crypto-native: refactor GCM code to use generic types
Type: refactor
Change-Id: I76733a9ed362ec60badd22c0fbc2a9c5749da88d
Signed-off-by: Damjan Marion <damarion@cisco.com>
diff --git a/src/plugins/crypto_native/aes.h b/src/plugins/crypto_native/aes.h
index 85d6f79..371f5c4 100644
--- a/src/plugins/crypto_native/aes.h
+++ b/src/plugins/crypto_native/aes.h
@@ -30,6 +30,10 @@
#ifdef __x86_64__
+static const u8x16 byte_mask_scale = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+};
+
static_always_inline u8x16
aes_block_load (u8 * p)
{
@@ -67,131 +71,177 @@
}
static_always_inline u8x16
+aes_byte_mask (u8x16 x, u8 n_bytes)
+{
+ u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
+ __m128i zero = { };
+
+ return (u8x16) _mm_blendv_epi8 (zero, (__m128i) x, (__m128i) mask);
+}
+
+static_always_inline u8x16
+aes_load_partial (u8x16u * p, int n_bytes)
+{
+ ASSERT (n_bytes <= 16);
+#ifdef __AVX512F__
+ __m128i zero = { };
+ return (u8x16) _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p);
+#else
+ return aes_byte_mask (CLIB_MEM_OVERFLOW_LOAD (*, p), n_bytes);
+#endif
+}
+
+static_always_inline void
+aes_store_partial (void *p, u8x16 r, int n_bytes)
+{
+#ifdef __AVX512F__
+ _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, (__m128i) r);
+#else
+ u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
+ _mm_maskmoveu_si128 ((__m128i) r, (__m128i) mask, p);
+#endif
+}
+
+
+static_always_inline u8x16
+aes_encrypt_block (u8x16 block, const u8x16 * round_keys, aes_key_size_t ks)
+{
+ int i;
+ block ^= round_keys[0];
+ for (i = 1; i < AES_KEY_ROUNDS (ks); i += 1)
+ block = aes_enc_round (block, round_keys[i]);
+ return aes_enc_last_round (block, round_keys[i]);
+}
+
+static_always_inline u8x16
aes_inv_mix_column (u8x16 a)
{
return (u8x16) _mm_aesimc_si128 ((__m128i) a);
}
+#define aes_keygen_assist(a, b) \
+ (u8x16) _mm_aeskeygenassist_si128((__m128i) a, b)
+
/* AES-NI based AES key expansion based on code samples from
Intel(r) Advanced Encryption Standard (AES) New Instructions White Paper
(323641-001) */
static_always_inline void
-aes128_key_assist (__m128i * k, __m128i r)
+aes128_key_assist (u8x16 * rk, u8x16 r)
{
- __m128i t = k[-1];
- t ^= _mm_slli_si128 (t, 4);
- t ^= _mm_slli_si128 (t, 4);
- t ^= _mm_slli_si128 (t, 4);
- k[0] = t ^ _mm_shuffle_epi32 (r, 0xff);
+ u8x16 t = rk[-1];
+ t ^= u8x16_word_shift_left (t, 4);
+ t ^= u8x16_word_shift_left (t, 4);
+ t ^= u8x16_word_shift_left (t, 4);
+ rk[0] = t ^ (u8x16) u32x4_shuffle ((u32x4) r, 3, 3, 3, 3);
}
static_always_inline void
-aes128_key_expand (u8x16 * key_schedule, u8 * key)
+aes128_key_expand (u8x16 * rk, u8x16 const *k)
{
- __m128i *k = (__m128i *) key_schedule;
- k[0] = _mm_loadu_si128 ((const __m128i *) key);
- aes128_key_assist (k + 1, _mm_aeskeygenassist_si128 (k[0], 0x01));
- aes128_key_assist (k + 2, _mm_aeskeygenassist_si128 (k[1], 0x02));
- aes128_key_assist (k + 3, _mm_aeskeygenassist_si128 (k[2], 0x04));
- aes128_key_assist (k + 4, _mm_aeskeygenassist_si128 (k[3], 0x08));
- aes128_key_assist (k + 5, _mm_aeskeygenassist_si128 (k[4], 0x10));
- aes128_key_assist (k + 6, _mm_aeskeygenassist_si128 (k[5], 0x20));
- aes128_key_assist (k + 7, _mm_aeskeygenassist_si128 (k[6], 0x40));
- aes128_key_assist (k + 8, _mm_aeskeygenassist_si128 (k[7], 0x80));
- aes128_key_assist (k + 9, _mm_aeskeygenassist_si128 (k[8], 0x1b));
- aes128_key_assist (k + 10, _mm_aeskeygenassist_si128 (k[9], 0x36));
+ rk[0] = k[0];
+ aes128_key_assist (rk + 1, aes_keygen_assist (rk[0], 0x01));
+ aes128_key_assist (rk + 2, aes_keygen_assist (rk[1], 0x02));
+ aes128_key_assist (rk + 3, aes_keygen_assist (rk[2], 0x04));
+ aes128_key_assist (rk + 4, aes_keygen_assist (rk[3], 0x08));
+ aes128_key_assist (rk + 5, aes_keygen_assist (rk[4], 0x10));
+ aes128_key_assist (rk + 6, aes_keygen_assist (rk[5], 0x20));
+ aes128_key_assist (rk + 7, aes_keygen_assist (rk[6], 0x40));
+ aes128_key_assist (rk + 8, aes_keygen_assist (rk[7], 0x80));
+ aes128_key_assist (rk + 9, aes_keygen_assist (rk[8], 0x1b));
+ aes128_key_assist (rk + 10, aes_keygen_assist (rk[9], 0x36));
}
static_always_inline void
