Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 3 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 4 | * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| 5 | * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> |
| 6 | * Copyright 2013-2014 Intel Mobile Communications GmbH |
| 7 | * |
| 8 | * Permission to use, copy, modify, and/or distribute this software for any |
| 9 | * purpose with or without fee is hereby granted, provided that the above |
| 10 | * copyright notice and this permission notice appear in all copies. |
| 11 | * |
| 12 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 13 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 14 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 15 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 16 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 17 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 18 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 19 | */ |
| 20 | |
| 21 | |
| 22 | /** |
| 23 | * DOC: Wireless regulatory infrastructure |
| 24 | * |
| 25 | * The usual implementation is for a driver to read a device EEPROM to |
| 26 | * determine which regulatory domain it should be operating under, then |
| 27 | * looking up the allowable channels in a driver-local table and finally |
| 28 | * registering those channels in the wiphy structure. |
| 29 | * |
| 30 | * Another set of compliance enforcement is for drivers to use their |
| 31 | * own compliance limits which can be stored on the EEPROM. The host |
| 32 | * driver or firmware may ensure these are used. |
| 33 | * |
| 34 | * In addition to all this we provide an extra layer of regulatory |
| 35 | * conformance. For drivers which do not have any regulatory |
| 36 | * information CRDA provides the complete regulatory solution. |
| 37 | * For others it provides a community effort on further restrictions |
| 38 | * to enhance compliance. |
| 39 | * |
| 40 | * Note: When number of rules --> infinity we will not be able to |
| 41 | * index on alpha2 any more, instead we'll probably have to |
| 42 | * rely on some SHA1 checksum of the regdomain for example. |
| 43 | * |
| 44 | */ |
| 45 | |
| 46 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 47 | |
| 48 | #include <linux/kernel.h> |
| 49 | #include <linux/export.h> |
| 50 | #include <linux/slab.h> |
| 51 | #include <linux/list.h> |
| 52 | #include <linux/ctype.h> |
| 53 | #include <linux/nl80211.h> |
| 54 | #include <linux/platform_device.h> |
| 55 | #include <linux/moduleparam.h> |
| 56 | #include <net/cfg80211.h> |
| 57 | #include "core.h" |
| 58 | #include "reg.h" |
| 59 | #include "rdev-ops.h" |
| 60 | #include "regdb.h" |
| 61 | #include "nl80211.h" |
| 62 | |
| 63 | #ifdef CONFIG_CFG80211_REG_DEBUG |
| 64 | #define REG_DBG_PRINT(format, args...) \ |
| 65 | printk(KERN_DEBUG pr_fmt(format), ##args) |
| 66 | #else |
| 67 | #define REG_DBG_PRINT(args...) |
| 68 | #endif |
| 69 | |
| 70 | /* |
| 71 | * Grace period we give before making sure all current interfaces reside on |
| 72 | * channels allowed by the current regulatory domain. |
| 73 | */ |
| 74 | #define REG_ENFORCE_GRACE_MS 60000 |
| 75 | |
| 76 | /** |
| 77 | * enum reg_request_treatment - regulatory request treatment |
| 78 | * |
| 79 | * @REG_REQ_OK: continue processing the regulatory request |
| 80 | * @REG_REQ_IGNORE: ignore the regulatory request |
| 81 | * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should |
| 82 | * be intersected with the current one. |
| 83 | * @REG_REQ_ALREADY_SET: the regulatory request will not change the current |
| 84 | * regulatory settings, and no further processing is required. |
| 85 | */ |
| 86 | enum reg_request_treatment { |
| 87 | REG_REQ_OK, |
| 88 | REG_REQ_IGNORE, |
| 89 | REG_REQ_INTERSECT, |
| 90 | REG_REQ_ALREADY_SET, |
| 91 | }; |
| 92 | |
| 93 | static struct regulatory_request core_request_world = { |
| 94 | .initiator = NL80211_REGDOM_SET_BY_CORE, |
| 95 | .alpha2[0] = '0', |
| 96 | .alpha2[1] = '0', |
| 97 | .intersect = false, |
| 98 | .processed = true, |
| 99 | .country_ie_env = ENVIRON_ANY, |
| 100 | }; |
| 101 | |
| 102 | /* |
| 103 | * Receipt of information from last regulatory request, |
| 104 | * protected by RTNL (and can be accessed with RCU protection) |
| 105 | */ |
| 106 | static struct regulatory_request __rcu *last_request = |
| 107 | (void __force __rcu *)&core_request_world; |
| 108 | |
| 109 | /* To trigger userspace events */ |
| 110 | static struct platform_device *reg_pdev; |
| 111 | |
| 112 | /* |
| 113 | * Central wireless core regulatory domains, we only need two, |
| 114 | * the current one and a world regulatory domain in case we have no |
| 115 | * information to give us an alpha2. |
| 116 | * (protected by RTNL, can be read under RCU) |
| 117 | */ |
| 118 | const struct ieee80211_regdomain __rcu *cfg80211_regdomain; |
| 119 | |
| 120 | /* |
| 121 | * Number of devices that registered to the core |
| 122 | * that support cellular base station regulatory hints |
| 123 | * (protected by RTNL) |
| 124 | */ |
| 125 | static int reg_num_devs_support_basehint; |
| 126 | |
| 127 | /* |
| 128 | * State variable indicating if the platform on which the devices |
| 129 | * are attached is operating in an indoor environment. The state variable |
| 130 | * is relevant for all registered devices. |
| 131 | */ |
| 132 | static bool reg_is_indoor; |
| 133 | static spinlock_t reg_indoor_lock; |
| 134 | |
| 135 | /* Used to track the userspace process controlling the indoor setting */ |
| 136 | static u32 reg_is_indoor_portid; |
| 137 | |
| 138 | static void restore_regulatory_settings(bool reset_user); |
| 139 | |
| 140 | static const struct ieee80211_regdomain *get_cfg80211_regdom(void) |
| 141 | { |
| 142 | return rtnl_dereference(cfg80211_regdomain); |
| 143 | } |
| 144 | |
| 145 | const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) |
| 146 | { |
| 147 | return rtnl_dereference(wiphy->regd); |
| 148 | } |
| 149 | |
| 150 | static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) |
| 151 | { |
| 152 | switch (dfs_region) { |
| 153 | case NL80211_DFS_UNSET: |
| 154 | return "unset"; |
| 155 | case NL80211_DFS_FCC: |
| 156 | return "FCC"; |
| 157 | case NL80211_DFS_ETSI: |
| 158 | return "ETSI"; |
| 159 | case NL80211_DFS_JP: |
| 160 | return "JP"; |
| 161 | } |
| 162 | return "Unknown"; |
| 163 | } |
| 164 | |
| 165 | enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) |
| 166 | { |
| 167 | const struct ieee80211_regdomain *regd = NULL; |
| 168 | const struct ieee80211_regdomain *wiphy_regd = NULL; |
| 169 | |
| 170 | regd = get_cfg80211_regdom(); |
| 171 | if (!wiphy) |
| 172 | goto out; |
| 173 | |
| 174 | wiphy_regd = get_wiphy_regdom(wiphy); |
| 175 | if (!wiphy_regd) |
| 176 | goto out; |
| 177 | |
| 178 | if (wiphy_regd->dfs_region == regd->dfs_region) |
| 179 | goto out; |
| 180 | |
| 181 | REG_DBG_PRINT("%s: device specific dfs_region " |
| 182 | "(%s) disagrees with cfg80211's " |
| 183 | "central dfs_region (%s)\n", |
| 184 | dev_name(&wiphy->dev), |
| 185 | reg_dfs_region_str(wiphy_regd->dfs_region), |
| 186 | reg_dfs_region_str(regd->dfs_region)); |
| 187 | |
| 188 | out: |
| 189 | return regd->dfs_region; |
| 190 | } |
| 191 | |
| 192 | static void rcu_free_regdom(const struct ieee80211_regdomain *r) |
| 193 | { |
| 194 | if (!r) |
| 195 | return; |
| 196 | kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); |
| 197 | } |
| 198 | |
| 199 | static struct regulatory_request *get_last_request(void) |
| 200 | { |
| 201 | return rcu_dereference_rtnl(last_request); |
| 202 | } |
| 203 | |
| 204 | /* Used to queue up regulatory hints */ |
| 205 | static LIST_HEAD(reg_requests_list); |
| 206 | static spinlock_t reg_requests_lock; |
| 207 | |
| 208 | /* Used to queue up beacon hints for review */ |
| 209 | static LIST_HEAD(reg_pending_beacons); |
| 210 | static spinlock_t reg_pending_beacons_lock; |
| 211 | |
| 212 | /* Used to keep track of processed beacon hints */ |
| 213 | static LIST_HEAD(reg_beacon_list); |
| 214 | |
| 215 | struct reg_beacon { |
| 216 | struct list_head list; |
| 217 | struct ieee80211_channel chan; |
| 218 | }; |
| 219 | |
| 220 | static void reg_check_chans_work(struct work_struct *work); |
| 221 | static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); |
| 222 | |
| 223 | static void reg_todo(struct work_struct *work); |
| 224 | static DECLARE_WORK(reg_work, reg_todo); |
| 225 | |
| 226 | /* We keep a static world regulatory domain in case of the absence of CRDA */ |
| 227 | static const struct ieee80211_regdomain world_regdom = { |
| 228 | .n_reg_rules = 8, |
| 229 | .alpha2 = "00", |
| 230 | .reg_rules = { |
| 231 | /* IEEE 802.11b/g, channels 1..11 */ |
| 232 | REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), |
| 233 | /* IEEE 802.11b/g, channels 12..13. */ |
| 234 | REG_RULE(2467-10, 2472+10, 40, 6, 20, |
| 235 | NL80211_RRF_NO_IR), |
| 236 | /* IEEE 802.11 channel 14 - Only JP enables |
| 237 | * this and for 802.11b only */ |
| 238 | REG_RULE(2484-10, 2484+10, 20, 6, 20, |
| 239 | NL80211_RRF_NO_IR | |
| 240 | NL80211_RRF_NO_OFDM), |
| 241 | /* IEEE 802.11a, channel 36..48 */ |
| 242 | REG_RULE(5180-10, 5240+10, 160, 6, 20, |
| 243 | NL80211_RRF_NO_IR), |
| 244 | |
| 245 | /* IEEE 802.11a, channel 52..64 - DFS required */ |
| 246 | REG_RULE(5260-10, 5320+10, 160, 6, 20, |
| 247 | NL80211_RRF_NO_IR | |
| 248 | NL80211_RRF_DFS), |
| 249 | |
| 250 | /* IEEE 802.11a, channel 100..144 - DFS required */ |
| 251 | REG_RULE(5500-10, 5720+10, 160, 6, 20, |
| 252 | NL80211_RRF_NO_IR | |
| 253 | NL80211_RRF_DFS), |
| 254 | |
| 255 | /* IEEE 802.11a, channel 149..165 */ |
| 256 | REG_RULE(5745-10, 5825+10, 80, 6, 20, |
| 257 | NL80211_RRF_NO_IR), |
| 258 | |
| 259 | /* IEEE 802.11ad (60GHz), channels 1..3 */ |
| 260 | REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | /* protected by RTNL */ |
| 265 | static const struct ieee80211_regdomain *cfg80211_world_regdom = |
| 266 | &world_regdom; |
| 267 | |
| 268 | static char *ieee80211_regdom = "00"; |
| 269 | static char user_alpha2[2]; |
| 270 | |
| 271 | module_param(ieee80211_regdom, charp, 0444); |
| 272 | MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); |
| 273 | |
| 274 | static void reg_free_request(struct regulatory_request *request) |
| 275 | { |
| 276 | if (request == &core_request_world) |
| 277 | return; |
| 278 | |
| 279 | if (request != get_last_request()) |
| 280 | kfree(request); |
| 281 | } |
| 282 | |
| 283 | static void reg_free_last_request(void) |
| 284 | { |
| 285 | struct regulatory_request *lr = get_last_request(); |
| 286 | |
| 287 | if (lr != &core_request_world && lr) |
| 288 | kfree_rcu(lr, rcu_head); |
| 289 | } |
| 290 | |
| 291 | static void reg_update_last_request(struct regulatory_request *request) |
| 292 | { |
| 293 | struct regulatory_request *lr; |
| 294 | |
| 295 | lr = get_last_request(); |
| 296 | if (lr == request) |
| 297 | return; |
| 298 | |
| 299 | reg_free_last_request(); |
| 300 | rcu_assign_pointer(last_request, request); |
| 301 | } |
| 302 | |
| 303 | static void reset_regdomains(bool full_reset, |
| 304 | const struct ieee80211_regdomain *new_regdom) |
| 305 | { |
| 306 | const struct ieee80211_regdomain *r; |
| 307 | |
| 308 | ASSERT_RTNL(); |
| 309 | |
| 310 | r = get_cfg80211_regdom(); |
| 311 | |
| 312 | /* avoid freeing static information or freeing something twice */ |
| 313 | if (r == cfg80211_world_regdom) |
| 314 | r = NULL; |
| 315 | if (cfg80211_world_regdom == &world_regdom) |
| 316 | cfg80211_world_regdom = NULL; |
| 317 | if (r == &world_regdom) |
| 318 | r = NULL; |
| 319 | |
| 320 | rcu_free_regdom(r); |
| 321 | rcu_free_regdom(cfg80211_world_regdom); |
| 322 | |
| 323 | cfg80211_world_regdom = &world_regdom; |
| 324 | rcu_assign_pointer(cfg80211_regdomain, new_regdom); |
| 325 | |
| 326 | if (!full_reset) |
| 327 | return; |
| 328 | |
| 329 | reg_update_last_request(&core_request_world); |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Dynamic world regulatory domain requested by the wireless |
| 334 | * core upon initialization |
| 335 | */ |
| 336 | static void update_world_regdomain(const struct ieee80211_regdomain *rd) |
| 337 | { |
| 338 | struct regulatory_request *lr; |
| 339 | |
| 340 | lr = get_last_request(); |
| 341 | |
| 342 | WARN_ON(!lr); |
| 343 | |
| 344 | reset_regdomains(false, rd); |
| 345 | |
| 346 | cfg80211_world_regdom = rd; |
| 347 | } |
| 348 | |
| 349 | bool is_world_regdom(const char *alpha2) |
| 350 | { |
| 351 | if (!alpha2) |
| 352 | return false; |
| 353 | return alpha2[0] == '0' && alpha2[1] == '0'; |
| 354 | } |
| 355 | |
| 356 | static bool is_alpha2_set(const char *alpha2) |
| 357 | { |
| 358 | if (!alpha2) |
| 359 | return false; |
| 360 | return alpha2[0] && alpha2[1]; |
| 361 | } |
| 362 | |
| 363 | static bool is_unknown_alpha2(const char *alpha2) |
| 364 | { |
| 365 | if (!alpha2) |
| 366 | return false; |
| 367 | /* |
| 368 | * Special case where regulatory domain was built by driver |
| 369 | * but a specific alpha2 cannot be determined |
| 370 | */ |
| 371 | return alpha2[0] == '9' && alpha2[1] == '9'; |
| 372 | } |
| 373 | |
| 374 | static bool is_intersected_alpha2(const char *alpha2) |
| 375 | { |
| 376 | if (!alpha2) |
| 377 | return false; |
| 378 | /* |
| 379 | * Special case where regulatory domain is the |
| 380 | * result of an intersection between two regulatory domain |
| 381 | * structures |
| 382 | */ |
| 383 | return alpha2[0] == '9' && alpha2[1] == '8'; |
| 384 | } |
| 385 | |
| 386 | static bool is_an_alpha2(const char *alpha2) |
| 387 | { |
| 388 | if (!alpha2) |
| 389 | return false; |
| 390 | return isalpha(alpha2[0]) && isalpha(alpha2[1]); |
| 391 | } |
| 392 | |
| 393 | static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) |
| 394 | { |
| 395 | if (!alpha2_x || !alpha2_y) |
| 396 | return false; |
| 397 | return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; |
| 398 | } |
| 399 | |
| 400 | static bool regdom_changes(const char *alpha2) |
| 401 | { |
| 402 | const struct ieee80211_regdomain *r = get_cfg80211_regdom(); |
| 403 | |
| 404 | if (!r) |
| 405 | return true; |
| 406 | return !alpha2_equal(r->alpha2, alpha2); |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets |
| 411 | * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER |
| 412 | * has ever been issued. |
| 413 | */ |
| 414 | static bool is_user_regdom_saved(void) |
| 415 | { |
| 416 | if (user_alpha2[0] == '9' && user_alpha2[1] == '7') |
| 417 | return false; |
| 418 | |
