fdt: Add basic support for decoding GPIO definitions

This adds some support into fdtdec for reading GPIO definitions from
the fdt. We permit up to FDT_GPIO_MAX GPIOs in the system. Each GPIO
is of the form:

gpio-function-name = <phandle gpio_num flags>;

where:

phandle is a pointer to the GPIO node
gpio_num is the number of the GPIO (0 to 223)
flags is a flag, as follows:

   bit    meaning
   0      0=polarity normal, 1=active low (inverted)

An example is:

enable-propounder-gpios = <&gpio 43 0>;

which means that GPIO 43 is used to enable the propounder (setting the
GPIO high), or that you can detect that the propounder is enabled by
checking if the GPIO is high (the fdt does not indicate input/output).

Two main functions are provided:

fdtdec_decode_gpio() reads a GPIO property from an fdt node and decodes it
into a structure.

fdtdec_setup_gpio() sets up the GPIO by calling gpio_request for you.

Both functions can cope with the property being missing, which is taken to
mean that that GPIO function is not available or is not needed.

[For reference, from Stephen Warren <swarren@nvidia.com>. It may be that
we add this extra complexity later if needed:

The correct way to parse such a GPIO property in general is:

* Read the first cell.
* Find the node referenced by the phandle (the controller).
* Ensure property gpio-controller is present in the controller node.
* Read property #gpio-cells from the controller node.
* Extract #gpio-cells from the original property.
* Keep processing more cells from the original property; there may be
multiple GPIOs listed.

According to the binding documentation in the Linux kernel, Samsung
Exynos4 doesn't use this format, and while all other chips do have a
flags cell, about 50% of the controllers indicate the cell is unused.
]

Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Warren <twarren@nvidia.com>
diff --git a/include/fdtdec.h b/include/fdtdec.h
index a446700..2f3842d 100644
--- a/include/fdtdec.h
+++ b/include/fdtdec.h
@@ -61,6 +61,23 @@
 	COMPAT_COUNT,
 };
 
+/* GPIOs are numbered from 0 */
+enum {
+	FDT_GPIO_NONE = -1U,	/* an invalid GPIO used to end our list */
+
+	FDT_GPIO_ACTIVE_LOW = 1 << 0,	/* input is active low (else high) */
+};
+
+/* This is the state of a GPIO pin as defined by the fdt */
+struct fdt_gpio_state {
+	const char *name;	/* name of the fdt property defining this */
+	uint gpio;		/* GPIO number, or FDT_GPIO_NONE if none */
+	u8 flags;		/* FDT_GPIO_... flags */
+};
+
+/* This tells us whether a fdt_gpio_state record is valid or not */
+#define fdt_gpio_isvalid(x) ((x)->gpio != FDT_GPIO_NONE)
+
 /**
  * Find the next numbered alias for a peripheral. This is used to enumerate
  * all the peripherals of a certain type.
@@ -227,3 +244,31 @@
  * @return 1 if the properly is present; 0 if it isn't present
  */
 int fdtdec_get_bool(const void *blob, int node, const char *prop_name);
+
+/**
+ * Decode a single GPIOs from an FDT.
+ *
+ * If the property is not found, then the GPIO structure will still be
+ * initialised, with gpio set to FDT_GPIO_NONE. This makes it easy to
+ * provide optional GPIOs.
+ *
+ * @param blob		FDT blob to use
+ * @param node		Node to look at
+ * @param prop_name	Node property name
+ * @param gpio		gpio elements to fill from FDT
+ * @return 0 if ok, -FDT_ERR_NOTFOUND if the property is missing.
+ */
+int fdtdec_decode_gpio(const void *blob, int node, const char *prop_name,
+		struct fdt_gpio_state *gpio);
+
+/**
+ * Set up a GPIO pin according to the provided gpio information. At present this
+ * just requests the GPIO.
+ *
+ * If the gpio is FDT_GPIO_NONE, no action is taken. This makes it easy to
+ * deal with optional GPIOs.
+ *
+ * @param gpio		GPIO info to use for set up
+ * @return 0 if all ok or gpio was FDT_GPIO_NONE; -1 on error
+ */
+int fdtdec_setup_gpio(struct fdt_gpio_state *gpio);