-aes192_key_assist (__m128i * r1, __m128i * r2, __m128i key_assist)
+aes192_key_assist (u8x16 * r1, u8x16 * r2, u8x16 key_assist)
{
- __m128i t;
- *r1 ^= t = _mm_slli_si128 (*r1, 0x4);
- *r1 ^= t = _mm_slli_si128 (t, 0x4);
- *r1 ^= _mm_slli_si128 (t, 0x4);
- *r1 ^= _mm_shuffle_epi32 (key_assist, 0x55);
- *r2 ^= _mm_slli_si128 (*r2, 0x4);
- *r2 ^= _mm_shuffle_epi32 (*r1, 0xff);
+ u8x16 t;
+ r1[0] ^= t = u8x16_word_shift_left (r1[0], 4);
+ r1[0] ^= t = u8x16_word_shift_left (t, 4);
+ r1[0] ^= u8x16_word_shift_left (t, 4);
+ r1[0] ^= (u8x16) _mm_shuffle_epi32 ((__m128i) key_assist, 0x55);
+ r2[0] ^= u8x16_word_shift_left (r2[0], 4);
+ r2[0] ^= (u8x16) _mm_shuffle_epi32 ((__m128i) r1[0], 0xff);
}
static_always_inline void
-aes192_key_expand (u8x16 * key_schedule, u8 * key)
+aes192_key_expand (u8x16 * rk, u8x16u const *k)
{
- __m128i r1, r2, *k = (__m128i *) key_schedule;
+ u8x16 r1, r2;
- k[0] = r1 = _mm_loadu_si128 ((__m128i *) key);
- /* load the 24-bytes key as 2 * 16-bytes (and ignore last 8-bytes) */
- k[1] = r2 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) key + 1);
+ rk[0] = r1 = k[0];
+ /* *INDENT-OFF* */
+ rk[1] = r2 = (u8x16) (u64x2) { *(u64 *) (k + 1), 0 };
+ /* *INDENT-ON* */
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x1));
- k[1] = (__m128i) _mm_shuffle_pd ((__m128d) k[1], (__m128d) r1, 0);
- k[2] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x1));
+ rk[1] = (u8x16) _mm_shuffle_pd ((__m128d) rk[1], (__m128d) r1, 0);
+ rk[2] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x2));
- k[3] = r1;
- k[4] = r2;
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x2));
+ rk[3] = r1;
+ rk[4] = r2;
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x4));
- k[4] = (__m128i) _mm_shuffle_pd ((__m128d) k[4], (__m128d) r1, 0);
- k[5] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x4));
+ rk[4] = (u8x16) _mm_shuffle_pd ((__m128d) rk[4], (__m128d) r1, 0);
+ rk[5] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x8));
- k[6] = r1;
- k[7] = r2;
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x8));
+ rk[6] = r1;
+ rk[7] = r2;
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x10));
- k[7] = (__m128i) _mm_shuffle_pd ((__m128d) k[7], (__m128d) r1, 0);
- k[8] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x10));
+ rk[7] = (u8x16) _mm_shuffle_pd ((__m128d) rk[7], (__m128d) r1, 0);
+ rk[8] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x20));
- k[9] = r1;
- k[10] = r2;
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x20));
+ rk[9] = r1;
+ rk[10] = r2;
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x40));
- k[10] = (__m128i) _mm_shuffle_pd ((__m128d) k[10], (__m128d) r1, 0);
- k[11] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x40));
+ rk[10] = (u8x16) _mm_shuffle_pd ((__m128d) rk[10], (__m128d) r1, 0);
+ rk[11] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);
- aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x80));
- k[12] = r1;
+ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x80));
+ rk[12] = r1;
}
static_always_inline void
-aes256_key_assist (__m128i * k, int i, __m128i key_assist)
+aes256_key_assist (u8x16 * rk, int i, u8x16 key_assist)
{
- __m128i r, t;
- k += i;
- r = k[-2];
- r ^= t = _mm_slli_si128 (r, 0x4);
- r ^= t = _mm_slli_si128 (t, 0x4);
- r ^= _mm_slli_si128 (t, 0x4);
- r ^= _mm_shuffle_epi32 (key_assist, 0xff);
- k[0] = r;
+ u8x16 r, t;
+ rk += i;
+ r = rk[-2];
+ r ^= t = u8x16_word_shift_left (r, 4);
+ r ^= t = u8x16_word_shift_left (t, 4);
+ r ^= u8x16_word_shift_left (t, 4);
+ r ^= (u8x16) u32x4_shuffle ((u32x4) key_assist, 3, 3, 3, 3);
+ rk[0] = r;
if (i >= 14)
return;
- r = k[-1];
- r ^= t = _mm_slli_si128 (r, 0x4);
- r ^= t = _mm_slli_si128 (t, 0x4);
- r ^= _mm_slli_si128 (t, 0x4);
- r ^= _mm_shuffle_epi32 (_mm_aeskeygenassist_si128 (k[0], 0x0), 0xaa);
- k[1] = r;
+ key_assist = aes_keygen_assist (rk[0], 0x0);
+ r = rk[-1];
+ r ^= t = u8x16_word_shift_left (r, 4);
+ r ^= t = u8x16_word_shift_left (t, 4);
+ r ^= u8x16_word_shift_left (t, 4);
+ r ^= (u8x16) u32x4_shuffle ((u32x4) key_assist, 2, 2, 2, 2);
+ rk[1] = r;
}
static_always_inline void