| 419 | /* This would indicate a mistake on the design */ |
| 420 | if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), |
| 421 | "Unexpected user alpha2: %c%c\n", |
| 422 | user_alpha2[0], user_alpha2[1])) |
| 423 | return false; |
| 424 | |
| 425 | return true; |
| 426 | } |
| 427 | |
| 428 | static const struct ieee80211_regdomain * |
| 429 | reg_copy_regd(const struct ieee80211_regdomain *src_regd) |
| 430 | { |
| 431 | struct ieee80211_regdomain *regd; |
| 432 | int size_of_regd; |
| 433 | unsigned int i; |
| 434 | |
| 435 | size_of_regd = |
| 436 | sizeof(struct ieee80211_regdomain) + |
| 437 | src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); |
| 438 | |
| 439 | regd = kzalloc(size_of_regd, GFP_KERNEL); |
| 440 | if (!regd) |
| 441 | return ERR_PTR(-ENOMEM); |
| 442 | |
| 443 | memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); |
| 444 | |
| 445 | for (i = 0; i < src_regd->n_reg_rules; i++) |
| 446 | memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], |
| 447 | sizeof(struct ieee80211_reg_rule)); |
| 448 | |
| 449 | return regd; |
| 450 | } |
| 451 | |
| 452 | #ifdef CONFIG_CFG80211_INTERNAL_REGDB |
| 453 | struct reg_regdb_apply_request { |
| 454 | struct list_head list; |
| 455 | const struct ieee80211_regdomain *regdom; |
| 456 | }; |
| 457 | |
| 458 | static LIST_HEAD(reg_regdb_apply_list); |
| 459 | static DEFINE_MUTEX(reg_regdb_apply_mutex); |
| 460 | |
| 461 | static void reg_regdb_apply(struct work_struct *work) |
| 462 | { |
| 463 | struct reg_regdb_apply_request *request; |
| 464 | |
| 465 | rtnl_lock(); |
| 466 | |
| 467 | mutex_lock(®_regdb_apply_mutex); |
| 468 | while (!list_empty(®_regdb_apply_list)) { |
| 469 | request = list_first_entry(®_regdb_apply_list, |
| 470 | struct reg_regdb_apply_request, |
| 471 | list); |
| 472 | list_del(&request->list); |
| 473 | |
| 474 | set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); |
| 475 | kfree(request); |
| 476 | } |
| 477 | mutex_unlock(®_regdb_apply_mutex); |
| 478 | |
| 479 | rtnl_unlock(); |
| 480 | } |
| 481 | |
| 482 | static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); |
| 483 | |
| 484 | static int reg_query_builtin(const char *alpha2) |
| 485 | { |
| 486 | const struct ieee80211_regdomain *regdom = NULL; |
| 487 | struct reg_regdb_apply_request *request; |
| 488 | unsigned int i; |
| 489 | |
| 490 | for (i = 0; i < reg_regdb_size; i++) { |
| 491 | if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) { |
| 492 | regdom = reg_regdb[i]; |
| 493 | break; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | if (!regdom) |
| 498 | return -ENODATA; |
| 499 | |
| 500 | request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); |
| 501 | if (!request) |
| 502 | return -ENOMEM; |
| 503 | |
| 504 | request->regdom = reg_copy_regd(regdom); |
| 505 | if (IS_ERR_OR_NULL(request->regdom)) { |
| 506 | kfree(request); |
| 507 | return -ENOMEM; |
| 508 | } |
| 509 | |
| 510 | mutex_lock(®_regdb_apply_mutex); |
| 511 | list_add_tail(&request->list, ®_regdb_apply_list); |
| 512 | mutex_unlock(®_regdb_apply_mutex); |
| 513 | |
| 514 | schedule_work(®_regdb_work); |
| 515 | |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | /* Feel free to add any other sanity checks here */ |
| 520 | static void reg_regdb_size_check(void) |
| 521 | { |
| 522 | /* We should ideally BUILD_BUG_ON() but then random builds would fail */ |
| 523 | WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); |
| 524 | } |
| 525 | #else |
| 526 | static inline void reg_regdb_size_check(void) {} |
| 527 | static inline int reg_query_builtin(const char *alpha2) |
| 528 | { |
| 529 | return -ENODATA; |
| 530 | } |
| 531 | #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ |
| 532 | |
| 533 | #ifdef CONFIG_CFG80211_CRDA_SUPPORT |
| 534 | /* Max number of consecutive attempts to communicate with CRDA */ |
| 535 | #define REG_MAX_CRDA_TIMEOUTS 10 |
| 536 | |
| 537 | static u32 reg_crda_timeouts; |
| 538 | |
| 539 | static void crda_timeout_work(struct work_struct *work); |
| 540 | static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); |
| 541 | |
| 542 | static void crda_timeout_work(struct work_struct *work) |
| 543 | { |
| 544 | REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); |
| 545 | rtnl_lock(); |
| 546 | reg_crda_timeouts++; |
| 547 | restore_regulatory_settings(true); |
| 548 | rtnl_unlock(); |
| 549 | } |
| 550 | |
| 551 | static void cancel_crda_timeout(void) |
| 552 | { |
| 553 | cancel_delayed_work(&crda_timeout); |
| 554 | } |
| 555 | |
| 556 | static void cancel_crda_timeout_sync(void) |
| 557 | { |
| 558 | cancel_delayed_work_sync(&crda_timeout); |
| 559 | } |
| 560 | |
| 561 | static void reset_crda_timeouts(void) |
| 562 | { |
| 563 | reg_crda_timeouts = 0; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * This lets us keep regulatory code which is updated on a regulatory |
| 568 | * basis in userspace. |
| 569 | */ |
| 570 | static int call_crda(const char *alpha2) |
| 571 | { |
| 572 | char country[12]; |
| 573 | char *env[] = { country, NULL }; |
| 574 | int ret; |
| 575 | |
| 576 | snprintf(country, sizeof(country), "COUNTRY=%c%c", |
| 577 | alpha2[0], alpha2[1]); |
| 578 | |
| 579 | if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { |
| 580 | pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); |
| 581 | return -EINVAL; |
| 582 | } |
| 583 | |
| 584 | if (!is_world_regdom((char *) alpha2)) |
| 585 | pr_debug("Calling CRDA for country: %c%c\n", |
| 586 | alpha2[0], alpha2[1]); |
| 587 | else |
| 588 | pr_debug("Calling CRDA to update world regulatory domain\n"); |
| 589 | |
| 590 | ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); |
| 591 | if (ret) |
| 592 | return ret; |
| 593 | |
| 594 | queue_delayed_work(system_power_efficient_wq, |
| 595 | &crda_timeout, msecs_to_jiffies(3142)); |
| 596 | return 0; |
| 597 | } |
| 598 | #else |
| 599 | static inline void cancel_crda_timeout(void) {} |
| 600 | static inline void cancel_crda_timeout_sync(void) {} |
| 601 | static inline void reset_crda_timeouts(void) {} |
| 602 | static inline int call_crda(const char *alpha2) |
| 603 | { |
| 604 | return -ENODATA; |
| 605 | } |
| 606 | #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ |
| 607 | |
| 608 | static bool reg_query_database(struct regulatory_request *request) |
| 609 | { |
| 610 | /* query internal regulatory database (if it exists) */ |
| 611 | if (reg_query_builtin(request->alpha2) == 0) |
| 612 | return true; |
| 613 | |
| 614 | if (call_crda(request->alpha2) == 0) |
| 615 | return true; |
| 616 | |
| 617 | return false; |
| 618 | } |
| 619 | |
| 620 | bool reg_is_valid_request(const char *alpha2) |
| 621 | { |
| 622 | struct regulatory_request *lr = get_last_request(); |
| 623 | |
| 624 | if (!lr || lr->processed) |
| 625 | return false; |
| 626 | |
| 627 | return alpha2_equal(lr->alpha2, alpha2); |
| 628 | } |
| 629 | |
| 630 | static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) |
| 631 | { |
| 632 | struct regulatory_request *lr = get_last_request(); |
| 633 | |
| 634 | /* |
| 635 | * Follow the driver's regulatory domain, if present, unless a country |
| 636 | * IE has been processed or a user wants to help complaince further |
| 637 | */ |
| 638 | if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 639 | lr->initiator != NL80211_REGDOM_SET_BY_USER && |
| 640 | wiphy->regd) |
| 641 | return get_wiphy_regdom(wiphy); |
| 642 | |
| 643 | return get_cfg80211_regdom(); |
| 644 | } |
| 645 | |
| 646 | static unsigned int |
| 647 | reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, |
| 648 | const struct ieee80211_reg_rule *rule) |
| 649 | { |
| 650 | const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| 651 | const struct ieee80211_freq_range *freq_range_tmp; |
| 652 | const struct ieee80211_reg_rule *tmp; |
| 653 | u32 start_freq, end_freq, idx, no; |
| 654 | |
| 655 | for (idx = 0; idx < rd->n_reg_rules; idx++) |
| 656 | if (rule == &rd->reg_rules[idx]) |
| 657 | break; |
| 658 | |
| 659 | if (idx == rd->n_reg_rules) |
| 660 | return 0; |
| 661 | |
| 662 | /* get start_freq */ |
| 663 | no = idx; |
| 664 | |
| 665 | while (no) { |
| 666 | tmp = &rd->reg_rules[--no]; |
| 667 | freq_range_tmp = &tmp->freq_range; |
| 668 | |
| 669 | if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) |
| 670 | break; |
| 671 | |
| 672 | freq_range = freq_range_tmp; |
| 673 | } |
| 674 | |
| 675 | start_freq = freq_range->start_freq_khz; |
| 676 | |
| 677 | /* get end_freq */ |
| 678 | freq_range = &rule->freq_range; |
| 679 | no = idx; |
| 680 | |
| 681 | while (no < rd->n_reg_rules - 1) { |
| 682 | tmp = &rd->reg_rules[++no]; |
| 683 | freq_range_tmp = &tmp->freq_range; |
| 684 | |
| 685 | if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) |
| 686 | break; |
| 687 | |
| 688 | freq_range = freq_range_tmp; |
| 689 | } |
| 690 | |
| 691 | end_freq = freq_range->end_freq_khz; |
| 692 | |
| 693 | return end_freq - start_freq; |
| 694 | } |
| 695 | |
| 696 | unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, |
| 697 | const struct ieee80211_reg_rule *rule) |
| 698 | { |
| 699 | unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); |
| 700 | |
| 701 | if (rule->flags & NL80211_RRF_NO_160MHZ) |
| 702 | bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); |
| 703 | if (rule->flags & NL80211_RRF_NO_80MHZ) |
| 704 | bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); |
| 705 | |
| 706 | /* |
| 707 | * HT40+/HT40- limits are handled per-channel. Only limit BW if both |
| 708 | * are not allowed. |
| 709 | */ |
| 710 | if (rule->flags & NL80211_RRF_NO_HT40MINUS && |
| 711 | rule->flags & NL80211_RRF_NO_HT40PLUS) |
| 712 | bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); |
| 713 | |
| 714 | return bw; |
| 715 | } |
| 716 | |
| 717 | /* Sanity check on a regulatory rule */ |
| 718 | static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) |
| 719 | { |
| 720 | const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| 721 | u32 freq_diff; |
| 722 | |
| 723 | if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) |
| 724 | return false; |
| 725 | |
| 726 | if (freq_range->start_freq_khz > freq_range->end_freq_khz) |
| 727 | return false; |
| 728 | |
| 729 | freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| 730 | |
| 731 | if (freq_range->end_freq_khz <= freq_range->start_freq_khz || |
| 732 | freq_range->max_bandwidth_khz > freq_diff) |
| 733 | return false; |
| 734 | |
| 735 | return true; |
| 736 | } |
| 737 | |
| 738 | static bool is_valid_rd(const struct ieee80211_regdomain *rd) |
| 739 | { |
| 740 | const struct ieee80211_reg_rule *reg_rule = NULL; |
| 741 | unsigned int i; |
| 742 | |
| 743 | if (!rd->n_reg_rules) |
| 744 | return false; |
| 745 | |
| 746 | if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) |
| 747 | return false; |
| 748 | |
| 749 | for (i = 0; i < rd->n_reg_rules; i++) { |
| 750 | reg_rule = &rd->reg_rules[i]; |
| 751 | if (!is_valid_reg_rule(reg_rule)) |
| 752 | return false; |
| 753 | } |
| 754 | |
| 755 | return true; |
| 756 | } |
| 757 | |
| 758 | static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, |
| 759 | u32 center_freq_khz, u32 bw_khz) |
| 760 | { |
| 761 | u32 start_freq_khz, end_freq_khz; |
| 762 | |
| 763 | start_freq_khz = center_freq_khz - (bw_khz/2); |
| 764 | end_freq_khz = center_freq_khz + (bw_khz/2); |
| 765 | |
| 766 | if (start_freq_khz >= freq_range->start_freq_khz && |
| 767 | end_freq_khz <= freq_range->end_freq_khz) |
| 768 | return true; |
| 769 | |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | /** |
| 774 | * freq_in_rule_band - tells us if a frequency is in a frequency band |
| 775 | * @freq_range: frequency rule we want to query |
| 776 | * @freq_khz: frequency we are inquiring about |
| 777 | * |
| 778 | * This lets us know if a specific frequency rule is or is not relevant to |
| 779 | * a specific frequency's band. Bands are device specific and artificial |
| 780 | * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), |
| 781 | * however it is safe for now to assume that a frequency rule should not be |
| 782 | * part of a frequency's band if the start freq or end freq are off by more |
| 783 | * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the |
| 784 | * 60 GHz band. |
| 785 | * This resolution can be lowered and should be considered as we add |
| 786 | * regulatory rule support for other "bands". |
| 787 | **/ |
| 788 | static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, |
| 789 | u32 freq_khz) |
| 790 | { |
| 791 | #define ONE_GHZ_IN_KHZ 1000000 |
| 792 | /* |
| 793 | * From 802.11ad: directional multi-gigabit (DMG): |
| 794 | * Pertaining to operation in a frequency band containing a channel |
| 795 | * with the Channel starting frequency above 45 GHz. |
| 796 | */ |
| 797 | u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? |
| 798 | 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; |
| 799 | if (abs(freq_khz - freq_range->start_freq_khz) <= limit) |
| 800 | return true; |
| 801 | if (abs(freq_khz - freq_range->end_freq_khz) <= limit) |
| 802 | return true; |
| 803 | return false; |
| 804 | #undef ONE_GHZ_IN_KHZ |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Later on we can perhaps use the more restrictive DFS |
| 809 | * region but we don't have information for that yet so |
| 810 | * for now simply disallow conflicts. |
| 811 | */ |
| 812 | static enum nl80211_dfs_regions |
| 813 | reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, |
| 814 | const enum nl80211_dfs_regions dfs_region2) |
| 815 | { |
| 816 | if (dfs_region1 != dfs_region2) |
| 817 | return NL80211_DFS_UNSET; |
| 818 | return dfs_region1; |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * Helper for regdom_intersect(), this does the real |
| 823 | * mathematical intersection fun |
| 824 | */ |
| 825 | static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, |
| 826 | const struct ieee80211_regdomain *rd2, |
| 827 | const struct ieee80211_reg_rule *rule1, |
| 828 | const struct ieee80211_reg_rule *rule2, |
| 829 | struct ieee80211_reg_rule *intersected_rule) |
| 830 | { |
| 831 | const struct ieee80211_freq_range *freq_range1, *freq_range2; |
| 832 | struct ieee80211_freq_range *freq_range; |
| 833 | const struct ieee80211_power_rule *power_rule1, *power_rule2; |
| 834 | struct ieee80211_power_rule *power_rule; |
| 835 | u32 freq_diff, max_bandwidth1, max_bandwidth2; |
| 836 | |
| 837 | freq_range1 = &rule1->freq_range; |
| 838 | freq_range2 = &rule2->freq_range; |
| 839 | freq_range = &intersected_rule->freq_range; |
