Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | # |
| 2 | # Generic algorithms support |
| 3 | # |
| 4 | config XOR_BLOCKS |
| 5 | tristate |
| 6 | |
| 7 | # |
| 8 | # async_tx api: hardware offloaded memory transfer/transform support |
| 9 | # |
| 10 | source "crypto/async_tx/Kconfig" |
| 11 | |
| 12 | # |
| 13 | # Cryptographic API Configuration |
| 14 | # |
| 15 | menuconfig CRYPTO |
| 16 | tristate "Cryptographic API" |
| 17 | help |
| 18 | This option provides the core Cryptographic API. |
| 19 | |
| 20 | if CRYPTO |
| 21 | |
| 22 | comment "Crypto core or helper" |
| 23 | |
| 24 | config CRYPTO_FIPS |
| 25 | bool "FIPS 200 compliance" |
| 26 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
| 27 | depends on MODULE_SIG |
| 28 | help |
| 29 | This options enables the fips boot option which is |
| 30 | required if you want to system to operate in a FIPS 200 |
| 31 | certification. You should say no unless you know what |
| 32 | this is. |
| 33 | |
| 34 | config CRYPTO_ALGAPI |
| 35 | tristate |
| 36 | select CRYPTO_ALGAPI2 |
| 37 | help |
| 38 | This option provides the API for cryptographic algorithms. |
| 39 | |
| 40 | config CRYPTO_ALGAPI2 |
| 41 | tristate |
| 42 | |
| 43 | config CRYPTO_AEAD |
| 44 | tristate |
| 45 | select CRYPTO_AEAD2 |
| 46 | select CRYPTO_ALGAPI |
| 47 | |
| 48 | config CRYPTO_AEAD2 |
| 49 | tristate |
| 50 | select CRYPTO_ALGAPI2 |
| 51 | select CRYPTO_NULL2 |
| 52 | select CRYPTO_RNG2 |
| 53 | |
| 54 | config CRYPTO_BLKCIPHER |
| 55 | tristate |
| 56 | select CRYPTO_BLKCIPHER2 |
| 57 | select CRYPTO_ALGAPI |
| 58 | |
| 59 | config CRYPTO_BLKCIPHER2 |
| 60 | tristate |
| 61 | select CRYPTO_ALGAPI2 |
| 62 | select CRYPTO_RNG2 |
| 63 | select CRYPTO_WORKQUEUE |
| 64 | |
| 65 | config CRYPTO_HASH |
| 66 | tristate |
| 67 | select CRYPTO_HASH2 |
| 68 | select CRYPTO_ALGAPI |
| 69 | |
| 70 | config CRYPTO_HASH2 |
| 71 | tristate |
| 72 | select CRYPTO_ALGAPI2 |
| 73 | |
| 74 | config CRYPTO_RNG |
| 75 | tristate |
| 76 | select CRYPTO_RNG2 |
| 77 | select CRYPTO_ALGAPI |
| 78 | |
| 79 | config CRYPTO_RNG2 |
| 80 | tristate |
| 81 | select CRYPTO_ALGAPI2 |
| 82 | |
| 83 | config CRYPTO_RNG_DEFAULT |
| 84 | tristate |
| 85 | select CRYPTO_DRBG_MENU |
| 86 | |
| 87 | config CRYPTO_PCOMP |
| 88 | tristate |
| 89 | select CRYPTO_PCOMP2 |
| 90 | select CRYPTO_ALGAPI |
| 91 | |
| 92 | config CRYPTO_PCOMP2 |
| 93 | tristate |
| 94 | select CRYPTO_ALGAPI2 |
| 95 | |
| 96 | config CRYPTO_AKCIPHER2 |
| 97 | tristate |
| 98 | select CRYPTO_ALGAPI2 |
| 99 | |
| 100 | config CRYPTO_AKCIPHER |
| 101 | tristate |
| 102 | select CRYPTO_AKCIPHER2 |
| 103 | select CRYPTO_ALGAPI |
| 104 | |
| 105 | config CRYPTO_RSA |
| 106 | tristate "RSA algorithm" |
| 107 | select CRYPTO_AKCIPHER |
| 108 | select MPILIB |
| 109 | select ASN1 |
| 110 | help |
| 111 | Generic implementation of the RSA public key algorithm. |
| 112 | |
| 113 | config CRYPTO_MANAGER |
| 114 | tristate "Cryptographic algorithm manager" |
| 115 | select CRYPTO_MANAGER2 |
| 116 | help |
| 117 | Create default cryptographic template instantiations such as |
| 118 | cbc(aes). |
| 119 | |
| 120 | config CRYPTO_MANAGER2 |
| 121 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) |
| 122 | select CRYPTO_AEAD2 |
| 123 | select CRYPTO_HASH2 |
| 124 | select CRYPTO_BLKCIPHER2 |
| 125 | select CRYPTO_PCOMP2 |
| 126 | select CRYPTO_AKCIPHER2 |
| 127 | |
| 128 | config CRYPTO_USER |
| 129 | tristate "Userspace cryptographic algorithm configuration" |
| 130 | depends on NET |
| 131 | select CRYPTO_MANAGER |
| 132 | help |
| 133 | Userspace configuration for cryptographic instantiations such as |
| 134 | cbc(aes). |
| 135 | |
| 136 | config CRYPTO_MANAGER_DISABLE_TESTS |
| 137 | bool "Disable run-time self tests" |
| 138 | default y |
| 139 | depends on CRYPTO_MANAGER2 |
| 140 | help |
| 141 | Disable run-time self tests that normally take place at |
| 142 | algorithm registration. |
| 143 | |
| 144 | config CRYPTO_GF128MUL |
| 145 | tristate "GF(2^128) multiplication functions" |
| 146 | help |
| 147 | Efficient table driven implementation of multiplications in the |
| 148 | field GF(2^128). This is needed by some cypher modes. This |
| 149 | option will be selected automatically if you select such a |
| 150 | cipher mode. Only select this option by hand if you expect to load |
| 151 | an external module that requires these functions. |
| 152 | |
| 153 | config CRYPTO_NULL |
| 154 | tristate "Null algorithms" |
| 155 | select CRYPTO_NULL2 |
| 156 | help |
| 157 | These are 'Null' algorithms, used by IPsec, which do nothing. |
| 158 | |
| 159 | config CRYPTO_NULL2 |
| 160 | tristate |
| 161 | select CRYPTO_ALGAPI2 |
| 162 | select CRYPTO_BLKCIPHER2 |
| 163 | select CRYPTO_HASH2 |
| 164 | |
| 165 | config CRYPTO_PCRYPT |
| 166 | tristate "Parallel crypto engine" |
| 167 | depends on SMP |
| 168 | select PADATA |
| 169 | select CRYPTO_MANAGER |
| 170 | select CRYPTO_AEAD |
| 171 | help |
| 172 | This converts an arbitrary crypto algorithm into a parallel |
| 173 | algorithm that executes in kernel threads. |
| 174 | |
| 175 | config CRYPTO_WORKQUEUE |
| 176 | tristate |
| 177 | |
| 178 | config CRYPTO_CRYPTD |
| 179 | tristate "Software async crypto daemon" |
| 180 | select CRYPTO_BLKCIPHER |
| 181 | select CRYPTO_HASH |
| 182 | select CRYPTO_MANAGER |
| 183 | select CRYPTO_WORKQUEUE |
| 184 | help |
| 185 | This is a generic software asynchronous crypto daemon that |
| 186 | converts an arbitrary synchronous software crypto algorithm |
| 187 | into an asynchronous algorithm that executes in a kernel thread. |
| 188 | |
| 189 | config CRYPTO_MCRYPTD |
| 190 | tristate "Software async multi-buffer crypto daemon" |
| 191 | select CRYPTO_BLKCIPHER |
| 192 | select CRYPTO_HASH |
| 193 | select CRYPTO_MANAGER |
| 194 | select CRYPTO_WORKQUEUE |
| 195 | help |
| 196 | This is a generic software asynchronous crypto daemon that |
| 197 | provides the kernel thread to assist multi-buffer crypto |
| 198 | algorithms for submitting jobs and flushing jobs in multi-buffer |
| 199 | crypto algorithms. Multi-buffer crypto algorithms are executed |
| 200 | in the context of this kernel thread and drivers can post |
| 201 | their crypto request asynchronously to be processed by this daemon. |
| 202 | |
| 203 | config CRYPTO_AUTHENC |
| 204 | tristate "Authenc support" |
| 205 | select CRYPTO_AEAD |
| 206 | select CRYPTO_BLKCIPHER |
| 207 | select CRYPTO_MANAGER |
| 208 | select CRYPTO_HASH |
| 209 | select CRYPTO_NULL |
| 210 | help |
| 211 | Authenc: Combined mode wrapper for IPsec. |
| 212 | This is required for IPSec. |
| 213 | |
| 214 | config CRYPTO_TEST |
| 215 | tristate "Testing module" |
| 216 | depends on m |
| 217 | select CRYPTO_MANAGER |
| 218 | help |
| 219 | Quick & dirty crypto test module. |
| 220 | |
| 221 | config CRYPTO_ABLK_HELPER |
| 222 | tristate |
| 223 | select CRYPTO_CRYPTD |
| 224 | |
| 225 | config CRYPTO_GLUE_HELPER_X86 |
| 226 | tristate |
| 227 | depends on X86 |
| 228 | select CRYPTO_ALGAPI |
| 229 | |
| 230 | comment "Authenticated Encryption with Associated Data" |
| 231 | |
| 232 | config CRYPTO_CCM |
| 233 | tristate "CCM support" |
| 234 | select CRYPTO_CTR |
| 235 | select CRYPTO_AEAD |
| 236 | help |
| 237 | Support for Counter with CBC MAC. Required for IPsec. |
| 238 | |
| 239 | config CRYPTO_GCM |
| 240 | tristate "GCM/GMAC support" |
| 241 | select CRYPTO_CTR |
| 242 | select CRYPTO_AEAD |
| 243 | select CRYPTO_GHASH |
| 244 | select CRYPTO_NULL |
| 245 | help |
| 246 | Support for Galois/Counter Mode (GCM) and Galois Message |
| 247 | Authentication Code (GMAC). Required for IPSec. |
