| /* |
| ************************************************************************** |
| * Copyright (c) 2013, 2015-2019 The Linux Foundation. All rights reserved. |
| * Permission to use, copy, modify, and/or distribute this software for |
| * any purpose with or without fee is hereby granted, provided that the |
| * above copyright notice and this permission notice appear in all copies. |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| ************************************************************************** |
| */ |
| |
| /* |
| * nss_freq.c |
| * NSS frequency change APIs |
| */ |
| |
| #include "nss_stats.h" |
| #include "nss_tx_rx_common.h" |
| #include "nss_freq_log.h" |
| #include "nss_freq_stats.h" |
| |
| #define NSS_ACK_STARTED 0 |
| #define NSS_ACK_FINISHED 1 |
| |
| #define NSS_FREQ_USG_AVG_FREQUENCY 1000 /* Time in ms over which CPU Usage is averaged */ |
| #define NSS_FREQ_CPU_USAGE_MAX_BOUND 75 /* MAX CPU usage equivalent to running max instructions excluding all the hazards */ |
| #define NSS_FREQ_CPU_USAGE_MAX 100 /* MAX CPU usage equivalent to running max instructions including all the hazards. |
| This is also the ideal maximum usage value. */ |
| |
| /* |
| * Spinlock to protect the global data structure nss_freq_cpu_status |
| */ |
| DEFINE_SPINLOCK(nss_freq_cpu_usage_lock); |
| |
| /* |
| * At any point, this object has the latest data about CPU utilization. |
| */ |
| struct nss_freq_cpu_usage nss_freq_cpu_status; |
| |
| extern struct nss_runtime_sampling nss_runtime_samples; |
| extern struct workqueue_struct *nss_wq; |
| extern nss_work_t *nss_work; |
| |
| /* |
| * nss_freq_msg_init() |
| * Initialize the freq message |
| */ |
| static void nss_freq_msg_init(struct nss_corefreq_msg *ncm, uint16_t if_num, uint32_t type, uint32_t len, |
| void *cb, void *app_data) |
| { |
| nss_cmn_msg_init(&ncm->cm, if_num, type, len, cb, app_data); |
| } |
| |
| /* |
| * nss_freq_handle_ack() |
| * Handle the nss ack of frequency change. |
| */ |
| static void nss_freq_handle_ack(struct nss_ctx_instance *nss_ctx, struct nss_freq_msg *nfa) |
| { |
| if (nfa->ack == NSS_ACK_STARTED) { |
| /* |
| * NSS finished start noficiation - HW change clocks and send end notification |
| */ |
| nss_info("%p: NSS ACK Received: %d - Change HW CLK/Send Finish to NSS\n", nss_ctx, nfa->ack); |
| |
| return; |
| } |
| |
| if (nfa->ack == NSS_ACK_FINISHED) { |
| /* |
| * NSS finished end notification - Done |
| */ |
| nss_info("%p: NSS ACK Received: %d - End Notification ACK - Running: %dmhz\n", nss_ctx, nfa->ack, nfa->freq_current); |
| nss_runtime_samples.freq_scale_ready = 1; |
| return; |
| } |
| |
| nss_info("%p: NSS had an error - Running: %dmhz\n", nss_ctx, nfa->freq_current); |
| } |
| |
| /* |
| * nss_freq_queue_work() |
| * Queue Work to the NSS Workqueue based on Current index. |
| */ |
| static bool nss_freq_queue_work(void) |
| { |
| nss_freq_scales_t index = nss_runtime_samples.freq_scale_index; |
| |
| BUG_ON(!nss_wq); |
| |
| nss_info("frequency:%d index:%d sample count:%x\n", nss_runtime_samples.freq_scale[index].frequency, |
