| /* |
| * sfe_ipv4_tcp.c |
| * Shortcut forwarding engine - IPv4 TCP implementation |
| * |
| * Copyright (c) 2013-2016, 2019-2020, The Linux Foundation. All rights reserved. |
| * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/skbuff.h> |
| #include <net/tcp.h> |
| #include <linux/etherdevice.h> |
| #include <linux/lockdep.h> |
| |
| #include "sfe_debug.h" |
| #include "sfe_api.h" |
| #include "sfe.h" |
| #include "sfe_flow_cookie.h" |
| #include "sfe_ipv4.h" |
| #include "sfe_pppoe.h" |
| #include "sfe_vlan.h" |
| |
| /* |
| * sfe_ipv4_process_tcp_option_sack() |
| * Parse TCP SACK option and update ack according |
| */ |
| static bool sfe_ipv4_process_tcp_option_sack(const struct tcphdr *th, const u32 data_offs, |
| u32 *ack) |
| { |
| u32 length = sizeof(struct tcphdr); |
| u8 *ptr = (u8 *)th + length; |
| |
| /* |
| * Ignore processing if TCP packet has only TIMESTAMP option. |
| */ |
| if (likely(data_offs == length + TCPOLEN_TIMESTAMP + 1 + 1) |
| && likely(ptr[0] == TCPOPT_NOP) |
| && likely(ptr[1] == TCPOPT_NOP) |
| && likely(ptr[2] == TCPOPT_TIMESTAMP) |
| && likely(ptr[3] == TCPOLEN_TIMESTAMP)) { |
| return true; |
| } |
| |
| /* |
| * TCP options. Parse SACK option. |
| */ |
| while (length < data_offs) { |
| u8 size; |
| u8 kind; |
| |
| ptr = (u8 *)th + length; |
| kind = *ptr; |
| |
| /* |
| * NOP, for padding |
| * Not in the switch because to fast escape and to not calculate size |
| */ |
| if (kind == TCPOPT_NOP) { |
| length++; |
| continue; |
| } |
| |
| if (kind == TCPOPT_SACK) { |
| u32 sack = 0; |
| u8 re = 1 + 1; |
| |
| size = *(ptr + 1); |
| if ((size < (1 + 1 + TCPOLEN_SACK_PERBLOCK)) |
| || ((size - (1 + 1)) % (TCPOLEN_SACK_PERBLOCK)) |
| || (size > (data_offs - length))) { |
| return false; |
| } |
| |
| re += 4; |
| while (re < size) { |
| u32 sack_re; |
| u8 *sptr = ptr + re; |
| sack_re = (sptr[0] << 24) | (sptr[1] << 16) | (sptr[2] << 8) | sptr[3]; |
| if (sack_re > sack) { |
| sack = sack_re; |
| } |
| re += TCPOLEN_SACK_PERBLOCK; |
| } |
| if (sack > *ack) { |
| *ack = sack; |
| } |
| length += size; |
| continue; |
| } |
| if (kind == TCPOPT_EOL) { |
| return true; |
| } |
| size = *(ptr + 1); |
| if (size < 2) { |
| return false; |
| } |
| length += size; |
| } |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_NETFILTER_CP_FLOWSTATS |
| |
| extern unsigned int cp_flowstats_enabled; |
| |
| /***** Cradlepoint Latency Measurement Enhancement. ***/ |
| /* |
| * For each TCP packet; given its connection; compute the round trip |
| * latency and store it over multiple samples. |
| * We track RT latency by tracking the sequence numbers and matching the Acks |
| * and compute the delay between the two. The cumulative latency is stored |
| * in the conntrack structure; later to be used to calculate the average latency. |
| * 1) We measure latency for outbound connections; or the connections originating from |
| * the LAN side by the clients. It is expected that majority of our traffic is |
| * via outbound connections. |
| * 2) The calculations does not consider TCP window size changes. For outbound connections |
| * (with 5+ ms latency) and interactive applications; the windows size does not have much |
| * effect. |
| * 3) When the connection terminates the latency numbers are added to a 'IP records table" |
| * maintained in file "cp_ip_record_track.c" |
| */ |
| static inline void sfe_tcp_packet_latency(struct sfe_ipv4_connection_match *cm, |
| struct sfe_ipv4_connection_match *counter_cm, |
| struct iphdr *iph, struct tcphdr *tcph ) |
| { |
| long delta = 0; |
| |
| /*Start measuring latency if following conditions are met: |
| -Packet is outbound |
| -The packet is not an Ack for data packet from the remote end |
| (packet size larger than min IP packet) |
| */ |
| if ((cm->cp_fs_original) && |
| (cm->last_seq_num == 0) && |
