blob: 14a1ae97d1ee1bbb72084de17a32bff48f65a2d8 [file] [log] [blame]
/*
* ethernet/arp.c: IP v4 ARP node
*
* Copyright (c) 2010 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vnet/arp/arp.h>
#include <vnet/arp/arp_packet.h>
#include <vnet/fib/ip4_fib.h>
#include <vnet/fib/fib_entry_src.h>
#include <vnet/adj/adj_nbr.h>
#include <vnet/adj/adj_mcast.h>
#include <vnet/ip-neighbor/ip_neighbor.h>
#include <vnet/ip-neighbor/ip_neighbor_dp.h>
#include <vlibmemory/api.h>
/**
* @file
* @brief IPv4 ARP.
*
* This file contains code to manage the IPv4 ARP tables (IP Address
* to MAC Address lookup).
*/
/**
* @brief Per-interface ARP configuration and state
*/
typedef struct ethernet_arp_interface_t_
{
/**
* Is ARP enabled on this interface
*/
u32 enabled;
} ethernet_arp_interface_t;
typedef struct
{
/* Hash tables mapping name to opcode. */
uword *opcode_by_name;
/** Per interface state */
ethernet_arp_interface_t *ethernet_arp_by_sw_if_index;
/* ARP feature arc index */
u8 feature_arc_index;
} ethernet_arp_main_t;
static ethernet_arp_main_t ethernet_arp_main;
static const u8 vrrp_prefix[] = { 0x00, 0x00, 0x5E, 0x00, 0x01 };
static uword
unformat_ethernet_arp_opcode_host_byte_order (unformat_input_t * input,
va_list * args)
{
int *result = va_arg (*args, int *);
ethernet_arp_main_t *am = &ethernet_arp_main;
int x, i;
/* Numeric opcode. */
if (unformat (input, "0x%x", &x) || unformat (input, "%d", &x))
{
if (x >= (1 << 16))
return 0;
*result = x;
return 1;
}
/* Named type. */
if (unformat_user (input, unformat_vlib_number_by_name,
am->opcode_by_name, &i))
{
*result = i;
return 1;
}
return 0;
}
static uword
unformat_ethernet_arp_opcode_net_byte_order (unformat_input_t * input,
va_list * args)
{
int *result = va_arg (*args, int *);
if (!unformat_user
(input, unformat_ethernet_arp_opcode_host_byte_order, result))
return 0;
*result = clib_host_to_net_u16 ((u16) * result);
return 1;
}
typedef struct
{
u8 packet_data[64];
} ethernet_arp_input_trace_t;
static u8 *
format_ethernet_arp_input_trace (u8 * s, va_list * va)
{
CLIB_UNUSED (vlib_main_t * vm) = va_arg (*va, vlib_main_t *);
CLIB_UNUSED (vlib_node_t * node) = va_arg (*va, vlib_node_t *);
ethernet_arp_input_trace_t *t = va_arg (*va, ethernet_arp_input_trace_t *);
s = format (s, "%U",
format_ethernet_arp_header,
t->packet_data, sizeof (t->packet_data));
return s;
}
static int
arp_is_enabled (ethernet_arp_main_t * am, u32 sw_if_index)
{
if (vec_len (am->ethernet_arp_by_sw_if_index) <= sw_if_index)
return 0;
return (am->ethernet_arp_by_sw_if_index[sw_if_index].enabled);
}
static void
arp_enable (ethernet_arp_main_t * am, u32 sw_if_index)
{
if (arp_is_enabled (am, sw_if_index))
return;
vec_validate (am->ethernet_arp_by_sw_if_index, sw_if_index);
am->ethernet_arp_by_sw_if_index[sw_if_index].enabled = 1;
vnet_feature_enable_disable ("arp", "arp-reply", sw_if_index, 1, NULL, 0);
vnet_feature_enable_disable ("arp", "arp-disabled", sw_if_index, 0, NULL,
0);
}
static void
arp_disable (ethernet_arp_main_t * am, u32 sw_if_index)
{
if (!arp_is_enabled (am, sw_if_index))
return;
vnet_feature_enable_disable ("arp", "arp-disabled", sw_if_index, 1, NULL,
0);
vnet_feature_enable_disable ("arp", "arp-reply", sw_if_index, 0, NULL, 0);
am->ethernet_arp_by_sw_if_index[sw_if_index].enabled = 0;
}
static int
arp_unnumbered (vlib_buffer_t * p0,
u32 input_sw_if_index, u32 conn_sw_if_index)
{
vnet_main_t *vnm = vnet_get_main ();
vnet_interface_main_t *vim = &vnm->interface_main;
vnet_sw_interface_t *si;
/* verify that the input interface is unnumbered to the connected.