-aes256_key_expand (u8x16 * key_schedule, u8 * key)
+aes256_key_expand (u8x16 * rk, u8x16u const *k)
{
- __m128i *k = (__m128i *) key_schedule;
- k[0] = _mm_loadu_si128 ((__m128i *) key);
- k[1] = _mm_loadu_si128 ((__m128i *) (key + 16));
- aes256_key_assist (k, 2, _mm_aeskeygenassist_si128 (k[1], 0x01));
- aes256_key_assist (k, 4, _mm_aeskeygenassist_si128 (k[3], 0x02));
- aes256_key_assist (k, 6, _mm_aeskeygenassist_si128 (k[5], 0x04));
- aes256_key_assist (k, 8, _mm_aeskeygenassist_si128 (k[7], 0x08));
- aes256_key_assist (k, 10, _mm_aeskeygenassist_si128 (k[9], 0x10));
- aes256_key_assist (k, 12, _mm_aeskeygenassist_si128 (k[11], 0x20));
- aes256_key_assist (k, 14, _mm_aeskeygenassist_si128 (k[13], 0x40));
+ rk[0] = k[0];
+ rk[1] = k[1];
+ aes256_key_assist (rk, 2, aes_keygen_assist (rk[1], 0x01));
+ aes256_key_assist (rk, 4, aes_keygen_assist (rk[3], 0x02));
+ aes256_key_assist (rk, 6, aes_keygen_assist (rk[5], 0x04));
+ aes256_key_assist (rk, 8, aes_keygen_assist (rk[7], 0x08));
+ aes256_key_assist (rk, 10, aes_keygen_assist (rk[9], 0x10));
+ aes256_key_assist (rk, 12, aes_keygen_assist (rk[11], 0x20));
+ aes256_key_assist (rk, 14, aes_keygen_assist (rk[13], 0x40));
}
#endif
@@ -223,9 +273,9 @@
}
void
-aes128_key_expand (u8x16 * rk, const u8 * k)
+aes128_key_expand (u8x16 * rk, const u8x16 * k)
{
- rk[0] = vld1q_u8 (k);
+ rk[0] = k[0];
aes128_key_expand_round_neon (rk + 1, 0x01);
aes128_key_expand_round_neon (rk + 2, 0x02);
aes128_key_expand_round_neon (rk + 3, 0x04);
@@ -267,11 +317,11 @@
}
void
-aes192_key_expand (u8x16 * ek, const u8 * k)
+aes192_key_expand (u8x16 * ek, const u8x16u * k)
{
u8x8 *rk = (u8x8 *) ek;
- ek[0] = vld1q_u8 (k);
- rk[2] = vld1_u8 (k + 16);
+ ek[0] = k[0];
+ rk[2] = *(u8x8u *) (k + 1);
aes192_key_expand_round_neon (rk + 3, 0x01);
aes192_key_expand_round_neon (rk + 6, 0x02);
aes192_key_expand_round_neon (rk + 9, 0x04);
@@ -300,10 +350,10 @@
}
void
-aes256_key_expand (u8x16 * rk, const u8 * k)
+aes256_key_expand (u8x16 * rk, u8x16 const *k)
{
- rk[0] = vld1q_u8 (k);
- rk[1] = vld1q_u8 (k + 16);
+ rk[0] = k[0];
+ rk[1] = k[1];
aes256_key_expand_round_neon (rk + 2, 0x01);
aes256_key_expand_round_neon (rk + 3, 0);
aes256_key_expand_round_neon (rk + 4, 0x02);
@@ -322,18 +372,18 @@
#endif
static_always_inline void
-aes_key_expand (u8x16 * key_schedule, u8 * key, aes_key_size_t ks)
+aes_key_expand (u8x16 * key_schedule, u8 const *key, aes_key_size_t ks)
{
switch (ks)
{
case AES_KEY_128:
- aes128_key_expand (key_schedule, key);
+ aes128_key_expand (key_schedule, (u8x16u const *) key);
break;
case AES_KEY_192:
- aes192_key_expand (key_schedule, key);
+ aes192_key_expand (key_schedule, (u8x16u const *) key);
break;
case AES_KEY_256:
- aes256_key_expand (key_schedule, key);
+ aes256_key_expand (key_schedule, (u8x16u const *) key);
break;
}
}
diff --git a/src/plugins/crypto_native/aes_gcm.c b/src/plugins/crypto_native/aes_gcm.c
index 554fb2b..f2dec62 100644
--- a/src/plugins/crypto_native/aes_gcm.c
+++ b/src/plugins/crypto_native/aes_gcm.c
@@ -30,113 +30,74 @@
typedef struct
{
/* pre-calculated hash key values */
- const __m128i Hi[8];
+ const u8x16 Hi[8];
/* extracted AES key */
- const __m128i Ke[15];
+ const u8x16 Ke[15];
} aes_gcm_key_data_t;
-static const __m128i last_byte_one = { 0, 1ULL << 56 };
-static const __m128i zero = { 0, 0 };
+static const u32x4 last_byte_one = { 0, 0, 0, 1 << 24 };
static const u8x16 bswap_mask = {
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
};
-static const u8x16 byte_mask_scale = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
-};
-
-static_always_inline __m128i
-aesni_gcm_bswap (__m128i x)
+static_always_inline u8x16
+aesni_gcm_bswap (u8x16 x)
{
- return _mm_shuffle_epi8 (x, (__m128i) bswap_mask);
-}
-
-static_always_inline __m128i
-aesni_gcm_byte_mask (__m128i x, u8 n_bytes)
-{
- u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
-
- return _mm_blendv_epi8 (zero, x, (__m128i) mask);
-}
-
-static_always_inline __m128i
-aesni_gcm_load_partial (__m128i * p, int n_bytes)
-{
- ASSERT (n_bytes <= 16);
-#ifdef __AVX512F__