| 248 | |
| 249 | config CRYPTO_CHACHA20POLY1305 |
| 250 | tristate "ChaCha20-Poly1305 AEAD support" |
| 251 | select CRYPTO_CHACHA20 |
| 252 | select CRYPTO_POLY1305 |
| 253 | select CRYPTO_AEAD |
| 254 | help |
| 255 | ChaCha20-Poly1305 AEAD support, RFC7539. |
| 256 | |
| 257 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined |
| 258 | with the Poly1305 authenticator. It is defined in RFC7539 for use in |
| 259 | IETF protocols. |
| 260 | |
| 261 | config CRYPTO_SEQIV |
| 262 | tristate "Sequence Number IV Generator" |
| 263 | select CRYPTO_AEAD |
| 264 | select CRYPTO_BLKCIPHER |
| 265 | select CRYPTO_NULL |
| 266 | select CRYPTO_RNG_DEFAULT |
| 267 | help |
| 268 | This IV generator generates an IV based on a sequence number by |
| 269 | xoring it with a salt. This algorithm is mainly useful for CTR |
| 270 | |
| 271 | config CRYPTO_ECHAINIV |
| 272 | tristate "Encrypted Chain IV Generator" |
| 273 | select CRYPTO_AEAD |
| 274 | select CRYPTO_NULL |
| 275 | select CRYPTO_RNG_DEFAULT |
| 276 | default m |
| 277 | help |
| 278 | This IV generator generates an IV based on the encryption of |
| 279 | a sequence number xored with a salt. This is the default |
| 280 | algorithm for CBC. |
| 281 | |
| 282 | comment "Block modes" |
| 283 | |
| 284 | config CRYPTO_CBC |
| 285 | tristate "CBC support" |
| 286 | select CRYPTO_BLKCIPHER |
| 287 | select CRYPTO_MANAGER |
| 288 | help |
| 289 | CBC: Cipher Block Chaining mode |
| 290 | This block cipher algorithm is required for IPSec. |
| 291 | |
| 292 | config CRYPTO_CTR |
| 293 | tristate "CTR support" |
| 294 | select CRYPTO_BLKCIPHER |
| 295 | select CRYPTO_SEQIV |
| 296 | select CRYPTO_MANAGER |
| 297 | help |
| 298 | CTR: Counter mode |
| 299 | This block cipher algorithm is required for IPSec. |
| 300 | |
| 301 | config CRYPTO_CTS |
| 302 | tristate "CTS support" |
| 303 | select CRYPTO_BLKCIPHER |
| 304 | help |
| 305 | CTS: Cipher Text Stealing |
| 306 | This is the Cipher Text Stealing mode as described by |
| 307 | Section 8 of rfc2040 and referenced by rfc3962. |
| 308 | (rfc3962 includes errata information in its Appendix A) |
| 309 | This mode is required for Kerberos gss mechanism support |
| 310 | for AES encryption. |
| 311 | |
| 312 | config CRYPTO_ECB |
| 313 | tristate "ECB support" |
| 314 | select CRYPTO_BLKCIPHER |
| 315 | select CRYPTO_MANAGER |
| 316 | help |
| 317 | ECB: Electronic CodeBook mode |
| 318 | This is the simplest block cipher algorithm. It simply encrypts |
| 319 | the input block by block. |
| 320 | |
| 321 | config CRYPTO_LRW |
| 322 | tristate "LRW support" |
| 323 | select CRYPTO_BLKCIPHER |
| 324 | select CRYPTO_MANAGER |
| 325 | select CRYPTO_GF128MUL |
| 326 | help |
| 327 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable |
| 328 | narrow block cipher mode for dm-crypt. Use it with cipher |
| 329 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. |
| 330 | The first 128, 192 or 256 bits in the key are used for AES and the |
| 331 | rest is used to tie each cipher block to its logical position. |
| 332 | |
| 333 | config CRYPTO_PCBC |
| 334 | tristate "PCBC support" |
| 335 | select CRYPTO_BLKCIPHER |
| 336 | select CRYPTO_MANAGER |
| 337 | help |
| 338 | PCBC: Propagating Cipher Block Chaining mode |
| 339 | This block cipher algorithm is required for RxRPC. |
| 340 | |
| 341 | config CRYPTO_XTS |
| 342 | tristate "XTS support" |
| 343 | select CRYPTO_BLKCIPHER |
| 344 | select CRYPTO_MANAGER |
| 345 | select CRYPTO_GF128MUL |
| 346 | help |
| 347 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, |
| 348 | key size 256, 384 or 512 bits. This implementation currently |
| 349 | can't handle a sectorsize which is not a multiple of 16 bytes. |
| 350 | |
| 351 | config CRYPTO_KEYWRAP |
| 352 | tristate "Key wrapping support" |
| 353 | select CRYPTO_BLKCIPHER |
| 354 | help |
| 355 | Support for key wrapping (NIST SP800-38F / RFC3394) without |
| 356 | padding. |
| 357 | |
| 358 | comment "Hash modes" |
| 359 | |
| 360 | config CRYPTO_CMAC |
| 361 | tristate "CMAC support" |
| 362 | select CRYPTO_HASH |
| 363 | select CRYPTO_MANAGER |
| 364 | help |
| 365 | Cipher-based Message Authentication Code (CMAC) specified by |
| 366 | The National Institute of Standards and Technology (NIST). |
| 367 | |
| 368 | https://tools.ietf.org/html/rfc4493 |
| 369 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf |
| 370 | |
| 371 | config CRYPTO_HMAC |
| 372 | tristate "HMAC support" |
| 373 | select CRYPTO_HASH |
| 374 | select CRYPTO_MANAGER |
| 375 | help |
| 376 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
| 377 | This is required for IPSec. |
| 378 | |
| 379 | config CRYPTO_XCBC |
| 380 | tristate "XCBC support" |
| 381 | select CRYPTO_HASH |
| 382 | select CRYPTO_MANAGER |
| 383 | help |
| 384 | XCBC: Keyed-Hashing with encryption algorithm |
| 385 | http://www.ietf.org/rfc/rfc3566.txt |
| 386 | http://csrc.nist.gov/encryption/modes/proposedmodes/ |
| 387 | xcbc-mac/xcbc-mac-spec.pdf |
| 388 | |
| 389 | config CRYPTO_VMAC |
| 390 | tristate "VMAC support" |
| 391 | select CRYPTO_HASH |
| 392 | select CRYPTO_MANAGER |
| 393 | help |
| 394 | VMAC is a message authentication algorithm designed for |
| 395 | very high speed on 64-bit architectures. |
| 396 | |
| 397 | See also: |
| 398 | <http://fastcrypto.org/vmac> |
| 399 | |
| 400 | comment "Digest" |
| 401 | |
| 402 | config CRYPTO_CRC32C |
| 403 | tristate "CRC32c CRC algorithm" |
| 404 | select CRYPTO_HASH |
| 405 | select CRC32 |
| 406 | help |
| 407 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
| 408 | by iSCSI for header and data digests and by others. |
| 409 | See Castagnoli93. Module will be crc32c. |
| 410 | |
| 411 | config CRYPTO_CRC32C_INTEL |
| 412 | tristate "CRC32c INTEL hardware acceleration" |
| 413 | depends on X86 |
| 414 | select CRYPTO_HASH |
| 415 | help |
| 416 | In Intel processor with SSE4.2 supported, the processor will |
| 417 | support CRC32C implementation using hardware accelerated CRC32 |
| 418 | instruction. This option will create 'crc32c-intel' module, |
| 419 | which will enable any routine to use the CRC32 instruction to |
| 420 | gain performance compared with software implementation. |
| 421 | Module will be crc32c-intel. |
| 422 | |
| 423 | config CRYPTO_CRC32C_SPARC64 |
| 424 | tristate "CRC32c CRC algorithm (SPARC64)" |
| 425 | depends on SPARC64 |
| 426 | select CRYPTO_HASH |
| 427 | select CRC32 |
| 428 | help |
| 429 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, |
| 430 | when available. |
| 431 | |
| 432 | config CRYPTO_CRC32 |
| 433 | tristate "CRC32 CRC algorithm" |
| 434 | select CRYPTO_HASH |
| 435 | select CRC32 |
| 436 | help |
| 437 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. |
| 438 | Shash crypto api wrappers to crc32_le function. |
| 439 | |
| 440 | config CRYPTO_CRC32_PCLMUL |
| 441 | tristate "CRC32 PCLMULQDQ hardware acceleration" |
| 442 | depends on X86 |
| 443 | select CRYPTO_HASH |
| 444 | select CRC32 |
| 445 | help |
| 446 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 |
| 447 | and PCLMULQDQ supported, the processor will support |
| 448 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ |
| 449 | instruction. This option will create 'crc32-plcmul' module, |
| 450 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum |
| 451 | and gain better performance as compared with the table implementation. |
| 452 | |
| 453 | config CRYPTO_CRCT10DIF |
| 454 | tristate "CRCT10DIF algorithm" |
| 455 | select CRYPTO_HASH |
| 456 | help |
| 457 | CRC T10 Data Integrity Field computation is being cast as |