| 840 | |
| 841 | power_rule1 = &rule1->power_rule; |
| 842 | power_rule2 = &rule2->power_rule; |
| 843 | power_rule = &intersected_rule->power_rule; |
| 844 | |
| 845 | freq_range->start_freq_khz = max(freq_range1->start_freq_khz, |
| 846 | freq_range2->start_freq_khz); |
| 847 | freq_range->end_freq_khz = min(freq_range1->end_freq_khz, |
| 848 | freq_range2->end_freq_khz); |
| 849 | |
| 850 | max_bandwidth1 = freq_range1->max_bandwidth_khz; |
| 851 | max_bandwidth2 = freq_range2->max_bandwidth_khz; |
| 852 | |
| 853 | if (rule1->flags & NL80211_RRF_AUTO_BW) |
| 854 | max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); |
| 855 | if (rule2->flags & NL80211_RRF_AUTO_BW) |
| 856 | max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); |
| 857 | |
| 858 | freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); |
| 859 | |
| 860 | intersected_rule->flags = rule1->flags | rule2->flags; |
| 861 | |
| 862 | /* |
| 863 | * In case NL80211_RRF_AUTO_BW requested for both rules |
| 864 | * set AUTO_BW in intersected rule also. Next we will |
| 865 | * calculate BW correctly in handle_channel function. |
| 866 | * In other case remove AUTO_BW flag while we calculate |
| 867 | * maximum bandwidth correctly and auto calculation is |
| 868 | * not required. |
| 869 | */ |
| 870 | if ((rule1->flags & NL80211_RRF_AUTO_BW) && |
| 871 | (rule2->flags & NL80211_RRF_AUTO_BW)) |
| 872 | intersected_rule->flags |= NL80211_RRF_AUTO_BW; |
| 873 | else |
| 874 | intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; |
| 875 | |
| 876 | freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| 877 | if (freq_range->max_bandwidth_khz > freq_diff) |
| 878 | freq_range->max_bandwidth_khz = freq_diff; |
| 879 | |
| 880 | power_rule->max_eirp = min(power_rule1->max_eirp, |
| 881 | power_rule2->max_eirp); |
| 882 | power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, |
| 883 | power_rule2->max_antenna_gain); |
| 884 | |
| 885 | intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, |
| 886 | rule2->dfs_cac_ms); |
| 887 | |
| 888 | if (!is_valid_reg_rule(intersected_rule)) |
| 889 | return -EINVAL; |
| 890 | |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | /* check whether old rule contains new rule */ |
| 895 | static bool rule_contains(struct ieee80211_reg_rule *r1, |
| 896 | struct ieee80211_reg_rule *r2) |
| 897 | { |
| 898 | /* for simplicity, currently consider only same flags */ |
| 899 | if (r1->flags != r2->flags) |
| 900 | return false; |
| 901 | |
| 902 | /* verify r1 is more restrictive */ |
| 903 | if ((r1->power_rule.max_antenna_gain > |
| 904 | r2->power_rule.max_antenna_gain) || |
| 905 | r1->power_rule.max_eirp > r2->power_rule.max_eirp) |
| 906 | return false; |
| 907 | |
| 908 | /* make sure r2's range is contained within r1 */ |
| 909 | if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || |
| 910 | r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) |
| 911 | return false; |
| 912 | |
| 913 | /* and finally verify that r1.max_bw >= r2.max_bw */ |
| 914 | if (r1->freq_range.max_bandwidth_khz < |
| 915 | r2->freq_range.max_bandwidth_khz) |
| 916 | return false; |
| 917 | |
| 918 | return true; |
| 919 | } |
| 920 | |
| 921 | /* add or extend current rules. do nothing if rule is already contained */ |
| 922 | static void add_rule(struct ieee80211_reg_rule *rule, |
| 923 | struct ieee80211_reg_rule *reg_rules, u32 *n_rules) |
| 924 | { |
| 925 | struct ieee80211_reg_rule *tmp_rule; |
| 926 | int i; |
| 927 | |
| 928 | for (i = 0; i < *n_rules; i++) { |
| 929 | tmp_rule = ®_rules[i]; |
| 930 | /* rule is already contained - do nothing */ |
| 931 | if (rule_contains(tmp_rule, rule)) |
| 932 | return; |
| 933 | |
| 934 | /* extend rule if possible */ |
| 935 | if (rule_contains(rule, tmp_rule)) { |
| 936 | memcpy(tmp_rule, rule, sizeof(*rule)); |
| 937 | return; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | memcpy(®_rules[*n_rules], rule, sizeof(*rule)); |
| 942 | (*n_rules)++; |
| 943 | } |
| 944 | |
| 945 | /** |
| 946 | * regdom_intersect - do the intersection between two regulatory domains |
| 947 | * @rd1: first regulatory domain |
| 948 | * @rd2: second regulatory domain |
| 949 | * |
| 950 | * Use this function to get the intersection between two regulatory domains. |
| 951 | * Once completed we will mark the alpha2 for the rd as intersected, "98", |
| 952 | * as no one single alpha2 can represent this regulatory domain. |
| 953 | * |
| 954 | * Returns a pointer to the regulatory domain structure which will hold the |
| 955 | * resulting intersection of rules between rd1 and rd2. We will |
| 956 | * kzalloc() this structure for you. |
| 957 | */ |
| 958 | static struct ieee80211_regdomain * |
| 959 | regdom_intersect(const struct ieee80211_regdomain *rd1, |
| 960 | const struct ieee80211_regdomain *rd2) |
| 961 | { |
| 962 | int r, size_of_regd; |
| 963 | unsigned int x, y; |
| 964 | unsigned int num_rules = 0; |
| 965 | const struct ieee80211_reg_rule *rule1, *rule2; |
| 966 | struct ieee80211_reg_rule intersected_rule; |
| 967 | struct ieee80211_regdomain *rd; |
| 968 | |
| 969 | if (!rd1 || !rd2) |
| 970 | return NULL; |
| 971 | |
| 972 | /* |
| 973 | * First we get a count of the rules we'll need, then we actually |
| 974 | * build them. This is to so we can malloc() and free() a |
| 975 | * regdomain once. The reason we use reg_rules_intersect() here |
| 976 | * is it will return -EINVAL if the rule computed makes no sense. |
| 977 | * All rules that do check out OK are valid. |
| 978 | */ |
| 979 | |
| 980 | for (x = 0; x < rd1->n_reg_rules; x++) { |
| 981 | rule1 = &rd1->reg_rules[x]; |
| 982 | for (y = 0; y < rd2->n_reg_rules; y++) { |
| 983 | rule2 = &rd2->reg_rules[y]; |
| 984 | if (!reg_rules_intersect(rd1, rd2, rule1, rule2, |
| 985 | &intersected_rule)) |
| 986 | num_rules++; |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | if (!num_rules) |
| 991 | return NULL; |
| 992 | |
| 993 | size_of_regd = sizeof(struct ieee80211_regdomain) + |
| 994 | num_rules * sizeof(struct ieee80211_reg_rule); |
| 995 | |
| 996 | rd = kzalloc(size_of_regd, GFP_KERNEL); |
| 997 | if (!rd) |
| 998 | return NULL; |
| 999 | |
| 1000 | for (x = 0; x < rd1->n_reg_rules; x++) { |
| 1001 | rule1 = &rd1->reg_rules[x]; |
| 1002 | for (y = 0; y < rd2->n_reg_rules; y++) { |
| 1003 | rule2 = &rd2->reg_rules[y]; |
| 1004 | r = reg_rules_intersect(rd1, rd2, rule1, rule2, |
| 1005 | &intersected_rule); |
| 1006 | /* |
| 1007 | * No need to memset here the intersected rule here as |
| 1008 | * we're not using the stack anymore |
| 1009 | */ |
| 1010 | if (r) |
| 1011 | continue; |
| 1012 | |
| 1013 | add_rule(&intersected_rule, rd->reg_rules, |
| 1014 | &rd->n_reg_rules); |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | rd->alpha2[0] = '9'; |
| 1019 | rd->alpha2[1] = '8'; |
| 1020 | rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, |
| 1021 | rd2->dfs_region); |
| 1022 | |
| 1023 | return rd; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may |
| 1028 | * want to just have the channel structure use these |
| 1029 | */ |
| 1030 | static u32 map_regdom_flags(u32 rd_flags) |
| 1031 | { |
| 1032 | u32 channel_flags = 0; |
| 1033 | if (rd_flags & NL80211_RRF_NO_IR_ALL) |
| 1034 | channel_flags |= IEEE80211_CHAN_NO_IR; |
| 1035 | if (rd_flags & NL80211_RRF_DFS) |
| 1036 | channel_flags |= IEEE80211_CHAN_RADAR; |
| 1037 | if (rd_flags & NL80211_RRF_NO_OFDM) |
| 1038 | channel_flags |= IEEE80211_CHAN_NO_OFDM; |
| 1039 | if (rd_flags & NL80211_RRF_NO_OUTDOOR) |
| 1040 | channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; |
| 1041 | if (rd_flags & NL80211_RRF_IR_CONCURRENT) |
| 1042 | channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; |
| 1043 | if (rd_flags & NL80211_RRF_NO_HT40MINUS) |
| 1044 | channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; |
| 1045 | if (rd_flags & NL80211_RRF_NO_HT40PLUS) |
| 1046 | channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; |
| 1047 | if (rd_flags & NL80211_RRF_NO_80MHZ) |
| 1048 | channel_flags |= IEEE80211_CHAN_NO_80MHZ; |
| 1049 | if (rd_flags & NL80211_RRF_NO_160MHZ) |
| 1050 | channel_flags |= IEEE80211_CHAN_NO_160MHZ; |
| 1051 | return channel_flags; |
| 1052 | } |
| 1053 | |
| 1054 | static const struct ieee80211_reg_rule * |
| 1055 | freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, |
| 1056 | const struct ieee80211_regdomain *regd, u32 bw) |
| 1057 | { |
| 1058 | int i; |
| 1059 | bool band_rule_found = false; |
| 1060 | bool bw_fits = false; |
| 1061 | |
| 1062 | if (!regd) |
| 1063 | return ERR_PTR(-EINVAL); |
| 1064 | |
| 1065 | for (i = 0; i < regd->n_reg_rules; i++) { |
| 1066 | const struct ieee80211_reg_rule *rr; |
| 1067 | const struct ieee80211_freq_range *fr = NULL; |
| 1068 | |
| 1069 | rr = ®d->reg_rules[i]; |
| 1070 | fr = &rr->freq_range; |
| 1071 | |
| 1072 | /* |
| 1073 | * We only need to know if one frequency rule was |
| 1074 | * was in center_freq's band, that's enough, so lets |
| 1075 | * not overwrite it once found |
| 1076 | */ |
| 1077 | if (!band_rule_found) |
| 1078 | band_rule_found = freq_in_rule_band(fr, center_freq); |
| 1079 | |
| 1080 | bw_fits = reg_does_bw_fit(fr, center_freq, bw); |
| 1081 | |
| 1082 | if (band_rule_found && bw_fits) |
| 1083 | return rr; |
| 1084 | } |
| 1085 | |
| 1086 | if (!band_rule_found) |
| 1087 | return ERR_PTR(-ERANGE); |
| 1088 | |
| 1089 | return ERR_PTR(-EINVAL); |
| 1090 | } |
| 1091 | |
| 1092 | static const struct ieee80211_reg_rule * |
| 1093 | __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) |
| 1094 | { |
| 1095 | const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); |
| 1096 | const struct ieee80211_reg_rule *reg_rule = NULL; |
| 1097 | u32 bw; |
| 1098 | |
| 1099 | for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { |
| 1100 | reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw); |
| 1101 | if (!IS_ERR(reg_rule)) |
| 1102 | return reg_rule; |
| 1103 | } |
| 1104 | |
| 1105 | return reg_rule; |
| 1106 | } |
| 1107 | |
| 1108 | const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, |
| 1109 | u32 center_freq) |
| 1110 | { |
| 1111 | return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); |
| 1112 | } |
| 1113 | EXPORT_SYMBOL(freq_reg_info); |
| 1114 | |
| 1115 | const char *reg_initiator_name(enum nl80211_reg_initiator initiator) |
| 1116 | { |
| 1117 | switch (initiator) { |
| 1118 | case NL80211_REGDOM_SET_BY_CORE: |
| 1119 | return "core"; |
| 1120 | case NL80211_REGDOM_SET_BY_USER: |
| 1121 | return "user"; |
| 1122 | case NL80211_REGDOM_SET_BY_DRIVER: |
| 1123 | return "driver"; |
| 1124 | case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| 1125 | return "country IE"; |
| 1126 | default: |
| 1127 | WARN_ON(1); |
| 1128 | return "bug"; |
| 1129 | } |
| 1130 | } |
| 1131 | EXPORT_SYMBOL(reg_initiator_name); |
| 1132 | |
| 1133 | static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, |
| 1134 | struct ieee80211_channel *chan, |
| 1135 | const struct ieee80211_reg_rule *reg_rule) |
| 1136 | { |
| 1137 | #ifdef CONFIG_CFG80211_REG_DEBUG |
| 1138 | const struct ieee80211_power_rule *power_rule; |
| 1139 | const struct ieee80211_freq_range *freq_range; |
| 1140 | char max_antenna_gain[32], bw[32]; |
| 1141 | |
| 1142 | power_rule = ®_rule->power_rule; |
| 1143 | freq_range = ®_rule->freq_range; |
| 1144 | |
| 1145 | if (!power_rule->max_antenna_gain) |
| 1146 | snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); |
| 1147 | else |
| 1148 | snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi", |
| 1149 | power_rule->max_antenna_gain); |
| 1150 | |
| 1151 | if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| 1152 | snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", |
| 1153 | freq_range->max_bandwidth_khz, |
| 1154 | reg_get_max_bandwidth(regd, reg_rule)); |
| 1155 | else |
| 1156 | snprintf(bw, sizeof(bw), "%d KHz", |
| 1157 | freq_range->max_bandwidth_khz); |
| 1158 | |
| 1159 | REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", |
| 1160 | chan->center_freq); |
| 1161 | |
| 1162 | REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n", |
| 1163 | freq_range->start_freq_khz, freq_range->end_freq_khz, |
| 1164 | bw, max_antenna_gain, |
| 1165 | power_rule->max_eirp); |
| 1166 | #endif |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * Note that right now we assume the desired channel bandwidth |
| 1171 | * is always 20 MHz for each individual channel (HT40 uses 20 MHz |
| 1172 | * per channel, the primary and the extension channel). |
| 1173 | */ |
| 1174 | static void handle_channel(struct wiphy *wiphy, |
| 1175 | enum nl80211_reg_initiator initiator, |
| 1176 | struct ieee80211_channel *chan) |
| 1177 | { |
| 1178 | u32 flags, bw_flags = 0; |
| 1179 | const struct ieee80211_reg_rule *reg_rule = NULL; |
| 1180 | const struct ieee80211_power_rule *power_rule = NULL; |
| 1181 | const struct ieee80211_freq_range *freq_range = NULL; |
| 1182 | struct wiphy *request_wiphy = NULL; |
| 1183 | struct regulatory_request *lr = get_last_request(); |
| 1184 | const struct ieee80211_regdomain *regd; |
| 1185 | u32 max_bandwidth_khz; |
| 1186 | |
| 1187 | request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| 1188 | |
| 1189 | flags = chan->orig_flags; |
| 1190 | |
| 1191 | reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); |
| 1192 | if (IS_ERR(reg_rule)) { |
| 1193 | /* |
| 1194 | * We will disable all channels that do not match our |
| 1195 | * received regulatory rule unless the hint is coming |
| 1196 | * from a Country IE and the Country IE had no information |
| 1197 | * about a band. The IEEE 802.11 spec allows for an AP |
| 1198 | * to send only a subset of the regulatory rules allowed, |
| 1199 | * so an AP in the US that only supports 2.4 GHz may only send |
| 1200 | * a country IE with information for the 2.4 GHz band |
| 1201 | * while 5 GHz is still supported. |
| 1202 | */ |
| 1203 | if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 1204 | PTR_ERR(reg_rule) == -ERANGE) |
| 1205 | return; |
| 1206 | |
| 1207 | if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| 1208 | request_wiphy && request_wiphy == wiphy && |
| 1209 | request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| 1210 | REG_DBG_PRINT("Disabling freq %d MHz for good\n", |
| 1211 | chan->center_freq); |
| 1212 | chan->orig_flags |= IEEE80211_CHAN_DISABLED; |
| 1213 | chan->flags = chan->orig_flags; |
| 1214 | } else { |
| 1215 | REG_DBG_PRINT("Disabling freq %d MHz\n", |