- return _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p);
-#else
- return aesni_gcm_byte_mask (CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, p),
- n_bytes);
-#endif
+ return (u8x16) _mm_shuffle_epi8 ((__m128i) x, (__m128i) bswap_mask);
}
static_always_inline void
-aesni_gcm_store_partial (void *p, __m128i r, int n_bytes)
-{
-#ifdef __AVX512F__
- _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, r);
-#else
- u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale);
- _mm_maskmoveu_si128 (r, (__m128i) mask, p);
-#endif
-}
-
-static_always_inline void
-aesni_gcm_load (__m128i * d, __m128i * inv, int n, int n_bytes)
+aesni_gcm_load (u8x16 * d, u8x16u * inv, int n, int n_bytes)
{
for (int i = 0; i < n - 1; i++)
- d[i] = _mm_loadu_si128 (inv + i);
- d[n - 1] = n_bytes ? aesni_gcm_load_partial (inv + n - 1, n_bytes) :
- _mm_loadu_si128 (inv + n - 1);
+ d[i] = inv[i];
+ d[n - 1] = n_bytes ? aes_load_partial (inv + n - 1, n_bytes) : inv[n - 1];
}
static_always_inline void
-aesni_gcm_store (__m128i * d, __m128i * outv, int n, int n_bytes)
+aesni_gcm_store (u8x16 * d, u8x16u * outv, int n, int n_bytes)
{
for (int i = 0; i < n - 1; i++)
- _mm_storeu_si128 (outv + i, d[i]);
+ outv[i] = d[i];
if (n_bytes & 0xf)
- aesni_gcm_store_partial (outv + n - 1, d[n - 1], n_bytes);
+ aes_store_partial (outv + n - 1, d[n - 1], n_bytes);
else
- _mm_storeu_si128 (outv + n - 1, d[n - 1]);
+ outv[n - 1] = d[n - 1];
}
static_always_inline void
-aesni_gcm_enc_first_round (__m128i * r, __m128i * Y, u32 * ctr, __m128i k,
+aesni_gcm_enc_first_round (u8x16 * r, u32x4 * Y, u32 * ctr, u8x16 k,
int n_blocks)
{
- u32 i;
-
if (PREDICT_TRUE ((u8) ctr[0] < (256 - n_blocks)))
{
- for (i = 0; i < n_blocks; i++)
+ for (int i = 0; i < n_blocks; i++)
{
- Y[0] = _mm_add_epi32 (Y[0], last_byte_one);
- r[i] = k ^ Y[0];
+ Y[0] += last_byte_one;
+ r[i] = k ^ (u8x16) Y[0];
}
ctr[0] += n_blocks;
}
else
{
- for (i = 0; i < n_blocks; i++)
+ for (int i = 0; i < n_blocks; i++)
{
- Y[0] = _mm_insert_epi32 (Y[0], clib_host_to_net_u32 (++ctr[0]), 3);
- r[i] = k ^ Y[0];
+ Y[0][3] = clib_host_to_net_u32 (++ctr[0]);
+ r[i] = k ^ (u8x16) Y[0];
}
}
}
static_always_inline void
-aesni_gcm_enc_round (__m128i * r, __m128i k, int n_blocks)
+aesni_gcm_enc_round (u8x16 * r, u8x16 k, int n_blocks)
{
for (int i = 0; i < n_blocks; i++)
- r[i] = _mm_aesenc_si128 (r[i], k);
+ r[i] = aes_enc_round (r[i], k);
}
static_always_inline void
-aesni_gcm_enc_last_round (__m128i * r, __m128i * d, const __m128i * k,
+aesni_gcm_enc_last_round (u8x16 * r, u8x16 * d, u8x16 const *k,
int rounds, int n_blocks)
{
@@ -145,26 +106,25 @@
aesni_gcm_enc_round (r, k[i], n_blocks);
for (int i = 0; i < n_blocks; i++)
- d[i] ^= _mm_aesenclast_si128 (r[i], k[rounds]);
+ d[i] ^= aes_enc_last_round (r[i], k[rounds]);
}
-static_always_inline __m128i
-aesni_gcm_ghash_blocks (__m128i T, aes_gcm_key_data_t * kd,
- const __m128i * in, int n_blocks)
+static_always_inline u8x16
+aesni_gcm_ghash_blocks (u8x16 T, aes_gcm_key_data_t * kd,
+ u8x16u * in, int n_blocks)
{
ghash_data_t _gd, *gd = &_gd;
- const __m128i *Hi = kd->Hi + n_blocks - 1;
- ghash_mul_first (gd, aesni_gcm_bswap (_mm_loadu_si128 (in)) ^ T, Hi[0]);
+ const u8x16 *Hi = kd->Hi + n_blocks - 1;
+ ghash_mul_first (gd, aesni_gcm_bswap (in[0]) ^ T, Hi[0]);
for (int i = 1; i < n_blocks; i++)
- ghash_mul_next (gd, aesni_gcm_bswap (_mm_loadu_si128 (in + i)), Hi[-i]);
+ ghash_mul_next (gd, aesni_gcm_bswap ((in[i])), Hi[-i]);
ghash_reduce (gd);
ghash_reduce2 (gd);
return ghash_final (gd);
}
-static_always_inline __m128i
-aesni_gcm_ghash (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in,
- u32 n_left)
+static_always_inline u8x16
+aesni_gcm_ghash (u8x16 T, aes_gcm_key_data_t * kd, u8x16u * in, u32 n_left)
{
while (n_left >= 128)
@@ -197,28 +157,28 @@
if (n_left)
{
- __m128i r = aesni_gcm_load_partial ((__m128i *) in, n_left);
+ u8x16 r = aes_load_partial (in, n_left);
T = ghash_mul (aesni_gcm_bswap (r) ^ T, kd->Hi[0]);
}
return T;
}
-static_always_inline __m128i
-aesni_gcm_calc (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
- __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