| 458 | a crypto transform. This allows for faster crc t10 diff |
| 459 | transforms to be used if they are available. |
| 460 | |
| 461 | config CRYPTO_CRCT10DIF_PCLMUL |
| 462 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" |
| 463 | depends on X86 && 64BIT && CRC_T10DIF |
| 464 | select CRYPTO_HASH |
| 465 | help |
| 466 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, |
| 467 | CRC T10 DIF PCLMULQDQ computation can be hardware |
| 468 | accelerated PCLMULQDQ instruction. This option will create |
| 469 | 'crct10dif-plcmul' module, which is faster when computing the |
| 470 | crct10dif checksum as compared with the generic table implementation. |
| 471 | |
| 472 | config CRYPTO_GHASH |
| 473 | tristate "GHASH digest algorithm" |
| 474 | select CRYPTO_GF128MUL |
| 475 | help |
| 476 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). |
| 477 | |
| 478 | config CRYPTO_POLY1305 |
| 479 | tristate "Poly1305 authenticator algorithm" |
| 480 | help |
| 481 | Poly1305 authenticator algorithm, RFC7539. |
| 482 | |
| 483 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. |
| 484 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use |
| 485 | in IETF protocols. This is the portable C implementation of Poly1305. |
| 486 | |
| 487 | config CRYPTO_POLY1305_X86_64 |
| 488 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
| 489 | depends on X86 && 64BIT |
| 490 | select CRYPTO_POLY1305 |
| 491 | help |
| 492 | Poly1305 authenticator algorithm, RFC7539. |
| 493 | |
| 494 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. |
| 495 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use |
| 496 | in IETF protocols. This is the x86_64 assembler implementation using SIMD |
| 497 | instructions. |
| 498 | |
| 499 | config CRYPTO_MD4 |
| 500 | tristate "MD4 digest algorithm" |
| 501 | select CRYPTO_HASH |
| 502 | help |
| 503 | MD4 message digest algorithm (RFC1320). |
| 504 | |
| 505 | config CRYPTO_MD5 |
| 506 | tristate "MD5 digest algorithm" |
| 507 | select CRYPTO_HASH |
| 508 | help |
| 509 | MD5 message digest algorithm (RFC1321). |
| 510 | |
| 511 | config CRYPTO_MD5_OCTEON |
| 512 | tristate "MD5 digest algorithm (OCTEON)" |
| 513 | depends on CPU_CAVIUM_OCTEON |
| 514 | select CRYPTO_MD5 |
| 515 | select CRYPTO_HASH |
| 516 | help |
| 517 | MD5 message digest algorithm (RFC1321) implemented |
| 518 | using OCTEON crypto instructions, when available. |
| 519 | |
| 520 | config CRYPTO_MD5_PPC |
| 521 | tristate "MD5 digest algorithm (PPC)" |
| 522 | depends on PPC |
| 523 | select CRYPTO_HASH |
| 524 | help |
| 525 | MD5 message digest algorithm (RFC1321) implemented |
| 526 | in PPC assembler. |
| 527 | |
| 528 | config CRYPTO_MD5_SPARC64 |
| 529 | tristate "MD5 digest algorithm (SPARC64)" |
| 530 | depends on SPARC64 |
| 531 | select CRYPTO_MD5 |
| 532 | select CRYPTO_HASH |
| 533 | help |
| 534 | MD5 message digest algorithm (RFC1321) implemented |
| 535 | using sparc64 crypto instructions, when available. |
| 536 | |
| 537 | config CRYPTO_MICHAEL_MIC |
| 538 | tristate "Michael MIC keyed digest algorithm" |
| 539 | select CRYPTO_HASH |
| 540 | help |
| 541 | Michael MIC is used for message integrity protection in TKIP |
| 542 | (IEEE 802.11i). This algorithm is required for TKIP, but it |
| 543 | should not be used for other purposes because of the weakness |
| 544 | of the algorithm. |
| 545 | |
| 546 | config CRYPTO_RMD128 |
| 547 | tristate "RIPEMD-128 digest algorithm" |
| 548 | select CRYPTO_HASH |
| 549 | help |
| 550 | RIPEMD-128 (ISO/IEC 10118-3:2004). |
| 551 | |
| 552 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
| 553 | be used as a secure replacement for RIPEMD. For other use cases, |
| 554 | RIPEMD-160 should be used. |
| 555 | |
| 556 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
| 557 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
| 558 | |
| 559 | config CRYPTO_RMD160 |
| 560 | tristate "RIPEMD-160 digest algorithm" |
| 561 | select CRYPTO_HASH |
| 562 | help |
| 563 | RIPEMD-160 (ISO/IEC 10118-3:2004). |
| 564 | |
| 565 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
| 566 | to be used as a secure replacement for the 128-bit hash functions |
| 567 | MD4, MD5 and it's predecessor RIPEMD |
| 568 | (not to be confused with RIPEMD-128). |
| 569 | |
| 570 | It's speed is comparable to SHA1 and there are no known attacks |
| 571 | against RIPEMD-160. |
| 572 | |
| 573 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
| 574 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
| 575 | |
| 576 | config CRYPTO_RMD256 |
| 577 | tristate "RIPEMD-256 digest algorithm" |
| 578 | select CRYPTO_HASH |
| 579 | help |
| 580 | RIPEMD-256 is an optional extension of RIPEMD-128 with a |
| 581 | 256 bit hash. It is intended for applications that require |
| 582 | longer hash-results, without needing a larger security level |
| 583 | (than RIPEMD-128). |
| 584 | |
| 585 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
| 586 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
| 587 | |
| 588 | config CRYPTO_RMD320 |
| 589 | tristate "RIPEMD-320 digest algorithm" |
| 590 | select CRYPTO_HASH |
| 591 | help |
| 592 | RIPEMD-320 is an optional extension of RIPEMD-160 with a |
| 593 | 320 bit hash. It is intended for applications that require |
| 594 | longer hash-results, without needing a larger security level |
| 595 | (than RIPEMD-160). |
| 596 | |
| 597 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
| 598 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
| 599 | |
| 600 | config CRYPTO_SHA1 |
| 601 | tristate "SHA1 digest algorithm" |
| 602 | select CRYPTO_HASH |
| 603 | help |
| 604 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
| 605 | |
| 606 | config CRYPTO_SHA1_SSSE3 |
| 607 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
| 608 | depends on X86 && 64BIT |
| 609 | select CRYPTO_SHA1 |
| 610 | select CRYPTO_HASH |
| 611 | help |
| 612 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 613 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector |
| 614 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
| 615 | when available. |
| 616 | |
| 617 | config CRYPTO_SHA256_SSSE3 |
| 618 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
| 619 | depends on X86 && 64BIT |
| 620 | select CRYPTO_SHA256 |
| 621 | select CRYPTO_HASH |
| 622 | help |
| 623 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 624 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector |
| 625 | Extensions version 1 (AVX1), or Advanced Vector Extensions |
| 626 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
| 627 | Instructions) when available. |
| 628 | |
| 629 | config CRYPTO_SHA512_SSSE3 |
| 630 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" |
| 631 | depends on X86 && 64BIT |
| 632 | select CRYPTO_SHA512 |
| 633 | select CRYPTO_HASH |
| 634 | help |
| 635 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 636 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector |
| 637 | Extensions version 1 (AVX1), or Advanced Vector Extensions |
| 638 | version 2 (AVX2) instructions, when available. |
| 639 | |
| 640 | config CRYPTO_SHA1_OCTEON |
| 641 | tristate "SHA1 digest algorithm (OCTEON)" |
| 642 | depends on CPU_CAVIUM_OCTEON |
| 643 | select CRYPTO_SHA1 |
| 644 | select CRYPTO_HASH |
| 645 | help |
| 646 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 647 | using OCTEON crypto instructions, when available. |
| 648 | |
| 649 | config CRYPTO_SHA1_SPARC64 |
| 650 | tristate "SHA1 digest algorithm (SPARC64)" |
| 651 | depends on SPARC64 |
| 652 | select CRYPTO_SHA1 |
| 653 | select CRYPTO_HASH |
| 654 | help |