| 1216 | chan->center_freq); |
| 1217 | chan->flags |= IEEE80211_CHAN_DISABLED; |
| 1218 | } |
| 1219 | return; |
| 1220 | } |
| 1221 | |
| 1222 | regd = reg_get_regdomain(wiphy); |
| 1223 | chan_reg_rule_print_dbg(regd, chan, reg_rule); |
| 1224 | |
| 1225 | power_rule = ®_rule->power_rule; |
| 1226 | freq_range = ®_rule->freq_range; |
| 1227 | |
| 1228 | max_bandwidth_khz = freq_range->max_bandwidth_khz; |
| 1229 | /* Check if auto calculation requested */ |
| 1230 | if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| 1231 | max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); |
| 1232 | |
| 1233 | /* If we get a reg_rule we can assume that at least 5Mhz fit */ |
| 1234 | if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), |
| 1235 | MHZ_TO_KHZ(10))) |
| 1236 | bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| 1237 | if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), |
| 1238 | MHZ_TO_KHZ(20))) |
| 1239 | bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| 1240 | |
| 1241 | if (max_bandwidth_khz < MHZ_TO_KHZ(10)) |
| 1242 | bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| 1243 | if (max_bandwidth_khz < MHZ_TO_KHZ(20)) |
| 1244 | bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| 1245 | if (max_bandwidth_khz < MHZ_TO_KHZ(40)) |
| 1246 | bw_flags |= IEEE80211_CHAN_NO_HT40; |
| 1247 | if (max_bandwidth_khz < MHZ_TO_KHZ(80)) |
| 1248 | bw_flags |= IEEE80211_CHAN_NO_80MHZ; |
| 1249 | if (max_bandwidth_khz < MHZ_TO_KHZ(160)) |
| 1250 | bw_flags |= IEEE80211_CHAN_NO_160MHZ; |
| 1251 | |
| 1252 | if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| 1253 | request_wiphy && request_wiphy == wiphy && |
| 1254 | request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| 1255 | /* |
| 1256 | * This guarantees the driver's requested regulatory domain |
| 1257 | * will always be used as a base for further regulatory |
| 1258 | * settings |
| 1259 | */ |
| 1260 | chan->flags = chan->orig_flags = |
| 1261 | map_regdom_flags(reg_rule->flags) | bw_flags; |
| 1262 | chan->max_antenna_gain = chan->orig_mag = |
| 1263 | (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| 1264 | chan->max_reg_power = chan->max_power = chan->orig_mpwr = |
| 1265 | (int) MBM_TO_DBM(power_rule->max_eirp); |
| 1266 | |
| 1267 | if (chan->flags & IEEE80211_CHAN_RADAR) { |
| 1268 | chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| 1269 | if (reg_rule->dfs_cac_ms) |
| 1270 | chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| 1271 | } |
| 1272 | |
| 1273 | return; |
| 1274 | } |
| 1275 | |
| 1276 | chan->dfs_state = NL80211_DFS_USABLE; |
| 1277 | chan->dfs_state_entered = jiffies; |
| 1278 | |
| 1279 | chan->beacon_found = false; |
| 1280 | chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); |
| 1281 | chan->max_antenna_gain = |
| 1282 | min_t(int, chan->orig_mag, |
| 1283 | MBI_TO_DBI(power_rule->max_antenna_gain)); |
| 1284 | chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| 1285 | |
| 1286 | if (chan->flags & IEEE80211_CHAN_RADAR) { |
| 1287 | if (reg_rule->dfs_cac_ms) |
| 1288 | chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| 1289 | else |
| 1290 | chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| 1291 | } |
| 1292 | |
| 1293 | if (chan->orig_mpwr) { |
| 1294 | /* |
| 1295 | * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER |
| 1296 | * will always follow the passed country IE power settings. |
| 1297 | */ |
| 1298 | if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 1299 | wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) |
| 1300 | chan->max_power = chan->max_reg_power; |
| 1301 | else |
| 1302 | chan->max_power = min(chan->orig_mpwr, |
| 1303 | chan->max_reg_power); |
| 1304 | } else |
| 1305 | chan->max_power = chan->max_reg_power; |
| 1306 | } |
| 1307 | |
| 1308 | static void handle_band(struct wiphy *wiphy, |
| 1309 | enum nl80211_reg_initiator initiator, |
| 1310 | struct ieee80211_supported_band *sband) |
| 1311 | { |
| 1312 | unsigned int i; |
| 1313 | |
| 1314 | if (!sband) |
| 1315 | return; |
| 1316 | |
| 1317 | for (i = 0; i < sband->n_channels; i++) |
| 1318 | handle_channel(wiphy, initiator, &sband->channels[i]); |
| 1319 | } |
| 1320 | |
| 1321 | static bool reg_request_cell_base(struct regulatory_request *request) |
| 1322 | { |
| 1323 | if (request->initiator != NL80211_REGDOM_SET_BY_USER) |
| 1324 | return false; |
| 1325 | return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; |
| 1326 | } |
| 1327 | |
| 1328 | bool reg_last_request_cell_base(void) |
| 1329 | { |
| 1330 | return reg_request_cell_base(get_last_request()); |
| 1331 | } |
| 1332 | |
| 1333 | #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS |
| 1334 | /* Core specific check */ |
| 1335 | static enum reg_request_treatment |
| 1336 | reg_ignore_cell_hint(struct regulatory_request *pending_request) |
| 1337 | { |
| 1338 | struct regulatory_request *lr = get_last_request(); |
| 1339 | |
| 1340 | if (!reg_num_devs_support_basehint) |
| 1341 | return REG_REQ_IGNORE; |
| 1342 | |
| 1343 | if (reg_request_cell_base(lr) && |
| 1344 | !regdom_changes(pending_request->alpha2)) |
| 1345 | return REG_REQ_ALREADY_SET; |
| 1346 | |
| 1347 | return REG_REQ_OK; |
| 1348 | } |
| 1349 | |
| 1350 | /* Device specific check */ |
| 1351 | static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) |
| 1352 | { |
| 1353 | return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); |
| 1354 | } |
| 1355 | #else |
| 1356 | static enum reg_request_treatment |
| 1357 | reg_ignore_cell_hint(struct regulatory_request *pending_request) |
| 1358 | { |
| 1359 | return REG_REQ_IGNORE; |
| 1360 | } |
| 1361 | |
| 1362 | static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) |
| 1363 | { |
| 1364 | return true; |
| 1365 | } |
| 1366 | #endif |
| 1367 | |
| 1368 | static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) |
| 1369 | { |
| 1370 | if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && |
| 1371 | !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) |
| 1372 | return true; |
| 1373 | return false; |
| 1374 | } |
| 1375 | |
| 1376 | static bool ignore_reg_update(struct wiphy *wiphy, |
| 1377 | enum nl80211_reg_initiator initiator) |
| 1378 | { |
| 1379 | struct regulatory_request *lr = get_last_request(); |
| 1380 | |
| 1381 | if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| 1382 | return true; |
| 1383 | |
| 1384 | if (!lr) { |
| 1385 | REG_DBG_PRINT("Ignoring regulatory request set by %s " |
| 1386 | "since last_request is not set\n", |
| 1387 | reg_initiator_name(initiator)); |
| 1388 | return true; |
| 1389 | } |
| 1390 | |
| 1391 | if (initiator == NL80211_REGDOM_SET_BY_CORE && |
| 1392 | wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { |
| 1393 | REG_DBG_PRINT("Ignoring regulatory request set by %s " |
| 1394 | "since the driver uses its own custom " |
| 1395 | "regulatory domain\n", |
| 1396 | reg_initiator_name(initiator)); |
| 1397 | return true; |
| 1398 | } |
| 1399 | |
| 1400 | /* |
| 1401 | * wiphy->regd will be set once the device has its own |
| 1402 | * desired regulatory domain set |
| 1403 | */ |
| 1404 | if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && |
| 1405 | initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 1406 | !is_world_regdom(lr->alpha2)) { |
| 1407 | REG_DBG_PRINT("Ignoring regulatory request set by %s " |
| 1408 | "since the driver requires its own regulatory " |
| 1409 | "domain to be set first\n", |
| 1410 | reg_initiator_name(initiator)); |
| 1411 | return true; |
| 1412 | } |
| 1413 | |
| 1414 | if (reg_request_cell_base(lr)) |
| 1415 | return reg_dev_ignore_cell_hint(wiphy); |
| 1416 | |
| 1417 | return false; |
| 1418 | } |
| 1419 | |
| 1420 | static bool reg_is_world_roaming(struct wiphy *wiphy) |
| 1421 | { |
| 1422 | const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); |
| 1423 | const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); |
| 1424 | struct regulatory_request *lr = get_last_request(); |
| 1425 | |
| 1426 | if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) |
| 1427 | return true; |
| 1428 | |
| 1429 | if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 1430 | wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) |
| 1431 | return true; |
| 1432 | |
| 1433 | return false; |
| 1434 | } |
| 1435 | |
| 1436 | static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, |
| 1437 | struct reg_beacon *reg_beacon) |
| 1438 | { |
| 1439 | struct ieee80211_supported_band *sband; |
| 1440 | struct ieee80211_channel *chan; |
| 1441 | bool channel_changed = false; |
| 1442 | struct ieee80211_channel chan_before; |
| 1443 | |
| 1444 | sband = wiphy->bands[reg_beacon->chan.band]; |
| 1445 | chan = &sband->channels[chan_idx]; |
| 1446 | |
| 1447 | if (likely(chan->center_freq != reg_beacon->chan.center_freq)) |
| 1448 | return; |
| 1449 | |
| 1450 | if (chan->beacon_found) |
| 1451 | return; |
| 1452 | |
| 1453 | chan->beacon_found = true; |
| 1454 | |
| 1455 | if (!reg_is_world_roaming(wiphy)) |
| 1456 | return; |
| 1457 | |
| 1458 | if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) |
| 1459 | return; |
| 1460 | |
| 1461 | chan_before.center_freq = chan->center_freq; |
| 1462 | chan_before.flags = chan->flags; |
| 1463 | |
| 1464 | if (chan->flags & IEEE80211_CHAN_NO_IR) { |
| 1465 | chan->flags &= ~IEEE80211_CHAN_NO_IR; |
| 1466 | channel_changed = true; |
| 1467 | } |
| 1468 | |
| 1469 | if (channel_changed) |
| 1470 | nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * Called when a scan on a wiphy finds a beacon on |
| 1475 | * new channel |
| 1476 | */ |
| 1477 | static void wiphy_update_new_beacon(struct wiphy *wiphy, |
| 1478 | struct reg_beacon *reg_beacon) |
| 1479 | { |
| 1480 | unsigned int i; |
| 1481 | struct ieee80211_supported_band *sband; |
| 1482 | |
| 1483 | if (!wiphy->bands[reg_beacon->chan.band]) |
| 1484 | return; |
| 1485 | |
| 1486 | sband = wiphy->bands[reg_beacon->chan.band]; |
| 1487 | |
| 1488 | for (i = 0; i < sband->n_channels; i++) |
| 1489 | handle_reg_beacon(wiphy, i, reg_beacon); |
| 1490 | } |
| 1491 | |
| 1492 | /* |
| 1493 | * Called upon reg changes or a new wiphy is added |
| 1494 | */ |
| 1495 | static void wiphy_update_beacon_reg(struct wiphy *wiphy) |
| 1496 | { |
| 1497 | unsigned int i; |
| 1498 | struct ieee80211_supported_band *sband; |
| 1499 | struct reg_beacon *reg_beacon; |
| 1500 | |
| 1501 | list_for_each_entry(reg_beacon, ®_beacon_list, list) { |
| 1502 | if (!wiphy->bands[reg_beacon->chan.band]) |
| 1503 | continue; |
| 1504 | sband = wiphy->bands[reg_beacon->chan.band]; |
| 1505 | for (i = 0; i < sband->n_channels; i++) |
| 1506 | handle_reg_beacon(wiphy, i, reg_beacon); |
| 1507 | } |
| 1508 | } |
| 1509 | |
| 1510 | /* Reap the advantages of previously found beacons */ |
| 1511 | static void reg_process_beacons(struct wiphy *wiphy) |
| 1512 | { |
| 1513 | /* |
| 1514 | * Means we are just firing up cfg80211, so no beacons would |
| 1515 | * have been processed yet. |
| 1516 | */ |
| 1517 | if (!last_request) |
| 1518 | return; |
| 1519 | wiphy_update_beacon_reg(wiphy); |
| 1520 | } |
| 1521 | |
| 1522 | static bool is_ht40_allowed(struct ieee80211_channel *chan) |
| 1523 | { |
| 1524 | if (!chan) |
| 1525 | return false; |
| 1526 | if (chan->flags & IEEE80211_CHAN_DISABLED) |
| 1527 | return false; |
| 1528 | /* This would happen when regulatory rules disallow HT40 completely */ |
| 1529 | if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) |
| 1530 | return false; |
| 1531 | return true; |
| 1532 | } |
| 1533 | |
| 1534 | static void reg_process_ht_flags_channel(struct wiphy *wiphy, |
| 1535 | struct ieee80211_channel *channel) |
| 1536 | { |
| 1537 | struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; |
| 1538 | struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; |
| 1539 | unsigned int i; |
| 1540 | |
| 1541 | if (!is_ht40_allowed(channel)) { |
| 1542 | channel->flags |= IEEE80211_CHAN_NO_HT40; |
| 1543 | return; |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * We need to ensure the extension channels exist to |
| 1548 | * be able to use HT40- or HT40+, this finds them (or not) |
| 1549 | */ |
| 1550 | for (i = 0; i < sband->n_channels; i++) { |
| 1551 | struct ieee80211_channel *c = &sband->channels[i]; |
| 1552 | |
| 1553 | if (c->center_freq == (channel->center_freq - 20)) |
| 1554 | channel_before = c; |
| 1555 | if (c->center_freq == (channel->center_freq + 20)) |
| 1556 | channel_after = c; |
| 1557 | } |
| 1558 | |
| 1559 | /* |
| 1560 | * Please note that this assumes target bandwidth is 20 MHz, |
| 1561 | * if that ever changes we also need to change the below logic |
| 1562 | * to include that as well. |
| 1563 | */ |
| 1564 | if (!is_ht40_allowed(channel_before)) |
| 1565 | channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; |
| 1566 | else |
| 1567 | channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| 1568 | |
| 1569 | if (!is_ht40_allowed(channel_after)) |
| 1570 | channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; |
| 1571 | else |
| 1572 | channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| 1573 | } |
| 1574 | |
| 1575 | static void reg_process_ht_flags_band(struct wiphy *wiphy, |
| 1576 | struct ieee80211_supported_band *sband) |
| 1577 | { |
| 1578 | unsigned int i; |
| 1579 | |
| 1580 | if (!sband) |
| 1581 | return; |
| 1582 | |
| 1583 | for (i = 0; i < sband->n_channels; i++) |
| 1584 | reg_process_ht_flags_channel(wiphy, &sband->channels[i]); |
| 1585 | } |
| 1586 | |
| 1587 | static void reg_process_ht_flags(struct wiphy *wiphy) |
| 1588 | { |
| 1589 | enum ieee80211_band band; |
| 1590 | |
| 1591 | if (!wiphy) |
| 1592 | return; |
| 1593 | |
| 1594 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) |
| 1595 | reg_process_ht_flags_band(wiphy, wiphy->bands[band]); |
| 1596 | } |
| 1597 | |
| 1598 | static void reg_call_notifier(struct wiphy *wiphy, |
| 1599 | struct regulatory_request *request) |
| 1600 | { |
| 1601 | if (wiphy->reg_notifier) |
| 1602 | wiphy->reg_notifier(wiphy, request); |
| 1603 | } |
| 1604 | |
| 1605 | static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) |
| 1606 | { |
| 1607 | struct cfg80211_chan_def chandef; |
| 1608 | struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| 1609 | enum nl80211_iftype iftype; |
| 1610 | |
| 1611 | wdev_lock(wdev); |
| 1612 | iftype = wdev->iftype; |
| 1613 | |
| 1614 | /* make sure the interface is active */ |
| 1615 | if (!wdev->netdev || !netif_running(wdev->netdev)) |
| 1616 | goto wdev_inactive_unlock; |
| 1617 | |
| 1618 | switch (iftype) { |
| 1619 | case NL80211_IFTYPE_AP: |
| 1620 | case NL80211_IFTYPE_P2P_GO: |
| 1621 | if (!wdev->beacon_interval) |
| 1622 | goto wdev_inactive_unlock; |
| 1623 | chandef = wdev->chandef; |
| 1624 | break; |
| 1625 | case NL80211_IFTYPE_ADHOC: |
| 1626 | if (!wdev->ssid_len) |
| 1627 | goto wdev_inactive_unlock; |
| 1628 | chandef = wdev->chandef; |
| 1629 | break; |
| 1630 | case NL80211_IFTYPE_STATION: |
| 1631 | case NL80211_IFTYPE_P2P_CLIENT: |
| 1632 | if (!wdev->current_bss || |
| 1633 | !wdev->current_bss->pub.channel) |
| 1634 | goto wdev_inactive_unlock; |
| 1635 | |
| 1636 | if (!rdev->ops->get_channel || |
| 1637 | rdev_get_channel(rdev, wdev, &chandef)) |
| 1638 | cfg80211_chandef_create(&chandef, |
| 1639 | wdev->current_bss->pub.channel, |
| 1640 | NL80211_CHAN_NO_HT); |
| 1641 | break; |
| 1642 | case NL80211_IFTYPE_MONITOR: |
| 1643 | case NL80211_IFTYPE_AP_VLAN: |
| 1644 | case NL80211_IFTYPE_P2P_DEVICE: |
| 1645 | /* no enforcement required */ |
| 1646 | break; |
| 1647 | default: |
| 1648 | /* others not implemented for now */ |
| 1649 | WARN_ON(1); |
| 1650 | break; |
| 1651 | } |
| 1652 | |
| 1653 | wdev_unlock(wdev); |
| 1654 | |
| 1655 | switch (iftype) { |
| 1656 | case NL80211_IFTYPE_AP: |
| 1657 | case NL80211_IFTYPE_P2P_GO: |
| 1658 | case NL80211_IFTYPE_ADHOC: |
| 1659 | return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); |
| 1660 | case NL80211_IFTYPE_STATION: |
| 1661 | case NL80211_IFTYPE_P2P_CLIENT: |
| 1662 | return cfg80211_chandef_usable(wiphy, &chandef, |
| 1663 | IEEE80211_CHAN_DISABLED); |
| 1664 | default: |
| 1665 | break; |
| 1666 | } |
| 1667 | |
| 1668 | return true; |
| 1669 | |
| 1670 | wdev_inactive_unlock: |
| 1671 | wdev_unlock(wdev); |
| 1672 | return true; |
| 1673 | } |
| 1674 | |
| 1675 | static void reg_leave_invalid_chans(struct wiphy *wiphy) |
| 1676 | { |
| 1677 | struct wireless_dev *wdev; |
| 1678 | struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); |
| 1679 | |
| 1680 | ASSERT_RTNL(); |
| 1681 | |
| 1682 | list_for_each_entry(wdev, &rdev->wdev_list, list) |
| 1683 | if (!reg_wdev_chan_valid(wiphy, wdev)) |
| 1684 | cfg80211_leave(rdev, wdev); |
| 1685 | } |
| 1686 | |
| 1687 | static void reg_check_chans_work(struct work_struct *work) |
| 1688 | { |
| 1689 | struct cfg80211_registered_device *rdev; |
| 1690 | |
| 1691 | REG_DBG_PRINT("Verifying active interfaces after reg change\n"); |
| 1692 | rtnl_lock(); |
| 1693 | |
| 1694 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| 1695 | if (!(rdev->wiphy.regulatory_flags & |
| 1696 | REGULATORY_IGNORE_STALE_KICKOFF)) |
| 1697 | reg_leave_invalid_chans(&rdev->wiphy); |
| 1698 | |
| 1699 | rtnl_unlock(); |
| 1700 | } |
| 1701 | |
| 1702 | static void reg_check_channels(void) |
| 1703 | { |
| 1704 | /* |
| 1705 | * Give usermode a chance to do something nicer (move to another |
| 1706 | * channel, orderly disconnection), before forcing a disconnection. |
| 1707 | */ |
| 1708 | mod_delayed_work(system_power_efficient_wq, |
| 1709 | ®_check_chans, |
| 1710 | msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); |
| 1711 | } |
| 1712 | |
| 1713 | static void wiphy_update_regulatory(struct wiphy *wiphy, |
| 1714 | enum nl80211_reg_initiator initiator) |
| 1715 | { |
| 1716 | enum ieee80211_band band; |
| 1717 | struct regulatory_request *lr = get_last_request(); |
| 1718 | |
| 1719 | if (ignore_reg_update(wiphy, initiator)) { |
| 1720 | /* |
| 1721 | * Regulatory updates set by CORE are ignored for custom |
| 1722 | * regulatory cards. Let us notify the changes to the driver, |
| 1723 | * as some drivers used this to restore its orig_* reg domain. |
| 1724 | */ |
| 1725 | if (initiator == NL80211_REGDOM_SET_BY_CORE && |
| 1726 | wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) |
| 1727 | reg_call_notifier(wiphy, lr); |
| 1728 | return; |
| 1729 | } |
| 1730 | |
| 1731 | lr->dfs_region = get_cfg80211_regdom()->dfs_region; |
| 1732 | |
| 1733 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) |
| 1734 | handle_band(wiphy, initiator, wiphy->bands[band]); |
| 1735 | |
| 1736 | reg_process_beacons(wiphy); |
| 1737 | reg_process_ht_flags(wiphy); |
| 1738 | reg_call_notifier(wiphy, lr); |
| 1739 | } |
| 1740 | |
| 1741 | static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) |
| 1742 | { |
| 1743 | struct cfg80211_registered_device *rdev; |
| 1744 | struct wiphy *wiphy; |
| 1745 | |
| 1746 | ASSERT_RTNL(); |
| 1747 | |
| 1748 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| 1749 | wiphy = &rdev->wiphy; |
| 1750 | wiphy_update_regulatory(wiphy, initiator); |
| 1751 | } |
| 1752 | |
| 1753 | reg_check_channels(); |
| 1754 | } |
| 1755 | |
| 1756 | static void handle_channel_custom(struct wiphy *wiphy, |
| 1757 | struct ieee80211_channel *chan, |
| 1758 | const struct ieee80211_regdomain *regd) |
| 1759 | { |
| 1760 | u32 bw_flags = 0; |
| 1761 | const struct ieee80211_reg_rule *reg_rule = NULL; |
| 1762 | const struct ieee80211_power_rule *power_rule = NULL; |
| 1763 | const struct ieee80211_freq_range *freq_range = NULL; |
| 1764 | u32 max_bandwidth_khz; |
| 1765 | u32 bw; |
| 1766 | |
| 1767 | for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { |
| 1768 | reg_rule = freq_reg_info_regd(wiphy, |
| 1769 | MHZ_TO_KHZ(chan->center_freq), |
| 1770 | regd, bw); |
| 1771 | if (!IS_ERR(reg_rule)) |
| 1772 | break; |
| 1773 | } |
| 1774 | |
| 1775 | if (IS_ERR(reg_rule)) { |
| 1776 | REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", |
| 1777 | chan->center_freq); |
| 1778 | if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { |
| 1779 | chan->flags |= IEEE80211_CHAN_DISABLED; |
| 1780 | } else { |
| 1781 | chan->orig_flags |= IEEE80211_CHAN_DISABLED; |
| 1782 | chan->flags = chan->orig_flags; |
| 1783 | } |
| 1784 | return; |
| 1785 | } |
| 1786 | |
| 1787 | chan_reg_rule_print_dbg(regd, chan, reg_rule); |
| 1788 | |
| 1789 | power_rule = ®_rule->power_rule; |
| 1790 | freq_range = ®_rule->freq_range; |
| 1791 | |
| 1792 | max_bandwidth_khz = freq_range->max_bandwidth_khz; |
| 1793 | /* Check if auto calculation requested */ |
| 1794 | if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| 1795 | max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); |
| 1796 | |
| 1797 | /* If we get a reg_rule we can assume that at least 5Mhz fit */ |
| 1798 | if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), |
| 1799 | MHZ_TO_KHZ(10))) |
| 1800 | bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| 1801 | if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq), |
| 1802 | MHZ_TO_KHZ(20))) |
| 1803 | bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| 1804 | |
| 1805 | if (max_bandwidth_khz < MHZ_TO_KHZ(10)) |
| 1806 | bw_flags |= IEEE80211_CHAN_NO_10MHZ; |
| 1807 | if (max_bandwidth_khz < MHZ_TO_KHZ(20)) |
| 1808 | bw_flags |= IEEE80211_CHAN_NO_20MHZ; |
| 1809 | if (max_bandwidth_khz < MHZ_TO_KHZ(40)) |
| 1810 | bw_flags |= IEEE80211_CHAN_NO_HT40; |
| 1811 | if (max_bandwidth_khz < MHZ_TO_KHZ(80)) |
| 1812 | bw_flags |= IEEE80211_CHAN_NO_80MHZ; |
| 1813 | if (max_bandwidth_khz < MHZ_TO_KHZ(160)) |
| 1814 | bw_flags |= IEEE80211_CHAN_NO_160MHZ; |
| 1815 | |
| 1816 | chan->dfs_state_entered = jiffies; |
| 1817 | chan->dfs_state = NL80211_DFS_USABLE; |
| 1818 | |
| 1819 | chan->beacon_found = false; |
| 1820 | |
| 1821 | if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| 1822 | chan->flags = chan->orig_flags | bw_flags | |
| 1823 | map_regdom_flags(reg_rule->flags); |
| 1824 | else |
| 1825 | chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; |
| 1826 | |
| 1827 | chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| 1828 | chan->max_reg_power = chan->max_power = |
| 1829 | (int) MBM_TO_DBM(power_rule->max_eirp); |
| 1830 | |
| 1831 | if (chan->flags & IEEE80211_CHAN_RADAR) { |
| 1832 | if (reg_rule->dfs_cac_ms) |
| 1833 | chan->dfs_cac_ms = reg_rule->dfs_cac_ms; |
| 1834 | else |
| 1835 | chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; |
| 1836 | } |
| 1837 | |
| 1838 | chan->max_power = chan->max_reg_power; |
| 1839 | } |
| 1840 | |
| 1841 | static void handle_band_custom(struct wiphy *wiphy, |
| 1842 | struct ieee80211_supported_band *sband, |
| 1843 | const struct ieee80211_regdomain *regd) |
| 1844 | { |
| 1845 | unsigned int i; |
| 1846 | |
| 1847 | if (!sband) |
| 1848 | return; |
| 1849 | |
| 1850 | for (i = 0; i < sband->n_channels; i++) |
| 1851 | handle_channel_custom(wiphy, &sband->channels[i], regd); |
| 1852 | } |
| 1853 | |
| 1854 | /* Used by drivers prior to wiphy registration */ |
| 1855 | void wiphy_apply_custom_regulatory(struct wiphy *wiphy, |
| 1856 | const struct ieee80211_regdomain *regd) |
| 1857 | { |
| 1858 | enum ieee80211_band band; |
| 1859 | unsigned int bands_set = 0; |
| 1860 | |
| 1861 | WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), |
| 1862 | "wiphy should have REGULATORY_CUSTOM_REG\n"); |
| 1863 | wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; |
| 1864 | |
| 1865 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| 1866 | if (!wiphy->bands[band]) |
| 1867 | continue; |
| 1868 | handle_band_custom(wiphy, wiphy->bands[band], regd); |
| 1869 | bands_set++; |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * no point in calling this if it won't have any effect |
| 1874 | * on your device's supported bands. |
| 1875 | */ |
| 1876 | WARN_ON(!bands_set); |
| 1877 | } |
| 1878 | EXPORT_SYMBOL(wiphy_apply_custom_regulatory); |
| 1879 | |
| 1880 | static void reg_set_request_processed(void) |
| 1881 | { |
| 1882 | bool need_more_processing = false; |
| 1883 | struct regulatory_request *lr = get_last_request(); |
| 1884 | |
| 1885 | lr->processed = true; |
| 1886 | |
| 1887 | spin_lock(®_requests_lock); |
| 1888 | if (!list_empty(®_requests_list)) |
| 1889 | need_more_processing = true; |
| 1890 | spin_unlock(®_requests_lock); |
| 1891 | |
| 1892 | cancel_crda_timeout(); |
| 1893 | |
| 1894 | if (need_more_processing) |
| 1895 | schedule_work(®_work); |
| 1896 | } |
| 1897 | |
| 1898 | /** |
| 1899 | * reg_process_hint_core - process core regulatory requests |
| 1900 | * @pending_request: a pending core regulatory request |
| 1901 | * |
| 1902 | * The wireless subsystem can use this function to process |
| 1903 | * a regulatory request issued by the regulatory core. |
| 1904 | */ |
| 1905 | static enum reg_request_treatment |
| 1906 | reg_process_hint_core(struct regulatory_request *core_request) |
| 1907 | { |
| 1908 | if (reg_query_database(core_request)) { |
| 1909 | core_request->intersect = false; |
| 1910 | core_request->processed = false; |
| 1911 | reg_update_last_request(core_request); |
| 1912 | return REG_REQ_OK; |
| 1913 | } |
| 1914 | |
| 1915 | return REG_REQ_IGNORE; |
| 1916 | } |
| 1917 | |
| 1918 | static enum reg_request_treatment |
| 1919 | __reg_process_hint_user(struct regulatory_request *user_request) |
| 1920 | { |
| 1921 | struct regulatory_request *lr = get_last_request(); |
| 1922 | |
| 1923 | if (reg_request_cell_base(user_request)) |
| 1924 | return reg_ignore_cell_hint(user_request); |
| 1925 | |
| 1926 | if (reg_request_cell_base(lr)) |
| 1927 | return REG_REQ_IGNORE; |
| 1928 | |
| 1929 | if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) |
| 1930 | return REG_REQ_INTERSECT; |
| 1931 | /* |
| 1932 | * If the user knows better the user should set the regdom |
| 1933 | * to their country before the IE is picked up |
| 1934 | */ |
| 1935 | if (lr->initiator == NL80211_REGDOM_SET_BY_USER && |
| 1936 | lr->intersect) |
| 1937 | return REG_REQ_IGNORE; |
| 1938 | /* |
| 1939 | * Process user requests only after previous user/driver/core |
| 1940 | * requests have been processed |
| 1941 | */ |
| 1942 | if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || |
| 1943 | lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || |
| 1944 | lr->initiator == NL80211_REGDOM_SET_BY_USER) && |
| 1945 | regdom_changes(lr->alpha2)) |
| 1946 | return REG_REQ_IGNORE; |
| 1947 | |
| 1948 | if (!regdom_changes(user_request->alpha2)) |
| 1949 | return REG_REQ_ALREADY_SET; |
| 1950 | |
| 1951 | return REG_REQ_OK; |
| 1952 | } |
| 1953 | |
| 1954 | /** |
| 1955 | * reg_process_hint_user - process user regulatory requests |
| 1956 | * @user_request: a pending user regulatory request |
| 1957 | * |
| 1958 | * The wireless subsystem can use this function to process |
| 1959 | * a regulatory request initiated by userspace. |
| 1960 | */ |
| 1961 | static enum reg_request_treatment |
| 1962 | reg_process_hint_user(struct regulatory_request *user_request) |
| 1963 | { |
| 1964 | enum reg_request_treatment treatment; |
| 1965 | |
| 1966 | treatment = __reg_process_hint_user(user_request); |
| 1967 | if (treatment == REG_REQ_IGNORE || |
| 1968 | treatment == REG_REQ_ALREADY_SET) |
| 1969 | return REG_REQ_IGNORE; |
| 1970 | |
| 1971 | user_request->intersect = treatment == REG_REQ_INTERSECT; |
| 1972 | user_request->processed = false; |
| 1973 | |
| 1974 | if (reg_query_database(user_request)) { |
| 1975 | reg_update_last_request(user_request); |
| 1976 | user_alpha2[0] = user_request->alpha2[0]; |
| 1977 | user_alpha2[1] = user_request->alpha2[1]; |
| 1978 | return REG_REQ_OK; |
| 1979 | } |
| 1980 | |
| 1981 | return REG_REQ_IGNORE; |
| 1982 | } |
| 1983 | |
| 1984 | static enum reg_request_treatment |
| 1985 | __reg_process_hint_driver(struct regulatory_request *driver_request) |
| 1986 | { |
| 1987 | struct regulatory_request *lr = get_last_request(); |
| 1988 | |
| 1989 | if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { |
| 1990 | if (regdom_changes(driver_request->alpha2)) |
| 1991 | return REG_REQ_OK; |
| 1992 | return REG_REQ_ALREADY_SET; |
| 1993 | } |
| 1994 | |
| 1995 | /* |
| 1996 | * This would happen if you unplug and plug your card |
| 1997 | * back in or if you add a new device for which the previously |
| 1998 | * loaded card also agrees on the regulatory domain. |
| 1999 | */ |
| 2000 | if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| 2001 | !regdom_changes(driver_request->alpha2)) |
| 2002 | return REG_REQ_ALREADY_SET; |
| 2003 | |
| 2004 | return REG_REQ_INTERSECT; |
| 2005 | } |
| 2006 | |
| 2007 | /** |
| 2008 | * reg_process_hint_driver - process driver regulatory requests |
| 2009 | * @driver_request: a pending driver regulatory request |
| 2010 | * |
| 2011 | * The wireless subsystem can use this function to process |
| 2012 | * a regulatory request issued by an 802.11 driver. |
| 2013 | * |
| 2014 | * Returns one of the different reg request treatment values. |
