| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #ifndef __IPSEC_SPD_SA_H__ |
| #define __IPSEC_SPD_SA_H__ |
| |
| #include <vlib/vlib.h> |
| #include <vppinfra/pcg.h> |
| #include <vnet/crypto/crypto.h> |
| #include <vnet/ip/ip.h> |
| #include <vnet/fib/fib_node.h> |
| #include <vnet/tunnel/tunnel.h> |
| |
| #define ESP_MAX_ICV_SIZE (32) |
| #define ESP_MAX_IV_SIZE (16) |
| #define ESP_MAX_BLOCK_SIZE (16) |
| |
| #define foreach_ipsec_crypto_alg \ |
| _ (0, NONE, "none") \ |
| _ (1, AES_CBC_128, "aes-cbc-128") \ |
| _ (2, AES_CBC_192, "aes-cbc-192") \ |
| _ (3, AES_CBC_256, "aes-cbc-256") \ |
| _ (4, AES_CTR_128, "aes-ctr-128") \ |
| _ (5, AES_CTR_192, "aes-ctr-192") \ |
| _ (6, AES_CTR_256, "aes-ctr-256") \ |
| _ (7, AES_GCM_128, "aes-gcm-128") \ |
| _ (8, AES_GCM_192, "aes-gcm-192") \ |
| _ (9, AES_GCM_256, "aes-gcm-256") \ |
| _ (10, DES_CBC, "des-cbc") \ |
| _ (11, 3DES_CBC, "3des-cbc") \ |
| _ (12, CHACHA20_POLY1305, "chacha20-poly1305") |
| |
| typedef enum |
| { |
| #define _(v, f, s) IPSEC_CRYPTO_ALG_##f = v, |
| foreach_ipsec_crypto_alg |
| #undef _ |
| IPSEC_CRYPTO_N_ALG, |
| } __clib_packed ipsec_crypto_alg_t; |
| |
| #define IPSEC_CRYPTO_ALG_IS_GCM(_alg) \ |
| (((_alg == IPSEC_CRYPTO_ALG_AES_GCM_128) || \ |
| (_alg == IPSEC_CRYPTO_ALG_AES_GCM_192) || \ |
| (_alg == IPSEC_CRYPTO_ALG_AES_GCM_256))) |
| |
| #define IPSEC_CRYPTO_ALG_IS_CTR(_alg) \ |
| (((_alg == IPSEC_CRYPTO_ALG_AES_CTR_128) || \ |
| (_alg == IPSEC_CRYPTO_ALG_AES_CTR_192) || \ |
| (_alg == IPSEC_CRYPTO_ALG_AES_CTR_256))) |
| |
| #define IPSEC_CRYPTO_ALG_CTR_AEAD_OTHERS(_alg) \ |
| (_alg == IPSEC_CRYPTO_ALG_CHACHA20_POLY1305) |
| |
| #define foreach_ipsec_integ_alg \ |
| _ (0, NONE, "none") \ |
| _ (1, MD5_96, "md5-96") /* RFC2403 */ \ |
| _ (2, SHA1_96, "sha1-96") /* RFC2404 */ \ |
| _ (3, SHA_256_96, "sha-256-96") /* draft-ietf-ipsec-ciph-sha-256-00 */ \ |
| _ (4, SHA_256_128, "sha-256-128") /* RFC4868 */ \ |
| _ (5, SHA_384_192, "sha-384-192") /* RFC4868 */ \ |
| _ (6, SHA_512_256, "sha-512-256") /* RFC4868 */ |
| |
| typedef enum |
| { |
| #define _(v, f, s) IPSEC_INTEG_ALG_##f = v, |
| foreach_ipsec_integ_alg |
| #undef _ |
| IPSEC_INTEG_N_ALG, |
| } __clib_packed ipsec_integ_alg_t; |
| |
| typedef enum |
| { |
| IPSEC_PROTOCOL_AH = 0, |
| IPSEC_PROTOCOL_ESP = 1 |
| } __clib_packed ipsec_protocol_t; |
| |
| #define IPSEC_KEY_MAX_LEN 128 |
| typedef struct ipsec_key_t_ |
| { |
| u8 len; |
| u8 data[IPSEC_KEY_MAX_LEN]; |
| } ipsec_key_t; |
| |
| /* |
| * Enable extended sequence numbers |
| * Enable Anti-replay |
| * IPsec tunnel mode if non-zero, else transport mode |
| * IPsec tunnel mode is IPv6 if non-zero, |
| * else IPv4 tunnel only valid if is_tunnel is non-zero |
| * enable UDP encapsulation for NAT traversal |
| */ |
| #define foreach_ipsec_sa_flags \ |
| _ (0, NONE, "none") \ |
| _ (1, USE_ESN, "esn") \ |
| _ (2, USE_ANTI_REPLAY, "anti-replay") \ |
| _ (4, IS_TUNNEL, "tunnel") \ |
| _ (8, IS_TUNNEL_V6, "tunnel-v6") \ |
| _ (16, UDP_ENCAP, "udp-encap") \ |
| _ (32, IS_PROTECT, "Protect") \ |
| _ (64, IS_INBOUND, "inbound") \ |
| _ (128, IS_AEAD, "aead") \ |
| _ (256, IS_CTR, "ctr") \ |
| _ (512, IS_ASYNC, "async") \ |
| _ (1024, NO_ALGO_NO_DROP, "no-algo-no-drop") |
| |
| typedef enum ipsec_sad_flags_t_ |
| { |
| #define _(v, f, s) IPSEC_SA_FLAG_##f = v, |