* the connected interface is the interface on which the subnet is
* configured */
si = &vim->sw_interfaces[input_sw_if_index];
if (!(si->flags & VNET_SW_INTERFACE_FLAG_UNNUMBERED &&
(si->unnumbered_sw_if_index == conn_sw_if_index)))
{
/* the input interface is not unnumbered to the interface on which
* the sub-net is configured that covers the ARP request.
* So this is not the case for unnumbered.. */
return 0;
}
return !0;
}
always_inline u32
arp_learn (u32 sw_if_index,
const ethernet_arp_ip4_over_ethernet_address_t * addr)
{
ip_neighbor_learn_t l = {
.ip.ip4 = addr->ip4,
.type = IP46_TYPE_IP4,
.mac = addr->mac,
.sw_if_index = sw_if_index,
};
ip_neighbor_learn_dp (&l);
return (ETHERNET_ARP_ERROR_l3_src_address_learned);
}
typedef enum arp_input_next_t_
{
ARP_INPUT_NEXT_DROP,
ARP_INPUT_NEXT_DISABLED,
ARP_INPUT_N_NEXT,
} arp_input_next_t;
static uword
arp_input (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame)
{
u32 n_left_from, next_index, *from, *to_next, n_left_to_next;
ethernet_arp_main_t *am = &ethernet_arp_main;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
if (node->flags & VLIB_NODE_FLAG_TRACE)
vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors,
/* stride */ 1,
sizeof (ethernet_arp_input_trace_t));
while (n_left_from > 0)
{
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from > 0 && n_left_to_next > 0)
{
const ethernet_arp_header_t *arp0;
arp_input_next_t next0;
vlib_buffer_t *p0;
u32 pi0, error0;
pi0 = to_next[0] = from[0];
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
p0 = vlib_get_buffer (vm, pi0);
arp0 = vlib_buffer_get_current (p0);
error0 = ETHERNET_ARP_ERROR_replies_sent;
next0 = ARP_INPUT_NEXT_DROP;
error0 =
(arp0->l2_type !=
clib_net_to_host_u16 (ETHERNET_ARP_HARDWARE_TYPE_ethernet) ?
ETHERNET_ARP_ERROR_l2_type_not_ethernet : error0);
error0 =
(arp0->l3_type !=
clib_net_to_host_u16 (ETHERNET_TYPE_IP4) ?
ETHERNET_ARP_ERROR_l3_type_not_ip4 : error0);
error0 =
(0 == arp0->ip4_over_ethernet[0].ip4.as_u32 ?