| 2015 | */ |
| 2016 | static enum reg_request_treatment |
| 2017 | reg_process_hint_driver(struct wiphy *wiphy, |
| 2018 | struct regulatory_request *driver_request) |
| 2019 | { |
| 2020 | const struct ieee80211_regdomain *regd, *tmp; |
| 2021 | enum reg_request_treatment treatment; |
| 2022 | |
| 2023 | treatment = __reg_process_hint_driver(driver_request); |
| 2024 | |
| 2025 | switch (treatment) { |
| 2026 | case REG_REQ_OK: |
| 2027 | break; |
| 2028 | case REG_REQ_IGNORE: |
| 2029 | return REG_REQ_IGNORE; |
| 2030 | case REG_REQ_INTERSECT: |
| 2031 | case REG_REQ_ALREADY_SET: |
| 2032 | regd = reg_copy_regd(get_cfg80211_regdom()); |
| 2033 | if (IS_ERR(regd)) |
| 2034 | return REG_REQ_IGNORE; |
| 2035 | |
| 2036 | tmp = get_wiphy_regdom(wiphy); |
| 2037 | rcu_assign_pointer(wiphy->regd, regd); |
| 2038 | rcu_free_regdom(tmp); |
| 2039 | } |
| 2040 | |
| 2041 | |
| 2042 | driver_request->intersect = treatment == REG_REQ_INTERSECT; |
| 2043 | driver_request->processed = false; |
| 2044 | |
| 2045 | /* |
| 2046 | * Since CRDA will not be called in this case as we already |
| 2047 | * have applied the requested regulatory domain before we just |
| 2048 | * inform userspace we have processed the request |
| 2049 | */ |
| 2050 | if (treatment == REG_REQ_ALREADY_SET) { |
| 2051 | nl80211_send_reg_change_event(driver_request); |
| 2052 | reg_update_last_request(driver_request); |
| 2053 | reg_set_request_processed(); |
| 2054 | return REG_REQ_ALREADY_SET; |
| 2055 | } |
| 2056 | |
| 2057 | if (reg_query_database(driver_request)) { |
| 2058 | reg_update_last_request(driver_request); |
| 2059 | return REG_REQ_OK; |
| 2060 | } |
| 2061 | |
| 2062 | return REG_REQ_IGNORE; |
| 2063 | } |
| 2064 | |
| 2065 | static enum reg_request_treatment |
| 2066 | __reg_process_hint_country_ie(struct wiphy *wiphy, |
| 2067 | struct regulatory_request *country_ie_request) |
| 2068 | { |
| 2069 | struct wiphy *last_wiphy = NULL; |
| 2070 | struct regulatory_request *lr = get_last_request(); |
| 2071 | |
| 2072 | if (reg_request_cell_base(lr)) { |
| 2073 | /* Trust a Cell base station over the AP's country IE */ |
| 2074 | if (regdom_changes(country_ie_request->alpha2)) |
| 2075 | return REG_REQ_IGNORE; |
| 2076 | return REG_REQ_ALREADY_SET; |
| 2077 | } else { |
| 2078 | if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) |
| 2079 | return REG_REQ_IGNORE; |
| 2080 | } |
| 2081 | |
| 2082 | if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) |
| 2083 | return -EINVAL; |
| 2084 | |
| 2085 | if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) |
| 2086 | return REG_REQ_OK; |
| 2087 | |
| 2088 | last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| 2089 | |
| 2090 | if (last_wiphy != wiphy) { |
| 2091 | /* |
| 2092 | * Two cards with two APs claiming different |
| 2093 | * Country IE alpha2s. We could |
| 2094 | * intersect them, but that seems unlikely |
| 2095 | * to be correct. Reject second one for now. |
| 2096 | */ |
| 2097 | if (regdom_changes(country_ie_request->alpha2)) |
| 2098 | return REG_REQ_IGNORE; |
| 2099 | return REG_REQ_ALREADY_SET; |
| 2100 | } |
| 2101 | |
| 2102 | if (regdom_changes(country_ie_request->alpha2)) |
| 2103 | return REG_REQ_OK; |
| 2104 | return REG_REQ_ALREADY_SET; |
| 2105 | } |
| 2106 | |
| 2107 | /** |
| 2108 | * reg_process_hint_country_ie - process regulatory requests from country IEs |
| 2109 | * @country_ie_request: a regulatory request from a country IE |
| 2110 | * |
| 2111 | * The wireless subsystem can use this function to process |
| 2112 | * a regulatory request issued by a country Information Element. |
| 2113 | * |
| 2114 | * Returns one of the different reg request treatment values. |
| 2115 | */ |
| 2116 | static enum reg_request_treatment |
| 2117 | reg_process_hint_country_ie(struct wiphy *wiphy, |
| 2118 | struct regulatory_request *country_ie_request) |
| 2119 | { |
| 2120 | enum reg_request_treatment treatment; |
| 2121 | |
| 2122 | treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); |
| 2123 | |
| 2124 | switch (treatment) { |
| 2125 | case REG_REQ_OK: |
| 2126 | break; |
| 2127 | case REG_REQ_IGNORE: |
| 2128 | return REG_REQ_IGNORE; |
| 2129 | case REG_REQ_ALREADY_SET: |
| 2130 | reg_free_request(country_ie_request); |
| 2131 | return REG_REQ_ALREADY_SET; |
| 2132 | case REG_REQ_INTERSECT: |
| 2133 | /* |
| 2134 | * This doesn't happen yet, not sure we |
| 2135 | * ever want to support it for this case. |
| 2136 | */ |
| 2137 | WARN_ONCE(1, "Unexpected intersection for country IEs"); |
| 2138 | return REG_REQ_IGNORE; |
| 2139 | } |
| 2140 | |
| 2141 | country_ie_request->intersect = false; |
| 2142 | country_ie_request->processed = false; |
| 2143 | |
| 2144 | if (reg_query_database(country_ie_request)) { |
| 2145 | reg_update_last_request(country_ie_request); |
| 2146 | return REG_REQ_OK; |
| 2147 | } |
| 2148 | |
| 2149 | return REG_REQ_IGNORE; |
| 2150 | } |
| 2151 | |
| 2152 | /* This processes *all* regulatory hints */ |
| 2153 | static void reg_process_hint(struct regulatory_request *reg_request) |
| 2154 | { |
| 2155 | struct wiphy *wiphy = NULL; |
| 2156 | enum reg_request_treatment treatment; |
| 2157 | |
| 2158 | if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) |
| 2159 | wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); |
| 2160 | |
| 2161 | switch (reg_request->initiator) { |
| 2162 | case NL80211_REGDOM_SET_BY_CORE: |
| 2163 | treatment = reg_process_hint_core(reg_request); |
| 2164 | break; |
| 2165 | case NL80211_REGDOM_SET_BY_USER: |
| 2166 | treatment = reg_process_hint_user(reg_request); |
| 2167 | break; |
| 2168 | case NL80211_REGDOM_SET_BY_DRIVER: |
| 2169 | if (!wiphy) |
| 2170 | goto out_free; |
| 2171 | treatment = reg_process_hint_driver(wiphy, reg_request); |
| 2172 | break; |
| 2173 | case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| 2174 | if (!wiphy) |
| 2175 | goto out_free; |
| 2176 | treatment = reg_process_hint_country_ie(wiphy, reg_request); |
| 2177 | break; |
| 2178 | default: |
| 2179 | WARN(1, "invalid initiator %d\n", reg_request->initiator); |
| 2180 | goto out_free; |
| 2181 | } |
| 2182 | |
| 2183 | if (treatment == REG_REQ_IGNORE) |
| 2184 | goto out_free; |
| 2185 | |
| 2186 | WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, |
| 2187 | "unexpected treatment value %d\n", treatment); |
| 2188 | |
| 2189 | /* This is required so that the orig_* parameters are saved. |
| 2190 | * NOTE: treatment must be set for any case that reaches here! |
| 2191 | */ |
| 2192 | if (treatment == REG_REQ_ALREADY_SET && wiphy && |
| 2193 | wiphy->regulatory_flags & REGULATORY_STRICT_REG) { |
| 2194 | wiphy_update_regulatory(wiphy, reg_request->initiator); |
| 2195 | reg_check_channels(); |
| 2196 | } |
| 2197 | |
| 2198 | return; |
| 2199 | |
| 2200 | out_free: |
| 2201 | reg_free_request(reg_request); |
| 2202 | } |
| 2203 | |
| 2204 | static bool reg_only_self_managed_wiphys(void) |
| 2205 | { |
| 2206 | struct cfg80211_registered_device *rdev; |
| 2207 | struct wiphy *wiphy; |
| 2208 | bool self_managed_found = false; |
| 2209 | |
| 2210 | ASSERT_RTNL(); |
| 2211 | |
| 2212 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| 2213 | wiphy = &rdev->wiphy; |
| 2214 | if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| 2215 | self_managed_found = true; |
| 2216 | else |
| 2217 | return false; |
| 2218 | } |
| 2219 | |
| 2220 | /* make sure at least one self-managed wiphy exists */ |
| 2221 | return self_managed_found; |
| 2222 | } |
| 2223 | |
| 2224 | /* |
| 2225 | * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* |
| 2226 | * Regulatory hints come on a first come first serve basis and we |
| 2227 | * must process each one atomically. |
| 2228 | */ |
| 2229 | static void reg_process_pending_hints(void) |
| 2230 | { |
| 2231 | struct regulatory_request *reg_request, *lr; |
| 2232 | |
| 2233 | lr = get_last_request(); |
| 2234 | |
| 2235 | /* When last_request->processed becomes true this will be rescheduled */ |
| 2236 | if (lr && !lr->processed) { |
| 2237 | reg_process_hint(lr); |
| 2238 | return; |
| 2239 | } |
| 2240 | |
| 2241 | spin_lock(®_requests_lock); |
| 2242 | |
| 2243 | if (list_empty(®_requests_list)) { |
| 2244 | spin_unlock(®_requests_lock); |
| 2245 | return; |
| 2246 | } |
| 2247 | |
| 2248 | reg_request = list_first_entry(®_requests_list, |
| 2249 | struct regulatory_request, |
| 2250 | list); |
| 2251 | list_del_init(®_request->list); |
| 2252 | |
| 2253 | spin_unlock(®_requests_lock); |
| 2254 | |
| 2255 | if (reg_only_self_managed_wiphys()) { |
| 2256 | reg_free_request(reg_request); |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | reg_process_hint(reg_request); |
| 2261 | |
| 2262 | lr = get_last_request(); |
| 2263 | |
| 2264 | spin_lock(®_requests_lock); |
| 2265 | if (!list_empty(®_requests_list) && lr && lr->processed) |
| 2266 | schedule_work(®_work); |
| 2267 | spin_unlock(®_requests_lock); |
| 2268 | } |
| 2269 | |
| 2270 | /* Processes beacon hints -- this has nothing to do with country IEs */ |
| 2271 | static void reg_process_pending_beacon_hints(void) |
| 2272 | { |
| 2273 | struct cfg80211_registered_device *rdev; |
| 2274 | struct reg_beacon *pending_beacon, *tmp; |
| 2275 | |
| 2276 | /* This goes through the _pending_ beacon list */ |
| 2277 | spin_lock_bh(®_pending_beacons_lock); |
| 2278 | |
| 2279 | list_for_each_entry_safe(pending_beacon, tmp, |
| 2280 | ®_pending_beacons, list) { |
| 2281 | list_del_init(&pending_beacon->list); |
| 2282 | |
| 2283 | /* Applies the beacon hint to current wiphys */ |
| 2284 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| 2285 | wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); |
| 2286 | |
| 2287 | /* Remembers the beacon hint for new wiphys or reg changes */ |
| 2288 | list_add_tail(&pending_beacon->list, ®_beacon_list); |
| 2289 | } |
| 2290 | |
| 2291 | spin_unlock_bh(®_pending_beacons_lock); |
| 2292 | } |
| 2293 | |
| 2294 | static void reg_process_self_managed_hints(void) |
| 2295 | { |
| 2296 | struct cfg80211_registered_device *rdev; |
| 2297 | struct wiphy *wiphy; |
| 2298 | const struct ieee80211_regdomain *tmp; |
| 2299 | const struct ieee80211_regdomain *regd; |
| 2300 | enum ieee80211_band band; |
| 2301 | struct regulatory_request request = {}; |
| 2302 | |
| 2303 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| 2304 | wiphy = &rdev->wiphy; |
| 2305 | |
| 2306 | spin_lock(®_requests_lock); |
| 2307 | regd = rdev->requested_regd; |
| 2308 | rdev->requested_regd = NULL; |
| 2309 | spin_unlock(®_requests_lock); |
| 2310 | |
| 2311 | if (regd == NULL) |
| 2312 | continue; |
| 2313 | |
| 2314 | tmp = get_wiphy_regdom(wiphy); |
| 2315 | rcu_assign_pointer(wiphy->regd, regd); |
| 2316 | rcu_free_regdom(tmp); |
| 2317 | |
| 2318 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) |
| 2319 | handle_band_custom(wiphy, wiphy->bands[band], regd); |
| 2320 | |
| 2321 | reg_process_ht_flags(wiphy); |
| 2322 | |
| 2323 | request.wiphy_idx = get_wiphy_idx(wiphy); |
| 2324 | request.alpha2[0] = regd->alpha2[0]; |
| 2325 | request.alpha2[1] = regd->alpha2[1]; |
| 2326 | request.initiator = NL80211_REGDOM_SET_BY_DRIVER; |
| 2327 | |
| 2328 | nl80211_send_wiphy_reg_change_event(&request); |
| 2329 | } |
| 2330 | |
| 2331 | reg_check_channels(); |
| 2332 | } |
| 2333 | |
| 2334 | static void reg_todo(struct work_struct *work) |
| 2335 | { |
| 2336 | rtnl_lock(); |
| 2337 | reg_process_pending_hints(); |
| 2338 | reg_process_pending_beacon_hints(); |
| 2339 | reg_process_self_managed_hints(); |
| 2340 | rtnl_unlock(); |
| 2341 | } |
| 2342 | |
| 2343 | static void queue_regulatory_request(struct regulatory_request *request) |
| 2344 | { |
| 2345 | request->alpha2[0] = toupper(request->alpha2[0]); |
| 2346 | request->alpha2[1] = toupper(request->alpha2[1]); |
| 2347 | |
| 2348 | spin_lock(®_requests_lock); |
| 2349 | list_add_tail(&request->list, ®_requests_list); |
| 2350 | spin_unlock(®_requests_lock); |
| 2351 | |
| 2352 | schedule_work(®_work); |
| 2353 | } |
| 2354 | |
| 2355 | /* |
| 2356 | * Core regulatory hint -- happens during cfg80211_init() |
| 2357 | * and when we restore regulatory settings. |
| 2358 | */ |
| 2359 | static int regulatory_hint_core(const char *alpha2) |
| 2360 | { |
| 2361 | struct regulatory_request *request; |
| 2362 | |
| 2363 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| 2364 | if (!request) |
| 2365 | return -ENOMEM; |
| 2366 | |
| 2367 | request->alpha2[0] = alpha2[0]; |
| 2368 | request->alpha2[1] = alpha2[1]; |
| 2369 | request->initiator = NL80211_REGDOM_SET_BY_CORE; |
| 2370 | |
| 2371 | queue_regulatory_request(request); |
| 2372 | |
| 2373 | return 0; |
| 2374 | } |
| 2375 | |
| 2376 | /* User hints */ |
| 2377 | int regulatory_hint_user(const char *alpha2, |
| 2378 | enum nl80211_user_reg_hint_type user_reg_hint_type) |
| 2379 | { |
| 2380 | struct regulatory_request *request; |
| 2381 | |
| 2382 | if (WARN_ON(!alpha2)) |
| 2383 | return -EINVAL; |
| 2384 | |
| 2385 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| 2386 | if (!request) |
| 2387 | return -ENOMEM; |
| 2388 | |
| 2389 | request->wiphy_idx = WIPHY_IDX_INVALID; |
| 2390 | request->alpha2[0] = alpha2[0]; |
| 2391 | request->alpha2[1] = alpha2[1]; |
| 2392 | request->initiator = NL80211_REGDOM_SET_BY_USER; |
| 2393 | request->user_reg_hint_type = user_reg_hint_type; |
| 2394 | |
| 2395 | /* Allow calling CRDA again */ |
| 2396 | reset_crda_timeouts(); |
| 2397 | |
| 2398 | queue_regulatory_request(request); |
| 2399 | |
| 2400 | return 0; |
| 2401 | } |
| 2402 | |
| 2403 | int regulatory_hint_indoor(bool is_indoor, u32 portid) |
| 2404 | { |
| 2405 | spin_lock(®_indoor_lock); |
| 2406 | |
| 2407 | /* It is possible that more than one user space process is trying to |
| 2408 | * configure the indoor setting. To handle such cases, clear the indoor |
| 2409 | * setting in case that some process does not think that the device |
| 2410 | * is operating in an indoor environment. In addition, if a user space |
| 2411 | * process indicates that it is controlling the indoor setting, save its |
| 2412 | * portid, i.e., make it the owner. |
| 2413 | */ |
| 2414 | reg_is_indoor = is_indoor; |
| 2415 | if (reg_is_indoor) { |
| 2416 | if (!reg_is_indoor_portid) |
| 2417 | reg_is_indoor_portid = portid; |
| 2418 | } else { |
| 2419 | reg_is_indoor_portid = 0; |
| 2420 | } |
| 2421 | |
| 2422 | spin_unlock(®_indoor_lock); |
| 2423 | |
| 2424 | if (!is_indoor) |
| 2425 | reg_check_channels(); |
| 2426 | |
| 2427 | return 0; |
| 2428 | } |
