The files associated with the VPP network stack layer are located in the ./src/vnet folder. The Network Stack Layer is basically an instantiation of the code in the other layers. This layer has a vnet library that provides vectorized layer-2 and 3 networking graph nodes, a packet generator, and a packet tracer.
In terms of building a packet processing application, vnet provides a platform-independent subgraph to which one connects a couple of device-driver nodes.
Typical RX connections include "ethernet-input" [full software classification, feeds ipv4-input, ipv6-input, arp-input etc.] and "ipv4-input-no-checksum" [if hardware can classify, perform ipv4 header checksum].
List of features and layer areas that VNET works with:
Over the 15 years, multiple coding styles have emerged: a single/dual/quad loop coding model (with variations) and a fully-pipelined coding model.
The single/dual/quad loop model variations conveniently solve problems where the number of items to process is not known in advance: typical hardware RX-ring processing. This coding style is also very effective when a given node will not need to cover a complex set of dependent reads.
Here is an quad/single loop which can leverage up-to-avx512 SIMD vector units to convert buffer indices to buffer pointers:
static uword simulated_ethernet_interface_tx (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame) { u32 n_left_from, *from; u32 next_index = 0; u32 n_bytes; u32 thread_index = vm->thread_index; vnet_main_t *vnm = vnet_get_main (); vnet_interface_main_t *im = &vnm->interface_main; vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b; u16 nexts[VLIB_FRAME_SIZE], *next; n_left_from = frame->n_vectors; from = vlib_frame_args (frame); /* * Convert up to VLIB_FRAME_SIZE indices in "from" to * buffer pointers in bufs[] */ vlib_get_buffers (vm, from, bufs, n_left_from); b = bufs; next = nexts; /* * While we have at least 4 vector elements (pkts) to process.. */ while (n_left_from >= 4) { /* Prefetch next quad-loop iteration. */ if (PREDICT_TRUE (n_left_from >= 8)) { vlib_prefetch_buffer_header (b[4], STORE); vlib_prefetch_buffer_header (b[5], STORE); vlib_prefetch_buffer_header (b[6], STORE); vlib_prefetch_buffer_header (b[7], STORE); } /* * $$$ Process 4x packets right here... * set next[0..3] to send the packets where they need to go */ do_something_to (b[0]); do_something_to (b[1]); do_something_to (b[2]); do_something_to (b[3]); /* Process the next 0..4 packets */ b += 4; next += 4; n_left_from -= 4; } /* * Clean up 0...3 remaining packets at the end of the incoming frame */ while (n_left_from > 0) { /* * $$$ Process one packet right here... * set next[0..3] to send the packets where they need to go */ do_something_to (b[0]); /* Process the next packet */ b += 1; next += 1; n_left_from -= 1; } /* * Send the packets along their respective next-node graph arcs * Considerable locality of reference is expected, most if not all * packets in the inbound vector will traverse the same next-node * arc */ vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors); return frame->n_vectors; }
Given a packet processing task to implement, it pays to scout around looking for similar tasks, and think about using the same coding pattern. It is not uncommon to recode a given graph node dispatch function several times during performance optimization.
Vlib includes a frame element [packet] trace facility, with a simple vlib cli interface. The cli is straightforward: "trace add input-node-name count".
To trace 100 packets on a typical x86_64 system running the dpdk plugin: "trace add dpdk-input 100". When using the packet generator: "trace add pg-input 100"
Each graph node has the opportunity to capture its own trace data. It is almost always a good idea to do so. The trace capture APIs are simple.
The packet capture APIs snapshoot binary data, to minimize processing at capture time. Each participating graph node initialization provides a vppinfra format-style user function to pretty-print data when required by the VLIB "show trace" command.
Set the VLIB node registration ".format_trace" member to the name of the per-graph node format function.
Here's a simple example:
u8 * my_node_format_trace (u8 * s, va_list * args) { vlib_main_t * vm = va_arg (*args, vlib_main_t *); vlib_node_t * node = va_arg (*args, vlib_node_t *); my_node_trace_t * t = va_arg (*args, my_trace_t *); s = format (s, "My trace data was: %d", t-><whatever>); return s; }
The trace framework hands the per-node format function the data it captured as the packet whizzed by. The format function pretty-prints the data as desired.