| index, nss_runtime_samples.average); |
| |
| /* |
| * schedule freq change with autoscale ON |
| */ |
| return nss_freq_sched_change(index, true); |
| } |
| |
| /* |
| * nss_freq_get_cpu_usage() |
| * Returns the CPU usage value in percentage at any instance for a required core. Returns -1 in case of an error. |
| * |
| * Calculation frequency is 1 second. Range of usage is 0-100. This API returns -1 if CPU usage is requested for core 1. |
| * TODO: Extend this API to get CPU usage for core 1. |
| */ |
| int8_t nss_freq_get_cpu_usage(uint32_t core_id) |
| { |
| int8_t usage; |
| |
| if (core_id == 0) { |
| spin_lock_bh(&nss_freq_cpu_usage_lock); |
| usage = nss_freq_cpu_status.used; |
| spin_unlock_bh(&nss_freq_cpu_usage_lock); |
| |
| return usage; |
| } |
| |
| nss_warning("CPU usage functionality is not supported for core %u\n", core_id); |
| return -1; |
| } |
| |
| /* |
| * nss_freq_compute_cpu_usage() |
| * Computes the CPU utilization and maximum-minumun cpu utilization since boot. |
| */ |
| static void nss_freq_compute_cpu_usage(struct nss_ctx_instance *nss_ctx, uint32_t inst_cnt) |
| { |
| uint32_t estimated_ins_capacity; |
| uint8_t actual_usage; |
| uint8_t usage; |
| |
| spin_lock_bh(&nss_freq_cpu_usage_lock); |
| |
| /* |
| * If actual CPU usage turns up higher than 100, there is something wrong with the received data. |
| * Upper bound average varies between 80% usage to 100% usage. |
| * |
| * TODO: To improve estimation algorithm for calculating how many actual instructions are executed. |
| */ |
| actual_usage = (inst_cnt * 100) / nss_freq_cpu_status.max_ins; |
| if ((actual_usage > NSS_FREQ_CPU_USAGE_MAX) || (actual_usage == 0)) { |
| spin_unlock_bh(&nss_freq_cpu_usage_lock); |
| return; |
| } |
| |
| /* |
| * Simpler version of below math: This is calculating the reduced number of maximum instructions |
| * estimated_ins_capacity = nss_freq_cpu_status.avg_up% of nss_freq_cpu_status.max_ins |
| * Calculating usage percentage: usage = (inst_cnt/estimated_ins_capacity) * 100 |
| */ |
| estimated_ins_capacity = ((NSS_FREQ_CPU_USAGE_MAX_BOUND * nss_freq_cpu_status.max_ins) / 100); |
| if (estimated_ins_capacity == 0) { |
| spin_unlock_bh(&nss_freq_cpu_usage_lock); |
| return; |
| } |
| usage = (inst_cnt * 100) / estimated_ins_capacity; |
| |
| /* |
| * Average the instructions over NSS_FREQ_USG_AVG_FREQUENCY ms |
| */ |
| if (nss_freq_cpu_status.avg_ctr == NSS_FREQ_USG_AVG_FREQUENCY) { |
| nss_freq_cpu_status.used = nss_freq_cpu_status.total / NSS_FREQ_USG_AVG_FREQUENCY; |
| |
| /* |
| * Due to our estimation, this could go beyond the end limit of 100% |
| */ |
| if (nss_freq_cpu_status.used > NSS_FREQ_CPU_USAGE_MAX) { |
| nss_freq_cpu_status.used = NSS_FREQ_CPU_USAGE_MAX; |
| } |
| |
| /* |
| * Getting the all time max and min usage |
| */ |
| if (nss_freq_cpu_status.used > nss_freq_cpu_status.max) { |
| nss_freq_cpu_status.max = nss_freq_cpu_status.used; |
| } |
| |
| if (nss_freq_cpu_status.used < nss_freq_cpu_status.min) { |
| nss_freq_cpu_status.min = nss_freq_cpu_status.used; |
| } |
| |