| foreach_ipsec_sa_flags |
| #undef _ |
| } __clib_packed ipsec_sa_flags_t; |
| |
| STATIC_ASSERT (sizeof (ipsec_sa_flags_t) == 2, "IPSEC SA flags != 2 byte"); |
| |
| #define foreach_ipsec_sa_err \ |
| _ (0, LOST, lost, "packets lost") \ |
| _ (1, HANDOFF, handoff, "hand-off") \ |
| _ (2, INTEG_ERROR, integ_error, "Integrity check failed") \ |
| _ (3, DECRYPTION_FAILED, decryption_failed, "Decryption failed") \ |
| _ (4, CRYPTO_ENGINE_ERROR, crypto_engine_error, \ |
| "crypto engine error (dropped)") \ |
| _ (5, REPLAY, replay, "SA replayed packet") \ |
| _ (6, RUNT, runt, "undersized packet") \ |
| _ (7, NO_BUFFERS, no_buffers, "no buffers (dropped)") \ |
| _ (8, OVERSIZED_HEADER, oversized_header, \ |
| "buffer with oversized header (dropped)") \ |
| _ (9, NO_TAIL_SPACE, no_tail_space, \ |
| "no enough buffer tail space (dropped)") \ |
| _ (10, TUN_NO_PROTO, tun_no_proto, "no tunnel protocol") \ |
| _ (11, UNSUP_PAYLOAD, unsup_payload, "unsupported payload") \ |
| _ (12, SEQ_CYCLED, seq_cycled, "sequence number cycled (dropped)") \ |
| _ (13, CRYPTO_QUEUE_FULL, crypto_queue_full, "crypto queue full (dropped)") \ |
| _ (14, NO_ENCRYPTION, no_encryption, "no Encrypting SA (dropped)") \ |
| _ (15, DROP_FRAGMENTS, drop_fragments, "IP fragments drop") |
| |
| typedef enum |
| { |
| #define _(v, f, s, d) IPSEC_SA_ERROR_##f = v, |
| foreach_ipsec_sa_err |
| #undef _ |
| IPSEC_SA_N_ERRORS, |
| } __clib_packed ipsec_sa_err_t; |
| |
| typedef struct |
| { |
| CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); |
| |
| clib_pcg64i_random_t iv_prng; |
| |
| u64 replay_window; |
| dpo_id_t dpo; |
| |
| vnet_crypto_key_index_t crypto_key_index; |
| vnet_crypto_key_index_t integ_key_index; |
| |
| u32 spi; |
| u32 seq; |
| u32 seq_hi; |
| |
| u16 crypto_enc_op_id; |
| u16 crypto_dec_op_id; |
| u16 integ_op_id; |
| ipsec_sa_flags_t flags; |
| u16 thread_index; |
| |
| u16 integ_icv_size : 6; |
| u16 crypto_iv_size : 5; |
| u16 esp_block_align : 5; |
| |
| CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); |
| |
| union |
| { |
| ip4_header_t ip4_hdr; |
| ip6_header_t ip6_hdr; |
| }; |
| udp_header_t udp_hdr; |
| |
| /* Salt used in CTR modes (incl. GCM) - stored in network byte order */ |
| u32 salt; |
| |
| ipsec_protocol_t protocol; |
| tunnel_encap_decap_flags_t tunnel_flags; |
| u8 __pad[2]; |
| |
| /* data accessed by dataplane code should be above this comment */ |
| CLIB_CACHE_LINE_ALIGN_MARK (cacheline2); |
| |
| /* Elements with u64 size multiples */ |
| tunnel_t tunnel; |
| fib_node_t node; |
| |
| /* elements with u32 size */ |
| u32 id; |
| u32 stat_index; |
| vnet_crypto_alg_t integ_calg; |
| vnet_crypto_alg_t crypto_calg; |
| u32 crypto_sync_key_index; |
| u32 integ_sync_key_index; |
| u32 crypto_async_key_index; |
| |
| /* elements with u16 size */ |
| u16 crypto_sync_enc_op_id; |
| u16 crypto_sync_dec_op_id; |
| u16 integ_sync_op_id; |
| u16 crypto_async_enc_op_id; |
| u16 crypto_async_dec_op_id; |
| |
| /* else u8 packed */ |
| ipsec_crypto_alg_t crypto_alg; |
| ipsec_integ_alg_t integ_alg; |
| |
| ipsec_key_t integ_key; |
| ipsec_key_t crypto_key; |
| } ipsec_sa_t; |
| |
| STATIC_ASSERT (VNET_CRYPTO_N_OP_IDS < (1 << 16), "crypto ops overflow"); |
| STATIC_ASSERT (ESP_MAX_ICV_SIZE < (1 << 6), "integer icv overflow"); |
