cases (Gilbert or Simple Gilbert) |
| 255 | * |
| 256 | * Makes a comparison between random number and the transition |
| 257 | * probabilities outgoing from the current state, then decides the |
| 258 | * next state. A second random number is extracted and the comparison |
| 259 | * with the loss probability of the current state decides if the next |
| 260 | * packet will be transmitted or lost. |
| 261 | */ |
| 262 | static bool loss_gilb_ell(struct netem_sched_data *q) |
| 263 | { |
| 264 | struct clgstate *clg = &q->clg; |
| 265 | |
| 266 | switch (clg->state) { |
| 267 | case GOOD_STATE: |
| 268 | if (prandom_u32() < clg->a1) |
| 269 | clg->state = BAD_STATE; |
| 270 | if (prandom_u32() < clg->a4) |
| 271 | return true; |
| 272 | break; |
| 273 | case BAD_STATE: |
| 274 | if (prandom_u32() < clg->a2) |
| 275 | clg->state = GOOD_STATE; |
| 276 | if (prandom_u32() > clg->a3) |
| 277 | return true; |
| 278 | } |
| 279 | |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | static bool loss_event(struct netem_sched_data *q) |
| 284 | { |
| 285 | switch (q->loss_model) { |
| 286 | case CLG_RANDOM: |
| 287 | /* Random packet drop 0 => none, ~0 => all */ |
| 288 | return q->loss && q->loss >= get_crandom(&q->loss_cor); |
| 289 | |
| 290 | case CLG_4_STATES: |
| 291 | /* 4state loss model algorithm (used also for GI model) |
| 292 | * Extracts a value from the markov 4 state loss generator, |
| 293 | * if it is 1 drops a packet and if needed writes the event in |
| 294 | * the kernel logs |
| 295 | */ |
| 296 | return loss_4state(q); |
| 297 | |
| 298 | case CLG_GILB_ELL: |
| 299 | /* Gilbert-Elliot loss model algorithm |
| 300 | * Extracts a value from the Gilbert-Elliot loss generator, |
| 301 | * if it is 1 drops a packet and if needed writes the event in |
| 302 | * the kernel logs |
| 303 | */ |
| 304 | return loss_gilb_ell(q); |
| 305 | } |
| 306 | |
| 307 | return false; /* not reached */ |
| 308 | } |
| 309 | |
| 310 | |
| 311 | /* tabledist - return a pseudo-randomly distributed value with mean mu and |
| 312 | * std deviation sigma. Uses table lookup to approximate the desired |
| 313 | * distribution, and a uniformly-distributed pseudo-random source. |
| 314 | */ |
| 315 | static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma, |
| 316 | struct crndstate *state, |
| 317 | const struct disttable *dist) |
| 318 | { |
| 319 | psched_tdiff_t x; |
| 320 | long t; |
| 321 | u32 rnd; |
| 322 | |
| 323 | if (sigma == 0) |
| 324 | return mu; |
| 325 | |
| 326 | rnd = get_crandom(state); |
| 327 | |
| 328 | /* default uniform distribution */ |
| 329 | if (dist == NULL) |
| 330 | return (rnd % (2*sigma)) - sigma + mu; |
| 331 | |
| 332 | t = dist->table[rnd % dist->size]; |
| 333 | x = (sigma % NETEM_DIST_SCALE) * t; |
| 334 | if (x >= 0) |
| 335 | x += NETEM_DIST_SCALE/2; |
| 336 | else |
| 337 | x -= NETEM_DIST_SCALE/2; |
| 338 | |
| 339 | return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; |
| 340 | } |
| 341 | |
| 342 | static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q) |
| 343 | { |
| 344 | u64 ticks; |
| 345 | |
| 346 | len += q->packet_overhead; |
| 347 | |
| 348 | if (q->cell_size) { |
| 349 | u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); |
| 350 | |
| 351 | if (len > cells * q->cell_size) /* extra cell needed for remainder */ |
| 352 | cells++; |
| 353 | len = cells * (q->cell_size + q->cell_overhead); |
| 354 | } |
| 355 | |
| 356 | ticks = (u64)len * NSEC_PER_SEC; |
| 357 | |
| 358 | do_div(ticks, q->rate); |
| 359 | return PSCHED_NS2TICKS(ticks); |
| 360 | } |
| 361 | |
| 362 | static void tfifo_reset(struct Qdisc *sch) |