| 2429 | |
| 2430 | void regulatory_netlink_notify(u32 portid) |
| 2431 | { |
| 2432 | spin_lock(®_indoor_lock); |
| 2433 | |
| 2434 | if (reg_is_indoor_portid != portid) { |
| 2435 | spin_unlock(®_indoor_lock); |
| 2436 | return; |
| 2437 | } |
| 2438 | |
| 2439 | reg_is_indoor = false; |
| 2440 | reg_is_indoor_portid = 0; |
| 2441 | |
| 2442 | spin_unlock(®_indoor_lock); |
| 2443 | |
| 2444 | reg_check_channels(); |
| 2445 | } |
| 2446 | |
| 2447 | /* Driver hints */ |
| 2448 | int regulatory_hint(struct wiphy *wiphy, const char *alpha2) |
| 2449 | { |
| 2450 | struct regulatory_request *request; |
| 2451 | |
| 2452 | if (WARN_ON(!alpha2 || !wiphy)) |
| 2453 | return -EINVAL; |
| 2454 | |
| 2455 | wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; |
| 2456 | |
| 2457 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| 2458 | if (!request) |
| 2459 | return -ENOMEM; |
| 2460 | |
| 2461 | request->wiphy_idx = get_wiphy_idx(wiphy); |
| 2462 | |
| 2463 | request->alpha2[0] = alpha2[0]; |
| 2464 | request->alpha2[1] = alpha2[1]; |
| 2465 | request->initiator = NL80211_REGDOM_SET_BY_DRIVER; |
| 2466 | |
| 2467 | /* Allow calling CRDA again */ |
| 2468 | reset_crda_timeouts(); |
| 2469 | |
| 2470 | queue_regulatory_request(request); |
| 2471 | |
| 2472 | return 0; |
| 2473 | } |
| 2474 | EXPORT_SYMBOL(regulatory_hint); |
| 2475 | |
| 2476 | void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, |
| 2477 | const u8 *country_ie, u8 country_ie_len) |
| 2478 | { |
| 2479 | char alpha2[2]; |
| 2480 | enum environment_cap env = ENVIRON_ANY; |
| 2481 | struct regulatory_request *request = NULL, *lr; |
| 2482 | |
| 2483 | /* IE len must be evenly divisible by 2 */ |
| 2484 | if (country_ie_len & 0x01) |
| 2485 | return; |
| 2486 | |
| 2487 | if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) |
| 2488 | return; |
| 2489 | |
| 2490 | request = kzalloc(sizeof(*request), GFP_KERNEL); |
| 2491 | if (!request) |
| 2492 | return; |
| 2493 | |
| 2494 | alpha2[0] = country_ie[0]; |
| 2495 | alpha2[1] = country_ie[1]; |
| 2496 | |
| 2497 | if (country_ie[2] == 'I') |
| 2498 | env = ENVIRON_INDOOR; |
| 2499 | else if (country_ie[2] == 'O') |
| 2500 | env = ENVIRON_OUTDOOR; |
| 2501 | |
| 2502 | rcu_read_lock(); |
| 2503 | lr = get_last_request(); |
| 2504 | |
| 2505 | if (unlikely(!lr)) |
| 2506 | goto out; |
| 2507 | |
| 2508 | /* |
| 2509 | * We will run this only upon a successful connection on cfg80211. |
| 2510 | * We leave conflict resolution to the workqueue, where can hold |
| 2511 | * the RTNL. |
| 2512 | */ |
| 2513 | if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| 2514 | lr->wiphy_idx != WIPHY_IDX_INVALID) |
| 2515 | goto out; |
| 2516 | |
| 2517 | request->wiphy_idx = get_wiphy_idx(wiphy); |
| 2518 | request->alpha2[0] = alpha2[0]; |
| 2519 | request->alpha2[1] = alpha2[1]; |
| 2520 | request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; |
| 2521 | request->country_ie_env = env; |
| 2522 | |
| 2523 | /* Allow calling CRDA again */ |
| 2524 | reset_crda_timeouts(); |
| 2525 | |
| 2526 | queue_regulatory_request(request); |
| 2527 | request = NULL; |
| 2528 | out: |
| 2529 | kfree(request); |
| 2530 | rcu_read_unlock(); |
| 2531 | } |
| 2532 | |
| 2533 | static void restore_alpha2(char *alpha2, bool reset_user) |
| 2534 | { |
| 2535 | /* indicates there is no alpha2 to consider for restoration */ |
| 2536 | alpha2[0] = '9'; |
| 2537 | alpha2[1] = '7'; |
| 2538 | |
| 2539 | /* The user setting has precedence over the module parameter */ |
| 2540 | if (is_user_regdom_saved()) { |
| 2541 | /* Unless we're asked to ignore it and reset it */ |
| 2542 | if (reset_user) { |
| 2543 | REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); |
| 2544 | user_alpha2[0] = '9'; |
| 2545 | user_alpha2[1] = '7'; |
| 2546 | |
| 2547 | /* |
| 2548 | * If we're ignoring user settings, we still need to |
| 2549 | * check the module parameter to ensure we put things |
| 2550 | * back as they were for a full restore. |
| 2551 | */ |
| 2552 | if (!is_world_regdom(ieee80211_regdom)) { |
| 2553 | REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", |
| 2554 | ieee80211_regdom[0], ieee80211_regdom[1]); |
| 2555 | alpha2[0] = ieee80211_regdom[0]; |
| 2556 | alpha2[1] = ieee80211_regdom[1]; |
| 2557 | } |
| 2558 | } else { |
| 2559 | REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", |
| 2560 | user_alpha2[0], user_alpha2[1]); |
| 2561 | alpha2[0] = user_alpha2[0]; |
| 2562 | alpha2[1] = user_alpha2[1]; |
| 2563 | } |
| 2564 | } else if (!is_world_regdom(ieee80211_regdom)) { |
| 2565 | REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", |
| 2566 | ieee80211_regdom[0], ieee80211_regdom[1]); |
| 2567 | alpha2[0] = ieee80211_regdom[0]; |
| 2568 | alpha2[1] = ieee80211_regdom[1]; |
| 2569 | } else |
| 2570 | REG_DBG_PRINT("Restoring regulatory settings\n"); |
| 2571 | } |
| 2572 | |
| 2573 | static void restore_custom_reg_settings(struct wiphy *wiphy) |
| 2574 | { |
| 2575 | struct ieee80211_supported_band *sband; |
| 2576 | enum ieee80211_band band; |
| 2577 | struct ieee80211_channel *chan; |
| 2578 | int i; |
| 2579 | |
| 2580 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| 2581 | sband = wiphy->bands[band]; |
| 2582 | if (!sband) |
| 2583 | continue; |
| 2584 | for (i = 0; i < sband->n_channels; i++) { |
| 2585 | chan = &sband->channels[i]; |
| 2586 | chan->flags = chan->orig_flags; |
| 2587 | chan->max_antenna_gain = chan->orig_mag; |
| 2588 | chan->max_power = chan->orig_mpwr; |
| 2589 | chan->beacon_found = false; |
| 2590 | } |
| 2591 | } |
| 2592 | } |
| 2593 | |
| 2594 | /* |
| 2595 | * Restoring regulatory settings involves ingoring any |
| 2596 | * possibly stale country IE information and user regulatory |
| 2597 | * settings if so desired, this includes any beacon hints |
| 2598 | * learned as we could have traveled outside to another country |
| 2599 | * after disconnection. To restore regulatory settings we do |
| 2600 | * exactly what we did at bootup: |
| 2601 | * |
| 2602 | * - send a core regulatory hint |
| 2603 | * - send a user regulatory hint if applicable |
| 2604 | * |
| 2605 | * Device drivers that send a regulatory hint for a specific country |
| 2606 | * keep their own regulatory domain on wiphy->regd so that does does |
| 2607 | * not need to be remembered. |
| 2608 | */ |
| 2609 | static void restore_regulatory_settings(bool reset_user) |
| 2610 | { |
| 2611 | char alpha2[2]; |
| 2612 | char world_alpha2[2]; |
| 2613 | struct reg_beacon *reg_beacon, *btmp; |
| 2614 | LIST_HEAD(tmp_reg_req_list); |
| 2615 | struct cfg80211_registered_device *rdev; |
| 2616 | |
| 2617 | ASSERT_RTNL(); |
| 2618 | |
| 2619 | /* |
| 2620 | * Clear the indoor setting in case that it is not controlled by user |
| 2621 | * space, as otherwise there is no guarantee that the device is still |
| 2622 | * operating in an indoor environment. |
| 2623 | */ |
| 2624 | spin_lock(®_indoor_lock); |
| 2625 | if (reg_is_indoor && !reg_is_indoor_portid) { |
| 2626 | reg_is_indoor = false; |
| 2627 | reg_check_channels(); |
| 2628 | } |
| 2629 | spin_unlock(®_indoor_lock); |
| 2630 | |
| 2631 | reset_regdomains(true, &world_regdom); |
| 2632 | restore_alpha2(alpha2, reset_user); |
| 2633 | |
| 2634 | /* |
| 2635 | * If there's any pending requests we simply |
| 2636 | * stash them to a temporary pending queue and |
| 2637 | * add then after we've restored regulatory |
| 2638 | * settings. |
| 2639 | */ |
| 2640 | spin_lock(®_requests_lock); |
| 2641 | list_splice_tail_init(®_requests_list, &tmp_reg_req_list); |
| 2642 | spin_unlock(®_requests_lock); |
| 2643 | |
| 2644 | /* Clear beacon hints */ |
| 2645 | spin_lock_bh(®_pending_beacons_lock); |
| 2646 | list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { |
| 2647 | list_del(®_beacon->list); |
| 2648 | kfree(reg_beacon); |
| 2649 | } |
| 2650 | spin_unlock_bh(®_pending_beacons_lock); |
| 2651 | |
| 2652 | list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { |
| 2653 | list_del(®_beacon->list); |
| 2654 | kfree(reg_beacon); |
| 2655 | } |
| 2656 | |
| 2657 | /* First restore to the basic regulatory settings */ |
| 2658 | world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; |
| 2659 | world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; |
| 2660 | |
| 2661 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { |
| 2662 | if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| 2663 | continue; |
| 2664 | if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) |
| 2665 | restore_custom_reg_settings(&rdev->wiphy); |
| 2666 | } |
| 2667 | |
| 2668 | regulatory_hint_core(world_alpha2); |
| 2669 | |
| 2670 | /* |
| 2671 | * This restores the ieee80211_regdom module parameter |
| 2672 | * preference or the last user requested regulatory |
| 2673 | * settings, user regulatory settings takes precedence. |
| 2674 | */ |
| 2675 | if (is_an_alpha2(alpha2)) |
| 2676 | regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); |
| 2677 | |
| 2678 | spin_lock(®_requests_lock); |
| 2679 | list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); |
| 2680 | spin_unlock(®_requests_lock); |
| 2681 | |
| 2682 | REG_DBG_PRINT("Kicking the queue\n"); |
| 2683 | |
| 2684 | schedule_work(®_work); |
| 2685 | } |
| 2686 | |
| 2687 | void regulatory_hint_disconnect(void) |
| 2688 | { |
| 2689 | REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); |
| 2690 | restore_regulatory_settings(false); |
| 2691 | } |
| 2692 | |
| 2693 | static bool freq_is_chan_12_13_14(u16 freq) |
| 2694 | { |
| 2695 | if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || |
| 2696 | freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || |
| 2697 | freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) |
| 2698 | return true; |
| 2699 | return false; |
| 2700 | } |
| 2701 | |
| 2702 | static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) |
| 2703 | { |
| 2704 | struct reg_beacon *pending_beacon; |
| 2705 | |
| 2706 | list_for_each_entry(pending_beacon, ®_pending_beacons, list) |
| 2707 | if (beacon_chan->center_freq == |
| 2708 | pending_beacon->chan.center_freq) |
| 2709 | return true; |
| 2710 | return false; |
| 2711 | } |
| 2712 | |
| 2713 | int regulatory_hint_found_beacon(struct wiphy *wiphy, |
| 2714 | struct ieee80211_channel *beacon_chan, |
| 2715 | gfp_t gfp) |
| 2716 | { |
| 2717 | struct reg_beacon *reg_beacon; |
| 2718 | bool processing; |
| 2719 | |
| 2720 | if (beacon_chan->beacon_found || |
| 2721 | beacon_chan->flags & IEEE80211_CHAN_RADAR || |
| 2722 | (beacon_chan->band == IEEE80211_BAND_2GHZ && |
| 2723 | !freq_is_chan_12_13_14(beacon_chan->center_freq))) |
| 2724 | return 0; |
| 2725 | |
| 2726 | spin_lock_bh(®_pending_beacons_lock); |
| 2727 | processing = pending_reg_beacon(beacon_chan); |
| 2728 | spin_unlock_bh(®_pending_beacons_lock); |
| 2729 | |
| 2730 | if (processing) |
| 2731 | return 0; |
| 2732 | |
| 2733 | reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); |
| 2734 | if (!reg_beacon) |
| 2735 | return -ENOMEM; |
| 2736 | |
| 2737 | REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", |
| 2738 | beacon_chan->center_freq, |
| 2739 | ieee80211_frequency_to_channel(beacon_chan->center_freq), |
| 2740 | wiphy_name(wiphy)); |
| 2741 | |
| 2742 | memcpy(®_beacon->chan, beacon_chan, |
| 2743 | sizeof(struct ieee80211_channel)); |
| 2744 | |
| 2745 | /* |
| 2746 | * Since we can be called from BH or and non-BH context |
| 2747 | * we must use spin_lock_bh() |
| 2748 | */ |
| 2749 | spin_lock_bh(®_pending_beacons_lock); |
| 2750 | list_add_tail(®_beacon->list, ®_pending_beacons); |
| 2751 | spin_unlock_bh(®_pending_beacons_lock); |
| 2752 | |
| 2753 | schedule_work(®_work); |
| 2754 | |
| 2755 | return 0; |
| 2756 | } |
| 2757 | |
| 2758 | static void print_rd_rules(const struct ieee80211_regdomain *rd) |
| 2759 | { |
| 2760 | unsigned int i; |
| 2761 | const struct ieee80211_reg_rule *reg_rule = NULL; |
| 2762 | const struct ieee80211_freq_range *freq_range = NULL; |
| 2763 | const struct ieee80211_power_rule *power_rule = NULL; |
| 2764 | char bw[32], cac_time[32]; |
| 2765 | |
| 2766 | pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); |
| 2767 | |
| 2768 | for (i = 0; i < rd->n_reg_rules; i++) { |
| 2769 | reg_rule = &rd->reg_rules[i]; |
| 2770 | freq_range = ®_rule->freq_range; |
| 2771 | power_rule = ®_rule->power_rule; |
| 2772 | |
| 2773 | if (reg_rule->flags & NL80211_RRF_AUTO_BW) |
| 2774 | snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", |
| 2775 | freq_range->max_bandwidth_khz, |
| 2776 | reg_get_max_bandwidth(rd, reg_rule)); |
| 2777 | else |
| 2778 | snprintf(bw, sizeof(bw), "%d KHz", |
| 2779 | freq_range->max_bandwidth_khz); |
| 2780 | |
| 2781 | if (reg_rule->flags & NL80211_RRF_DFS) |
| 2782 | scnprintf(cac_time, sizeof(cac_time), "%u s", |
| 2783 | reg_rule->dfs_cac_ms/1000); |
| 2784 | else |
| 2785 | scnprintf(cac_time, sizeof(cac_time), "N/A"); |
| 2786 | |
| 2787 | |
| 2788 | /* |
| 2789 | * There may not be documentation for max antenna gain |
| 2790 | * in certain regions |
| 2791 | */ |
| 2792 | if (power_rule->max_antenna_gain) |
| 2793 | pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", |
| 2794 | freq_range->start_freq_khz, |
| 2795 | freq_range->end_freq_khz, |
| 2796 | bw, |
| 2797 | power_rule->max_antenna_gain, |
| 2798 | power_rule->max_eirp, |
| 2799 | cac_time); |
| 2800 | else |
| 2801 | pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", |
| 2802 | freq_range->start_freq_khz, |
| 2803 | freq_range->end_freq_khz, |
| 2804 | bw, |
| 2805 | power_rule->max_eirp, |
| 2806 | cac_time); |
| 2807 | } |
| 2808 | } |
| 2809 | |
| 2810 | bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) |
| 2811 | { |
| 2812 | switch (dfs_region) { |
| 2813 | case NL80211_DFS_UNSET: |
| 2814 | case NL80211_DFS_FCC: |
| 2815 | case NL80211_DFS_ETSI: |
| 2816 | case NL80211_DFS_JP: |
| 2817 | return true; |
| 2818 | default: |
| 2819 | REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", |
| 2820 | dfs_region); |
| 2821 | return false; |
| 2822 | } |
| 2823 | } |
| 2824 | |
| 2825 | static void print_regdomain(const struct ieee80211_regdomain *rd) |
| 2826 | { |
| 2827 | struct regulatory_request *lr = get_last_request(); |
| 2828 | |
| 2829 | if (is_intersected_alpha2(rd->alpha2)) { |
| 2830 | if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| 2831 | struct cfg80211_registered_device *rdev; |
| 2832 | rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); |
| 2833 | if (rdev) { |