| STATIC_ASSERT (ESP_MAX_IV_SIZE < (1 << 5), "esp iv overflow"); |
| STATIC_ASSERT (ESP_MAX_BLOCK_SIZE < (1 << 5), "esp alignment overflow"); |
| STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline1, CLIB_CACHE_LINE_BYTES); |
| STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline2, 2 * CLIB_CACHE_LINE_BYTES); |
| |
| /** |
| * Pool of IPSec SAs |
| */ |
| extern ipsec_sa_t *ipsec_sa_pool; |
| |
| /* |
| * Ensure that the IPsec data does not overlap with the IP data in |
| * the buffer meta data |
| */ |
| STATIC_ASSERT (STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ipsec.sad_index) == |
| STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ip.save_protocol), |
| "IPSec data is overlapping with IP data"); |
| |
| #define _(a,v,s) \ |
| always_inline int \ |
| ipsec_sa_is_set_##v (const ipsec_sa_t *sa) { \ |
| return (sa->flags & IPSEC_SA_FLAG_##v); \ |
| } |
| foreach_ipsec_sa_flags |
| #undef _ |
| #define _(a,v,s) \ |
| always_inline int \ |
| ipsec_sa_set_##v (ipsec_sa_t *sa) { \ |
| return (sa->flags |= IPSEC_SA_FLAG_##v); \ |
| } |
| foreach_ipsec_sa_flags |
| #undef _ |
| #define _(a,v,s) \ |
| always_inline int \ |
| ipsec_sa_unset_##v (ipsec_sa_t *sa) { \ |
| return (sa->flags &= ~IPSEC_SA_FLAG_##v); \ |
| } |
| foreach_ipsec_sa_flags |
| #undef _ |
| /** |
| * @brief |
| * SA packet & bytes counters |
| */ |
| extern vlib_combined_counter_main_t ipsec_sa_counters; |
| extern vlib_simple_counter_main_t ipsec_sa_err_counters[IPSEC_SA_N_ERRORS]; |
| |
| extern void ipsec_mk_key (ipsec_key_t * key, const u8 * data, u8 len); |
| |
| extern int ipsec_sa_update (u32 id, u16 src_port, u16 dst_port, |
| const tunnel_t *tun, bool is_tun); |
| extern int |
| ipsec_sa_add_and_lock (u32 id, u32 spi, ipsec_protocol_t proto, |
| ipsec_crypto_alg_t crypto_alg, const ipsec_key_t *ck, |
| ipsec_integ_alg_t integ_alg, const ipsec_key_t *ik, |
| ipsec_sa_flags_t flags, u32 salt, u16 src_port, |
| u16 dst_port, const tunnel_t *tun, u32 *sa_out_index); |
| extern index_t ipsec_sa_find_and_lock (u32 id); |
| extern int ipsec_sa_unlock_id (u32 id); |
| extern void ipsec_sa_unlock (index_t sai); |
| extern void ipsec_sa_lock (index_t sai); |
| extern void ipsec_sa_clear (index_t sai); |
| extern void ipsec_sa_set_crypto_alg (ipsec_sa_t * sa, |
| ipsec_crypto_alg_t crypto_alg); |
| extern void ipsec_sa_set_integ_alg (ipsec_sa_t * sa, |
| ipsec_integ_alg_t integ_alg); |
| extern void ipsec_sa_set_async_mode (ipsec_sa_t *sa, int is_enabled); |
| |
| typedef walk_rc_t (*ipsec_sa_walk_cb_t) (ipsec_sa_t * sa, void *ctx); |
| extern void ipsec_sa_walk (ipsec_sa_walk_cb_t cd, void *ctx); |
| |
| extern u8 *format_ipsec_replay_window (u8 *s, va_list *args); |
| extern u8 *format_ipsec_crypto_alg (u8 * s, va_list * args); |
| extern u8 *format_ipsec_integ_alg (u8 * s, va_list * args); |
| extern u8 *format_ipsec_sa (u8 * s, va_list * args); |
| extern u8 *format_ipsec_key (u8 * s, va_list * args); |
| extern uword unformat_ipsec_crypto_alg (unformat_input_t * input, |
| va_list * args); |
| extern uword unformat_ipsec_integ_alg (unformat_input_t * input, |
| va_list * args); |
| extern uword unformat_ipsec_key (unformat_input_t * input, va_list * args); |
| |
| #define IPSEC_UDP_PORT_NONE ((u16)~0) |
| |
| /* |
| * Anti Replay definitions |
| */ |
| |