| 363 | { |
| 364 | struct netem_sched_data *q = qdisc_priv(sch); |
| 365 | struct rb_node *p; |
| 366 | |
| 367 | while ((p = rb_first(&q->t_root))) { |
| 368 | struct sk_buff *skb = netem_rb_to_skb(p); |
| 369 | |
| 370 | rb_erase(p, &q->t_root); |
| 371 | skb->next = NULL; |
| 372 | skb->prev = NULL; |
| 373 | kfree_skb(skb); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) |
| 378 | { |
| 379 | struct netem_sched_data *q = qdisc_priv(sch); |
| 380 | psched_time_t tnext = netem_skb_cb(nskb)->time_to_send; |
| 381 | struct rb_node **p = &q->t_root.rb_node, *parent = NULL; |
| 382 | |
| 383 | while (*p) { |
| 384 | struct sk_buff *skb; |
| 385 | |
| 386 | parent = *p; |
| 387 | skb = netem_rb_to_skb(parent); |
| 388 | if (tnext >= netem_skb_cb(skb)->time_to_send) |
| 389 | p = &parent->rb_right; |
| 390 | else |
| 391 | p = &parent->rb_left; |
| 392 | } |
| 393 | rb_link_node(&nskb->rbnode, parent, p); |
| 394 | rb_insert_color(&nskb->rbnode, &q->t_root); |
| 395 | sch->q.qlen++; |
| 396 | } |
| 397 | |
| 398 | /* netem can't properly corrupt a megapacket (like we get from GSO), so instead |
| 399 | * when we statistically choose to corrupt one, we instead segment it, returning |
| 400 | * the first packet to be corrupted, and re-enqueue the remaining frames |
| 401 | */ |
| 402 | static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch) |
| 403 | { |
| 404 | struct sk_buff *segs; |
| 405 | netdev_features_t features = netif_skb_features(skb); |
| 406 | |
| 407 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| 408 | |
| 409 | if (IS_ERR_OR_NULL(segs)) { |
| 410 | qdisc_reshape_fail(skb, sch); |
| 411 | return NULL; |
| 412 | } |
| 413 | consume_skb(skb); |
| 414 | return segs; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Insert one skb into qdisc. |
| 419 | * Note: parent depends on return value to account for queue length. |
| 420 | * NET_XMIT_DROP: queue length didn't change. |
| 421 | * NET_XMIT_SUCCESS: one skb was queued. |
| 422 | */ |
| 423 | static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 424 | { |
| 425 | struct netem_sched_data *q = qdisc_priv(sch); |
| 426 | /* We don't fill cb now as skb_unshare() may invalidate it */ |
| 427 | struct netem_skb_cb *cb; |
| 428 | struct sk_buff *skb2; |
| 429 | struct sk_buff *segs = NULL; |
| 430 | unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb); |
| 431 | int nb = 0; |
| 432 | int count = 1; |
| 433 | int rc = NET_XMIT_SUCCESS; |
| 434 | |
| 435 | /* Random duplication */ |
| 436 | if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) |
| 437 | ++count; |
| 438 | |
| 439 | /* Drop packet? */ |
| 440 | if (loss_event(q)) { |
| 441 | if (q->ecn && INET_ECN_set_ce(skb)) |
| 442 | qdisc_qstats_drop(sch); /* mark packet */ |
| 443 | else |
| 444 | --count; |
| 445 | } |
| 446 | if (count == 0) { |
| 447 | qdisc_qstats_drop(sch); |
| 448 | kfree_skb(skb); |
| 449 | return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| 450 | } |
| 451 | |
| 452 | /* If a delay is expected, orphan the skb. (orphaning usually takes |
| 453 | * place at TX completion time, so _before_ the link transit delay) |
| 454 | */ |
| 455 | if (q->latency || q->jitter) |
| 456 | skb_orphan_partial(skb); |
| 457 | |
| 458 | /* |
| 459 | * If we need to duplicate packet, then re-insert at top of the |
| 460 | * qdisc tree, since parent queuer expects that only one |
| 461 | * skb will be queued. |
| 462 | */ |
| 463 | if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { |
| 464 | struct Qdisc *rootq = qdisc_root(sch); |
| 465 | u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ |
| 466 | |
| 467 | q->duplicate = 0; |
| 468 | rootq->enqueue(skb2, rootq); |
| 469 | q->duplicate = dupsave; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * Randomized packet corruption. |
| 474 | * Make copy if needed since we are modifying |
| 475 | * If packet is going to be hardware checksummed, then |
| 476 | * do it now in software before we mangle it. |
| 477 | */ |
| 478 | if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { |
| 479 | if (skb_is_gso(skb)) { |
| 480 | segs = netem_segment(skb, sch); |
| 481 | if (!segs) |
| 482 | return NET_XMIT_DROP; |
| 483 | } else { |
| 484 | segs = skb; |
| 485 | } |
| 486 | |
| 487 | skb = segs; |
| 488 | segs = segs->next; |
| 489 | |
| 490 | if (!(skb = skb_unshare(skb, GFP_ATOMIC)) || |
| 491 | (skb->ip_summed == CHECKSUM_PARTIAL && |
| 492 | skb_checksum_help(skb))) { |
| 493 | rc = qdisc_drop(skb, sch); |
| 494 | goto finish_segs; |
| 495 | } |
| 496 | |
| 497 | skb->data[prandom_u32() % skb_headlen(skb)] ^= |
| 498 | 1<<(prandom_u32() % 8); |
| 499 | } |
| 500 | |
| 501 | if (unlikely(skb_queue_len(&sch->q) >= sch->limit)) |
| 502 | return qdisc_reshape_fail(skb, sch); |
| 503 | |
| 504 | qdisc_qstats_backlog_inc(sch, skb); |
| 505 | |
| 506 | cb = netem_skb_cb(skb); |
| 507 | if (q->gap == 0 || /* not doing reordering */ |
| 508 | q->counter < q->gap - 1 || /* inside last reordering gap */ |
| 509 | q->reorder < get_crandom(&q->reorder_cor)) { |
| 510 | psched_time_t now; |
| 511 | psched_tdiff_t delay; |
| 512 | |
| 513 | delay = tabledist(q->latency, q->jitter, |
| 514 | &q->delay_cor, q->delay_dist); |
| 515 | |
| 516 | now = psched_get_time(); |
| 517 | |
| 518 | if (q->rate) { |
| 519 | struct sk_buff *last; |
| 520 | |
| 521 | if (!skb_queue_empty(&sch->q)) |
| 522 | last = skb_peek_tail(&sch->q); |
| 523 | else |
| 524 | last = netem_rb_to_skb(rb_last(&q->t_root)); |
| 525 | if (last) { |
| 526 | /* |
| 527 | * Last packet in queue is reference point (now), |
| 528 | * calculate this time bonus and subtract |
| 529 | * from delay. |
| 530 | */ |
| 531 | delay -= netem_skb_cb(last)->time_to_send - now; |
| 532 | delay = max_t(psched_tdiff_t, 0, delay); |
| 533 | now = netem_skb_cb(last)->time_to_send; |
| 534 | } |
| 535 | |
| 536 | delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q); |
| 537 | } |
| 538 | |
| 539 | cb->time_to_send = now + delay; |
| 540 | cb->tstamp_save = skb->tstamp; |
| 541 | ++q->counter; |
| 542 | tfifo_enqueue(skb, sch); |
| 543 | } else { |
| 544 | /* |
| 545 | * Do re-ordering by putting one out of N packets at the front |
| 546 | * of the queue. |
| 547 | */ |
| 548 | cb->time_to_send = psched_get_time(); |
| 549 | q->counter = 0; |
| 550 | |
| 551 | __skb_queue_head(&sch->q, skb); |
| 552 | sch->qstats.requeues++; |
| 553 | } |
| 554 | |
| 555 | finish_segs: |
| 556 | if (segs) { |
| 557 | while (segs) { |
| 558 | skb2 = segs->next; |
| 559 | segs->next = NULL; |
| 560 | qdisc_skb_cb(segs)->pkt_len = segs->len; |
| 561 | last_len = segs->len; |
| 562 | rc = qdisc_enqueue(segs, sch); |
| 563 | if (rc != NET_XMIT_SUCCESS) { |
| 564 | if (net_xmit_drop_count(rc)) |
| 565 | qdisc_qstats_drop(sch); |
| 566 | } else { |
| 567 | nb++; |
| 568 | len += last_len; |
| 569 | } |
| 570 | segs = skb2; |
| 571 | } |
| 572 | sch->q.qlen += nb; |
| 573 | if (nb > 1) |
| 574 | qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); |
| 575 | } |
| 576 | return NET_XMIT_SUCCESS; |
| 577 | } |
| 578 | |
| 579 | static unsigned int netem_drop(struct Qdisc *sch) |
| 580 | { |
| 581 | struct netem_sched_data *q = qdisc_priv(sch); |