| (ntohs(iph->tot_len) > MIN_IP_PKT_SIZE)) { |
| cm->last_seq_num = ntohl(tcph->seq); |
| cm->last_seq_time = jiffies; |
| } |
| |
| /* |
| * If this is a reply packet and the sequence number matches or exceeds |
| * perform the latency calculations, and update the stats. |
| */ |
| if ((counter_cm->cp_fs_original) && |
| (counter_cm->last_seq_num != 0) && |
| (counter_cm->last_seq_num <= ntohl(tcph->ack_seq))) { |
| delta = (jiffies - counter_cm->last_seq_time); |
| |
| /* Cap the high latency (over 700 msec to eliminate the outliers */ |
| if (delta > MAX_RTT_THRESHOLD) { |
| delta = MAX_RTT_THRESHOLD; |
| } |
| |
| counter_cm->tot_delta += delta; |
| counter_cm->tot_delta_square += (delta *delta); |
| counter_cm->num_samples++; |
| |
| counter_cm->last_seq_num = 0; |
| counter_cm->last_seq_time = 0; |
| } |
| } |
| #endif |
| |
| |
| |
| /* |
| * sfe_ipv4_recv_tcp() |
| * Handle TCP packet receives and forwarding. |
| */ |
| int sfe_ipv4_recv_tcp(struct sfe_ipv4 *si, struct sk_buff *skb, struct net_device *dev, |
| unsigned int len, struct iphdr *iph, unsigned int ihl, bool sync_on_find, struct sfe_l2_info *l2_info) |
| { |
| struct tcphdr *tcph; |
| __be32 src_ip; |
| __be32 dest_ip; |
| __be16 src_port; |
| __be16 dest_port; |
| struct sfe_ipv4_connection_match *cm; |
| struct sfe_ipv4_connection_match *counter_cm; |
| u8 ttl; |
| u32 flags; |
| u32 service_class_id; |
| struct net_device *xmit_dev; |
| bool ret; |
| bool hw_csum; |
| bool bridge_flow; |
| bool fast_xmit; |
| netdev_features_t features; |
| |
| /* |
| * Is our packet too short to contain a valid TCP header? |
| */ |
| if (unlikely(!pskb_may_pull(skb, (sizeof(struct tcphdr) + ihl)))) { |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE); |
| DEBUG_TRACE("packet too short for TCP header\n"); |
| return 0; |
| } |
| |
| /* |
| * Read the IP address and port information. Read the IP header data first |
| * because we've almost certainly got that in the cache. We may not yet have |
| * the TCP header cached though so allow more time for any prefetching. |
| */ |
| src_ip = iph->saddr; |
| dest_ip = iph->daddr; |
| |
| tcph = (struct tcphdr *)(skb->data + ihl); |
| src_port = tcph->source; |
| dest_port = tcph->dest; |
| flags = tcp_flag_word(tcph); |
| |
| rcu_read_lock(); |
| |
| /* |
| * Look for a connection match. |
| */ |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match; |
| if (unlikely(!cm)) { |
| cm = sfe_ipv4_find_connection_match_rcu(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port); |
| } |
| #else |
| /* |
| * 5-tuple lookup for TCP flow. |
| */ |
| cm = sfe_ipv4_find_connection_match_rcu(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port); |
| #endif |
| if (unlikely(!cm)) { |
| /* |
| * We didn't get a connection but as TCP is connection-oriented that |
| * may be because this is a non-fast connection (not running established). |
| * For diagnostic purposes we differentiate this here. |
| */ |
| if (likely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) == TCP_FLAG_ACK)) { |
| |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS); |
| DEBUG_TRACE("no connection found - fast flags\n"); |
| return 0; |
| } |
| |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS); |
| DEBUG_TRACE("no connection found - slow flags: 0x%x\n", |
| flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)); |
| return 0; |
| } |
| |
| /* |
| * Source interface validate. |
| */ |
| if (unlikely((cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK) && (cm->match_dev != dev))) { |
| if (!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK_NO_FLUSH)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| DEBUG_TRACE("flush on source interface check failure\n"); |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INVALID_SRC_IFACE); |
| DEBUG_TRACE("exception the packet on source interface check failure\n"); |