| nss_trace("%p: max_instructions:%d cpu_usage:%d max_usage:%d min_usage:%d\n", nss_ctx, |
| nss_freq_cpu_status.max_ins, nss_freq_cpu_status.used, nss_freq_cpu_status.max, nss_freq_cpu_status.min); |
| |
| nss_freq_cpu_status.total = 0; |
| nss_freq_cpu_status.avg_ctr = 0; |
| } |
| |
| nss_freq_cpu_status.total += usage; |
| nss_freq_cpu_status.avg_ctr++; |
| |
| spin_unlock_bh(&nss_freq_cpu_usage_lock); |
| } |
| |
| /* |
| * nss_freq_scale_frequency() |
| * Frequency scaling algorithm to scale frequency. |
| */ |
| void nss_freq_scale_frequency(struct nss_ctx_instance *nss_ctx, uint32_t inst_cnt) |
| { |
| uint32_t b_index; |
| uint32_t minimum; |
| uint32_t maximum; |
| uint32_t index = nss_runtime_samples.freq_scale_index; |
| |
| /* |
| * We do not accept any statistics if auto scaling is off, |
| * we start with a fresh sample set when scaling is |
| * eventually turned on. |
| */ |
| if (!nss_cmd_buf.auto_scale && nss_runtime_samples.initialized) { |
| return; |
| } |
| |
| /* |
| * Delete Current Index Value, Add New Value, Recalculate new Sum, Shift Index |
| */ |
| b_index = nss_runtime_samples.buffer_index; |
| |
| nss_runtime_samples.sum = nss_runtime_samples.sum - nss_runtime_samples.buffer[b_index]; |
| nss_runtime_samples.buffer[b_index] = inst_cnt; |
| nss_runtime_samples.sum = nss_runtime_samples.sum + nss_runtime_samples.buffer[b_index]; |
| nss_runtime_samples.buffer_index = (b_index + 1) & NSS_SAMPLE_BUFFER_MASK; |
| |
| if (nss_runtime_samples.sample_count < NSS_SAMPLE_BUFFER_SIZE) { |
| nss_runtime_samples.sample_count++; |
| |
| /* |
| * Samples Are All Ready, Start Auto Scale |
| */ |
| if (nss_runtime_samples.sample_count == NSS_SAMPLE_BUFFER_SIZE ) { |
| nss_cmd_buf.auto_scale = 1; |
| nss_runtime_samples.freq_scale_ready = 1; |
| nss_runtime_samples.initialized = 1; |
| } |
| |
| return; |
| } |
| |
| nss_runtime_samples.average = nss_runtime_samples.sum / nss_runtime_samples.sample_count; |
| |
| /* |
| * Print out statistics every 10 samples |
| */ |
| if (nss_runtime_samples.message_rate_limit++ >= NSS_MESSAGE_RATE_LIMIT) { |
| nss_trace("%p: Running AVG:%x Sample:%x Divider:%d\n", nss_ctx, nss_runtime_samples.average, inst_cnt, nss_runtime_samples.sample_count); |
| nss_trace("%p: Current Frequency Index:%d\n", nss_ctx, index); |
| nss_trace("%p: Auto Scale Ready:%d Auto Scale:%d\n", nss_ctx, nss_runtime_samples.freq_scale_ready, nss_cmd_buf.auto_scale); |
| nss_trace("%p: Current Rate:%x\n", nss_ctx, nss_runtime_samples.average); |
| |
| nss_runtime_samples.message_rate_limit = 0; |
| } |
| |
| /* |
| * Don't scale if we are not ready or auto scale is disabled. |
| */ |
| if ((nss_runtime_samples.freq_scale_ready != 1) || (nss_cmd_buf.auto_scale != 1)) { |
| return; |
| } |
| |
| /* |
| * Scale Algorithmn |
| * Algorithmn will limit how fast it will transition each scale, by the number of samples seen. |
| * If any sample is out of scale during the idle count, the rate_limit will reset to 0. |
| * Scales are limited to the max number of cpu scales we support. |
| */ |
| if (nss_runtime_samples.freq_scale_rate_limit_up++ >= NSS_FREQUENCY_SCALE_RATE_LIMIT_UP) { |