| 582 | unsigned int len; |
| 583 | |
| 584 | len = qdisc_queue_drop(sch); |
| 585 | |
| 586 | if (!len) { |
| 587 | struct rb_node *p = rb_first(&q->t_root); |
| 588 | |
| 589 | if (p) { |
| 590 | struct sk_buff *skb = netem_rb_to_skb(p); |
| 591 | |
| 592 | rb_erase(p, &q->t_root); |
| 593 | sch->q.qlen--; |
| 594 | skb->next = NULL; |
| 595 | skb->prev = NULL; |
| 596 | qdisc_qstats_backlog_dec(sch, skb); |
| 597 | kfree_skb(skb); |
| 598 | } |
| 599 | } |
| 600 | if (!len && q->qdisc && q->qdisc->ops->drop) |
| 601 | len = q->qdisc->ops->drop(q->qdisc); |
| 602 | if (len) |
| 603 | qdisc_qstats_drop(sch); |
| 604 | |
| 605 | return len; |
| 606 | } |
| 607 | |
| 608 | static struct sk_buff *netem_dequeue(struct Qdisc *sch) |
| 609 | { |
| 610 | struct netem_sched_data *q = qdisc_priv(sch); |
| 611 | struct sk_buff *skb; |
| 612 | struct rb_node *p; |
| 613 | |
| 614 | if (qdisc_is_throttled(sch)) |
| 615 | return NULL; |
| 616 | |
| 617 | tfifo_dequeue: |
| 618 | skb = __skb_dequeue(&sch->q); |
| 619 | if (skb) { |
| 620 | qdisc_qstats_backlog_dec(sch, skb); |
| 621 | deliver: |
| 622 | qdisc_unthrottled(sch); |
| 623 | qdisc_bstats_update(sch, skb); |
| 624 | return skb; |
| 625 | } |
| 626 | p = rb_first(&q->t_root); |
| 627 | if (p) { |
| 628 | psched_time_t time_to_send; |
| 629 | |
| 630 | skb = netem_rb_to_skb(p); |
| 631 | |
| 632 | /* if more time remaining? */ |
| 633 | time_to_send = netem_skb_cb(skb)->time_to_send; |
| 634 | if (time_to_send <= psched_get_time()) { |
| 635 | rb_erase(p, &q->t_root); |
| 636 | |
| 637 | sch->q.qlen--; |
| 638 | qdisc_qstats_backlog_dec(sch, skb); |
| 639 | skb->next = NULL; |
| 640 | skb->prev = NULL; |
| 641 | skb->tstamp = netem_skb_cb(skb)->tstamp_save; |
| 642 | |
| 643 | #ifdef CONFIG_NET_CLS_ACT |
| 644 | /* |
| 645 | * If it's at ingress let's pretend the delay is |
| 646 | * from the network (tstamp will be updated). |
| 647 | */ |
| 648 | if (G_TC_FROM(skb->tc_verd) & AT_INGRESS) |
| 649 | skb->tstamp.tv64 = 0; |
| 650 | #endif |
| 651 | |
| 652 | if (q->qdisc) { |
| 653 | unsigned int pkt_len = qdisc_pkt_len(skb); |
| 654 | int err = qdisc_enqueue(skb, q->qdisc); |
| 655 | |
| 656 | if (err != NET_XMIT_SUCCESS && |
| 657 | net_xmit_drop_count(err)) { |
| 658 | qdisc_qstats_drop(sch); |
| 659 | qdisc_tree_reduce_backlog(sch, 1, |
| 660 | pkt_len); |
| 661 | } |
| 662 | goto tfifo_dequeue; |
| 663 | } |
| 664 | goto deliver; |
| 665 | } |
| 666 | |
| 667 | if (q->qdisc) { |
| 668 | skb = q->qdisc->ops->dequeue(q->qdisc); |
| 669 | if (skb) |
| 670 | goto deliver; |
| 671 | } |
| 672 | qdisc_watchdog_schedule(&q->watchdog, time_to_send); |
| 673 | } |
| 674 | |
| 675 | if (q->qdisc) { |
| 676 | skb = q->qdisc->ops->dequeue(q->qdisc); |
| 677 | if (skb) |
| 678 | goto deliver; |
| 679 | } |
| 680 | return NULL; |
| 681 | } |
| 682 | |
| 683 | static void netem_reset(struct Qdisc *sch) |
| 684 | { |
| 685 | struct netem_sched_data *q = qdisc_priv(sch); |
| 686 | |
| 687 | qdisc_reset_queue(sch); |
| 688 | tfifo_reset(sch); |
| 689 | if (q->qdisc) |
| 690 | qdisc_reset(q->qdisc); |
| 691 | qdisc_watchdog_cancel(&q->watchdog); |
| 692 | } |
| 693 | |
| 694 | static void dist_free(struct disttable *d) |
| 695 | { |
| 696 | kvfree(d); |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Distribution data is a variable size payload containing |
| 701 | * signed 16 bit values. |
| 702 | */ |
| 703 | static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr) |
| 704 | { |
| 705 | struct netem_sched_data *q = qdisc_priv(sch); |
| 706 | size_t n = nla_len(attr)/sizeof(__s16); |
| 707 | const __s16 *data = nla_data(attr); |