| return 0; |
| } |
| |
| /* |
| * If our packet has been marked as "sync on find" we can't actually |
| * forward it in the fast path, but now that we've found an associated |
| * connection we need sync its status before throw it slow path. |
| */ |
| if (unlikely(sync_on_find)) { |
| sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS); |
| rcu_read_unlock(); |
| |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT); |
| DEBUG_TRACE("Sync on find\n"); |
| return 0; |
| } |
| |
| #ifdef CONFIG_XFRM |
| /* |
| * We can't accelerate the flow on this direction, just let it go |
| * through the slow path. |
| */ |
| if (unlikely(!cm->flow_accel)) { |
| rcu_read_unlock(); |
| this_cpu_inc(si->stats_pcpu->packets_not_forwarded64); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Do we expect an ingress VLAN tag for this flow? |
| */ |
| if (unlikely(!sfe_vlan_validate_ingress_tag(skb, cm->ingress_vlan_hdr_cnt, cm->ingress_vlan_hdr, l2_info))) { |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INGRESS_VLAN_TAG_MISMATCH); |
| DEBUG_TRACE("VLAN tag mismatch. skb=%px\n", skb); |
| return 0; |
| } |
| |
| bridge_flow = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_BRIDGE_FLOW); |
| |
| /* |
| * Does our TTL allow forwarding? |
| */ |
| if (likely(!bridge_flow)) { |
| ttl = iph->ttl; |
| if (unlikely(ttl < 2)) { |
| sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS); |
| rcu_read_unlock(); |
| |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SMALL_TTL); |
| DEBUG_TRACE("TTL too low\n"); |
| return 0; |
| } |
| } |
| |
| /* |
| * If our packet is larger than the MTU of the transmit interface then |
| * we can't forward it easily. |
| */ |
| if (unlikely((len > cm->xmit_dev_mtu) && !skb_is_gso(skb))) { |
| sfe_ipv4_sync_status(si, cm->connection, SFE_SYNC_REASON_STATS); |
| rcu_read_unlock(); |
| |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT); |
| DEBUG_TRACE("Larger than MTU\n"); |
| return 0; |
| } |
| |
| /* |
| * Look at our TCP flags. Anything missing an ACK or that has RST, SYN or FIN |
| * set is not a fast path packet. |
| */ |
| if (unlikely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) != TCP_FLAG_ACK)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP flags: %#x are not fast. %u->%u\n", |
| htonl(flags), htons(src_port), htons(dest_port)); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_FLAGS); |
| return 0; |
| } |
| |
| counter_cm = cm->counter_match; |
| #ifdef CONFIG_NETFILTER_CP_FLOWSTATS |
| /* Invoke latency measurement code if enabled */ |
| if (cp_flowstats_enabled) { |
| sfe_tcp_packet_latency(cm, counter_cm, iph, tcph); |
| } |
| #endif //CONFIG_NETFILTER_CP_FLOWSTATS |
| |
| /* |
| * Are we doing sequence number checking? |
| */ |
| if (likely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK))) { |
| u32 seq; |
| u32 ack; |
| u32 sack; |
| u32 data_offs; |
| u32 end; |
| u32 left_edge; |
| u32 scaled_win; |
| u32 max_end; |
| |
| /* |
| * Is our sequence fully past the right hand edge of the window? |
| */ |
| seq = ntohl(tcph->seq); |
| if (unlikely((s32)(seq - (cm->protocol_state.tcp.max_end + 1)) > 0)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("seq: %u exceeds right edge: %u\n", |
| seq, cm->protocol_state.tcp.max_end + 1); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE); |
| return 0; |
| } |
| |
| /* |
| * Check that our TCP data offset isn't too short. |
| */ |
| data_offs = tcph->doff << 2; |
| if (unlikely(data_offs < sizeof(struct tcphdr))) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP data offset: %u, too small\n", data_offs); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS); |
| return 0; |
| } |
| |
| /* |
| * Update ACK according to any SACK option. |
| */ |
| ack = ntohl(tcph->ack_seq); |
| sack = ack; |