+static_always_inline u8x16
+aesni_gcm_calc (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d,
+ u32x4 * Y, u32 * ctr, u8x16u * inv, u8x16u * outv,
int rounds, int n, int last_block_bytes, int with_ghash,
int is_encrypt)
{
- __m128i r[n];
+ u8x16 r[n];
ghash_data_t _gd = { }, *gd = &_gd;
- const __m128i *k = kd->Ke;
+ const u8x16 *rk = (u8x16 *) kd->Ke;
int hidx = is_encrypt ? 4 : n, didx = 0;
_mm_prefetch (inv + 4, _MM_HINT_T0);
/* AES rounds 0 and 1 */
- aesni_gcm_enc_first_round (r, Y, ctr, k[0], n);
- aesni_gcm_enc_round (r, k[1], n);
+ aesni_gcm_enc_first_round (r, Y, ctr, rk[0], n);
+ aesni_gcm_enc_round (r, rk[1], n);
/* load data - decrypt round */
if (is_encrypt == 0)
@@ -229,32 +189,32 @@
ghash_mul_first (gd, aesni_gcm_bswap (d[didx++]) ^ T, kd->Hi[--hidx]);
/* AES rounds 2 and 3 */
- aesni_gcm_enc_round (r, k[2], n);
- aesni_gcm_enc_round (r, k[3], n);
+ aesni_gcm_enc_round (r, rk[2], n);
+ aesni_gcm_enc_round (r, rk[3], n);
/* GHASH multiply block 2 */
if (with_ghash && hidx)
ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
/* AES rounds 4 and 5 */
- aesni_gcm_enc_round (r, k[4], n);
- aesni_gcm_enc_round (r, k[5], n);
+ aesni_gcm_enc_round (r, rk[4], n);
+ aesni_gcm_enc_round (r, rk[5], n);
/* GHASH multiply block 3 */
if (with_ghash && hidx)
ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
/* AES rounds 6 and 7 */
- aesni_gcm_enc_round (r, k[6], n);
- aesni_gcm_enc_round (r, k[7], n);
+ aesni_gcm_enc_round (r, rk[6], n);
+ aesni_gcm_enc_round (r, rk[7], n);
/* GHASH multiply block 4 */
if (with_ghash && hidx)
ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]);
/* AES rounds 8 and 9 */
- aesni_gcm_enc_round (r, k[8], n);
- aesni_gcm_enc_round (r, k[9], n);
+ aesni_gcm_enc_round (r, rk[8], n);
+ aesni_gcm_enc_round (r, rk[9], n);
/* GHASH reduce 1st step */
if (with_ghash)
@@ -269,7 +229,7 @@
ghash_reduce2 (gd);
/* AES last round(s) */
- aesni_gcm_enc_last_round (r, d, k, rounds, n);
+ aesni_gcm_enc_last_round (r, d, rk, rounds, n);
/* store data */
aesni_gcm_store (d, outv, n, last_block_bytes);
@@ -281,18 +241,18 @@
return T;
}
-static_always_inline __m128i
-aesni_gcm_calc_double (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
- __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv,
+static_always_inline u8x16
+aesni_gcm_calc_double (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d,
+ u32x4 * Y, u32 * ctr, u8x16u * inv, u8x16u * outv,
int rounds, int is_encrypt)
{
- __m128i r[4];
+ u8x16 r[4];
ghash_data_t _gd, *gd = &_gd;
- const __m128i *k = kd->Ke;
+ const u8x16 *rk = (u8x16 *) kd->Ke;
/* AES rounds 0 and 1 */
- aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
- aesni_gcm_enc_round (r, k[1], 4);
+ aesni_gcm_enc_first_round (r, Y, ctr, rk[0], 4);
+ aesni_gcm_enc_round (r, rk[1], 4);
/* load 4 blocks of data - decrypt round */
if (is_encrypt == 0)
@@ -302,36 +262,36 @@
ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[7]);
/* AES rounds 2 and 3 */
- aesni_gcm_enc_round (r, k[2], 4);
- aesni_gcm_enc_round (r, k[3], 4);
+ aesni_gcm_enc_round (r, rk[2], 4);
+ aesni_gcm_enc_round (r, rk[3], 4);
/* GHASH multiply block 1 */
ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[6]);
/* AES rounds 4 and 5 */
- aesni_gcm_enc_round (r, k[4], 4);
- aesni_gcm_enc_round (r, k[5], 4);
+ aesni_gcm_enc_round (r, rk[4], 4);
+ aesni_gcm_enc_round (r, rk[5], 4);
/* GHASH multiply block 2 */
ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[5]);
/* AES rounds 6 and 7 */
- aesni_gcm_enc_round (r, k[6], 4);
- aesni_gcm_enc_round (r, k[7], 4);
+ aesni_gcm_enc_round (r, rk[6], 4);
+ aesni_gcm_enc_round (r, rk[7], 4);
/* GHASH multiply block 3 */
ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[4]);
/* AES rounds 8 and 9 */
- aesni_gcm_enc_round (r, k[8], 4);
- aesni_gcm_enc_round (r, k[9], 4);
+ aesni_gcm_enc_round (r, rk[8], 4);
+ aesni_gcm_enc_round (r, rk[9], 4);
/* load 4 blocks of data - encrypt round */
if (is_encrypt)
aesni_gcm_load (d, inv, 4, 0);
/* AES last round(s) */
- aesni_gcm_enc_last_round (r, d, k, rounds, 4);
+ aesni_gcm_enc_last_round (r, d, rk, rounds, 4);