ETHERNET_ARP_ERROR_l3_dst_address_unset : error0);
if (ETHERNET_ARP_ERROR_replies_sent == error0)
{
next0 = ARP_INPUT_NEXT_DISABLED;
vnet_feature_arc_start (am->feature_arc_index,
vnet_buffer (p0)->sw_if_index[VLIB_RX],
&next0, p0);
}
else
p0->error = node->errors[error0];
vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next,
n_left_to_next, pi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
return frame->n_vectors;
}
typedef enum arp_disabled_next_t_
{
ARP_DISABLED_NEXT_DROP,
ARP_DISABLED_N_NEXT,
} arp_disabled_next_t;
#define foreach_arp_disabled_error \
_ (DISABLED, "ARP Disabled on this interface") \
typedef enum
{
#define _(sym,string) ARP_DISABLED_ERROR_##sym,
foreach_arp_disabled_error
#undef _
ARP_DISABLED_N_ERROR,
} arp_disabled_error_t;
static char *arp_disabled_error_strings[] = {
#define _(sym,string) string,
foreach_arp_disabled_error
#undef _
};
static uword
arp_disabled (vlib_main_t * vm,
vlib_node_runtime_t * node, vlib_frame_t * frame)
{
u32 n_left_from, next_index, *from, *to_next, n_left_to_next;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
if (node->flags & VLIB_NODE_FLAG_TRACE)
vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors,
/* stride */ 1,
sizeof (ethernet_arp_input_trace_t));
while (n_left_from > 0)
{
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from > 0 && n_left_to_next > 0)
{
arp_disabled_next_t next0 = ARP_DISABLED_NEXT_DROP;
vlib_buffer_t *p0;
u32 pi0, error0;
next0 = ARP_DISABLED_NEXT_DROP;
error0 = ARP_DISABLED_ERROR_DISABLED;
pi0 = to_next[0] = from[0];
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
p0 = vlib_get_buffer (vm, pi0);
p0->error = node->errors[error0];
vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next,
n_left_to_next, pi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
return frame->n_vectors;
}
enum arp_dst_fib_type
{
ARP_DST_FIB_NONE,
ARP_DST_FIB_ADJ,
ARP_DST_FIB_CONN
};
/*
* we're looking for FIB sources that indicate the destination
* is attached. There may be interposed DPO prior to the one
* we are looking for
*/
static enum arp_dst_fib_type
arp_dst_fib_check (const fib_node_index_t fei, fib_entry_flag_t * flags)
{
const fib_entry_t *entry = fib_entry_get (fei);
const fib_entry_src_t *entry_src;
fib_source_t src;
/* *INDENT-OFF* */
FOR_EACH_SRC_ADDED(entry, entry_src, src,
({
*flags = fib_entry_get_flags_for_source (fei, src);
if (fib_entry_is_sourced (fei, FIB_SOURCE_ADJ))
return ARP_DST_FIB_ADJ;
else if (FIB_ENTRY_FLAG_CONNECTED & *flags)
return ARP_DST_FIB_CONN;
}))
/* *INDENT-ON* */
return ARP_DST_FIB_NONE;
}
static uword
arp_reply (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * frame)
{
vnet_main_t *vnm = vnet_get_main ();
u32 n_left_from, next_index, *from, *to_next;
u32 n_replies_sent = 0;
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
next_index = node->cached_next_index;
if (node->flags & VLIB_NODE_FLAG_TRACE)
vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors,
/* stride */ 1,
sizeof (ethernet_arp_input_trace_t));
while (n_left_from > 0)
{
u32 n_left_to_next;
vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next);
while (n_left_from > 0 && n_left_to_next > 0)
{
vlib_buffer_t *p0;
ethernet_arp_header_t *arp0;
ethernet_header_t *eth_rx;
const ip4_address_t *if_addr0;
u32 pi0, error0, next0, sw_if_index0, conn_sw_if_index0, fib_index0;
u8 dst_is_local0, is_vrrp_reply0;
fib_node_index_t dst_fei, src_fei;
const fib_prefix_t *pfx0;
fib_entry_flag_t src_flags, dst_flags;
pi0 = from[0];
to_next[0] = pi0;
from += 1;
to_next += 1;
n_left_from -= 1;
n_left_to_next -= 1;
p0 = vlib_get_buffer (vm, pi0);
arp0 = vlib_buffer_get_current (p0);
/* Fill in ethernet header. */
eth_rx = ethernet_buffer_get_header (p0);
next0 = ARP_REPLY_NEXT_DROP;
error0 = ETHERNET_ARP_ERROR_replies_sent;
sw_if_index0 = vnet_buffer (p0)->sw_if_index[VLIB_RX];
/* Check that IP address is local and matches incoming interface. */
fib_index0 = ip4_fib_table_get_index_for_sw_if_index (sw_if_index0);
if (~0 == fib_index0)
{
error0 = ETHERNET_ARP_ERROR_interface_no_table;
goto drop;
}
{
/*
* we're looking for FIB entries that indicate the source
* is attached. There may be more specific non-attached
* routes that match the source, but these do not influence
* whether we respond to an ARP request, i.e. they do not
* influence whether we are the correct way for the sender
* to reach us, they only affect how we reach the sender.