| if (unlikely(!sfe_ipv4_process_tcp_option_sack(tcph, data_offs, &sack))) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP option SACK size is wrong\n"); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_BAD_SACK); |
| return 0; |
| } |
| |
| /* |
| * Check that our TCP data offset isn't past the end of the packet. |
| */ |
| data_offs += sizeof(struct iphdr); |
| if (unlikely(len < data_offs)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP data offset: %u, past end of packet: %u\n", |
| data_offs, len); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS); |
| return 0; |
| } |
| |
| end = seq + len - data_offs; |
| |
| /* |
| * Is our sequence fully before the left hand edge of the window? |
| */ |
| if (unlikely((s32)(end - (cm->protocol_state.tcp.end |
| - counter_cm->protocol_state.tcp.max_win - 1)) < 0)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("seq: %u before left edge: %u\n", |
| end, cm->protocol_state.tcp.end - counter_cm->protocol_state.tcp.max_win - 1); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE); |
| return 0; |
| } |
| |
| /* |
| * Are we acking data that is to the right of what has been sent? |
| */ |
| if (unlikely((s32)(sack - (counter_cm->protocol_state.tcp.end + 1)) > 0)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("ack: %u exceeds right edge: %u\n", |
| sack, counter_cm->protocol_state.tcp.end + 1); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE); |
| return 0; |
| } |
| |
| /* |
| * Is our ack too far before the left hand edge of the window? |
| */ |
| left_edge = counter_cm->protocol_state.tcp.end |
| - cm->protocol_state.tcp.max_win |
| - SFE_IPV4_TCP_MAX_ACK_WINDOW |
| - 1; |
| if (unlikely((s32)(sack - left_edge) < 0)) { |
| struct sfe_ipv4_connection *c = cm->connection; |
| spin_lock_bh(&si->lock); |
| ret = sfe_ipv4_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("ack: %u before left edge: %u\n", sack, left_edge); |
| if (ret) { |
| sfe_ipv4_flush_connection(si, c, SFE_SYNC_REASON_FLUSH); |
| } |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE); |
| return 0; |
| } |
| |
| /* |
| * Have we just seen the largest window size yet for this connection? If yes |
| * then we need to record the new value. |
| */ |
| scaled_win = ntohs(tcph->window) << cm->protocol_state.tcp.win_scale; |
| scaled_win += (sack - ack); |
| if (unlikely(cm->protocol_state.tcp.max_win < scaled_win)) { |
| cm->protocol_state.tcp.max_win = scaled_win; |
| } |
| |
| /* |
| * If our sequence and/or ack numbers have advanced then record the new state. |
| */ |
| if (likely((s32)(end - cm->protocol_state.tcp.end) >= 0)) { |
| cm->protocol_state.tcp.end = end; |
| } |
| |
| max_end = sack + scaled_win; |
| if (likely((s32)(max_end - counter_cm->protocol_state.tcp.max_end) >= 0)) { |
| counter_cm->protocol_state.tcp.max_end = max_end; |
| } |
| } |
| |
| /* |
| * Check if skb was cloned. If it was, unshare it. Because |
| * the data area is going to be written in this path and we don't want to |
| * change the cloned skb's data section. |
| */ |
| if (unlikely(skb_cloned(skb))) { |
| DEBUG_TRACE("%px: skb is a cloned skb\n", skb); |
| skb = skb_unshare(skb, GFP_ATOMIC); |
| if (!skb) { |
| DEBUG_WARN("Failed to unshare the cloned skb\n"); |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| /* |
| * Update the iph and tcph pointers with the unshared skb's data area. |
| */ |
| iph = (struct iphdr *)skb->data; |
| tcph = (struct tcphdr *)(skb->data + ihl); |
| } |
| |
| /* |
| * Check if skb has enough headroom to write L2 headers |
| */ |
| if (unlikely(skb_headroom(skb) < cm->l2_hdr_size)) { |
| rcu_read_unlock(); |
| DEBUG_WARN("%px: Not enough headroom: %u\n", skb, skb_headroom(skb)); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_NO_HEADROOM); |
| return 0; |
| } |
| |
| /* |
| * For PPPoE packets, match server MAC and session id |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PPPOE_DECAP)) { |