/* store 4 blocks of data */
aesni_gcm_store (d, outv, 4, 0);
@@ -344,36 +304,36 @@
ghash_mul_next (gd, aesni_gcm_bswap (d[0]), kd->Hi[3]);
/* AES rounds 0, 1 and 2 */
- aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4);
- aesni_gcm_enc_round (r, k[1], 4);
- aesni_gcm_enc_round (r, k[2], 4);
+ aesni_gcm_enc_first_round (r, Y, ctr, rk[0], 4);
+ aesni_gcm_enc_round (r, rk[1], 4);
+ aesni_gcm_enc_round (r, rk[2], 4);
/* GHASH multiply block 5 */
ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[2]);
/* AES rounds 3 and 4 */
- aesni_gcm_enc_round (r, k[3], 4);
- aesni_gcm_enc_round (r, k[4], 4);
+ aesni_gcm_enc_round (r, rk[3], 4);
+ aesni_gcm_enc_round (r, rk[4], 4);
/* GHASH multiply block 6 */
ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[1]);
/* AES rounds 5 and 6 */
- aesni_gcm_enc_round (r, k[5], 4);
- aesni_gcm_enc_round (r, k[6], 4);
+ aesni_gcm_enc_round (r, rk[5], 4);
+ aesni_gcm_enc_round (r, rk[6], 4);
/* GHASH multiply block 7 */
ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[0]);
/* AES rounds 7 and 8 */
- aesni_gcm_enc_round (r, k[7], 4);
- aesni_gcm_enc_round (r, k[8], 4);
+ aesni_gcm_enc_round (r, rk[7], 4);
+ aesni_gcm_enc_round (r, rk[8], 4);
/* GHASH reduce 1st step */
ghash_reduce (gd);
/* AES round 9 */
- aesni_gcm_enc_round (r, k[9], 4);
+ aesni_gcm_enc_round (r, rk[9], 4);
/* load data - encrypt round */
if (is_encrypt)
@@ -383,7 +343,7 @@
ghash_reduce2 (gd);
/* AES last round(s) */
- aesni_gcm_enc_last_round (r, d, k, rounds, 4);
+ aesni_gcm_enc_last_round (r, d, rk, rounds, 4);
/* store data */
aesni_gcm_store (d, outv + 4, 4, 0);
@@ -392,14 +352,14 @@
return ghash_final (gd);
}
-static_always_inline __m128i
-aesni_gcm_ghash_last (__m128i T, aes_gcm_key_data_t * kd, __m128i * d,
+static_always_inline u8x16
+aesni_gcm_ghash_last (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d,
int n_blocks, int n_bytes)
{
ghash_data_t _gd, *gd = &_gd;
if (n_bytes)
- d[n_blocks - 1] = aesni_gcm_byte_mask (d[n_blocks - 1], n_bytes);
+ d[n_blocks - 1] = aes_byte_mask (d[n_blocks - 1], n_bytes);
ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[n_blocks - 1]);
if (n_blocks > 1)
@@ -414,12 +374,11 @@
}
-static_always_inline __m128i
-aesni_gcm_enc (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
- const u8 * out, u32 n_left, int rounds)
+static_always_inline u8x16
+aesni_gcm_enc (u8x16 T, aes_gcm_key_data_t * kd, u32x4 Y, u8x16u * inv,
+ u8x16u * outv, u32 n_left, int rounds)
{
- __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
- __m128i d[4];
+ u8x16 d[4];
u32 ctr = 1;
if (n_left == 0)
@@ -520,12 +479,11 @@
return aesni_gcm_ghash_last (T, kd, d, 1, n_left);
}
-static_always_inline __m128i
-aesni_gcm_dec (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in,
- const u8 * out, u32 n_left, int rounds)
+static_always_inline u8x16
+aesni_gcm_dec (u8x16 T, aes_gcm_key_data_t * kd, u32x4 Y, u8x16u * inv,
+ u8x16u * outv, u32 n_left, int rounds)
{
- __m128i *inv = (__m128i *) in, *outv = (__m128i *) out;
- __m128i d[8];
+ u8x16 d[8];
u32 ctr = 1;
while (n_left >= 128)
@@ -572,12 +530,13 @@
}
static_always_inline int
-aes_gcm (const u8 * in, u8 * out, const u8 * addt, const u8 * iv, u8 * tag,
+aes_gcm (u8x16u * in, u8x16u * out, u8x16u * addt, u8x16u * iv, u8x16u * tag,
u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd,
int aes_rounds, int is_encrypt)
{
int i;
- __m128i r, Y0, T = { };
+ u8x16 r, T = { };
+ u32x4 Y0;
ghash_data_t _gd, *gd = &_gd;
_mm_prefetch (iv, _MM_HINT_T0);
@@ -586,15 +545,15 @@
/* calculate ghash for AAD - optimized for ipsec common cases */
if (aad_bytes == 8)
- T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 8);
+ T = aesni_gcm_ghash (T, kd, addt, 8);
else if (aad_bytes == 12)
- T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 12);
+ T = aesni_gcm_ghash (T, kd, addt, 12);
else
- T = aesni_gcm_ghash (T, kd, (__m128i *) addt, aad_bytes);
+ T = aesni_gcm_ghash (T, kd, addt, aad_bytes);
/* initalize counter */
- Y0 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) iv);
- Y0 = _mm_insert_epi32 (Y0, clib_host_to_net_u32 (1), 3);