*/
fib_entry_t *src_fib_entry;
const fib_prefix_t *pfx;
fib_entry_src_t *src;
fib_source_t source;
int attached;
int mask;
mask = 32;
attached = 0;
do
{
src_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0),
&arp0->
ip4_over_ethernet[0].ip4,
mask);
src_fib_entry = fib_entry_get (src_fei);
/*
* It's possible that the source that provides the
* flags we need, or the flags we must not have,
* is not the best source, so check then all.
*/
/* *INDENT-OFF* */
FOR_EACH_SRC_ADDED(src_fib_entry, src, source,
({
src_flags = fib_entry_get_flags_for_source (src_fei, source);
/* Reject requests/replies with our local interface
address. */
if (FIB_ENTRY_FLAG_LOCAL & src_flags)
{
error0 = ETHERNET_ARP_ERROR_l3_src_address_is_local;
/*
* When VPP has an interface whose address is also
* applied to a TAP interface on the host, then VPP's
* TAP interface will be unnumbered to the 'real'
* interface and do proxy ARP from the host.
* The curious aspect of this setup is that ARP requests
* from the host will come from the VPP's own address.
* So don't drop immediately here, instead go see if this
* is a proxy ARP case.
*/
goto next_feature;
}
/* A Source must also be local to subnet of matching
* interface address. */
if ((FIB_ENTRY_FLAG_ATTACHED & src_flags) ||
(FIB_ENTRY_FLAG_CONNECTED & src_flags))
{
attached = 1;
break;
}
/*
* else
* The packet was sent from an address that is not
* connected nor attached i.e. it is not from an
* address that is covered by a link's sub-net,
* nor is it a already learned host resp.
*/
}));
/* *INDENT-ON* */
/*
* shorter mask lookup for the next iteration.
*/
pfx = fib_entry_get_prefix (src_fei);
mask = pfx->fp_len - 1;
/*
* continue until we hit the default route or we find
* the attached we are looking for. The most likely
* outcome is we find the attached with the first source
* on the first lookup.
*/
}
while (!attached &&
!fib_entry_is_sourced (src_fei, FIB_SOURCE_DEFAULT_ROUTE));
if (!attached)
{
/*
* the matching route is a not attached, i.e. it was
* added as a result of routing, rather than interface/ARP
* configuration. If the matching route is not a host route
* (i.e. a /32)
*/
error0 = ETHERNET_ARP_ERROR_l3_src_address_not_local;
goto drop;
}
}
dst_fei = ip4_fib_table_lookup (ip4_fib_get (fib_index0),
&arp0->ip4_over_ethernet[1].ip4,
32);
switch (arp_dst_fib_check (dst_fei, &dst_flags))
{
case ARP_DST_FIB_ADJ:
/*
* We matched an adj-fib on ths source subnet (a /32 previously
* added as a result of ARP). If this request is a gratuitous
* ARP, then learn from it.