| 708 | spinlock_t *root_lock; |
| 709 | struct disttable *d; |
| 710 | int i; |
| 711 | size_t s; |
| 712 | |
| 713 | if (n > NETEM_DIST_MAX) |
| 714 | return -EINVAL; |
| 715 | |
| 716 | s = sizeof(struct disttable) + n * sizeof(s16); |
| 717 | d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN); |
| 718 | if (!d) |
| 719 | d = vmalloc(s); |
| 720 | if (!d) |
| 721 | return -ENOMEM; |
| 722 | |
| 723 | d->size = n; |
| 724 | for (i = 0; i < n; i++) |
| 725 | d->table[i] = data[i]; |
| 726 | |
| 727 | root_lock = qdisc_root_sleeping_lock(sch); |
| 728 | |
| 729 | spin_lock_bh(root_lock); |
| 730 | swap(q->delay_dist, d); |
| 731 | spin_unlock_bh(root_lock); |
| 732 | |
| 733 | dist_free(d); |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) |
| 738 | { |
| 739 | const struct tc_netem_corr *c = nla_data(attr); |
| 740 | |
| 741 | init_crandom(&q->delay_cor, c->delay_corr); |
| 742 | init_crandom(&q->loss_cor, c->loss_corr); |
| 743 | init_crandom(&q->dup_cor, c->dup_corr); |
| 744 | } |
| 745 | |
| 746 | static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) |
| 747 | { |
| 748 | const struct tc_netem_reorder *r = nla_data(attr); |
| 749 | |
| 750 | q->reorder = r->probability; |
| 751 | init_crandom(&q->reorder_cor, r->correlation); |
| 752 | } |
| 753 | |
| 754 | static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) |
| 755 | { |
| 756 | const struct tc_netem_corrupt *r = nla_data(attr); |
| 757 | |
| 758 | q->corrupt = r->probability; |
| 759 | init_crandom(&q->corrupt_cor, r->correlation); |
| 760 | } |
| 761 | |
| 762 | static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) |
| 763 | { |
| 764 | const struct tc_netem_rate *r = nla_data(attr); |
| 765 | |
| 766 | q->rate = r->rate; |
| 767 | q->packet_overhead = r->packet_overhead; |
| 768 | q->cell_size = r->cell_size; |
| 769 | q->cell_overhead = r->cell_overhead; |
| 770 | if (q->cell_size) |
| 771 | q->cell_size_reciprocal = reciprocal_value(q->cell_size); |
| 772 | else |
| 773 | q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; |
| 774 | } |
| 775 | |
| 776 | static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) |
| 777 | { |
| 778 | const struct nlattr *la; |
| 779 | int rem; |
| 780 | |
| 781 | nla_for_each_nested(la, attr, rem) { |
| 782 | u16 type = nla_type(la); |
| 783 | |
| 784 | switch (type) { |
| 785 | case NETEM_LOSS_GI: { |
| 786 | const struct tc_netem_gimodel *gi = nla_data(la); |
| 787 | |
| 788 | if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { |
| 789 | pr_info("netem: incorrect gi model size\n"); |
| 790 | return -EINVAL; |
| 791 | } |
| 792 | |
| 793 | q->loss_model = CLG_4_STATES; |
| 794 | |
| 795 | q->clg.state = TX_IN_GAP_PERIOD; |
| 796 | q->clg.a1 = gi->p13; |
| 797 | q->clg.a2 = gi->p31; |
| 798 | q->clg.a3 = gi->p32; |
| 799 | q->clg.a4 = gi->p14; |
| 800 | q->clg.a5 = gi->p23; |
| 801 | break; |
| 802 | } |
| 803 | |
| 804 | case NETEM_LOSS_GE: { |
| 805 | const struct tc_netem_gemodel *ge = nla_data(la); |
| 806 | |
| 807 | if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { |
| 808 | pr_info("netem: incorrect ge model size\n"); |
| 809 | return -EINVAL; |
| 810 | } |
| 811 | |
| 812 | q->loss_model = CLG_GILB_ELL; |
| 813 | q->clg.state = GOOD_STATE; |
| 814 | q->clg.a1 = ge->p; |
| 815 | q->clg.a2 = ge->r; |
| 816 | q->clg.a3 = ge->h; |
| 817 | q->clg.a4 = ge->k1; |
| 818 | break; |
| 819 | } |
| 820 | |
| 821 | default: |
| 822 | pr_info("netem: unknown loss type %u\n", type); |
| 823 | return -EINVAL; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | return 0; |
| 828 | } |
| 829 | |
| 830 | static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { |
| 831 | [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, |
| 832 | [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, |
| 833 | [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, |
| 834 | [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, |
| 835 | [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, |
| 836 | [TCA_NETEM_ECN] = { .type = NLA_U32 }, |
| 837 | [TCA_NETEM_RATE64] = { .type = NLA_U64 }, |
| 838 | }; |
| 839 | |
| 840 | static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, |
| 841 | const struct nla_policy *policy, int len) |
| 842 | { |
| 843 | int nested_len = nla_len(nla) - NLA_ALIGN(len); |
| 844 | |
| 845 | if (nested_len < 0) { |
| 846 | pr_info("netem: invalid attributes len %d\n", nested_len); |
| 847 | return -EINVAL; |
| 848 | } |
| 849 | |
| 850 | if (nested_len >= nla_attr_size(0)) |
| 851 | return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), |
| 852 | nested_len, policy); |
| 853 | |
| 854 | memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); |
| 855 | return 0; |
| 856 | } |
| 857 | |
| 858 | /* Parse netlink message to set options */ |
| 859 | static int netem_change(struct Qdisc *sch, struct nlattr *opt) |
| 860 | { |
| 861 | struct netem_sched_data *q = qdisc_priv(sch); |
| 862 | struct nlattr *tb[TCA_NETEM_MAX + 1]; |
| 863 | struct tc_netem_qopt *qopt; |
| 864 | struct clgstate old_clg; |
| 865 | int old_loss_model = CLG_RANDOM; |
| 866 | int ret; |
| 867 | |
| 868 | if (opt == NULL) |
| 869 | return -EINVAL; |
| 870 | |
| 871 | qopt = nla_data(opt); |
| 872 | ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); |
| 873 | if (ret < 0) |
| 874 | return ret; |
| 875 | |
| 876 | /* backup q->clg and q->loss_model */ |
| 877 | old_clg = q->clg; |
| 878 | old_loss_model = q->loss_model; |
| 879 | |
| 880 | if (tb[TCA_NETEM_LOSS]) { |
| 881 | ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); |
| 882 | if (ret) { |
| 883 | q->loss_model = old_loss_model; |
| 884 | return ret; |
| 885 | } |
| 886 | } else { |
| 887 | q->loss_model = CLG_RANDOM; |
| 888 | } |
| 889 | |
| 890 | if (tb[TCA_NETEM_DELAY_DIST]) { |
| 891 | ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]); |
| 892 | if (ret) { |
| 893 | /* recover clg and loss_model, in case of |
| 894 | * q->clg and q->loss_model were modified |
| 895 | * in get_loss_clg() |
| 896 | */ |
| 897 | q->clg = old_clg; |
| 898 | q->loss_model = old_loss_model; |
| 899 | return ret; |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | sch->limit = qopt->limit; |
| 904 | |
| 905 | q->latency = qopt->latency; |
| 906 | q->jitter = qopt->jitter; |
| 907 | q->limit = qopt->limit; |
| 908 | q->gap = qopt->gap; |
| 909 | q->counter = 0; |
| 910 | q->loss = qopt->loss; |
| 911 | q->duplicate = qopt->duplicate; |
| 912 | |
| 913 | /* for compatibility with earlier versions. |
| 914 | * if gap is set, need to assume 100% probability |
| 915 | */ |
| 916 | if (q->gap) |
| 917 | q->reorder = ~0; |
| 918 | |
| 919 | if (tb[TCA_NETEM_CORR]) |
| 920 | get_correlation(q, tb[TCA_NETEM_CORR]); |
| 921 | |
| 922 | if (tb[TCA_NETEM_REORDER]) |
| 923 | get_reorder(q, tb[TCA_NETEM_REORDER]); |
| 924 | |
| 925 | if (tb[TCA_NETEM_CORRUPT]) |
| 926 | get_corrupt(q, tb[TCA_NETEM_CORRUPT]); |
| 927 | |
| 928 | if (tb[TCA_NETEM_RATE]) |
| 929 | get_rate(q, tb[TCA_NETEM_RATE]); |
| 930 | |
| 931 | if (tb[TCA_NETEM_RATE64]) |
| 932 | q->rate = max_t(u64, q->rate, |
| 933 | nla_get_u64(tb[TCA_NETEM_RATE64])); |
| 934 | |
| 935 | if (tb[TCA_NETEM_ECN]) |