| 2834 | pr_info("Current regulatory domain updated by AP to: %c%c\n", |
| 2835 | rdev->country_ie_alpha2[0], |
| 2836 | rdev->country_ie_alpha2[1]); |
| 2837 | } else |
| 2838 | pr_info("Current regulatory domain intersected:\n"); |
| 2839 | } else |
| 2840 | pr_info("Current regulatory domain intersected:\n"); |
| 2841 | } else if (is_world_regdom(rd->alpha2)) { |
| 2842 | pr_info("World regulatory domain updated:\n"); |
| 2843 | } else { |
| 2844 | if (is_unknown_alpha2(rd->alpha2)) |
| 2845 | pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); |
| 2846 | else { |
| 2847 | if (reg_request_cell_base(lr)) |
| 2848 | pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", |
| 2849 | rd->alpha2[0], rd->alpha2[1]); |
| 2850 | else |
| 2851 | pr_info("Regulatory domain changed to country: %c%c\n", |
| 2852 | rd->alpha2[0], rd->alpha2[1]); |
| 2853 | } |
| 2854 | } |
| 2855 | |
| 2856 | pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); |
| 2857 | print_rd_rules(rd); |
| 2858 | } |
| 2859 | |
| 2860 | static void print_regdomain_info(const struct ieee80211_regdomain *rd) |
| 2861 | { |
| 2862 | pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); |
| 2863 | print_rd_rules(rd); |
| 2864 | } |
| 2865 | |
| 2866 | static int reg_set_rd_core(const struct ieee80211_regdomain *rd) |
| 2867 | { |
| 2868 | if (!is_world_regdom(rd->alpha2)) |
| 2869 | return -EINVAL; |
| 2870 | update_world_regdomain(rd); |
| 2871 | return 0; |
| 2872 | } |
| 2873 | |
| 2874 | static int reg_set_rd_user(const struct ieee80211_regdomain *rd, |
| 2875 | struct regulatory_request *user_request) |
| 2876 | { |
| 2877 | const struct ieee80211_regdomain *intersected_rd = NULL; |
| 2878 | |
| 2879 | if (!regdom_changes(rd->alpha2)) |
| 2880 | return -EALREADY; |
| 2881 | |
| 2882 | if (!is_valid_rd(rd)) { |
| 2883 | pr_err("Invalid regulatory domain detected:\n"); |
| 2884 | print_regdomain_info(rd); |
| 2885 | return -EINVAL; |
| 2886 | } |
| 2887 | |
| 2888 | if (!user_request->intersect) { |
| 2889 | reset_regdomains(false, rd); |
| 2890 | return 0; |
| 2891 | } |
| 2892 | |
| 2893 | intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); |
| 2894 | if (!intersected_rd) |
| 2895 | return -EINVAL; |
| 2896 | |
| 2897 | kfree(rd); |
| 2898 | rd = NULL; |
| 2899 | reset_regdomains(false, intersected_rd); |
| 2900 | |
| 2901 | return 0; |
| 2902 | } |
| 2903 | |
| 2904 | static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, |
| 2905 | struct regulatory_request *driver_request) |
| 2906 | { |
| 2907 | const struct ieee80211_regdomain *regd; |
| 2908 | const struct ieee80211_regdomain *intersected_rd = NULL; |
| 2909 | const struct ieee80211_regdomain *tmp; |
| 2910 | struct wiphy *request_wiphy; |
| 2911 | |
| 2912 | if (is_world_regdom(rd->alpha2)) |
| 2913 | return -EINVAL; |
| 2914 | |
| 2915 | if (!regdom_changes(rd->alpha2)) |
| 2916 | return -EALREADY; |
| 2917 | |
| 2918 | if (!is_valid_rd(rd)) { |
| 2919 | pr_err("Invalid regulatory domain detected:\n"); |
| 2920 | print_regdomain_info(rd); |
| 2921 | return -EINVAL; |
| 2922 | } |
| 2923 | |
| 2924 | request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); |
| 2925 | if (!request_wiphy) |
| 2926 | return -ENODEV; |
| 2927 | |
| 2928 | if (!driver_request->intersect) { |
| 2929 | if (request_wiphy->regd) |
| 2930 | return -EALREADY; |
| 2931 | |
| 2932 | regd = reg_copy_regd(rd); |
| 2933 | if (IS_ERR(regd)) |
| 2934 | return PTR_ERR(regd); |
| 2935 | |
| 2936 | rcu_assign_pointer(request_wiphy->regd, regd); |
| 2937 | reset_regdomains(false, rd); |
| 2938 | return 0; |
| 2939 | } |
| 2940 | |
| 2941 | intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); |
| 2942 | if (!intersected_rd) |
| 2943 | return -EINVAL; |
| 2944 | |
| 2945 | /* |
| 2946 | * We can trash what CRDA provided now. |
| 2947 | * However if a driver requested this specific regulatory |
| 2948 | * domain we keep it for its private use |
| 2949 | */ |
| 2950 | tmp = get_wiphy_regdom(request_wiphy); |
| 2951 | rcu_assign_pointer(request_wiphy->regd, rd); |
| 2952 | rcu_free_regdom(tmp); |
| 2953 | |
| 2954 | rd = NULL; |
| 2955 | |
| 2956 | reset_regdomains(false, intersected_rd); |
| 2957 | |
| 2958 | return 0; |
| 2959 | } |
| 2960 | |
| 2961 | static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, |
| 2962 | struct regulatory_request *country_ie_request) |
| 2963 | { |
| 2964 | struct wiphy *request_wiphy; |
| 2965 | |
| 2966 | if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && |
| 2967 | !is_unknown_alpha2(rd->alpha2)) |
| 2968 | return -EINVAL; |
| 2969 | |
| 2970 | /* |
| 2971 | * Lets only bother proceeding on the same alpha2 if the current |
| 2972 | * rd is non static (it means CRDA was present and was used last) |
| 2973 | * and the pending request came in from a country IE |
| 2974 | */ |
| 2975 | |
| 2976 | if (!is_valid_rd(rd)) { |
| 2977 | pr_err("Invalid regulatory domain detected:\n"); |
| 2978 | print_regdomain_info(rd); |
| 2979 | return -EINVAL; |
| 2980 | } |
| 2981 | |
| 2982 | request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); |
| 2983 | if (!request_wiphy) |
| 2984 | return -ENODEV; |
| 2985 | |
| 2986 | if (country_ie_request->intersect) |
| 2987 | return -EINVAL; |
| 2988 | |
| 2989 | reset_regdomains(false, rd); |
| 2990 | return 0; |
| 2991 | } |
| 2992 | |
| 2993 | /* |
| 2994 | * Use this call to set the current regulatory domain. Conflicts with |
| 2995 | * multiple drivers can be ironed out later. Caller must've already |
| 2996 | * kmalloc'd the rd structure. |
| 2997 | */ |
| 2998 | int set_regdom(const struct ieee80211_regdomain *rd, |
| 2999 | enum ieee80211_regd_source regd_src) |
| 3000 | { |
| 3001 | struct regulatory_request *lr; |
| 3002 | bool user_reset = false; |
| 3003 | int r; |
| 3004 | |
| 3005 | if (!reg_is_valid_request(rd->alpha2)) { |
| 3006 | kfree(rd); |
| 3007 | return -EINVAL; |
| 3008 | } |
| 3009 | |
| 3010 | if (regd_src == REGD_SOURCE_CRDA) |
| 3011 | reset_crda_timeouts(); |
| 3012 | |
| 3013 | lr = get_last_request(); |
| 3014 | |
| 3015 | /* Note that this doesn't update the wiphys, this is done below */ |
| 3016 | switch (lr->initiator) { |
| 3017 | case NL80211_REGDOM_SET_BY_CORE: |
| 3018 | r = reg_set_rd_core(rd); |
| 3019 | break; |
| 3020 | case NL80211_REGDOM_SET_BY_USER: |
| 3021 | r = reg_set_rd_user(rd, lr); |
| 3022 | user_reset = true; |
| 3023 | break; |
| 3024 | case NL80211_REGDOM_SET_BY_DRIVER: |
| 3025 | r = reg_set_rd_driver(rd, lr); |
| 3026 | break; |
| 3027 | case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| 3028 | r = reg_set_rd_country_ie(rd, lr); |
| 3029 | break; |
| 3030 | default: |
| 3031 | WARN(1, "invalid initiator %d\n", lr->initiator); |
| 3032 | kfree(rd); |
| 3033 | return -EINVAL; |
| 3034 | } |
| 3035 | |
| 3036 | if (r) { |
| 3037 | switch (r) { |
| 3038 | case -EALREADY: |
| 3039 | reg_set_request_processed(); |
| 3040 | break; |
| 3041 | default: |
| 3042 | /* Back to world regulatory in case of errors */ |
| 3043 | restore_regulatory_settings(user_reset); |
| 3044 | } |
| 3045 | |
| 3046 | kfree(rd); |
| 3047 | return r; |
| 3048 | } |
| 3049 | |
| 3050 | /* This would make this whole thing pointless */ |
| 3051 | if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) |
| 3052 | return -EINVAL; |
| 3053 | |
| 3054 | /* update all wiphys now with the new established regulatory domain */ |
| 3055 | update_all_wiphy_regulatory(lr->initiator); |
| 3056 | |
| 3057 | print_regdomain(get_cfg80211_regdom()); |
| 3058 | |
| 3059 | nl80211_send_reg_change_event(lr); |
| 3060 | |
| 3061 | reg_set_request_processed(); |
| 3062 | |
| 3063 | return 0; |
| 3064 | } |
| 3065 | |
| 3066 | static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, |
| 3067 | struct ieee80211_regdomain *rd) |
| 3068 | { |
| 3069 | const struct ieee80211_regdomain *regd; |
| 3070 | const struct ieee80211_regdomain *prev_regd; |
| 3071 | struct cfg80211_registered_device *rdev; |
| 3072 | |
| 3073 | if (WARN_ON(!wiphy || !rd)) |
| 3074 | return -EINVAL; |
| 3075 | |
| 3076 | if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), |
| 3077 | "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) |
| 3078 | return -EPERM; |
| 3079 | |
| 3080 | if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { |
| 3081 | print_regdomain_info(rd); |
| 3082 | return -EINVAL; |
| 3083 | } |
| 3084 | |
| 3085 | regd = reg_copy_regd(rd); |
| 3086 | if (IS_ERR(regd)) |
| 3087 | return PTR_ERR(regd); |
| 3088 | |
| 3089 | rdev = wiphy_to_rdev(wiphy); |
| 3090 | |
| 3091 | spin_lock(®_requests_lock); |
| 3092 | prev_regd = rdev->requested_regd; |
| 3093 | rdev->requested_regd = regd; |
| 3094 | spin_unlock(®_requests_lock); |
| 3095 | |
| 3096 | kfree(prev_regd); |
| 3097 | return 0; |
| 3098 | } |
| 3099 | |
| 3100 | int regulatory_set_wiphy_regd(struct wiphy *wiphy, |
| 3101 | struct ieee80211_regdomain *rd) |
| 3102 | { |
| 3103 | int ret = __regulatory_set_wiphy_regd(wiphy, rd); |
| 3104 | |
| 3105 | if (ret) |
| 3106 | return ret; |
| 3107 | |
| 3108 | schedule_work(®_work); |
| 3109 | return 0; |
| 3110 | } |
| 3111 | EXPORT_SYMBOL(regulatory_set_wiphy_regd); |
| 3112 | |
| 3113 | int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, |
| 3114 | struct ieee80211_regdomain *rd) |
| 3115 | { |
| 3116 | int ret; |
| 3117 | |
| 3118 | ASSERT_RTNL(); |
| 3119 | |
| 3120 | ret = __regulatory_set_wiphy_regd(wiphy, rd); |
| 3121 | if (ret) |
| 3122 | return ret; |
| 3123 | |
| 3124 | /* process the request immediately */ |
| 3125 | reg_process_self_managed_hints(); |
| 3126 | return 0; |
| 3127 | } |
| 3128 | EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); |
| 3129 | |
| 3130 | void wiphy_regulatory_register(struct wiphy *wiphy) |
| 3131 | { |
| 3132 | struct regulatory_request *lr; |
| 3133 | |
| 3134 | /* self-managed devices ignore external hints */ |
| 3135 | if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) |
| 3136 | wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | |
| 3137 | REGULATORY_COUNTRY_IE_IGNORE; |
| 3138 | |
| 3139 | if (!reg_dev_ignore_cell_hint(wiphy)) |
| 3140 | reg_num_devs_support_basehint++; |
| 3141 | |
| 3142 | lr = get_last_request(); |
| 3143 | wiphy_update_regulatory(wiphy, lr->initiator); |
| 3144 | } |
| 3145 | |
| 3146 | void wiphy_regulatory_deregister(struct wiphy *wiphy) |
| 3147 | { |
| 3148 | struct wiphy *request_wiphy = NULL; |
| 3149 | struct regulatory_request *lr; |
| 3150 | |
| 3151 | lr = get_last_request(); |
| 3152 | |
| 3153 | if (!reg_dev_ignore_cell_hint(wiphy)) |
| 3154 | reg_num_devs_support_basehint--; |
| 3155 | |
| 3156 | rcu_free_regdom(get_wiphy_regdom(wiphy)); |
| 3157 | RCU_INIT_POINTER(wiphy->regd, NULL); |
| 3158 | |
| 3159 | if (lr) |
| 3160 | request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); |
| 3161 | |
| 3162 | if (!request_wiphy || request_wiphy != wiphy) |
| 3163 | return; |
| 3164 | |
| 3165 | lr->wiphy_idx = WIPHY_IDX_INVALID; |
| 3166 | lr->country_ie_env = ENVIRON_ANY; |
| 3167 | } |
| 3168 | |
| 3169 | /* |
| 3170 | * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for |
| 3171 | * UNII band definitions |
| 3172 | */ |
| 3173 | int cfg80211_get_unii(int freq) |
| 3174 | { |
| 3175 | /* UNII-1 */ |
| 3176 | if (freq >= 5150 && freq <= 5250) |
| 3177 | return 0; |
| 3178 | |
| 3179 | /* UNII-2A */ |
| 3180 | if (freq > 5250 && freq <= 5350) |
| 3181 | return 1; |
| 3182 | |
| 3183 | /* UNII-2B */ |
| 3184 | if (freq > 5350 && freq <= 5470) |
| 3185 | return 2; |
| 3186 | |
| 3187 | /* UNII-2C */ |
| 3188 | if (freq > 5470 && freq <= 5725) |
| 3189 | return 3; |
| 3190 | |
| 3191 | /* UNII-3 */ |
| 3192 | if (freq > 5725 && freq <= 5825) |
| 3193 | return 4; |
| 3194 | |
| 3195 | return -EINVAL; |
| 3196 | } |
| 3197 | |
| 3198 | bool regulatory_indoor_allowed(void) |
| 3199 | { |
| 3200 | return reg_is_indoor; |
| 3201 | } |
| 3202 | |
| 3203 | int __init regulatory_init(void) |
| 3204 | { |
| 3205 | int err = 0; |
| 3206 | |
| 3207 | reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); |
| 3208 | if (IS_ERR(reg_pdev)) |
| 3209 | return PTR_ERR(reg_pdev); |
| 3210 | |
| 3211 | spin_lock_init(®_requests_lock); |
| 3212 | spin_lock_init(®_pending_beacons_lock); |
| 3213 | spin_lock_init(®_indoor_lock); |
| 3214 | |
| 3215 | reg_regdb_size_check(); |
| 3216 | |
| 3217 | rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); |
| 3218 | |
| 3219 | user_alpha2[0] = '9'; |
| 3220 | user_alpha2[1] = '7'; |
| 3221 | |
| 3222 | /* We always try to get an update for the static regdomain */ |
| 3223 | err = regulatory_hint_core(cfg80211_world_regdom->alpha2); |
| 3224 | if (err) { |
| 3225 | if (err == -ENOMEM) { |
| 3226 | platform_device_unregister(reg_pdev); |
| 3227 | return err; |
| 3228 | } |
| 3229 | /* |
| 3230 | * N.B. kobject_uevent_env() can fail mainly for when we're out |
| 3231 | * memory which is handled and propagated appropriately above |
| 3232 | * but it can also fail during a netlink_broadcast() or during |
| 3233 | * early boot for call_usermodehelper(). For now treat these |
| 3234 | * errors as non-fatal. |
| 3235 | */ |
| 3236 | pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); |
| 3237 | } |
| 3238 | |
| 3239 | /* |
| 3240 | * Finally, if the user set the module parameter treat it |
| 3241 | * as a user hint. |
| 3242 | */ |
| 3243 | if (!is_world_regdom(ieee80211_regdom)) |
| 3244 | regulatory_hint_user(ieee80211_regdom, |
| 3245 | NL80211_USER_REG_HINT_USER); |
| 3246 | |
| 3247 | return 0; |
| 3248 | } |
| 3249 | |
| 3250 | void regulatory_exit(void) |
| 3251 | { |
| 3252 | struct regulatory_request *reg_request, *tmp; |
| 3253 | struct reg_beacon *reg_beacon, *btmp; |
| 3254 | |
| 3255 | cancel_work_sync(®_work); |
| 3256 | cancel_crda_timeout_sync(); |
| 3257 | cancel_delayed_work_sync(®_check_chans); |
| 3258 | |
| 3259 | /* Lock to suppress warnings */ |
| 3260 | rtnl_lock(); |
| 3261 | reset_regdomains(true, NULL); |
| 3262 | rtnl_unlock(); |
| 3263 | |
| 3264 | dev_set_uevent_suppress(®_pdev->dev, true); |
| 3265 | |
| 3266 | platform_device_unregister(reg_pdev); |
| 3267 | |
| 3268 | list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { |
| 3269 | list_del(®_beacon->list); |
| 3270 | kfree(reg_beacon); |
| 3271 | } |
| 3272 | |
| 3273 | list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { |
| 3274 | list_del(®_beacon->list); |
| 3275 | kfree(reg_beacon); |
| 3276 | } |
| 3277 | |
| 3278 | list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { |
| 3279 | list_del(®_request->list); |
| 3280 | kfree(reg_request); |
| 3281 | } |
| 3282 | } |