+ Y0 = (u32x4) aes_load_partial (iv, 12);
+ Y0[3] = clib_host_to_net_u32 (1);
/* ghash and encrypt/edcrypt */
if (is_encrypt)
@@ -604,26 +563,24 @@
_mm_prefetch (tag, _MM_HINT_T0);
- /* Finalize ghash */
- r[0] = data_bytes;
- r[1] = aad_bytes;
-
- /* bytes to bits */
- r <<= 3;
+ /* Finalize ghash - data bytes and aad bytes converted to bits */
+ /* *INDENT-OFF* */
+ r = (u8x16) ((u64x2) {data_bytes, aad_bytes} << 3);
+ /* *INDENT-ON* */
/* interleaved computation of final ghash and E(Y0, k) */
ghash_mul_first (gd, r ^ T, kd->Hi[0]);
- r = kd->Ke[0] ^ Y0;
+ r = kd->Ke[0] ^ (u8x16) Y0;
for (i = 1; i < 5; i += 1)
- r = _mm_aesenc_si128 (r, kd->Ke[i]);
+ r = aes_enc_round (r, kd->Ke[i]);
ghash_reduce (gd);
ghash_reduce2 (gd);
for (; i < 9; i += 1)
- r = _mm_aesenc_si128 (r, kd->Ke[i]);
+ r = aes_enc_round (r, kd->Ke[i]);
T = ghash_final (gd);
for (; i < aes_rounds; i += 1)
- r = _mm_aesenc_si128 (r, kd->Ke[i]);
- r = _mm_aesenclast_si128 (r, kd->Ke[aes_rounds]);
+ r = aes_enc_round (r, kd->Ke[i]);
+ r = aes_enc_last_round (r, kd->Ke[aes_rounds]);
T = aesni_gcm_bswap (T) ^ r;
/* tag_len 16 -> 0 */
@@ -633,16 +590,15 @@
{
/* store tag */
if (tag_len)
- aesni_gcm_store_partial ((__m128i *) tag, T, (1 << tag_len) - 1);
+ aes_store_partial (tag, T, (1 << tag_len) - 1);
else
- _mm_storeu_si128 ((__m128i *) tag, T);
+ tag[0] = T;
}
else
{
/* check tag */
u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff;
- r = _mm_loadu_si128 ((__m128i *) tag);
- if (_mm_movemask_epi8 (r == T) != tag_mask)
+ if ((u8x16_msb_mask (tag[0] == T) & tag_mask) != tag_mask)
return 0;
}
return 1;
@@ -660,7 +616,8 @@
next:
kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
- aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len,
+ aes_gcm ((u8x16u *) op->src, (u8x16u *) op->dst, (u8x16u *) op->aad,
+ (u8x16u *) op->iv, (u8x16u *) op->tag, op->len, op->aad_len,
op->tag_len, kd, AES_KEY_ROUNDS (ks), /* is_encrypt */ 1);
op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
@@ -685,7 +642,8 @@
next:
kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index];
- rv = aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len,
+ rv = aes_gcm ((u8x16u *) op->src, (u8x16u *) op->dst, (u8x16u *) op->aad,
+ (u8x16u *) op->iv, (u8x16u *) op->tag, op->len,
op->aad_len, op->tag_len, kd, AES_KEY_ROUNDS (ks),
/* is_encrypt */ 0);
@@ -712,8 +670,7 @@
aesni_gcm_key_exp (vnet_crypto_key_t * key, aes_key_size_t ks)
{
aes_gcm_key_data_t *kd;
- __m128i H;
- int i;
+ u8x16 H;
kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES);
@@ -721,12 +678,9 @@
aes_key_expand ((u8x16 *) kd->Ke, key->data, ks);
/* pre-calculate H */
- H = kd->Ke[0];
- for (i = 1; i < AES_KEY_ROUNDS (ks); i += 1)
- H = _mm_aesenc_si128 (H, kd->Ke[i]);
- H = _mm_aesenclast_si128 (H, kd->Ke[i]);
+ H = aes_encrypt_block (u8x16_splat (0), kd->Ke, ks);
H = aesni_gcm_bswap (H);
- ghash_precompute (H, (__m128i *) kd->Hi, 8);
+ ghash_precompute (H, (u8x16 *) kd->Hi, 8);
return kd;
}
diff --git a/src/plugins/crypto_native/ghash.h b/src/plugins/crypto_native/ghash.h
index 0b2f629..3f68f80 100644
--- a/src/plugins/crypto_native/ghash.h
+++ b/src/plugins/crypto_native/ghash.h
@@ -107,34 +107,65 @@
/* on AVX-512 systems we can save a clock cycle by using ternary logic
instruction to calculate a XOR b XOR c */
-static_always_inline __m128i
-ghash_xor3 (__m128i a, __m128i b, __m128i c)
+static_always_inline u8x16
+ghash_xor3 (u8x16 a, u8x16 b, u8x16 c)
{
#if defined (__AVX512F__)
- return _mm_ternarylogic_epi32 (a, b, c, 0x96);
+ return (u8x16) _mm_ternarylogic_epi32 ((__m128i) a, (__m128i) b,
+ (__m128i) c, 0x96);
#endif
return a ^ b ^ c;
}
+static_always_inline u8x16
+gmul_lo_lo (u8x16 a, u8x16 b)
+{
+ return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00);
+}
+
+static_always_inline u8x16
+gmul_lo_hi (u8x16 a, u8x16 b)
+{
+ return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01);
+}
+
+static_always_inline u8x16
+gmul_hi_lo (u8x16 a, u8x16 b)
+{
+ return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10);
+}
+
+static_always_inline u8x16
+gmul_hi_hi (u8x16 a, u8x16 b)
+{