| 936 | q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); |
| 937 | |
| 938 | return ret; |
| 939 | } |
| 940 | |
| 941 | static int netem_init(struct Qdisc *sch, struct nlattr *opt) |
| 942 | { |
| 943 | struct netem_sched_data *q = qdisc_priv(sch); |
| 944 | int ret; |
| 945 | |
| 946 | if (!opt) |
| 947 | return -EINVAL; |
| 948 | |
| 949 | qdisc_watchdog_init(&q->watchdog, sch); |
| 950 | |
| 951 | q->loss_model = CLG_RANDOM; |
| 952 | ret = netem_change(sch, opt); |
| 953 | if (ret) |
| 954 | pr_info("netem: change failed\n"); |
| 955 | return ret; |
| 956 | } |
| 957 | |
| 958 | static void netem_destroy(struct Qdisc *sch) |
| 959 | { |
| 960 | struct netem_sched_data *q = qdisc_priv(sch); |
| 961 | |
| 962 | qdisc_watchdog_cancel(&q->watchdog); |
| 963 | if (q->qdisc) |
| 964 | qdisc_destroy(q->qdisc); |
| 965 | dist_free(q->delay_dist); |
| 966 | } |
| 967 | |
| 968 | static int dump_loss_model(const struct netem_sched_data *q, |
| 969 | struct sk_buff *skb) |
| 970 | { |
| 971 | struct nlattr *nest; |
| 972 | |
| 973 | nest = nla_nest_start(skb, TCA_NETEM_LOSS); |
| 974 | if (nest == NULL) |
| 975 | goto nla_put_failure; |
| 976 | |
| 977 | switch (q->loss_model) { |
| 978 | case CLG_RANDOM: |
| 979 | /* legacy loss model */ |
| 980 | nla_nest_cancel(skb, nest); |
| 981 | return 0; /* no data */ |
| 982 | |
| 983 | case CLG_4_STATES: { |
| 984 | struct tc_netem_gimodel gi = { |
| 985 | .p13 = q->clg.a1, |
| 986 | .p31 = q->clg.a2, |
| 987 | .p32 = q->clg.a3, |
| 988 | .p14 = q->clg.a4, |
| 989 | .p23 = q->clg.a5, |
| 990 | }; |
| 991 | |
| 992 | if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) |
| 993 | goto nla_put_failure; |
| 994 | break; |
| 995 | } |
| 996 | case CLG_GILB_ELL: { |
| 997 | struct tc_netem_gemodel ge = { |
| 998 | .p = q->clg.a1, |
| 999 | .r = q->clg.a2, |
| 1000 | .h = q->clg.a3, |
| 1001 | .k1 = q->clg.a4, |
| 1002 | }; |
| 1003 | |
| 1004 | if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) |
| 1005 | goto nla_put_failure; |
| 1006 | break; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | nla_nest_end(skb, nest); |
| 1011 | return 0; |
| 1012 | |
| 1013 | nla_put_failure: |
| 1014 | nla_nest_cancel(skb, nest); |
| 1015 | return -1; |
| 1016 | } |
| 1017 | |
| 1018 | static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 1019 | { |
| 1020 | const struct netem_sched_data *q = qdisc_priv(sch); |
| 1021 | struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); |
| 1022 | struct tc_netem_qopt qopt; |
| 1023 | struct tc_netem_corr cor; |
| 1024 | struct tc_netem_reorder reorder; |
| 1025 | struct tc_netem_corrupt corrupt; |
| 1026 | struct tc_netem_rate rate; |
| 1027 | |
| 1028 | qopt.latency = q->latency; |
| 1029 | qopt.jitter = q->jitter; |
| 1030 | qopt.limit = q->limit; |
| 1031 | qopt.loss = q->loss; |
| 1032 | qopt.gap = q->gap; |
| 1033 | qopt.duplicate = q->duplicate; |
| 1034 | if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) |
| 1035 | goto nla_put_failure; |
| 1036 | |
| 1037 | cor.delay_corr = q->delay_cor.rho; |
| 1038 | cor.loss_corr = q->loss_cor.rho; |
| 1039 | cor.dup_corr = q->dup_cor.rho; |
| 1040 | if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) |
| 1041 | goto nla_put_failure; |
| 1042 | |
| 1043 | reorder.probability = q->reorder; |
| 1044 | reorder.correlation = q->reorder_cor.rho; |
| 1045 | if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) |
| 1046 | goto nla_put_failure; |
| 1047 | |
| 1048 | corrupt.probability = q->corrupt; |
| 1049 | corrupt.correlation = q->corrupt_cor.rho; |
| 1050 | if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) |
| 1051 | goto nla_put_failure; |