| 655 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 656 | using sparc64 crypto instructions, when available. |
| 657 | |
| 658 | config CRYPTO_SHA1_PPC |
| 659 | tristate "SHA1 digest algorithm (powerpc)" |
| 660 | depends on PPC |
| 661 | help |
| 662 | This is the powerpc hardware accelerated implementation of the |
| 663 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
| 664 | |
| 665 | config CRYPTO_SHA1_PPC_SPE |
| 666 | tristate "SHA1 digest algorithm (PPC SPE)" |
| 667 | depends on PPC && SPE |
| 668 | help |
| 669 | SHA-1 secure hash standard (DFIPS 180-4) implemented |
| 670 | using powerpc SPE SIMD instruction set. |
| 671 | |
| 672 | config CRYPTO_SHA1_MB |
| 673 | tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" |
| 674 | depends on X86 && 64BIT |
| 675 | select CRYPTO_SHA1 |
| 676 | select CRYPTO_HASH |
| 677 | select CRYPTO_MCRYPTD |
| 678 | help |
| 679 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented |
| 680 | using multi-buffer technique. This algorithm computes on |
| 681 | multiple data lanes concurrently with SIMD instructions for |
| 682 | better throughput. It should not be enabled by default but |
| 683 | used when there is significant amount of work to keep the keep |
| 684 | the data lanes filled to get performance benefit. If the data |
| 685 | lanes remain unfilled, a flush operation will be initiated to |
| 686 | process the crypto jobs, adding a slight latency. |
| 687 | |
| 688 | config CRYPTO_SHA256 |
| 689 | tristate "SHA224 and SHA256 digest algorithm" |
| 690 | select CRYPTO_HASH |
| 691 | help |
| 692 | SHA256 secure hash standard (DFIPS 180-2). |
| 693 | |
| 694 | This version of SHA implements a 256 bit hash with 128 bits of |
| 695 | security against collision attacks. |
| 696 | |
| 697 | This code also includes SHA-224, a 224 bit hash with 112 bits |
| 698 | of security against collision attacks. |
| 699 | |
| 700 | config CRYPTO_SHA256_PPC_SPE |
| 701 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" |
| 702 | depends on PPC && SPE |
| 703 | select CRYPTO_SHA256 |
| 704 | select CRYPTO_HASH |
| 705 | help |
| 706 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) |
| 707 | implemented using powerpc SPE SIMD instruction set. |
| 708 | |
| 709 | config CRYPTO_SHA256_OCTEON |
| 710 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" |
| 711 | depends on CPU_CAVIUM_OCTEON |
| 712 | select CRYPTO_SHA256 |
| 713 | select CRYPTO_HASH |
| 714 | help |
| 715 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 716 | using OCTEON crypto instructions, when available. |
| 717 | |
| 718 | config CRYPTO_SHA256_SPARC64 |
| 719 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" |
| 720 | depends on SPARC64 |
| 721 | select CRYPTO_SHA256 |
| 722 | select CRYPTO_HASH |
| 723 | help |
| 724 | SHA-256 secure hash standard (DFIPS 180-2) implemented |
| 725 | using sparc64 crypto instructions, when available. |
| 726 | |
| 727 | config CRYPTO_SHA512 |
| 728 | tristate "SHA384 and SHA512 digest algorithms" |
| 729 | select CRYPTO_HASH |
| 730 | help |
| 731 | SHA512 secure hash standard (DFIPS 180-2). |
| 732 | |
| 733 | This version of SHA implements a 512 bit hash with 256 bits of |
| 734 | security against collision attacks. |
| 735 | |
| 736 | This code also includes SHA-384, a 384 bit hash with 192 bits |
| 737 | of security against collision attacks. |
| 738 | |
| 739 | config CRYPTO_SHA512_OCTEON |
| 740 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" |
| 741 | depends on CPU_CAVIUM_OCTEON |
| 742 | select CRYPTO_SHA512 |
| 743 | select CRYPTO_HASH |
| 744 | help |
| 745 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 746 | using OCTEON crypto instructions, when available. |
| 747 | |
| 748 | config CRYPTO_SHA512_SPARC64 |
| 749 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" |
| 750 | depends on SPARC64 |
| 751 | select CRYPTO_SHA512 |
| 752 | select CRYPTO_HASH |
| 753 | help |
| 754 | SHA-512 secure hash standard (DFIPS 180-2) implemented |
| 755 | using sparc64 crypto instructions, when available. |
| 756 | |
| 757 | config CRYPTO_TGR192 |
| 758 | tristate "Tiger digest algorithms" |
| 759 | select CRYPTO_HASH |
| 760 | help |
| 761 | Tiger hash algorithm 192, 160 and 128-bit hashes |
| 762 | |
| 763 | Tiger is a hash function optimized for 64-bit processors while |
| 764 | still having decent performance on 32-bit processors. |
| 765 | Tiger was developed by Ross Anderson and Eli Biham. |
| 766 | |
| 767 | See also: |
| 768 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
| 769 | |
| 770 | config CRYPTO_WP512 |
| 771 | tristate "Whirlpool digest algorithms" |
| 772 | select CRYPTO_HASH |
| 773 | help |
| 774 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
| 775 | |
| 776 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
| 777 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard |
| 778 | |
| 779 | See also: |
| 780 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
| 781 | |
| 782 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
| 783 | tristate "GHASH digest algorithm (CLMUL-NI accelerated)" |
| 784 | depends on X86 && 64BIT |
| 785 | select CRYPTO_CRYPTD |
| 786 | help |
| 787 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). |
| 788 | The implementation is accelerated by CLMUL-NI of Intel. |
| 789 | |
| 790 | comment "Ciphers" |
| 791 | |
| 792 | config CRYPTO_AES |
| 793 | tristate "AES cipher algorithms" |
| 794 | select CRYPTO_ALGAPI |
| 795 | help |
| 796 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 797 | algorithm. |
| 798 | |
| 799 | Rijndael appears to be consistently a very good performer in |
| 800 | both hardware and software across a wide range of computing |
| 801 | environments regardless of its use in feedback or non-feedback |
| 802 | modes. Its key setup time is excellent, and its key agility is |
| 803 | good. Rijndael's very low memory requirements make it very well |
| 804 | suited for restricted-space environments, in which it also |
| 805 | demonstrates excellent performance. Rijndael's operations are |
| 806 | among the easiest to defend against power and timing attacks. |
| 807 | |
| 808 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 809 | |
| 810 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. |
| 811 | |
| 812 | config CRYPTO_AES_586 |
| 813 | tristate "AES cipher algorithms (i586)" |
| 814 | depends on (X86 || UML_X86) && !64BIT |
| 815 | select CRYPTO_ALGAPI |
| 816 | select CRYPTO_AES |
| 817 | help |
| 818 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 819 | algorithm. |
| 820 | |
| 821 | Rijndael appears to be consistently a very good performer in |
| 822 | both hardware and software across a wide range of computing |
| 823 | environments regardless of its use in feedback or non-feedback |
| 824 | modes. Its key setup time is excellent, and its key agility is |
| 825 | good. Rijndael's very low memory requirements make it very well |
| 826 | suited for restricted-space environments, in which it also |
| 827 | demonstrates excellent performance. Rijndael's operations are |
| 828 | among the easiest to defend against power and timing attacks. |
| 829 | |
| 830 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 831 | |
| 832 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 833 | |
| 834 | config CRYPTO_AES_X86_64 |
| 835 | tristate "AES cipher algorithms (x86_64)" |
| 836 | depends on (X86 || UML_X86) && 64BIT |
| 837 | select CRYPTO_ALGAPI |
| 838 | select CRYPTO_AES |
| 839 | help |
| 840 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 841 | algorithm. |
| 842 | |