* The check for matching an adj-fib, is to prevent hosts
* from spamming us with gratuitous ARPS that might otherwise
* blow our ARP cache
*/
if (arp0->ip4_over_ethernet[0].ip4.as_u32 ==
arp0->ip4_over_ethernet[1].ip4.as_u32)
error0 =
arp_learn (sw_if_index0, &arp0->ip4_over_ethernet[0]);
goto drop;
case ARP_DST_FIB_CONN:
/* destination is connected, continue to process */
break;
case ARP_DST_FIB_NONE:
/* destination is not connected, stop here */
error0 = ETHERNET_ARP_ERROR_l3_dst_address_not_local;
goto next_feature;
}
dst_is_local0 = (FIB_ENTRY_FLAG_LOCAL & dst_flags);
pfx0 = fib_entry_get_prefix (dst_fei);
if_addr0 = &pfx0->fp_addr.ip4;
is_vrrp_reply0 =
((arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply))
&&
(!memcmp
(arp0->ip4_over_ethernet[0].mac.bytes, vrrp_prefix,
sizeof (vrrp_prefix))));
/* Trash ARP packets whose ARP-level source addresses do not
match their L2-frame-level source addresses, unless it's
a reply from a VRRP virtual router */
if (!ethernet_mac_address_equal
(eth_rx->src_address,
arp0->ip4_over_ethernet[0].mac.bytes) && !is_vrrp_reply0)
{
error0 = ETHERNET_ARP_ERROR_l2_address_mismatch;
goto drop;
}
/* Learn or update sender's mapping only for replies to addresses
* that are local to the subnet */
if (arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_reply))
{
if (dst_is_local0)
error0 =
arp_learn (sw_if_index0, &arp0->ip4_over_ethernet[0]);
else
/* a reply for a non-local destination could be a GARP.
* GARPs for hosts we know were handled above, so this one
* we drop */
error0 = ETHERNET_ARP_ERROR_l3_dst_address_not_local;
goto next_feature;
}
else if (arp0->opcode ==
clib_host_to_net_u16 (ETHERNET_ARP_OPCODE_request) &&
(dst_is_local0 == 0))
{
goto next_feature;
}
/* Honor unnumbered interface, if any */
conn_sw_if_index0 = fib_entry_get_resolving_interface (dst_fei);
if (sw_if_index0 != conn_sw_if_index0 ||
sw_if_index0 != fib_entry_get_resolving_interface (src_fei))
{
/*
* The interface the ARP is sent to or was received on is not the
* interface on which the covering prefix is configured.
* Maybe this is a case for unnumbered.
*/
if (!arp_unnumbered (p0, sw_if_index0, conn_sw_if_index0))
{
error0 = ETHERNET_ARP_ERROR_unnumbered_mismatch;
goto drop;
}
}
if (arp0->ip4_over_ethernet[0].ip4.as_u32 ==
arp0->ip4_over_ethernet[1].ip4.as_u32)
{
error0 = ETHERNET_ARP_ERROR_gratuitous_arp;
goto drop;
}
next0 = arp_mk_reply (vnm, p0, sw_if_index0,
if_addr0, arp0, eth_rx);
/* We are going to reply to this request, so, in the absence of
errors, learn the sender */
if (!error0)
error0 = arp_learn (sw_if_index0, &arp0->ip4_over_ethernet[1]);
n_replies_sent += 1;
goto enqueue;
next_feature:
vnet_feature_next (&next0, p0);
goto enqueue;
drop:
p0->error = node->errors[error0];
enqueue:
vlib_validate_buffer_enqueue_x1 (vm, node, next_index, to_next,
n_left_to_next, pi0, next0);
}
vlib_put_next_frame (vm, node, next_index, n_left_to_next);
}
vlib_error_count (vm, node->node_index,
ETHERNET_ARP_ERROR_replies_sent, n_replies_sent);
return frame->n_vectors;