| #define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (64) |
| #define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE-1) |
| |
| /* |
| * sequence number less than the lower bound are outside of the window |
| * From RFC4303 Appendix A: |
| * Bl = Tl - W + 1 |
| */ |
| #define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND(_tl) (_tl - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE + 1) |
| |
| always_inline int |
| ipsec_sa_anti_replay_check (const ipsec_sa_t *sa, u32 seq) |
| { |
| if (ipsec_sa_is_set_USE_ANTI_REPLAY (sa) && |
| sa->replay_window & (1ULL << (sa->seq - seq))) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* |
| * Anti replay check. |
| * inputs need to be in host byte order. |
| * |
| * The function runs in two contexts. pre and post decrypt. |
| * Pre-decrypt it: |
| * 1 - determines if a packet is a replay - a simple check in the window |
| * 2 - returns the hi-seq number that should be used to decrypt. |
| * post-decrypt: |
| * Checks whether the packet is a replay or falls out of window |
| * |
| * This funcion should be called even without anti-replay enabled to ensure |
| * the high sequence number is set. |
| */ |
| always_inline int |
| ipsec_sa_anti_replay_and_sn_advance (const ipsec_sa_t *sa, u32 seq, |
| u32 hi_seq_used, bool post_decrypt, |
| u32 *hi_seq_req) |
| { |
| ASSERT ((post_decrypt == false) == (hi_seq_req != 0)); |
| |
| if (!ipsec_sa_is_set_USE_ESN (sa)) |
| { |
| if (hi_seq_req) |
| /* no ESN, therefore the hi-seq is always 0 */ |
| *hi_seq_req = 0; |
| |
| if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) |
| return 0; |
| |
| if (PREDICT_TRUE (seq > sa->seq)) |
| return 0; |
| |
| u32 diff = sa->seq - seq; |
| |
| if (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE > diff) |
| return ((sa->replay_window & (1ULL << diff)) ? 1 : 0); |
| else |
| return 1; |
| |
| return 0; |
| } |
| |
| if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) |
| { |
| /* there's no AR configured for this SA, but in order |
| * to know whether a packet has wrapped the hi ESN we need |
| * to know whether it is out of window. if we use the default |
| * lower bound then we are effectively forcing AR because |
| * out of window packets will get the increased hi seq number |
| * and will thus fail to decrypt. IOW we need a window to know |
| * if the SN has wrapped, but we don't want a window to check for |
| * anti replay. to resolve the contradiction we use a huge window. |
| * if the packet is not within 2^30 of the current SN, we'll consider |
| * it a wrap. |
| */ |
| if (hi_seq_req) |
| { |
| if (seq >= sa->seq) |
| /* The packet's sequence number is larger that the SA's. |
| * that can't be a warp - unless we lost more than |
| * 2^32 packets ... how could we know? */ |
| *hi_seq_req = sa->seq_hi; |
| else |
| { |
| /* The packet's SN is less than the SAs, so either the SN has |
| * wrapped or the SN is just old. */ |
| if (sa->seq - seq > (1 << 30)) |
| /* It's really really really old => it wrapped */ |
| *hi_seq_req = sa->seq_hi + 1; |
| else |
| *hi_seq_req = sa->seq_hi; |
| } |
| } |
| /* |
| * else |
| * this is post-decrpyt and since it decrypted we accept it |
| */ |
| return 0; |
| } |
| if (PREDICT_TRUE (sa->seq >= (IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX))) |
| { |
| /* |