| 843 | Rijndael appears to be consistently a very good performer in |
| 844 | both hardware and software across a wide range of computing |
| 845 | environments regardless of its use in feedback or non-feedback |
| 846 | modes. Its key setup time is excellent, and its key agility is |
| 847 | good. Rijndael's very low memory requirements make it very well |
| 848 | suited for restricted-space environments, in which it also |
| 849 | demonstrates excellent performance. Rijndael's operations are |
| 850 | among the easiest to defend against power and timing attacks. |
| 851 | |
| 852 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 853 | |
| 854 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 855 | |
| 856 | config CRYPTO_AES_NI_INTEL |
| 857 | tristate "AES cipher algorithms (AES-NI)" |
| 858 | depends on X86 |
| 859 | select CRYPTO_AES_X86_64 if 64BIT |
| 860 | select CRYPTO_AES_586 if !64BIT |
| 861 | select CRYPTO_CRYPTD |
| 862 | select CRYPTO_ABLK_HELPER |
| 863 | select CRYPTO_ALGAPI |
| 864 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
| 865 | select CRYPTO_LRW |
| 866 | select CRYPTO_XTS |
| 867 | help |
| 868 | Use Intel AES-NI instructions for AES algorithm. |
| 869 | |
| 870 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 871 | algorithm. |
| 872 | |
| 873 | Rijndael appears to be consistently a very good performer in |
| 874 | both hardware and software across a wide range of computing |
| 875 | environments regardless of its use in feedback or non-feedback |
| 876 | modes. Its key setup time is excellent, and its key agility is |
| 877 | good. Rijndael's very low memory requirements make it very well |
| 878 | suited for restricted-space environments, in which it also |
| 879 | demonstrates excellent performance. Rijndael's operations are |
| 880 | among the easiest to defend against power and timing attacks. |
| 881 | |
| 882 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 883 | |
| 884 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 885 | |
| 886 | In addition to AES cipher algorithm support, the acceleration |
| 887 | for some popular block cipher mode is supported too, including |
| 888 | ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional |
| 889 | acceleration for CTR. |
| 890 | |
| 891 | config CRYPTO_AES_SPARC64 |
| 892 | tristate "AES cipher algorithms (SPARC64)" |
| 893 | depends on SPARC64 |
| 894 | select CRYPTO_CRYPTD |
| 895 | select CRYPTO_ALGAPI |
| 896 | help |
| 897 | Use SPARC64 crypto opcodes for AES algorithm. |
| 898 | |
| 899 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
| 900 | algorithm. |
| 901 | |
| 902 | Rijndael appears to be consistently a very good performer in |
| 903 | both hardware and software across a wide range of computing |
| 904 | environments regardless of its use in feedback or non-feedback |
| 905 | modes. Its key setup time is excellent, and its key agility is |
| 906 | good. Rijndael's very low memory requirements make it very well |
| 907 | suited for restricted-space environments, in which it also |
| 908 | demonstrates excellent performance. Rijndael's operations are |
| 909 | among the easiest to defend against power and timing attacks. |
| 910 | |
| 911 | The AES specifies three key sizes: 128, 192 and 256 bits |
| 912 | |
| 913 | See <http://csrc.nist.gov/encryption/aes/> for more information. |
| 914 | |
| 915 | In addition to AES cipher algorithm support, the acceleration |
| 916 | for some popular block cipher mode is supported too, including |
| 917 | ECB and CBC. |
| 918 | |
| 919 | config CRYPTO_AES_PPC_SPE |
| 920 | tristate "AES cipher algorithms (PPC SPE)" |
| 921 | depends on PPC && SPE |
| 922 | help |
| 923 | AES cipher algorithms (FIPS-197). Additionally the acceleration |
| 924 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. |
| 925 | This module should only be used for low power (router) devices |
| 926 | without hardware AES acceleration (e.g. caam crypto). It reduces the |
| 927 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates |
| 928 | timining attacks. Nevertheless it might be not as secure as other |
| 929 | architecture specific assembler implementations that work on 1KB |
| 930 | tables or 256 bytes S-boxes. |
| 931 | |
| 932 | config CRYPTO_ANUBIS |
| 933 | tristate "Anubis cipher algorithm" |
| 934 | select CRYPTO_ALGAPI |
| 935 | help |
| 936 | Anubis cipher algorithm. |
| 937 | |
| 938 | Anubis is a variable key length cipher which can use keys from |
| 939 | 128 bits to 320 bits in length. It was evaluated as a entrant |
| 940 | in the NESSIE competition. |
| 941 | |
| 942 | See also: |
| 943 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
| 944 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> |
| 945 | |
| 946 | config CRYPTO_ARC4 |
| 947 | tristate "ARC4 cipher algorithm" |
| 948 | select CRYPTO_BLKCIPHER |
| 949 | help |
| 950 | ARC4 cipher algorithm. |
| 951 | |
| 952 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 |
| 953 | bits in length. This algorithm is required for driver-based |
| 954 | WEP, but it should not be for other purposes because of the |
| 955 | weakness of the algorithm. |
| 956 | |
| 957 | config CRYPTO_BLOWFISH |
| 958 | tristate "Blowfish cipher algorithm" |
| 959 | select CRYPTO_ALGAPI |
| 960 | select CRYPTO_BLOWFISH_COMMON |
| 961 | help |
| 962 | Blowfish cipher algorithm, by Bruce Schneier. |
| 963 | |
| 964 | This is a variable key length cipher which can use keys from 32 |
| 965 | bits to 448 bits in length. It's fast, simple and specifically |
| 966 | designed for use on "large microprocessors". |
| 967 | |
| 968 | See also: |
| 969 | <http://www.schneier.com/blowfish.html> |
| 970 | |
| 971 | config CRYPTO_BLOWFISH_COMMON |
| 972 | tristate |
| 973 | help |
| 974 | Common parts of the Blowfish cipher algorithm shared by the |
| 975 | generic c and the assembler implementations. |
| 976 | |
| 977 | See also: |
| 978 | <http://www.schneier.com/blowfish.html> |
| 979 | |
| 980 | config CRYPTO_BLOWFISH_X86_64 |
| 981 | tristate "Blowfish cipher algorithm (x86_64)" |
| 982 | depends on X86 && 64BIT |
| 983 | select CRYPTO_ALGAPI |
| 984 | select CRYPTO_BLOWFISH_COMMON |
| 985 | help |
| 986 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. |
| 987 | |
| 988 | This is a variable key length cipher which can use keys from 32 |
| 989 | bits to 448 bits in length. It's fast, simple and specifically |
| 990 | designed for use on "large microprocessors". |
| 991 | |
| 992 | See also: |
| 993 | <http://www.schneier.com/blowfish.html> |
| 994 | |
| 995 | config CRYPTO_CAMELLIA |
| 996 | tristate "Camellia cipher algorithms" |
| 997 | depends on CRYPTO |
| 998 | select CRYPTO_ALGAPI |
| 999 | help |
| 1000 | Camellia cipher algorithms module. |
| 1001 | |
| 1002 | Camellia is a symmetric key block cipher developed jointly |
| 1003 | at NTT and Mitsubishi Electric Corporation. |
| 1004 | |
| 1005 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1006 | |
| 1007 | See also: |
| 1008 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1009 | |
| 1010 | config CRYPTO_CAMELLIA_X86_64 |
| 1011 | tristate "Camellia cipher algorithm (x86_64)" |
| 1012 | depends on X86 && 64BIT |
| 1013 | depends on CRYPTO |
| 1014 | select CRYPTO_ALGAPI |
| 1015 | select CRYPTO_GLUE_HELPER_X86 |
| 1016 | select CRYPTO_LRW |
| 1017 | select CRYPTO_XTS |
| 1018 | help |
| 1019 | Camellia cipher algorithm module (x86_64). |
| 1020 | |
| 1021 | Camellia is a symmetric key block cipher developed jointly |
| 1022 | at NTT and Mitsubishi Electric Corporation. |
| 1023 | |
| 1024 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1025 | |