}
static char *ethernet_arp_error_strings[] = {
#define _(sym,string) string,
foreach_ethernet_arp_error
#undef _
};
/* *INDENT-OFF* */
VLIB_REGISTER_NODE (arp_input_node, static) =
{
.function = arp_input,
.name = "arp-input",
.vector_size = sizeof (u32),
.n_errors = ETHERNET_ARP_N_ERROR,
.error_strings = ethernet_arp_error_strings,
.n_next_nodes = ARP_INPUT_N_NEXT,
.next_nodes = {
[ARP_INPUT_NEXT_DROP] = "error-drop",
[ARP_INPUT_NEXT_DISABLED] = "arp-disabled",
},
.format_buffer = format_ethernet_arp_header,
.format_trace = format_ethernet_arp_input_trace,
};
VLIB_REGISTER_NODE (arp_disabled_node, static) =
{
.function = arp_disabled,
.name = "arp-disabled",
.vector_size = sizeof (u32),
.n_errors = ARP_DISABLED_N_ERROR,
.error_strings = arp_disabled_error_strings,
.n_next_nodes = ARP_DISABLED_N_NEXT,
.next_nodes = {
[ARP_INPUT_NEXT_DROP] = "error-drop",
},
.format_buffer = format_ethernet_arp_header,
.format_trace = format_ethernet_arp_input_trace,
};
VLIB_REGISTER_NODE (arp_reply_node, static) =
{
.function = arp_reply,
.name = "arp-reply",
.vector_size = sizeof (u32),
.n_errors = ETHERNET_ARP_N_ERROR,
.error_strings = ethernet_arp_error_strings,
.n_next_nodes = ARP_REPLY_N_NEXT,
.next_nodes = {
[ARP_REPLY_NEXT_DROP] = "error-drop",
[ARP_REPLY_NEXT_REPLY_TX] = "interface-output",
},
.format_buffer = format_ethernet_arp_header,
.format_trace = format_ethernet_arp_input_trace,
};
/* Built-in ARP rx feature path definition */
VNET_FEATURE_ARC_INIT (arp_feat, static) =
{
.arc_name = "arp",
.start_nodes = VNET_FEATURES ("arp-input"),
.last_in_arc = "error-drop",
.arc_index_ptr = &ethernet_arp_main.feature_arc_index,
};
VNET_FEATURE_INIT (arp_reply_feat_node, static) =
{
.arc_name = "arp",
.node_name = "arp-reply",
.runs_before = VNET_FEATURES ("arp-disabled"),
};
VNET_FEATURE_INIT (arp_proxy_feat_node, static) =
{
.arc_name = "arp",
.node_name = "arp-proxy",
.runs_after = VNET_FEATURES ("arp-reply"),
.runs_before = VNET_FEATURES ("arp-disabled"),
};
VNET_FEATURE_INIT (arp_disabled_feat_node, static) =
{
.arc_name = "arp",
.node_name = "arp-disabled",
.runs_before = VNET_FEATURES ("error-drop"),
};
VNET_FEATURE_INIT (arp_drop_feat_node, static) =
{
.arc_name = "arp",
.node_name = "error-drop",
.runs_before = 0, /* last feature */
};
/* *INDENT-ON* */
typedef struct
{
pg_edit_t l2_type, l3_type;
pg_edit_t n_l2_address_bytes, n_l3_address_bytes;
pg_edit_t opcode;
struct
{
pg_edit_t mac;
pg_edit_t ip4;
} ip4_over_ethernet[2];
} pg_ethernet_arp_header_t;
static inline void
pg_ethernet_arp_header_init (pg_ethernet_arp_header_t * p)
{
/* Initialize fields that are not bit fields in the IP header. */
#define _(f) pg_edit_init (&p->f, ethernet_arp_header_t, f);
_(l2_type);
_(l3_type);
_(n_l2_address_bytes);
_(n_l3_address_bytes);
_(opcode);
_(ip4_over_ethernet[0].mac);
_(ip4_over_ethernet[0].ip4);
_(ip4_over_ethernet[1].mac);
_(ip4_over_ethernet[1].ip4);
#undef _
}
uword
unformat_pg_arp_header (unformat_input_t * input, va_list * args)
{
pg_stream_t *s = va_arg (*args, pg_stream_t *);
