commit | 45495480c8165090722389b08075df06ccfcd7ef | [log] [tgz] |
---|---|---|
author | Yulong Pei <yulong.pei@intel.com> | Thu Oct 17 18:41:52 2019 +0800 |
committer | Damjan Marion <dmarion@me.com> | Sun Oct 20 19:31:14 2019 +0000 |
tree | 6615491848b31e442422e318ed1c2939b99950cd | |
parent | 349cd1af77a27962e9475e9fa9c0ed15e2af23de [diff] |
vlib: linux: fix wrong iommu_group value issue when using dpdk-plugin When VPP work with dpdk-plugin, linux_vfio_main_t->container_fd is always -1 since it never have chance to run open("/dev/vfio/vfio") to get the fd. But this lead to a potential issue of VPP, that is, when start VPP without uio-driver field setup in /etc/vpp/startup.conf, VPP will run to automatical select uio driver in vlib_pci_bind_to_uio() and the function depend on iommu_group value to decide to work on vfio or vfio-noiommu mode. Since in vlib_pci_get_device_info() have the condition container_fd != -1, so the iommu_group value will be always -1 at this scenario, this caused that VPP mistake to run with vfio-noiommu driver on intel_iommu=on state. Actually in order to get iommu_group and iommu_group/name value, no need to depend on linux_vfio_main_t->container_fd value, so the fix remove the condition lvm->container_fd != -1, then it can get the correct iommu_group value. Type: fix Change-Id: I3f162fc4971b9a2b8717205f8f3b52e30c5e5b69 Signed-off-by: Yulong Pei <yulong.pei@intel.com>
The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. It is the open source version of Cisco's Vector Packet Processing (VPP) technology: a high performance, packet-processing stack that can run on commodity CPUs.
The benefits of this implementation of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set.
For more information on VPP and its features please visit the FD.io website and What is VPP? pages.
Details of the changes leading up to this version of VPP can be found under @ref release_notes.
Directory name | Description |
---|---|
build-data | Build metadata |
build-root | Build output directory |
doxygen | Documentation generator configuration |
dpdk | DPDK patches and build infrastructure |
@ref extras/libmemif | Client library for memif |
@ref src/examples | VPP example code |
@ref src/plugins | VPP bundled plugins directory |
@ref src/svm | Shared virtual memory allocation library |
src/tests | Standalone tests (not part of test harness) |
src/vat | VPP API test program |
@ref src/vlib | VPP application library |
@ref src/vlibapi | VPP API library |
@ref src/vlibmemory | VPP Memory management |
@ref src/vnet | VPP networking |
@ref src/vpp | VPP application |
@ref src/vpp-api | VPP application API bindings |
@ref src/vppinfra | VPP core library |
@ref src/vpp/api | Not-yet-relocated API bindings |
test | Unit tests and Python test harness |
In general anyone interested in building, developing or running VPP should consult the VPP wiki for more complete documentation.
In particular, readers are recommended to take a look at [Pulling, Building, Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step coverage of the topic.
For the impatient, some salient information is distilled below.
To install system dependencies, build VPP and then install it, simply run the build script. This should be performed a non-privileged user with sudo
access from the project base directory:
./extras/vagrant/build.sh
If you want a more fine-grained approach because you intend to do some development work, the Makefile
in the root directory of the source tree provides several convenience shortcuts as make
targets that may be of interest. To see the available targets run:
make
The directory extras/vagrant
contains a VagrantFile
and supporting scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine. This VM can then be used to test concepts with VPP or as a development platform to extend VPP. Some obvious caveats apply when using a VM for VPP since its performance will never match that of bare metal; if your work is timing or performance sensitive, consider using bare metal in addition or instead of the VM.
For this to work you will need a working installation of Vagrant. Instructions for this can be found [on the Setting up Vagrant wiki page] (https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).
Several modules provide documentation, see @subpage user_doc for more end-user-oriented information. Also see @subpage dev_doc for developer notes.
Visit the VPP wiki for details on more advanced building strategies and other development notes.
There is PyDoc generated documentation available for the VPP test framework. See @ref test_framework_doc for details.