| 1026 | See also: |
| 1027 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1028 | |
| 1029 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
| 1030 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" |
| 1031 | depends on X86 && 64BIT |
| 1032 | depends on CRYPTO |
| 1033 | select CRYPTO_ALGAPI |
| 1034 | select CRYPTO_CRYPTD |
| 1035 | select CRYPTO_ABLK_HELPER |
| 1036 | select CRYPTO_GLUE_HELPER_X86 |
| 1037 | select CRYPTO_CAMELLIA_X86_64 |
| 1038 | select CRYPTO_LRW |
| 1039 | select CRYPTO_XTS |
| 1040 | help |
| 1041 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). |
| 1042 | |
| 1043 | Camellia is a symmetric key block cipher developed jointly |
| 1044 | at NTT and Mitsubishi Electric Corporation. |
| 1045 | |
| 1046 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1047 | |
| 1048 | See also: |
| 1049 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1050 | |
| 1051 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
| 1052 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" |
| 1053 | depends on X86 && 64BIT |
| 1054 | depends on CRYPTO |
| 1055 | select CRYPTO_ALGAPI |
| 1056 | select CRYPTO_CRYPTD |
| 1057 | select CRYPTO_ABLK_HELPER |
| 1058 | select CRYPTO_GLUE_HELPER_X86 |
| 1059 | select CRYPTO_CAMELLIA_X86_64 |
| 1060 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 |
| 1061 | select CRYPTO_LRW |
| 1062 | select CRYPTO_XTS |
| 1063 | help |
| 1064 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). |
| 1065 | |
| 1066 | Camellia is a symmetric key block cipher developed jointly |
| 1067 | at NTT and Mitsubishi Electric Corporation. |
| 1068 | |
| 1069 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1070 | |
| 1071 | See also: |
| 1072 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1073 | |
| 1074 | config CRYPTO_CAMELLIA_SPARC64 |
| 1075 | tristate "Camellia cipher algorithm (SPARC64)" |
| 1076 | depends on SPARC64 |
| 1077 | depends on CRYPTO |
| 1078 | select CRYPTO_ALGAPI |
| 1079 | help |
| 1080 | Camellia cipher algorithm module (SPARC64). |
| 1081 | |
| 1082 | Camellia is a symmetric key block cipher developed jointly |
| 1083 | at NTT and Mitsubishi Electric Corporation. |
| 1084 | |
| 1085 | The Camellia specifies three key sizes: 128, 192 and 256 bits. |
| 1086 | |
| 1087 | See also: |
| 1088 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
| 1089 | |
| 1090 | config CRYPTO_CAST_COMMON |
| 1091 | tristate |
| 1092 | help |
| 1093 | Common parts of the CAST cipher algorithms shared by the |
| 1094 | generic c and the assembler implementations. |
| 1095 | |
| 1096 | config CRYPTO_CAST5 |
| 1097 | tristate "CAST5 (CAST-128) cipher algorithm" |
| 1098 | select CRYPTO_ALGAPI |
| 1099 | select CRYPTO_CAST_COMMON |
| 1100 | help |
| 1101 | The CAST5 encryption algorithm (synonymous with CAST-128) is |
| 1102 | described in RFC2144. |
| 1103 | |
| 1104 | config CRYPTO_CAST5_AVX_X86_64 |
| 1105 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" |
| 1106 | depends on X86 && 64BIT |
| 1107 | select CRYPTO_ALGAPI |
| 1108 | select CRYPTO_CRYPTD |
| 1109 | select CRYPTO_ABLK_HELPER |
| 1110 | select CRYPTO_CAST_COMMON |
| 1111 | select CRYPTO_CAST5 |
| 1112 | help |
| 1113 | The CAST5 encryption algorithm (synonymous with CAST-128) is |
| 1114 | described in RFC2144. |
| 1115 | |
| 1116 | This module provides the Cast5 cipher algorithm that processes |
| 1117 | sixteen blocks parallel using the AVX instruction set. |
| 1118 | |
| 1119 | config CRYPTO_CAST6 |
| 1120 | tristate "CAST6 (CAST-256) cipher algorithm" |
| 1121 | select CRYPTO_ALGAPI |
| 1122 | select CRYPTO_CAST_COMMON |
| 1123 | help |
| 1124 | The CAST6 encryption algorithm (synonymous with CAST-256) is |
| 1125 | described in RFC2612. |
| 1126 | |
| 1127 | config CRYPTO_CAST6_AVX_X86_64 |
| 1128 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" |
| 1129 | depends on X86 && 64BIT |
| 1130 | select CRYPTO_ALGAPI |
| 1131 | select CRYPTO_CRYPTD |
| 1132 | select CRYPTO_ABLK_HELPER |
| 1133 | select CRYPTO_GLUE_HELPER_X86 |
| 1134 | select CRYPTO_CAST_COMMON |
| 1135 | select CRYPTO_CAST6 |
| 1136 | select CRYPTO_LRW |
| 1137 | select CRYPTO_XTS |
| 1138 | help |
| 1139 | The CAST6 encryption algorithm (synonymous with CAST-256) is |
| 1140 | described in RFC2612. |
| 1141 | |
| 1142 | This module provides the Cast6 cipher algorithm that processes |
| 1143 | eight blocks parallel using the AVX instruction set. |
| 1144 | |
| 1145 | config CRYPTO_DES |
| 1146 | tristate "DES and Triple DES EDE cipher algorithms" |
| 1147 | select CRYPTO_ALGAPI |
| 1148 | help |
| 1149 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
| 1150 | |
| 1151 | config CRYPTO_DES_SPARC64 |
| 1152 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" |
| 1153 | depends on SPARC64 |
| 1154 | select CRYPTO_ALGAPI |
| 1155 | select CRYPTO_DES |
| 1156 | help |
| 1157 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), |
| 1158 | optimized using SPARC64 crypto opcodes. |
| 1159 | |
| 1160 | config CRYPTO_DES3_EDE_X86_64 |
| 1161 | tristate "Triple DES EDE cipher algorithm (x86-64)" |
| 1162 | depends on X86 && 64BIT |
| 1163 | select CRYPTO_ALGAPI |
| 1164 | select CRYPTO_DES |
| 1165 | help |
| 1166 | Triple DES EDE (FIPS 46-3) algorithm. |
| 1167 | |
| 1168 | This module provides implementation of the Triple DES EDE cipher |
| 1169 | algorithm that is optimized for x86-64 processors. Two versions of |
| 1170 | algorithm are provided; regular processing one input block and |
| 1171 | one that processes three blocks parallel. |
| 1172 | |
| 1173 | config CRYPTO_FCRYPT |
| 1174 | tristate "FCrypt cipher algorithm" |
| 1175 | select CRYPTO_ALGAPI |
| 1176 | select CRYPTO_BLKCIPHER |
| 1177 | help |
| 1178 | FCrypt algorithm used by RxRPC. |
| 1179 | |
| 1180 | config CRYPTO_KHAZAD |
| 1181 | tristate "Khazad cipher algorithm" |
| 1182 | select CRYPTO_ALGAPI |
| 1183 | help |
| 1184 | Khazad cipher algorithm. |
| 1185 | |
| 1186 | Khazad was a finalist in the initial NESSIE competition. It is |
| 1187 | an algorithm optimized for 64-bit processors with good performance |
| 1188 | on 32-bit processors. Khazad uses an 128 bit key size. |
| 1189 | |
| 1190 | See also: |
| 1191 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
| 1192 | |
| 1193 | config CRYPTO_SALSA20 |
| 1194 | tristate "Salsa20 stream cipher algorithm" |
| 1195 | select CRYPTO_BLKCIPHER |
| 1196 | help |
| 1197 | Salsa20 stream cipher algorithm. |
| 1198 | |
| 1199 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 1200 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 1201 | |
| 1202 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 1203 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
| 1204 | |
| 1205 | config CRYPTO_SALSA20_586 |
| 1206 | tristate "Salsa20 stream cipher algorithm (i586)" |
| 1207 | depends on (X86 || UML_X86) && !64BIT |
| 1208 | select CRYPTO_BLKCIPHER |
| 1209 | help |
| 1210 | Salsa20 stream cipher algorithm. |
| 1211 | |
| 1212 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 1213 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 1214 | |
| 1215 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 1216 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
| 1217 | |
| 1218 | config CRYPTO_SALSA20_X86_64 |
| 1219 | tristate "Salsa20 stream cipher algorithm (x86_64)" |
| 1220 | depends on (X86 || UML_X86) && 64BIT |
| 1221 | select CRYPTO_BLKCIPHER |
| 1222 | help |
| 1223 | Salsa20 stream cipher algorithm. |
| 1224 | |
| 1225 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT |
| 1226 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> |
| 1227 | |
| 1228 | The Salsa20 stream cipher algorithm is designed by Daniel J. |
| 1229 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> |
| 1230 | |
| 1231 | config CRYPTO_CHACHA20 |
| 1232 | tristate "ChaCha20 cipher algorithm" |
| 1233 | select CRYPTO_BLKCIPHER |
| 1234 | help |
| 1235 | ChaCha20 cipher algorithm, RFC7539. |
| 1236 | |
| 1237 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. |
| 1238 | Bernstein and further specified in RFC7539 for use in IETF protocols. |
| 1239 | This is the portable C implementation of ChaCha20. |
| 1240 | |
| 1241 | See also: |
| 1242 | <http://cr.yp.to/chacha/chacha-20080128.pdf> |
| 1243 | |
| 1244 | config CRYPTO_CHACHA20_X86_64 |
| 1245 | tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" |
| 1246 | depends on X86 && 64BIT |
| 1247 | select CRYPTO_BLKCIPHER |
| 1248 | select CRYPTO_CHACHA20 |
| 1249 | help |
| 1250 | ChaCha20 cipher algorithm, RFC7539. |
| 1251 | |
| 1252 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. |
| 1253 | Bernstein and further specified in RFC7539 for use in IETF protocols. |
| 1254 | This is the x86_64 assembler implementation using SIMD instructions. |
| 1255 | |
| 1256 | See also: |
| 1257 | <http://cr.yp.to/chacha/chacha-20080128.pdf> |
| 1258 | |
| 1259 | config CRYPTO_SEED |
| 1260 | tristate "SEED cipher algorithm" |
| 1261 | select CRYPTO_ALGAPI |
| 1262 | help |
| 1263 | SEED cipher algorithm (RFC4269). |
| 1264 | |
| 1265 | SEED is a 128-bit symmetric key block cipher that has been |
| 1266 | developed by KISA (Korea Information Security Agency) as a |
| 1267 | national standard encryption algorithm of the Republic of Korea. |
| 1268 | It is a 16 round block cipher with the key size of 128 bit. |
| 1269 | |
| 1270 | See also: |
| 1271 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> |
| 1272 | |
| 1273 | config CRYPTO_SERPENT |
| 1274 | tristate "Serpent cipher algorithm" |
| 1275 | select CRYPTO_ALGAPI |
| 1276 | help |
| 1277 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1278 | |
| 1279 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1280 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed |
| 1281 | variant of Serpent for compatibility with old kerneli.org code. |
| 1282 | |
| 1283 | See also: |
| 1284 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 1285 | |
| 1286 | config CRYPTO_SERPENT_SSE2_X86_64 |
| 1287 | tristate "Serpent cipher algorithm (x86_64/SSE2)" |
| 1288 | depends on X86 && 64BIT |
| 1289 | select CRYPTO_ALGAPI |
| 1290 | select CRYPTO_CRYPTD |
| 1291 | select CRYPTO_ABLK_HELPER |
| 1292 | select CRYPTO_GLUE_HELPER_X86 |
| 1293 | select CRYPTO_SERPENT |
| 1294 | select CRYPTO_LRW |
| 1295 | select CRYPTO_XTS |
| 1296 | help |
| 1297 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1298 | |
| 1299 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1300 | of 8 bits. |
| 1301 | |
| 1302 | This module provides Serpent cipher algorithm that processes eight |
| 1303 | blocks parallel using SSE2 instruction set. |
| 1304 | |
| 1305 | See also: |
| 1306 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 1307 | |
| 1308 | config CRYPTO_SERPENT_SSE2_586 |
| 1309 | tristate "Serpent cipher algorithm (i586/SSE2)" |
| 1310 | depends on X86 && !64BIT |
| 1311 | select CRYPTO_ALGAPI |
| 1312 | select CRYPTO_CRYPTD |
| 1313 | select CRYPTO_ABLK_HELPER |
| 1314 | select CRYPTO_GLUE_HELPER_X86 |
| 1315 | select CRYPTO_SERPENT |
| 1316 | select CRYPTO_LRW |
| 1317 | select CRYPTO_XTS |
| 1318 | help |
| 1319 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1320 | |
| 1321 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1322 | of 8 bits. |
| 1323 | |
| 1324 | This module provides Serpent cipher algorithm that processes four |
| 1325 | blocks parallel using SSE2 instruction set. |
| 1326 | |
| 1327 | See also: |
| 1328 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 1329 | |
| 1330 | config CRYPTO_SERPENT_AVX_X86_64 |
| 1331 | tristate "Serpent cipher algorithm (x86_64/AVX)" |
| 1332 | depends on X86 && 64BIT |
| 1333 | select CRYPTO_ALGAPI |
| 1334 | select CRYPTO_CRYPTD |
| 1335 | select CRYPTO_ABLK_HELPER |
| 1336 | select CRYPTO_GLUE_HELPER_X86 |
| 1337 | select CRYPTO_SERPENT |
| 1338 | select CRYPTO_LRW |
| 1339 | select CRYPTO_XTS |
| 1340 | help |
| 1341 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1342 | |
| 1343 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1344 | of 8 bits. |
| 1345 | |
| 1346 | This module provides the Serpent cipher algorithm that processes |
| 1347 | eight blocks parallel using the AVX instruction set. |
| 1348 | |
| 1349 | See also: |
| 1350 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 1351 | |
| 1352 | config CRYPTO_SERPENT_AVX2_X86_64 |
| 1353 | tristate "Serpent cipher algorithm (x86_64/AVX2)" |
| 1354 | depends on X86 && 64BIT |
| 1355 | select CRYPTO_ALGAPI |
| 1356 | select CRYPTO_CRYPTD |
| 1357 | select CRYPTO_ABLK_HELPER |
| 1358 | select CRYPTO_GLUE_HELPER_X86 |
| 1359 | select CRYPTO_SERPENT |
| 1360 | select CRYPTO_SERPENT_AVX_X86_64 |
| 1361 | select CRYPTO_LRW |
| 1362 | select CRYPTO_XTS |
| 1363 | help |
| 1364 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
| 1365 | |
| 1366 | Keys are allowed to be from 0 to 256 bits in length, in steps |
| 1367 | of 8 bits. |
| 1368 | |
| 1369 | This module provides Serpent cipher algorithm that processes 16 |
| 1370 | blocks parallel using AVX2 instruction set. |
| 1371 | |
| 1372 | See also: |
| 1373 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> |
| 1374 | |
| 1375 | config CRYPTO_TEA |
| 1376 | tristate "TEA, XTEA and XETA cipher algorithms" |
| 1377 | select CRYPTO_ALGAPI |
| 1378 | help |
| 1379 | TEA cipher algorithm. |
| 1380 | |
| 1381 | Tiny Encryption Algorithm is a simple cipher that uses |
| 1382 | many rounds for security. It is very fast and uses |
| 1383 | little memory. |
| 1384 | |
| 1385 | Xtendend Tiny Encryption Algorithm is a modification to |
| 1386 | the TEA algorithm to address a potential key weakness |
| 1387 | in the TEA algorithm. |
| 1388 | |
| 1389 | Xtendend Encryption Tiny Algorithm is a mis-implementation |
| 1390 | of the XTEA algorithm for compatibility purposes. |
| 1391 | |
| 1392 | config CRYPTO_TWOFISH |
| 1393 | tristate "Twofish cipher algorithm" |
| 1394 | select CRYPTO_ALGAPI |
| 1395 | select CRYPTO_TWOFISH_COMMON |
| 1396 | help |
| 1397 | Twofish cipher algorithm. |
| 1398 | |
| 1399 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1400 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1401 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1402 | bits. |
| 1403 | |
| 1404 | See also: |
| 1405 | <http://www.schneier.com/twofish.html> |
| 1406 | |
| 1407 | config CRYPTO_TWOFISH_COMMON |
| 1408 | tristate |
| 1409 | help |
| 1410 | Common parts of the Twofish cipher algorithm shared by the |
| 1411 | generic c and the assembler implementations. |
| 1412 | |
| 1413 | config CRYPTO_TWOFISH_586 |
| 1414 | tristate "Twofish cipher algorithms (i586)" |
| 1415 | depends on (X86 || UML_X86) && !64BIT |
| 1416 | select CRYPTO_ALGAPI |
| 1417 | select CRYPTO_TWOFISH_COMMON |
| 1418 | help |
| 1419 | Twofish cipher algorithm. |
| 1420 | |
| 1421 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1422 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1423 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1424 | bits. |
| 1425 | |
| 1426 | See also: |
| 1427 | <http://www.schneier.com/twofish.html> |
| 1428 | |
| 1429 | config CRYPTO_TWOFISH_X86_64 |
| 1430 | tristate "Twofish cipher algorithm (x86_64)" |
| 1431 | depends on (X86 || UML_X86) && 64BIT |
| 1432 | select CRYPTO_ALGAPI |
| 1433 | select CRYPTO_TWOFISH_COMMON |
| 1434 | help |
| 1435 | Twofish cipher algorithm (x86_64). |
| 1436 | |
| 1437 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1438 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1439 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1440 | bits. |
| 1441 | |
| 1442 | See also: |
| 1443 | <http://www.schneier.com/twofish.html> |
| 1444 | |
| 1445 | config CRYPTO_TWOFISH_X86_64_3WAY |
| 1446 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" |
| 1447 | depends on X86 && 64BIT |
| 1448 | select CRYPTO_ALGAPI |
| 1449 | select CRYPTO_TWOFISH_COMMON |
| 1450 | select CRYPTO_TWOFISH_X86_64 |
| 1451 | select CRYPTO_GLUE_HELPER_X86 |
| 1452 | select CRYPTO_LRW |
| 1453 | select CRYPTO_XTS |
| 1454 | help |
| 1455 | Twofish cipher algorithm (x86_64, 3-way parallel). |
| 1456 | |
| 1457 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1458 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1459 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1460 | bits. |
| 1461 | |
| 1462 | This module provides Twofish cipher algorithm that processes three |
| 1463 | blocks parallel, utilizing resources of out-of-order CPUs better. |
| 1464 | |
| 1465 | See also: |
| 1466 | <http://www.schneier.com/twofish.html> |
| 1467 | |
| 1468 | config CRYPTO_TWOFISH_AVX_X86_64 |
| 1469 | tristate "Twofish cipher algorithm (x86_64/AVX)" |
| 1470 | depends on X86 && 64BIT |
| 1471 | select CRYPTO_ALGAPI |
| 1472 | select CRYPTO_CRYPTD |
| 1473 | select CRYPTO_ABLK_HELPER |
| 1474 | select CRYPTO_GLUE_HELPER_X86 |
| 1475 | select CRYPTO_TWOFISH_COMMON |
| 1476 | select CRYPTO_TWOFISH_X86_64 |
| 1477 | select CRYPTO_TWOFISH_X86_64_3WAY |
| 1478 | select CRYPTO_LRW |
| 1479 | select CRYPTO_XTS |
| 1480 | help |
| 1481 | Twofish cipher algorithm (x86_64/AVX). |
| 1482 | |
| 1483 | Twofish was submitted as an AES (Advanced Encryption Standard) |
| 1484 | candidate cipher by researchers at CounterPane Systems. It is a |
| 1485 | 16 round block cipher supporting key sizes of 128, 192, and 256 |
| 1486 | bits. |
| 1487 | |
| 1488 | This module provides the Twofish cipher algorithm that processes |
| 1489 | eight blocks parallel using the AVX Instruction Set. |
| 1490 | |
| 1491 | See also: |
| 1492 | <http://www.schneier.com/twofish.html> |
| 1493 | |
| 1494 | comment "Compression" |
| 1495 | |
| 1496 | config CRYPTO_DEFLATE |
| 1497 | tristate "Deflate compression algorithm" |
| 1498 | select CRYPTO_ALGAPI |
| 1499 | select ZLIB_INFLATE |
| 1500 | select ZLIB_DEFLATE |
| 1501 | help |
| 1502 | This is the Deflate algorithm (RFC1951), specified for use in |
| 1503 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). |
| 1504 | |
| 1505 | You will most probably want this if using IPSec. |
| 1506 | |
| 1507 | config CRYPTO_ZLIB |
| 1508 | tristate "Zlib compression algorithm" |
| 1509 | select CRYPTO_PCOMP |
| 1510 | select ZLIB_INFLATE |
| 1511 | select ZLIB_DEFLATE |
| 1512 | select NLATTR |
| 1513 | help |
| 1514 | This is the zlib algorithm. |
| 1515 | |
| 1516 | config CRYPTO_LZO |
| 1517 | tristate "LZO compression algorithm" |
| 1518 | select CRYPTO_ALGAPI |
| 1519 | select LZO_COMPRESS |
| 1520 | select LZO_DECOMPRESS |
| 1521 | help |
| 1522 | This is the LZO algorithm. |
| 1523 | |
| 1524 | config CRYPTO_842 |
| 1525 | tristate "842 compression algorithm" |
| 1526 | select CRYPTO_ALGAPI |
| 1527 | select 842_COMPRESS |
| 1528 | select 842_DECOMPRESS |
| 1529 | help |
| 1530 | This is the 842 algorithm. |
| 1531 | |
| 1532 | config CRYPTO_LZ4 |
| 1533 | tristate "LZ4 compression algorithm" |
| 1534 | select CRYPTO_ALGAPI |
| 1535 | select LZ4_COMPRESS |
| 1536 | select LZ4_DECOMPRESS |
| 1537 | help |
| 1538 | This is the LZ4 algorithm. |
| 1539 | |
| 1540 | config CRYPTO_LZ4HC |
| 1541 | tristate "LZ4HC compression algorithm" |
| 1542 | select CRYPTO_ALGAPI |
| 1543 | select LZ4HC_COMPRESS |
| 1544 | select LZ4_DECOMPRESS |
| 1545 | help |
| 1546 | This is the LZ4 high compression mode algorithm. |
| 1547 | |
| 1548 | comment "Random Number Generation" |
| 1549 | |
| 1550 | config CRYPTO_ANSI_CPRNG |
| 1551 | tristate "Pseudo Random Number Generation for Cryptographic modules" |
| 1552 | select CRYPTO_AES |
| 1553 | select CRYPTO_RNG |
| 1554 | help |
| 1555 | This option enables the generic pseudo random number generator |
| 1556 | for cryptographic modules. Uses the Algorithm specified in |
| 1557 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
| 1558 | CRYPTO_FIPS is selected |
| 1559 | |
| 1560 | menuconfig CRYPTO_DRBG_MENU |
| 1561 | tristate "NIST SP800-90A DRBG" |
| 1562 | help |
| 1563 | NIST SP800-90A compliant DRBG. In the following submenu, one or |
| 1564 | more of the DRBG types must be selected. |
| 1565 | |
| 1566 | if CRYPTO_DRBG_MENU |
| 1567 | |
| 1568 | config CRYPTO_DRBG_HMAC |
| 1569 | bool |
| 1570 | default y |
| 1571 | select CRYPTO_HMAC |
| 1572 | select CRYPTO_SHA256 |
| 1573 | |
| 1574 | config CRYPTO_DRBG_HASH |
| 1575 | bool "Enable Hash DRBG" |
| 1576 | select CRYPTO_SHA256 |
| 1577 | help |
| 1578 | Enable the Hash DRBG variant as defined in NIST SP800-90A. |
| 1579 | |
| 1580 | config CRYPTO_DRBG_CTR |
| 1581 | bool "Enable CTR DRBG" |
| 1582 | select CRYPTO_AES |
| 1583 | help |
| 1584 | Enable the CTR DRBG variant as defined in NIST SP800-90A. |
| 1585 | |
| 1586 | config CRYPTO_DRBG |
| 1587 | tristate |
| 1588 | default CRYPTO_DRBG_MENU |
| 1589 | select CRYPTO_RNG |
| 1590 | select CRYPTO_JITTERENTROPY |
| 1591 | |
| 1592 | endif # if CRYPTO_DRBG_MENU |
| 1593 | |
| 1594 | config CRYPTO_JITTERENTROPY |
| 1595 | tristate "Jitterentropy Non-Deterministic Random Number Generator" |
| 1596 | help |
| 1597 | The Jitterentropy RNG is a noise that is intended |
| 1598 | to provide seed to another RNG. The RNG does not |
| 1599 | perform any cryptographic whitening of the generated |
| 1600 | random numbers. This Jitterentropy RNG registers with |
| 1601 | the kernel crypto API and can be used by any caller. |
| 1602 | |
| 1603 | config CRYPTO_USER_API |
| 1604 | tristate |
| 1605 | |
| 1606 | config CRYPTO_USER_API_HASH |
| 1607 | tristate "User-space interface for hash algorithms" |
| 1608 | depends on NET |
| 1609 | select CRYPTO_HASH |
| 1610 | select CRYPTO_USER_API |
| 1611 | help |
| 1612 | This option enables the user-spaces interface for hash |
| 1613 | algorithms. |
| 1614 | |
| 1615 | config CRYPTO_USER_API_SKCIPHER |
| 1616 | tristate "User-space interface for symmetric key cipher algorithms" |
| 1617 | depends on NET |
| 1618 | select CRYPTO_BLKCIPHER |
| 1619 | select CRYPTO_USER_API |
| 1620 | help |
| 1621 | This option enables the user-spaces interface for symmetric |
| 1622 | key cipher algorithms. |
| 1623 | |
| 1624 | config CRYPTO_USER_API_RNG |
| 1625 | tristate "User-space interface for random number generator algorithms" |
| 1626 | depends on NET |
| 1627 | select CRYPTO_RNG |
| 1628 | select CRYPTO_USER_API |
| 1629 | help |
| 1630 | This option enables the user-spaces interface for random |
| 1631 | number generator algorithms. |
| 1632 | |
| 1633 | config CRYPTO_USER_API_AEAD |
| 1634 | tristate "User-space interface for AEAD cipher algorithms" |
| 1635 | depends on NET |
| 1636 | select CRYPTO_AEAD |
| 1637 | select CRYPTO_USER_API |
| 1638 | help |
| 1639 | This option enables the user-spaces interface for AEAD |
| 1640 | cipher algorithms. |
| 1641 | |
| 1642 | config CRYPTO_HASH_INFO |
| 1643 | bool |
| 1644 | |
| 1645 | source "drivers/crypto/Kconfig" |
| 1646 | source crypto/asymmetric_keys/Kconfig |
| 1647 | source certs/Kconfig |
| 1648 | |
| 1649 | endif # if CRYPTO |