pg_ethernet_arp_header_t *p;
u32 group_index;
p = pg_create_edit_group (s, sizeof (p[0]), sizeof (ethernet_arp_header_t),
&group_index);
pg_ethernet_arp_header_init (p);
/* Defaults. */
pg_edit_set_fixed (&p->l2_type, ETHERNET_ARP_HARDWARE_TYPE_ethernet);
pg_edit_set_fixed (&p->l3_type, ETHERNET_TYPE_IP4);
pg_edit_set_fixed (&p->n_l2_address_bytes, 6);
pg_edit_set_fixed (&p->n_l3_address_bytes, 4);
if (!unformat (input, "%U: %U/%U -> %U/%U",
unformat_pg_edit,
unformat_ethernet_arp_opcode_net_byte_order, &p->opcode,
unformat_pg_edit,
unformat_mac_address_t, &p->ip4_over_ethernet[0].mac,
unformat_pg_edit,
unformat_ip4_address, &p->ip4_over_ethernet[0].ip4,
unformat_pg_edit,
unformat_mac_address_t, &p->ip4_over_ethernet[1].mac,
unformat_pg_edit,
unformat_ip4_address, &p->ip4_over_ethernet[1].ip4))
{
/* Free up any edits we may have added. */
pg_free_edit_group (s);
return 0;
}
return 1;
}
/*
* callback when an interface address is added or deleted
*/
static void
arp_enable_disable_interface (ip4_main_t * im,
uword opaque, u32 sw_if_index, u32 is_enable)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
if (is_enable)
arp_enable (am, sw_if_index);
else
arp_disable (am, sw_if_index);
}
/*
* Remove any arp entries associated with the specified interface
*/
static clib_error_t *
vnet_arp_add_del_sw_interface (vnet_main_t * vnm, u32 sw_if_index, u32 is_add)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
if (!is_add && sw_if_index != ~0)
{
arp_disable (am, sw_if_index);
}
else if (is_add)
{
vnet_feature_enable_disable ("arp", "arp-disabled",
sw_if_index, 1, NULL, 0);
}
return (NULL);
}
VNET_SW_INTERFACE_ADD_DEL_FUNCTION (vnet_arp_add_del_sw_interface);
const static ip_neighbor_vft_t arp_vft = {
.inv_proxy4_add = arp_proxy_add,
.inv_proxy4_del = arp_proxy_del,
.inv_proxy4_enable = arp_proxy_disable,
.inv_proxy4_disable = arp_proxy_disable,
};
static clib_error_t *
ethernet_arp_init (vlib_main_t * vm)
{
ethernet_arp_main_t *am = &ethernet_arp_main;
ip4_main_t *im = &ip4_main;
pg_node_t *pn;
ethernet_register_input_type (vm, ETHERNET_TYPE_ARP, arp_input_node.index);
pn = pg_get_node (arp_input_node.index);
pn->unformat_edit = unformat_pg_arp_header;
am->opcode_by_name = hash_create_string (0, sizeof (uword));
#define _(o) hash_set_mem (am->opcode_by_name, #o, ETHERNET_ARP_OPCODE_##o);
foreach_ethernet_arp_opcode;
#undef _
/* don't trace ARP error packets */
{
vlib_node_runtime_t *rt =
vlib_node_get_runtime (vm, arp_input_node.index);
#define _(a,b) \
vnet_pcap_drop_trace_filter_add_del \
(rt->errors[ETHERNET_ARP_ERROR_##a], \
1 /* is_add */);
foreach_ethernet_arp_error
#undef _
}
{
ip4_enable_disable_interface_callback_t cb = {
.function = arp_enable_disable_interface,
};
vec_add1 (im->enable_disable_interface_callbacks, cb);
}
ip_neighbor_register (IP46_TYPE_IP4, &arp_vft);
return 0;
}
/* *INDENT-OFF* */
VLIB_INIT_FUNCTION (ethernet_arp_init) =
{
.runs_after = VLIB_INITS("ethernet_init",
"ip_neighbor_init"),
};
/* *INDENT-ON* */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/