| struct ethhdr *eth; |
| bool pppoe_match; |
| |
| if (unlikely(!sfe_l2_parse_flag_check(l2_info, SFE_L2_PARSE_FLAGS_PPPOE_INGRESS))) { |
| rcu_read_unlock(); |
| DEBUG_TRACE("%px: PPPoE header not present in packet for PPPoE rule\n", skb); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INCORRECT_PPPOE_PARSING); |
| return 0; |
| } |
| |
| eth = eth_hdr(skb); |
| |
| pppoe_match = (cm->pppoe_session_id == sfe_l2_pppoe_session_id_get(l2_info)) && |
| ether_addr_equal((u8*)cm->pppoe_remote_mac, (u8 *)eth->h_source); |
| |
| if (unlikely(!pppoe_match)) { |
| DEBUG_TRACE("%px: PPPoE session ID %d and %d or MAC %pM and %pM did not match\n", |
| skb, cm->pppoe_session_id, sfe_l2_pppoe_session_id_get(l2_info), |
| cm->pppoe_remote_mac, eth->h_source); |
| rcu_read_unlock(); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_INVALID_PPPOE_SESSION); |
| return 0; |
| } |
| |
| skb->protocol = htons(l2_info->protocol); |
| this_cpu_inc(si->stats_pcpu->pppoe_decap_packets_forwarded64); |
| } else if (unlikely(sfe_l2_parse_flag_check(l2_info, SFE_L2_PARSE_FLAGS_PPPOE_INGRESS))) { |
| |
| /* |
| * If packet contains PPPoE header but CME doesn't contain PPPoE flag yet we are exceptioning |
| * the packet to linux |
| */ |
| if (unlikely(!bridge_flow)) { |
| rcu_read_unlock(); |
| DEBUG_TRACE("%px: CME doesn't contain PPPoE flag but packet has PPPoE header\n", skb); |
| sfe_ipv4_exception_stats_inc(si, SFE_IPV4_EXCEPTION_EVENT_PPPOE_NOT_SET_IN_CME); |
| return 0; |
| } |
| |
| /* |
| * For bridged flows when packet contains PPPoE header, restore the header back and forward |
| * to xmit interface |
| */ |
| __skb_push(skb, PPPOE_SES_HLEN); |
| this_cpu_inc(si->stats_pcpu->pppoe_bridge_packets_forwarded64); |
| } |
| |
| /* |
| * From this point on we're good to modify the packet. |
| */ |
| |
| /* |
| * For PPPoE flows, add PPPoE header before L2 header is added. |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PPPOE_ENCAP)) { |
| sfe_pppoe_add_header(skb, cm->pppoe_session_id, PPP_IP); |
| this_cpu_inc(si->stats_pcpu->pppoe_encap_packets_forwarded64); |
| } |
| |
| /* |
| * Update DSCP |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_DSCP_REMARK)) { |
| iph->tos = (iph->tos & SFE_IPV4_DSCP_MASK) | cm->dscp; |
| } |
| |
| /* |
| * Decrement our TTL. |
| */ |
| if (likely(!bridge_flow)) { |
| iph->ttl = ttl - 1; |
| } |
| |
| /* |
| * Enable HW csum if rx checksum is verified and xmit interface is CSUM offload capable. |
| * Note: If L4 csum at Rx was found to be incorrect, we (router) should use incremental L4 checksum here |
| * so that HW does not re-calculate/replace the L4 csum |
| */ |
| hw_csum = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_CSUM_OFFLOAD) && (skb->ip_summed == CHECKSUM_UNNECESSARY); |
| |
| /* |
| * Do we have to perform translations of the source address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_XLATE_SRC)) { |
| u16 tcp_csum; |
| u32 sum; |
| |
| iph->saddr = cm->xlate_src_ip; |
| tcph->source = cm->xlate_src_port; |
| |
| if (unlikely(!hw_csum)) { |
| tcp_csum = tcph->check; |
| if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
| sum = tcp_csum + cm->xlate_src_partial_csum_adjustment; |
| } else { |
| sum = tcp_csum + cm->xlate_src_csum_adjustment; |
| } |
| |
| sum = (sum & 0xffff) + (sum >> 16); |
| tcph->check = (u16)sum; |
| } |
| } |
| |
| /* |
| * Do we have to perform translations of the destination address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_XLATE_DEST)) { |
| u16 tcp_csum; |
| u32 sum; |
| |
| iph->daddr = cm->xlate_dest_ip; |
| tcph->dest = cm->xlate_dest_port; |
| |
| if (unlikely(!hw_csum)) { |
| tcp_csum = tcph->check; |
| if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
| sum = tcp_csum + cm->xlate_dest_partial_csum_adjustment; |
| } else { |
| sum = tcp_csum + cm->xlate_dest_csum_adjustment; |