| maximum = nss_runtime_samples.freq_scale[index].maximum; |
| if ((nss_runtime_samples.average > maximum) && (index < (NSS_FREQ_MAX_SCALE - 1))) { |
| nss_runtime_samples.freq_scale_index++; |
| nss_runtime_samples.freq_scale_ready = 0; |
| |
| /* |
| * If fail to increase frequency, decrease index |
| */ |
| nss_trace("frequency increase to %d inst:%x > maximum:%x\n", nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency, inst_cnt, maximum); |
| if (!nss_freq_queue_work()) { |
| nss_runtime_samples.freq_scale_index--; |
| } |
| } |
| |
| /* |
| * Reset the down scale counter based on running average, so can idle properly |
| */ |
| if (nss_runtime_samples.average > maximum) { |
| nss_trace("down scale timeout reset running average:%x\n", nss_runtime_samples.average); |
| nss_runtime_samples.freq_scale_rate_limit_down = 0; |
| } |
| |
| nss_runtime_samples.freq_scale_rate_limit_up = 0; |
| return; |
| } |
| |
| if (nss_runtime_samples.freq_scale_rate_limit_down++ >= NSS_FREQUENCY_SCALE_RATE_LIMIT_DOWN) { |
| minimum = nss_runtime_samples.freq_scale[index].minimum; |
| if ((nss_runtime_samples.average < minimum) && (index > 0)) { |
| nss_runtime_samples.freq_scale_index--; |
| nss_runtime_samples.freq_scale_ready = 0; |
| |
| /* |
| * If fail to decrease frequency, increase index |
| */ |
| nss_trace("frequency decrease to %d inst:%x < minumum:%x\n", nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency, nss_runtime_samples.average, minimum); |
| if (!nss_freq_queue_work()) { |
| nss_runtime_samples.freq_scale_index++; |
| } |
| } |
| nss_runtime_samples.freq_scale_rate_limit_down = 0; |
| return; |
| } |
| } |
| |
| /* |
| * nss_freq_handle_core_stats() |
| * Handle the core stats. |
| */ |
| static void nss_freq_handle_core_stats(struct nss_ctx_instance *nss_ctx, struct nss_core_stats *core_stats) |
| { |
| uint32_t inst_cnt = core_stats->inst_cnt_total; |
| |
| /* |
| * compute CPU utilization by using the instruction count |
| */ |
| nss_freq_compute_cpu_usage(nss_ctx, inst_cnt); |
| |
| /* |
| * Perform frequency scaling |
| */ |
| nss_freq_scale_frequency(nss_ctx, inst_cnt); |
| } |
| |
| /* |
| * nss_freq_interface_handler() |
| * Handle NSS -> HLOS messages for Frequency Changes and Statistics. |
| */ |
| static void nss_freq_interface_handler(struct nss_ctx_instance *nss_ctx, struct nss_cmn_msg *ncm, __attribute__((unused))void *app_data) { |
| |
| struct nss_corefreq_msg *ncfm = (struct nss_corefreq_msg *)ncm; |
| |
| /* |
| * Trace Messages |
| */ |
| nss_freq_log_rx_msg(ncfm); |
| |
| switch (ncfm->cm.type) { |
| case COREFREQ_METADATA_TYPE_TX_FREQ_ACK: |
| nss_freq_handle_ack(nss_ctx, &ncfm->msg.nfc); |
| break; |
| case COREFREQ_METADATA_TYPE_TX_CORE_STATS: |
| nss_freq_handle_core_stats(nss_ctx, &ncfm->msg.ncs); |
| break; |
| |
| default: |
| if (ncm->response != NSS_CMN_RESPONSE_ACK) { |
| /* |
| * Check response |
| */ |
| nss_info("%p: Received response %d for type %d, interface %d", nss_ctx, ncm->response, ncm->type, ncm->interface); |
| } |
| } |
| } |
| |
| /* |
| * nss_freq_change() |
| * NSS frequency change API. |
| */ |
| nss_tx_status_t nss_freq_change(struct nss_ctx_instance *nss_ctx, uint32_t eng, uint32_t stats_enable, uint32_t start_or_end) |
| { |
| struct nss_corefreq_msg ncm; |
| struct nss_freq_msg *nfc; |
| |
| nss_info("%p: frequency changing to: %d\n", nss_ctx, eng); |
| |
| /* |
| * Update the max instruction count for a frequency during down scaling. |
| * Better to update this as late as possible in the frequency update call. |
| */ |
| spin_lock_bh(&nss_freq_cpu_usage_lock); |
| nss_freq_cpu_status.max_ins = eng / 1000; |
| spin_unlock_bh(&nss_freq_cpu_usage_lock); |
| |
| nss_freq_msg_init(&ncm, NSS_COREFREQ_INTERFACE, NSS_TX_METADATA_TYPE_NSS_FREQ_CHANGE, |
| sizeof(struct nss_freq_msg), NULL, NULL); |
| nfc = &ncm.msg.nfc; |
| nfc->frequency = eng; |
| nfc->start_or_end = start_or_end; |
| nfc->stats_enable = stats_enable; |
| |
| return nss_core_send_cmd(nss_ctx, &ncm, sizeof(ncm), NSS_NBUF_PAYLOAD_SIZE); |
| } |
| |
| /* |
| * nss_freq_sched_change() |
| * Schedule a frequency work. |
| */ |
| bool nss_freq_sched_change(nss_freq_scales_t index, bool auto_scale) |
| { |
| if (index >= NSS_FREQ_MAX_SCALE) { |
| nss_info("NSS freq scale beyond limit\n"); |
| return false; |
| } |
| |
| nss_work = (nss_work_t *)kmalloc(sizeof(nss_work_t), GFP_ATOMIC); |
| if (!nss_work) { |
| nss_info("NSS Freq WQ kmalloc fail"); |
| return false; |
| } |
| |
| INIT_WORK((struct work_struct *)nss_work, nss_hal_wq_function); |
| |
| nss_work->frequency = nss_runtime_samples.freq_scale[index].frequency; |
| |
| nss_work->stats_enable = auto_scale; |
| nss_cmd_buf.current_freq = nss_work->frequency; |
| queue_work(nss_wq, (struct work_struct *)nss_work); |
| |
| return true; |
| } |
| |
| /* |
| * nss_freq_get_context() |
| * Get NSS context instance for frequency. |
| */ |
| struct nss_ctx_instance *nss_freq_get_context(void) |
| { |
| return (struct nss_ctx_instance *)&nss_top_main.nss[nss_top_main.frequency_handler_id]; |
| } |
| EXPORT_SYMBOL(nss_freq_get_context); |
| |
| /* |
| * nss_freq_register_handler() |
| */ |
| void nss_freq_register_handler(void) |
| { |
| struct nss_ctx_instance *nss_ctx = nss_freq_get_context(); |
| nss_core_register_handler(nss_ctx, NSS_COREFREQ_INTERFACE, nss_freq_interface_handler, NULL); |
| } |
| |
| /* |
| * nss_freq_cpu_usage_init() |
| * Initialize cpu usage computing. |
| * |
| * TODO: Add support to retrieve CPU usage even if frequency scaling is disabled. |
| */ |
| void nss_freq_init_cpu_usage(void) |
| { |
| nss_freq_cpu_status.used = 0; |
| nss_freq_cpu_status.max_ins = nss_runtime_samples.freq_scale[nss_runtime_samples.freq_scale_index].frequency / 1000; |
| nss_freq_cpu_status.total = 0; |
| nss_freq_cpu_status.max = 0; /* Initial value is 0 to capture the highest most value during the run */ |
| nss_freq_cpu_status.min = NSS_FREQ_CPU_USAGE_MAX; /* Initial value is 100 to capture the lowest most value during the run */ |
| nss_freq_cpu_status.avg_up = NSS_FREQ_CPU_USAGE_MAX_BOUND; |
| nss_freq_cpu_status.avg_ctr = 0; |
| |
| nss_freq_stats_dentry_create(); |
| } |