+ return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11);
+}
+
typedef struct
{
- __m128i mid, hi, lo, tmp_lo, tmp_hi;
+ u8x16 mid, hi, lo, tmp_lo, tmp_hi;
int pending;
} ghash_data_t;
-static const __m128i ghash_poly = { 1, 0xC200000000000000 };
-static const __m128i ghash_poly2 = { 0x1C2000000, 0xC200000000000000 };
+static const u8x16 ghash_poly = {
+ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
+};
+
+static const u8x16 ghash_poly2 = {
+ 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
+};
static_always_inline void
-ghash_mul_first (ghash_data_t * gd, __m128i a, __m128i b)
+ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b)
{
/* a1 * b1 */
- gd->hi = _mm_clmulepi64_si128 (a, b, 0x11);
+ gd->hi = gmul_hi_hi (a, b);
/* a0 * b0 */
- gd->lo = _mm_clmulepi64_si128 (a, b, 0x00);
+ gd->lo = gmul_lo_lo (a, b);
/* a0 * b1 ^ a1 * b0 */
- gd->mid = (_mm_clmulepi64_si128 (a, b, 0x01) ^
- _mm_clmulepi64_si128 (a, b, 0x10));
+ gd->mid = (gmul_lo_hi (a, b) ^ gmul_hi_lo (a, b));
/* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
there is no pending data in tmp_lo and tmp_hi */
@@ -142,12 +173,12 @@
}
static_always_inline void
-ghash_mul_next (ghash_data_t * gd, __m128i a, __m128i b)
+ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b)
{
/* a1 * b1 */
- __m128i hi = _mm_clmulepi64_si128 (a, b, 0x11);
+ u8x16 hi = gmul_hi_hi (a, b);
/* a0 * b0 */
- __m128i lo = _mm_clmulepi64_si128 (a, b, 0x00);
+ u8x16 lo = gmul_lo_lo (a, b);
/* this branch will be optimized out by the compiler, and it allows us to
reduce number of XOR operations by using ternary logic */
@@ -167,21 +198,19 @@
}
/* gd->mid ^= a0 * b1 ^ a1 * b0 */
- gd->mid = ghash_xor3 (gd->mid,
- _mm_clmulepi64_si128 (a, b, 0x01),
- _mm_clmulepi64_si128 (a, b, 0x10));
+ gd->mid = ghash_xor3 (gd->mid, gmul_lo_hi (a, b), gmul_hi_lo (a, b));
}
static_always_inline void
ghash_reduce (ghash_data_t * gd)
{
- __m128i r;
+ u8x16 r;
/* Final combination:
gd->lo ^= gd->mid << 64
gd->hi ^= gd->mid >> 64 */
- __m128i midl = _mm_slli_si128 (gd->mid, 8);
- __m128i midr = _mm_srli_si128 (gd->mid, 8);
+ u8x16 midl = u8x16_word_shift_left (gd->mid, 8);
+ u8x16 midr = u8x16_word_shift_right (gd->mid, 8);
if (gd->pending)
{
@@ -194,26 +223,26 @@
gd->hi ^= midr;
}
- r = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x01);
- gd->lo ^= _mm_slli_si128 (r, 8);
+ r = gmul_lo_hi (ghash_poly2, gd->lo);
+ gd->lo ^= u8x16_word_shift_left (r, 8);
}
static_always_inline void
ghash_reduce2 (ghash_data_t * gd)
{
- gd->tmp_lo = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x00);
- gd->tmp_hi = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x10);
+ gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo);
+ gd->tmp_hi = gmul_hi_lo (ghash_poly2, gd->lo);
}
-static_always_inline __m128i
+static_always_inline u8x16
ghash_final (ghash_data_t * gd)
{
- return ghash_xor3 (gd->hi, _mm_srli_si128 (gd->tmp_lo, 4),
- _mm_slli_si128 (gd->tmp_hi, 4));
+ return ghash_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4),
+ u8x16_word_shift_left (gd->tmp_hi, 4));
}
-static_always_inline __m128i
-ghash_mul (__m128i a, __m128i b)
+static_always_inline u8x16
+ghash_mul (u8x16 a, u8x16 b)
{
ghash_data_t _gd, *gd = &_gd;
ghash_mul_first (gd, a, b);
@@ -223,19 +252,20 @@
}
static_always_inline void
-ghash_precompute (__m128i H, __m128i * Hi, int count)
+ghash_precompute (u8x16 H, u8x16 * Hi, int count)
{
- __m128i r;
+ u8x16 r8;
+ u32x4 r32;
/* calcullate H<<1 mod poly from the hash key */
- r = _mm_srli_epi64 (H, 63);
- H = _mm_slli_epi64 (H, 1);
- H |= _mm_slli_si128 (r, 8);
- r = _mm_srli_si128 (r, 8);
- r = _mm_shuffle_epi32 (r, 0x24);
+ r8 = (u8x16) ((u64x2) H >> 63);
+ H = (u8x16) ((u64x2) H << 1);
+ H |= u8x16_word_shift_left (r8, 8);
+ r32 = (u32x4) u8x16_word_shift_right (r8, 8);
+ r32 = u32x4_shuffle (r32, 0, 1, 2, 0);
/* *INDENT-OFF* */
- r = _mm_cmpeq_epi32 (r, (__m128i) (u32x4) {1, 0, 0, 1});
+ r32 = r32 == (u32x4) {1, 0, 0, 1};
/* *INDENT-ON* */
- Hi[0] = H ^ (r & ghash_poly);
+ Hi[0] = H ^ ((u8x16) r32 & ghash_poly);
/* calculate H^(i + 1) */
for (int i = 1; i < count; i++)