| * the last sequence number VPP recieved is more than one |
| * window size greater than zero. |
| * Case A from RFC4303 Appendix A. |
| */ |
| if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (sa->seq)) |
| { |
| /* |
| * the received sequence number is lower than the lower bound |
| * of the window, this could mean either a replay packet or that |
| * the high sequence number has wrapped. if it decrypts corrently |
| * then it's the latter. |
| */ |
| if (post_decrypt) |
| { |
| if (hi_seq_used == sa->seq_hi) |
| /* the high sequence number used to succesfully decrypt this |
| * packet is the same as the last-sequnence number of the SA. |
| * that means this packet did not cause a wrap. |
| * this packet is thus out of window and should be dropped */ |
| return 1; |
| else |
| /* The packet decrypted with a different high sequence number |
| * to the SA, that means it is the wrap packet and should be |
| * accepted */ |
| return 0; |
| } |
| else |
| { |
| /* pre-decrypt it might be the might that casues a wrap, we |
| * need to decrpyt to find out */ |
| if (hi_seq_req) |
| *hi_seq_req = sa->seq_hi + 1; |
| return 0; |
| } |
| } |
| else |
| { |
| /* |
| * the recieved sequence number greater than the low |
| * end of the window. |
| */ |
| if (hi_seq_req) |
| *hi_seq_req = sa->seq_hi; |
| if (seq <= sa->seq) |
| /* |
| * The recieved seq number is within bounds of the window |
| * check if it's a duplicate |
| */ |
| return (ipsec_sa_anti_replay_check (sa, seq)); |
| else |
| /* |
| * The received sequence number is greater than the window |
| * upper bound. this packet will move the window along, assuming |
| * it decrypts correctly. |
| */ |
| return 0; |
| } |
| } |
| else |
| { |
| /* |
| * the last sequence number VPP recieved is within one window |
| * size of zero, i.e. 0 < TL < WINDOW_SIZE, the lower bound is thus a |
| * large sequence number. |
| * Note that the check below uses unsiged integer arthimetic, so the |
| * RHS will be a larger number. |
| * Case B from RFC4303 Appendix A. |
| */ |
| if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (sa->seq)) |
| { |
| /* |
| * the sequence number is less than the lower bound. |
| */ |
| if (seq <= sa->seq) |
| { |
| /* |
| * the packet is within the window upper bound. |
| * check for duplicates. |
| */ |
| if (hi_seq_req) |
| *hi_seq_req = sa->seq_hi; |
| return (ipsec_sa_anti_replay_check (sa, seq)); |
| } |
| else |
| { |
| /* |
| * the packet is less the window lower bound or greater than |
| * the higher bound, depending on how you look at it... |
| * We're assuming, given that the last sequence number received, |
| * TL < WINDOW_SIZE, that a largeer seq num is more likely to be |
| * a packet that moves the window forward, than a packet that has |
| * wrapped the high sequence again. If it were the latter then |
| * we've lost close to 2^32 packets. |
| */ |
| if (hi_seq_req) |
| *hi_seq_req = sa->seq_hi; |
| return 0; |
| } |
| } |
| else |
| { |
| /* |
| * the packet seq number is between the lower bound (a large nubmer) |
| * and MAX_SEQ_NUM. This is in the window since the window upper bound |
| * tl > 0. |
| * However, since TL is the other side of 0 to the received |
| * packet, the SA has moved on to a higher sequence number. |
| */ |
| if (hi_seq_req) |