| } |
| |
| sum = (sum & 0xffff) + (sum >> 16); |
| tcph->check = (u16)sum; |
| } |
| } |
| |
| /* |
| * If HW checksum offload is not possible, full L3 checksum and incremental L4 checksum |
| * are used to update the packet. Setting ip_summed to CHECKSUM_UNNECESSARY ensures checksum is |
| * not recalculated further in packet path. |
| */ |
| if (likely(hw_csum)) { |
| skb->ip_summed = CHECKSUM_PARTIAL; |
| } else { |
| iph->check = sfe_ipv4_gen_ip_csum(iph); |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| |
| /* |
| * Update traffic stats. |
| */ |
| atomic_inc(&cm->rx_packet_count); |
| atomic_add(len, &cm->rx_byte_count); |
| #ifdef CONFIG_NETFILTER_CP_FLOWSTATS |
| atomic64_inc(&cm->fs_rx_packet_count); |
| atomic64_add(len, &cm->fs_rx_byte_count); |
| #endif |
| |
| |
| xmit_dev = cm->xmit_dev; |
| skb->dev = xmit_dev; |
| |
| /* |
| * Check to see if we need to add VLAN tags |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_INSERT_EGRESS_VLAN_TAG)) { |
| sfe_vlan_add_tag(skb, cm->egress_vlan_hdr_cnt, cm->egress_vlan_hdr); |
| } |
| |
| /* |
| * Check to see if we need to write an Ethernet header. |
| */ |
| if (likely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) { |
| if (unlikely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) { |
| dev_hard_header(skb, xmit_dev, ntohs(skb->protocol), |
| cm->xmit_dest_mac, cm->xmit_src_mac, len); |
| } else { |
| /* |
| * For the simple case we write this really fast. |
| */ |
| struct ethhdr *eth = (struct ethhdr *)__skb_push(skb, ETH_HLEN); |
| |
| eth->h_proto = skb->protocol; |
| |
| ether_addr_copy((u8 *)eth->h_dest, (u8 *)cm->xmit_dest_mac); |
| ether_addr_copy((u8 *)eth->h_source, (u8 *)cm->xmit_src_mac); |
| } |
| } |
| |
| /* |
| * Update priority of skb. |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_PRIORITY_REMARK)) { |
| skb->priority = cm->priority; |
| } |
| |
| /* |
| * Mark outgoing packet |
| */ |
| if (unlikely(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_MARK)) { |
| skb->mark = cm->mark; |
| /* |
| * Update service class stats if SAWF is valid. |
| */ |
| if (likely(cm->sawf_valid)) { |
| service_class_id = SFE_GET_SAWF_SERVICE_CLASS(cm->mark); |
| sfe_ipv4_service_class_stats_inc(si, service_class_id, len); |
| } |
| } |
| |
| /* |
| * For the first packets, check if it could got fast xmit. |
| */ |
| if (unlikely(!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_FLOW_CHECKED) |
| && (cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_DEV_ADMISSION))){ |
| cm->features = netif_skb_features(skb); |
| if (likely(sfe_fast_xmit_check(skb, cm->features))) { |
| cm->flags |= SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT; |
| } |
| cm->flags |= SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT_FLOW_CHECKED; |
| } |
| features = cm->features; |
| fast_xmit = !!(cm->flags & SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT); |
| |
| rcu_read_unlock(); |
| |
| this_cpu_inc(si->stats_pcpu->packets_forwarded64); |
| |
| /* |
| * We do per packet condition check before we could fast xmit the |
| * packet. |
| */ |
| if (likely(fast_xmit)) { |
| if (likely(!skb_is_gso(skb))) { |
| if (likely(dev_fast_xmit(skb, xmit_dev, features))) { |
| this_cpu_inc(si->stats_pcpu->packets_fast_xmited64); |
| return 1; |
| } |
| } else { |
| cm->flags &= ~SFE_IPV4_CONNECTION_MATCH_FLAG_FAST_XMIT; |
| DEBUG_TRACE("%px: fast xmit disabled for xmit dev %s", skb, xmit_dev->name); |
| } |
| } |
| |
| /* |
| * We're going to check for GSO flags when we transmit the packet so |
| * start fetching the necessary cache line now. |
| */ |
| prefetch(skb_shinfo(skb)); |
| |
| /* |
| * Mark that this packet has been fast forwarded. |
| */ |
| skb->fast_forwarded = 1; |
| |
| /* |
| * Send the packet on its way. |
| */ |
| dev_queue_xmit(skb); |
| |
| return 1; |
| } |