| 1052 | |
| 1053 | if (q->rate >= (1ULL << 32)) { |
| 1054 | if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate)) |
| 1055 | goto nla_put_failure; |
| 1056 | rate.rate = ~0U; |
| 1057 | } else { |
| 1058 | rate.rate = q->rate; |
| 1059 | } |
| 1060 | rate.packet_overhead = q->packet_overhead; |
| 1061 | rate.cell_size = q->cell_size; |
| 1062 | rate.cell_overhead = q->cell_overhead; |
| 1063 | if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) |
| 1064 | goto nla_put_failure; |
| 1065 | |
| 1066 | if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) |
| 1067 | goto nla_put_failure; |
| 1068 | |
| 1069 | if (dump_loss_model(q, skb) != 0) |
| 1070 | goto nla_put_failure; |
| 1071 | |
| 1072 | return nla_nest_end(skb, nla); |
| 1073 | |
| 1074 | nla_put_failure: |
| 1075 | nlmsg_trim(skb, nla); |
| 1076 | return -1; |
| 1077 | } |
| 1078 | |
| 1079 | static int netem_dump_class(struct Qdisc *sch, unsigned long cl, |
| 1080 | struct sk_buff *skb, struct tcmsg *tcm) |
| 1081 | { |
| 1082 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1083 | |
| 1084 | if (cl != 1 || !q->qdisc) /* only one class */ |
| 1085 | return -ENOENT; |
| 1086 | |
| 1087 | tcm->tcm_handle |= TC_H_MIN(1); |
| 1088 | tcm->tcm_info = q->qdisc->handle; |
| 1089 | |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, |
| 1094 | struct Qdisc **old) |
| 1095 | { |
| 1096 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1097 | |
| 1098 | *old = qdisc_replace(sch, new, &q->qdisc); |
| 1099 | return 0; |
| 1100 | } |
| 1101 | |
| 1102 | static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) |
| 1103 | { |
| 1104 | struct netem_sched_data *q = qdisc_priv(sch); |
| 1105 | return q->qdisc; |
| 1106 | } |
| 1107 | |
| 1108 | static unsigned long netem_get(struct Qdisc *sch, u32 classid) |
| 1109 | { |
| 1110 | return 1; |
| 1111 | } |
| 1112 | |
| 1113 | static void netem_put(struct Qdisc *sch, unsigned long arg) |
| 1114 | { |
| 1115 | } |
| 1116 | |
| 1117 | static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) |
| 1118 | { |
| 1119 | if (!walker->stop) { |
| 1120 | if (walker->count >= walker->skip) |
| 1121 | if (walker->fn(sch, 1, walker) < 0) { |
| 1122 | walker->stop = 1; |
| 1123 | return; |
| 1124 | } |
| 1125 | walker->count++; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | static const struct Qdisc_class_ops netem_class_ops = { |
| 1130 | .graft = netem_graft, |
| 1131 | .leaf = netem_leaf, |
| 1132 | .get = netem_get, |
| 1133 | .put = netem_put, |
| 1134 | .walk = netem_walk, |
| 1135 | .dump = netem_dump_class, |
| 1136 | }; |
| 1137 | |
| 1138 | static struct Qdisc_ops netem_qdisc_ops __read_mostly = { |
| 1139 | .id = "netem", |
| 1140 | .cl_ops = &netem_class_ops, |
| 1141 | .priv_size = sizeof(struct netem_sched_data), |
| 1142 | .enqueue = netem_enqueue, |
| 1143 | .dequeue = netem_dequeue, |
| 1144 | .peek = qdisc_peek_dequeued, |
| 1145 | .drop = netem_drop, |
| 1146 | .init = netem_init, |
| 1147 | .reset = netem_reset, |
| 1148 | .destroy = netem_destroy, |
| 1149 | .change = netem_change, |
| 1150 | .dump = netem_dump, |
| 1151 | .owner = THIS_MODULE, |
| 1152 | }; |
| 1153 | |
| 1154 | |
| 1155 | static int __init netem_module_init(void) |
| 1156 | { |
| 1157 | pr_info("netem: version " VERSION "\n"); |
| 1158 | return register_qdisc(&netem_qdisc_ops); |
| 1159 | } |
| 1160 | static void __exit netem_module_exit(void) |
| 1161 | { |
| 1162 | unregister_qdisc(&netem_qdisc_ops); |
| 1163 | } |
| 1164 | module_init(netem_module_init) |
| 1165 | module_exit(netem_module_exit) |
| 1166 | MODULE_LICENSE("GPL"); |