| *hi_seq_req = sa->seq_hi - 1; |
| return (ipsec_sa_anti_replay_check (sa, seq)); |
| } |
| } |
| |
| /* unhandled case */ |
| ASSERT (0); |
| return 0; |
| } |
| |
| always_inline u32 |
| ipsec_sa_anti_replay_window_shift (ipsec_sa_t *sa, u32 inc) |
| { |
| u32 n_lost = 0; |
| |
| if (inc < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) |
| { |
| if (sa->seq > IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) |
| { |
| /* |
| * count how many holes there are in the portion |
| * of the window that we will right shift of the end |
| * as a result of this increments |
| */ |
| u64 mask = (((u64) 1 << inc) - 1) << (BITS (u64) - inc); |
| u64 old = sa->replay_window & mask; |
| /* the number of packets we saw in this section of the window */ |
| u64 seen = count_set_bits (old); |
| |
| /* |
| * the number we missed is the size of the window section |
| * minus the number we saw. |
| */ |
| n_lost = inc - seen; |
| } |
| sa->replay_window = ((sa->replay_window) << inc) | 1; |
| } |
| else |
| { |
| /* holes in the replay window are lost packets */ |
| n_lost = BITS (u64) - count_set_bits (sa->replay_window); |
| |
| /* any sequence numbers that now fall outside the window |
| * are forever lost */ |
| n_lost += inc - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE; |
| |
| sa->replay_window = 1; |
| } |
| |
| return (n_lost); |
| } |
| |
| /* |
| * Anti replay window advance |
| * inputs need to be in host byte order. |
| * This function both advances the anti-replay window and the sequence number |
| * We always need to move on the SN but the window updates are only needed |
| * if AR is on. |
| * However, updating the window is trivial, so we do it anyway to save |
| * the branch cost. |
| */ |
| always_inline u64 |
| ipsec_sa_anti_replay_advance (ipsec_sa_t *sa, u32 thread_index, u32 seq, |
| u32 hi_seq) |
| { |
| u64 n_lost = 0; |
| u32 pos; |
| |
| if (ipsec_sa_is_set_USE_ESN (sa)) |
| { |
| int wrap = hi_seq - sa->seq_hi; |
| |
| if (wrap == 0 && seq > sa->seq) |
| { |
| pos = seq - sa->seq; |
| n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); |
| sa->seq = seq; |
| } |
| else if (wrap > 0) |
| { |
| pos = ~seq + sa->seq + 1; |
| n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); |
| sa->seq = seq; |
| sa->seq_hi = hi_seq; |
| } |
| else if (wrap < 0) |
| { |
| pos = ~seq + sa->seq + 1; |
| sa->replay_window |= (1ULL << pos); |
| } |
| else |
| { |
| pos = sa->seq - seq; |
| sa->replay_window |= (1ULL << pos); |
| } |
| } |
| else |
| { |
| if (seq > sa->seq) |
| { |
| pos = seq - sa->seq; |
| n_lost = ipsec_sa_anti_replay_window_shift (sa, pos); |
| sa->seq = seq; |
| } |
| else |
| { |
| pos = sa->seq - seq; |
| sa->replay_window |= (1ULL << pos); |
| } |
| } |
| |
| return n_lost; |
| } |
| |
| |
| /* |
| * Makes choice for thread_id should be assigned. |
| * if input ~0, gets random worker_id based on unix_time_now_nsec |
| */ |
| always_inline u16 |
| ipsec_sa_assign_thread (u16 thread_id) |
| { |
| return ((thread_id) ? thread_id |
| : (unix_time_now_nsec () % vlib_num_workers ()) + 1); |
| } |
| |
| always_inline ipsec_sa_t * |
| ipsec_sa_get (u32 sa_index) |
| { |
| return (pool_elt_at_index (ipsec_sa_pool, sa_index)); |
| } |
| |
| #endif /* __IPSEC_SPD_SA_H__ */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |