blob: df8ec7c40e6ce7654a1597f4549a0f640061b2cc [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* node_funcs.h: processing nodes global functions/inlines
*
* Copyright (c) 2008 Eliot Dresselhaus
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/** \file
vlib node functions
*/
#ifndef included_vlib_node_funcs_h
#define included_vlib_node_funcs_h
#include <vppinfra/fifo.h>
#include <vppinfra/tw_timer_1t_3w_1024sl_ov.h>
#include <vppinfra/interrupt.h>
#ifdef CLIB_SANITIZE_ADDR
#include <sanitizer/asan_interface.h>
#endif
static_always_inline void
vlib_process_start_switch_stack (vlib_main_t * vm, vlib_process_t * p)
{
#ifdef CLIB_SANITIZE_ADDR
void *stack = p ? (void *) p->stack : vlib_thread_stacks[vm->thread_index];
u32 stack_bytes = p ? p->log2_n_stack_bytes : VLIB_THREAD_STACK_SIZE;
__sanitizer_start_switch_fiber (&vm->asan_stack_save, stack, stack_bytes);
#endif
}
static_always_inline void
vlib_process_finish_switch_stack (vlib_main_t * vm)
{
#ifdef CLIB_SANITIZE_ADDR
const void *bottom_old;
size_t size_old;
__sanitizer_finish_switch_fiber (&vm->asan_stack_save, &bottom_old,
&size_old);
#endif
}
/** \brief Get vlib node by index.
@warning This function will ASSERT if @c i is out of range.
@param vm vlib_main_t pointer, varies by thread
@param i node index.
@return pointer to the requested vlib_node_t.
*/
always_inline vlib_node_t *
vlib_get_node (vlib_main_t * vm, u32 i)
{
return vec_elt (vm->node_main.nodes, i);
}
/** \brief Get vlib node by graph arc (next) index.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of original node
@param next_index graph arc index
@return pointer to the vlib_node_t at the end of the indicated arc
*/
always_inline vlib_node_t *
vlib_get_next_node (vlib_main_t * vm, u32 node_index, u32 next_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n;
n = vec_elt (nm->nodes, node_index);
ASSERT (next_index < vec_len (n->next_nodes));
return vlib_get_node (vm, n->next_nodes[next_index]);
}
/** \brief Get node runtime by node index.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of node
@return pointer to the indicated vlib_node_runtime_t
*/
always_inline vlib_node_runtime_t *
vlib_node_get_runtime (vlib_main_t * vm, u32 node_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vec_elt (nm->nodes, node_index);
vlib_process_t *p;
if (n->type != VLIB_NODE_TYPE_PROCESS)
return vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index);
else
{
p = vec_elt (nm->processes, n->runtime_index);
return &p->node_runtime;
}
}
/** \brief Get node runtime private data by node index.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of the node
@return pointer to the indicated vlib_node_runtime_t private data
*/
always_inline void *
vlib_node_get_runtime_data (vlib_main_t * vm, u32 node_index)
{
vlib_node_runtime_t *r = vlib_node_get_runtime (vm, node_index);
return r->runtime_data;
}
/** \brief Set node runtime private data.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of the node
@param runtime_data arbitrary runtime private data
@param n_runtime_data_bytes size of runtime private data
*/
always_inline void
vlib_node_set_runtime_data (vlib_main_t * vm, u32 node_index,
void *runtime_data, u32 n_runtime_data_bytes)
{
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_node_runtime_t *r = vlib_node_get_runtime (vm, node_index);
n->runtime_data_bytes = n_runtime_data_bytes;
vec_free (n->runtime_data);
vec_add (n->runtime_data, runtime_data, n_runtime_data_bytes);
ASSERT (vec_len (n->runtime_data) <= sizeof (vlib_node_runtime_t) -
STRUCT_OFFSET_OF (vlib_node_runtime_t, runtime_data));
if (vec_len (n->runtime_data) > 0)
clib_memcpy_fast (r->runtime_data, n->runtime_data,
vec_len (n->runtime_data));
}
/** \brief Set node dispatch state.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of the node
@param new_state new state for node, see vlib_node_state_t
*/
always_inline void
vlib_node_set_state (vlib_main_t * vm, u32 node_index,
vlib_node_state_t new_state)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n;
vlib_node_runtime_t *r;
n = vec_elt (nm->nodes, node_index);
if (n->type == VLIB_NODE_TYPE_PROCESS)
{
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
r = &p->node_runtime;
/* When disabling make sure flags are cleared. */
p->flags &= ~(VLIB_PROCESS_RESUME_PENDING
| VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK
| VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT);
}
else
r = vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index);
ASSERT (new_state < VLIB_N_NODE_STATE);
if (n->type == VLIB_NODE_TYPE_INPUT)
{
ASSERT (nm->input_node_counts_by_state[n->state] > 0);
nm->input_node_counts_by_state[n->state] -= 1;
nm->input_node_counts_by_state[new_state] += 1;
}
if (PREDICT_FALSE (r->state == VLIB_NODE_STATE_DISABLED))
vlib_node_runtime_perf_counter (vm, r, 0, 0, 0,
VLIB_NODE_RUNTIME_PERF_RESET);
n->state = new_state;
r->state = new_state;
}
/** \brief Get node dispatch state.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of the node
@return state for node, see vlib_node_state_t
*/
always_inline vlib_node_state_t
vlib_node_get_state (vlib_main_t * vm, u32 node_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n;
n = vec_elt (nm->nodes, node_index);
return n->state;
}
always_inline void
vlib_node_set_flag (vlib_main_t *vm, u32 node_index, u16 flag, u8 enable)
{
vlib_node_runtime_t *r;
vlib_node_t *n;
n = vlib_get_node (vm, node_index);
r = vlib_node_get_runtime (vm, node_index);
if (enable)
{
n->flags |= flag;
r->flags |= flag;
}
else
{
n->flags &= ~flag;
r->flags &= ~flag;
}
}
always_inline void
vlib_node_set_interrupt_pending (vlib_main_t *vm, u32 node_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vec_elt (nm->nodes, node_index);
ASSERT (n->type == VLIB_NODE_TYPE_INPUT);
if (vm != vlib_get_main ())
clib_interrupt_set_atomic (nm->interrupts, n->runtime_index);
else
clib_interrupt_set (nm->interrupts, n->runtime_index);
__atomic_store_n (nm->pending_interrupts, 1, __ATOMIC_RELEASE);
}
always_inline vlib_process_t *
vlib_get_process_from_node (vlib_main_t * vm, vlib_node_t * node)
{
vlib_node_main_t *nm = &vm->node_main;
ASSERT (node->type == VLIB_NODE_TYPE_PROCESS);
return vec_elt (nm->processes, node->runtime_index);
}
always_inline vlib_frame_t *
vlib_get_frame (vlib_main_t * vm, vlib_frame_t * f)
{
ASSERT (f != NULL);
ASSERT (f->frame_flags & VLIB_FRAME_IS_ALLOCATED);
return f;
}
always_inline void
vlib_frame_no_append (vlib_frame_t * f)
{
f->frame_flags |= VLIB_FRAME_NO_APPEND;
}
/** \brief Get pointer to frame vector data.
@param f vlib_frame_t pointer
@return pointer to first vector element in frame
*/
always_inline void *
vlib_frame_vector_args (vlib_frame_t * f)
{
ASSERT (f->vector_offset);
return (void *) f + f->vector_offset;
}
/** \brief Get pointer to frame vector aux data.
@param f vlib_frame_t pointer
@return pointer to first vector aux data element in frame
*/
always_inline void *
vlib_frame_aux_args (vlib_frame_t *f)
{
ASSERT (f->aux_offset);
return (void *) f + f->aux_offset;
}
/** \brief Get pointer to frame scalar data.
@param f vlib_frame_t pointer
@return arbitrary node scalar data
@sa vlib_frame_vector_args
*/
always_inline void *
vlib_frame_scalar_args (vlib_frame_t * f)
{
ASSERT (f->scalar_offset);
return (void *) f + f->scalar_offset;
}
always_inline vlib_next_frame_t *
vlib_node_runtime_get_next_frame (vlib_main_t * vm,
vlib_node_runtime_t * n, u32 next_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_next_frame_t *nf;
ASSERT (next_index < n->n_next_nodes);
nf = vec_elt_at_index (nm->next_frames, n->next_frame_index + next_index);
if (CLIB_DEBUG > 0)
{
vlib_node_t *node, *next;
node = vec_elt (nm->nodes, n->node_index);
next = vec_elt (nm->nodes, node->next_nodes[next_index]);
ASSERT (nf->node_runtime_index == next->runtime_index);
}
return nf;
}
/** \brief Get pointer to frame by (@c node_index, @c next_index).
@warning This is not a function that you should call directly.
See @ref vlib_get_next_frame instead.
@param vm vlib_main_t pointer, varies by thread
@param node_index index of the node
@param next_index graph arc index
@return pointer to the requested vlib_next_frame_t
@sa vlib_get_next_frame
*/
always_inline vlib_next_frame_t *
vlib_node_get_next_frame (vlib_main_t * vm, u32 node_index, u32 next_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n;
vlib_node_runtime_t *r;
n = vec_elt (nm->nodes, node_index);
r = vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index);
return vlib_node_runtime_get_next_frame (vm, r, next_index);
}
vlib_frame_t *vlib_get_next_frame_internal (vlib_main_t * vm,
vlib_node_runtime_t * node,
u32 next_index,
u32 alloc_new_frame);
#define vlib_get_next_frame_macro(vm,node,next_index,vectors,n_vectors_left,alloc_new_frame) \
do { \
vlib_frame_t * _f \
= vlib_get_next_frame_internal ((vm), (node), (next_index), \
(alloc_new_frame)); \
u32 _n = _f->n_vectors; \
(vectors) = vlib_frame_vector_args (_f) + _n * sizeof ((vectors)[0]); \
(n_vectors_left) = VLIB_FRAME_SIZE - _n; \
} while (0)
/** \brief Get pointer to next frame vector data by
(@c vlib_node_runtime_t, @c next_index).
Standard single/dual loop boilerplate element.
@attention This is a MACRO, with SIDE EFFECTS.
@param vm vlib_main_t pointer, varies by thread
@param node current node vlib_node_runtime_t pointer
@param next_index requested graph arc index
@return @c vectors -- pointer to next available vector slot
@return @c n_vectors_left -- number of vector slots available
*/
#define vlib_get_next_frame(vm,node,next_index,vectors,n_vectors_left) \
vlib_get_next_frame_macro (vm, node, next_index, \
vectors, n_vectors_left, \
/* alloc new frame */ 0)
#define vlib_get_new_next_frame(vm,node,next_index,vectors,n_vectors_left) \
vlib_get_next_frame_macro (vm, node, next_index, \
vectors, n_vectors_left, \
/* alloc new frame */ 1)
/** \brief Release pointer to next frame vector data.
Standard single/dual loop boilerplate element.
@param vm vlib_main_t pointer, varies by thread
@param r current node vlib_node_runtime_t pointer
@param next_index graph arc index
@param n_packets_left number of slots still available in vector
*/
void
vlib_put_next_frame (vlib_main_t * vm,
vlib_node_runtime_t * r,
u32 next_index, u32 n_packets_left);
/* Combination get plus put. Returns vector argument just added. */
#define vlib_set_next_frame(vm,node,next_index,v) \
({ \
uword _n_left; \
vlib_get_next_frame ((vm), (node), (next_index), (v), _n_left); \
ASSERT (_n_left > 0); \
vlib_put_next_frame ((vm), (node), (next_index), _n_left - 1); \
(v); \
})
always_inline void
vlib_set_next_frame_buffer (vlib_main_t * vm,
vlib_node_runtime_t * node,
u32 next_index, u32 buffer_index)
{
u32 *p;
p = vlib_set_next_frame (vm, node, next_index, p);
p[0] = buffer_index;
}
vlib_frame_t *vlib_get_frame_to_node (vlib_main_t * vm, u32 to_node_index);
void vlib_put_frame_to_node (vlib_main_t * vm, u32 to_node_index,
vlib_frame_t * f);
always_inline uword
vlib_in_process_context (vlib_main_t * vm)
{
return vm->node_main.current_process_index != ~0;
}
always_inline vlib_process_t *
vlib_get_current_process (vlib_main_t * vm)
{
vlib_node_main_t *nm = &vm->node_main;
if (vlib_in_process_context (vm))
return vec_elt (nm->processes, nm->current_process_index);
return 0;
}
always_inline uword
vlib_current_process (vlib_main_t * vm)
{
return vlib_get_current_process (vm)->node_runtime.node_index;
}
always_inline u32
vlib_get_current_process_node_index (vlib_main_t * vm)
{
vlib_process_t *process = vlib_get_current_process (vm);
return process->node_runtime.node_index;
}
/** Returns TRUE if a process suspend time is less than 10us
@param dt - remaining poll time in seconds
@returns 1 if dt < 10e-6, 0 otherwise
*/
always_inline uword
vlib_process_suspend_time_is_zero (f64 dt)
{
return dt < 10e-6;
}
/** Suspend a vlib cooperative multi-tasking thread for a period of time
@param vm - vlib_main_t *
@param dt - suspend interval in seconds
@returns VLIB_PROCESS_RESUME_LONGJMP_RESUME, routinely ignored
*/
always_inline uword
vlib_process_suspend (vlib_main_t * vm, f64 dt)
{
uword r;
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p = vec_elt (nm->processes, nm->current_process_index);
if (vlib_process_suspend_time_is_zero (dt))
return VLIB_PROCESS_RESUME_LONGJMP_RESUME;
p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK;
r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND);
if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND)
{
/* expiration time in 10us ticks */
p->resume_clock_interval = dt * 1e5;
vlib_process_start_switch_stack (vm, 0);
clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND);
}
else
vlib_process_finish_switch_stack (vm);
return r;
}
always_inline void
vlib_process_free_event_type (vlib_process_t * p, uword t,
uword is_one_time_event)
{
ASSERT (!pool_is_free_index (p->event_type_pool, t));
pool_put_index (p->event_type_pool, t);
if (is_one_time_event)
p->one_time_event_type_bitmap =
clib_bitmap_andnoti (p->one_time_event_type_bitmap, t);
}
always_inline void
vlib_process_maybe_free_event_type (vlib_process_t * p, uword t)
{
ASSERT (!pool_is_free_index (p->event_type_pool, t));
if (clib_bitmap_get (p->one_time_event_type_bitmap, t))
vlib_process_free_event_type (p, t, /* is_one_time_event */ 1);
}
always_inline void *
vlib_process_get_event_data (vlib_main_t * vm,
uword * return_event_type_opaque)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
vlib_process_event_type_t *et;
uword t;
void *event_data_vector;
p = vec_elt (nm->processes, nm->current_process_index);
/* Find first type with events ready.
Return invalid type when there's nothing there. */
t = clib_bitmap_first_set (p->non_empty_event_type_bitmap);
if (t == ~0)
return 0;
p->non_empty_event_type_bitmap =
clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t);
ASSERT (_vec_len (p->pending_event_data_by_type_index[t]) > 0);
event_data_vector = p->pending_event_data_by_type_index[t];
p->pending_event_data_by_type_index[t] = 0;
et = pool_elt_at_index (p->event_type_pool, t);
/* Return user's opaque value and possibly index. */
*return_event_type_opaque = et->opaque;
vlib_process_maybe_free_event_type (p, t);
return event_data_vector;
}
/* Return event data vector for later reuse. We reuse event data to avoid
repeatedly allocating event vectors in cases where we care about speed. */
always_inline void
vlib_process_put_event_data (vlib_main_t * vm, void *event_data)
{
vlib_node_main_t *nm = &vm->node_main;
vec_add1 (nm->recycled_event_data_vectors, event_data);
}
/** Return the first event type which has occurred and a vector of per-event
data of that type, or a timeout indication
@param vm - vlib_main_t pointer
@param data_vector - pointer to a (uword *) vector to receive event data
@returns either an event type and a vector of per-event instance data,
or ~0 to indicate a timeout.
*/
always_inline uword
vlib_process_get_events (vlib_main_t * vm, uword ** data_vector)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
vlib_process_event_type_t *et;
uword r, t, l;
p = vec_elt (nm->processes, nm->current_process_index);
/* Find first type with events ready.
Return invalid type when there's nothing there. */
t = clib_bitmap_first_set (p->non_empty_event_type_bitmap);
if (t == ~0)
return t;
p->non_empty_event_type_bitmap =
clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t);
l = _vec_len (p->pending_event_data_by_type_index[t]);
if (data_vector)
vec_add (*data_vector, p->pending_event_data_by_type_index[t], l);
vec_set_len (p->pending_event_data_by_type_index[t], 0);
et = pool_elt_at_index (p->event_type_pool, t);
/* Return user's opaque value. */
r = et->opaque;
vlib_process_maybe_free_event_type (p, t);
return r;
}
always_inline uword
vlib_process_get_events_helper (vlib_process_t * p, uword t,
uword ** data_vector)
{
uword l;
p->non_empty_event_type_bitmap =
clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t);
l = _vec_len (p->pending_event_data_by_type_index[t]);
if (data_vector)
vec_add (*data_vector, p->pending_event_data_by_type_index[t], l);
vec_set_len (p->pending_event_data_by_type_index[t], 0);
vlib_process_maybe_free_event_type (p, t);
return l;
}
/* As above but query as specified type of event. Returns number of
events found. */
always_inline uword
vlib_process_get_events_with_type (vlib_main_t * vm, uword ** data_vector,
uword with_type_opaque)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
uword t, *h;
p = vec_elt (nm->processes, nm->current_process_index);
h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque);
if (!h)
/* This can happen when an event has not yet been
signaled with given opaque type. */
return 0;
t = h[0];
if (!clib_bitmap_get (p->non_empty_event_type_bitmap, t))
return 0;
return vlib_process_get_events_helper (p, t, data_vector);
}
always_inline uword *
vlib_process_wait_for_event (vlib_main_t * vm)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
uword r;
p = vec_elt (nm->processes, nm->current_process_index);
if (clib_bitmap_is_zero (p->non_empty_event_type_bitmap))
{
p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT;
r =
clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND);
if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND)
{
vlib_process_start_switch_stack (vm, 0);
clib_longjmp (&p->return_longjmp,
VLIB_PROCESS_RETURN_LONGJMP_SUSPEND);
}
else
vlib_process_finish_switch_stack (vm);
}
return p->non_empty_event_type_bitmap;
}
always_inline uword
vlib_process_wait_for_one_time_event (vlib_main_t * vm,
uword ** data_vector,
uword with_type_index)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
uword r;
p = vec_elt (nm->processes, nm->current_process_index);
ASSERT (!pool_is_free_index (p->event_type_pool, with_type_index));
while (!clib_bitmap_get (p->non_empty_event_type_bitmap, with_type_index))
{
p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT;
r =
clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND);
if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND)
{
vlib_process_start_switch_stack (vm, 0);
clib_longjmp (&p->return_longjmp,
VLIB_PROCESS_RETURN_LONGJMP_SUSPEND);
}
else
vlib_process_finish_switch_stack (vm);
}
return vlib_process_get_events_helper (p, with_type_index, data_vector);
}
always_inline uword
vlib_process_wait_for_event_with_type (vlib_main_t * vm,
uword ** data_vector,
uword with_type_opaque)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
uword r, *h;
p = vec_elt (nm->processes, nm->current_process_index);
h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque);
while (!h || !clib_bitmap_get (p->non_empty_event_type_bitmap, h[0]))
{
p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT;
r =
clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND);
if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND)
{
vlib_process_start_switch_stack (vm, 0);
clib_longjmp (&p->return_longjmp,
VLIB_PROCESS_RETURN_LONGJMP_SUSPEND);
}
else
vlib_process_finish_switch_stack (vm);
/* See if unknown event type has been signaled now. */
if (!h)
h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque);
}
return vlib_process_get_events_helper (p, h[0], data_vector);
}
/** Suspend a cooperative multi-tasking thread
Waits for an event, or for the indicated number of seconds to elapse
@param vm - vlib_main_t pointer
@param dt - timeout, in seconds.
@returns the remaining time interval
*/
always_inline f64
vlib_process_wait_for_event_or_clock (vlib_main_t * vm, f64 dt)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_process_t *p;
f64 wakeup_time;
uword r;
p = vec_elt (nm->processes, nm->current_process_index);
if (vlib_process_suspend_time_is_zero (dt)
|| !clib_bitmap_is_zero (p->non_empty_event_type_bitmap))
return dt;
wakeup_time = vlib_time_now (vm) + dt;
/* Suspend waiting for both clock and event to occur. */
p->flags |= (VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT
| VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK);
r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND);
if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND)
{
p->resume_clock_interval = dt * 1e5;
vlib_process_start_switch_stack (vm, 0);
clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND);
}
else
vlib_process_finish_switch_stack (vm);
/* Return amount of time still left to sleep.
If <= 0 then we've been waken up by the clock (and not an event). */
return wakeup_time - vlib_time_now (vm);
}
always_inline vlib_process_event_type_t *
vlib_process_new_event_type (vlib_process_t * p, uword with_type_opaque)
{
vlib_process_event_type_t *et;
pool_get (p->event_type_pool, et);
et->opaque = with_type_opaque;
return et;
}
always_inline uword
vlib_process_create_one_time_event (vlib_main_t * vm, uword node_index,
uword with_type_opaque)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
vlib_process_event_type_t *et;
uword t;
et = vlib_process_new_event_type (p, with_type_opaque);
t = et - p->event_type_pool;
p->one_time_event_type_bitmap =
clib_bitmap_ori (p->one_time_event_type_bitmap, t);
return t;
}
always_inline void
vlib_process_delete_one_time_event (vlib_main_t * vm, uword node_index,
uword t)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
ASSERT (clib_bitmap_get (p->one_time_event_type_bitmap, t));
vlib_process_free_event_type (p, t, /* is_one_time_event */ 1);
}
always_inline void *
vlib_process_signal_event_helper (vlib_node_main_t * nm,
vlib_node_t * n,
vlib_process_t * p,
uword t,
uword n_data_elts, uword n_data_elt_bytes)
{
uword p_flags, add_to_pending, delete_from_wheel;
u8 *data_to_be_written_by_caller;
ASSERT (n->type == VLIB_NODE_TYPE_PROCESS);
ASSERT (!pool_is_free_index (p->event_type_pool, t));
vec_validate (p->pending_event_data_by_type_index, t);
/* Resize data vector and return caller's data to be written. */
{
u8 *data_vec = p->pending_event_data_by_type_index[t];
uword l;
if (!data_vec && vec_len (nm->recycled_event_data_vectors))
{
data_vec = vec_pop (nm->recycled_event_data_vectors);
vec_reset_length (data_vec);
}
l = vec_len (data_vec);
data_vec =
_vec_realloc (data_vec, l + n_data_elts, n_data_elt_bytes,
/* header_bytes */ 0, /* data_align */ 0, /* heap */ 0);
p->pending_event_data_by_type_index[t] = data_vec;
data_to_be_written_by_caller = data_vec + l * n_data_elt_bytes;
}
p->non_empty_event_type_bitmap =
clib_bitmap_ori (p->non_empty_event_type_bitmap, t);
p_flags = p->flags;
/* Event was already signalled? */
add_to_pending = (p_flags & VLIB_PROCESS_RESUME_PENDING) == 0;
/* Process will resume when suspend time elapses? */
delete_from_wheel = 0;
if (p_flags & VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK)
{
/* Waiting for both event and clock? */
if (p_flags & VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT)
{
if (!TW (tw_timer_handle_is_free)
((TWT (tw_timer_wheel) *) nm->timing_wheel,
p->stop_timer_handle))
delete_from_wheel = 1;
else
/* timer just popped so process should already be on the list */
add_to_pending = 0;
}
else
/* Waiting only for clock. Event will be queue and may be
handled when timer expires. */
add_to_pending = 0;
}
/* Never add current process to pending vector since current process is
already running. */
add_to_pending &= nm->current_process_index != n->runtime_index;
if (add_to_pending)
{
u32 x = vlib_timing_wheel_data_set_suspended_process (n->runtime_index);
p->flags = p_flags | VLIB_PROCESS_RESUME_PENDING;
vec_add1 (nm->data_from_advancing_timing_wheel, x);
if (delete_from_wheel)
TW (tw_timer_stop) ((TWT (tw_timer_wheel) *) nm->timing_wheel,
p->stop_timer_handle);
}
return data_to_be_written_by_caller;
}
always_inline void *
vlib_process_signal_event_data (vlib_main_t * vm,
uword node_index,
uword type_opaque,
uword n_data_elts, uword n_data_elt_bytes)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
uword *h, t;
/* Must be in main thread */
ASSERT (vlib_get_thread_index () == 0);
h = hash_get (p->event_type_index_by_type_opaque, type_opaque);
if (!h)
{
vlib_process_event_type_t *et =
vlib_process_new_event_type (p, type_opaque);
t = et - p->event_type_pool;
hash_set (p->event_type_index_by_type_opaque, type_opaque, t);
}
else
t = h[0];
return vlib_process_signal_event_helper (nm, n, p, t, n_data_elts,
n_data_elt_bytes);
}
always_inline void *
vlib_process_signal_event_at_time (vlib_main_t * vm,
f64 dt,
uword node_index,
uword type_opaque,
uword n_data_elts, uword n_data_elt_bytes)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
uword *h, t;
h = hash_get (p->event_type_index_by_type_opaque, type_opaque);
if (!h)
{
vlib_process_event_type_t *et =
vlib_process_new_event_type (p, type_opaque);
t = et - p->event_type_pool;
hash_set (p->event_type_index_by_type_opaque, type_opaque, t);
}
else
t = h[0];
if (vlib_process_suspend_time_is_zero (dt))
return vlib_process_signal_event_helper (nm, n, p, t, n_data_elts,
n_data_elt_bytes);
else
{
vlib_signal_timed_event_data_t *te;
pool_get_aligned (nm->signal_timed_event_data_pool, te, sizeof (te[0]));
te->n_data_elts = n_data_elts;
te->n_data_elt_bytes = n_data_elt_bytes;
te->n_data_bytes = n_data_elts * n_data_elt_bytes;
/* Assert that structure fields are big enough. */
ASSERT (te->n_data_elts == n_data_elts);
ASSERT (te->n_data_elt_bytes == n_data_elt_bytes);
ASSERT (te->n_data_bytes == n_data_elts * n_data_elt_bytes);
te->process_node_index = n->runtime_index;
te->event_type_index = t;
p->stop_timer_handle =
TW (tw_timer_start) ((TWT (tw_timer_wheel) *) nm->timing_wheel,
vlib_timing_wheel_data_set_timed_event
(te - nm->signal_timed_event_data_pool),
0 /* timer_id */ ,
(vlib_time_now (vm) + dt) * 1e5);
/* Inline data big enough to hold event? */
if (te->n_data_bytes < sizeof (te->inline_event_data))
return te->inline_event_data;
else
{
te->event_data_as_vector = 0;
vec_resize (te->event_data_as_vector, te->n_data_bytes);
return te->event_data_as_vector;
}
}
}
always_inline void *
vlib_process_signal_one_time_event_data (vlib_main_t * vm,
uword node_index,
uword type_index,
uword n_data_elts,
uword n_data_elt_bytes)
{
vlib_node_main_t *nm = &vm->node_main;
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_process_t *p = vec_elt (nm->processes, n->runtime_index);
return vlib_process_signal_event_helper (nm, n, p, type_index, n_data_elts,
n_data_elt_bytes);
}
always_inline void
vlib_process_signal_event (vlib_main_t * vm,
uword node_index, uword type_opaque, uword data)
{
uword *d = vlib_process_signal_event_data (vm, node_index, type_opaque,
1 /* elts */ , sizeof (uword));
d[0] = data;
}
always_inline void
vlib_process_signal_event_pointer (vlib_main_t * vm,
uword node_index,
uword type_opaque, void *data)
{
void **d = vlib_process_signal_event_data (vm, node_index, type_opaque,
1 /* elts */ , sizeof (data));
d[0] = data;
}
/**
* Signal event to process from any thread.
*
* When in doubt, use this.
*/
always_inline void
vlib_process_signal_event_mt (vlib_main_t * vm,
uword node_index, uword type_opaque, uword data)
{
if (vlib_get_thread_index () != 0)
{
vlib_process_signal_event_mt_args_t args = {
.node_index = node_index,
.type_opaque = type_opaque,
.data = data,
};
vlib_rpc_call_main_thread (vlib_process_signal_event_mt_helper,
(u8 *) & args, sizeof (args));
}
else
vlib_process_signal_event (vm, node_index, type_opaque, data);
}
always_inline void
vlib_process_signal_one_time_event (vlib_main_t * vm,
uword node_index,
uword type_index, uword data)
{
uword *d =
vlib_process_signal_one_time_event_data (vm, node_index, type_index,
1 /* elts */ , sizeof (uword));
d[0] = data;
}
always_inline void
vlib_signal_one_time_waiting_process (vlib_main_t * vm,
vlib_one_time_waiting_process_t * p)
{
vlib_process_signal_one_time_event (vm, p->node_index, p->one_time_event,
/* data */ ~0);
clib_memset (p, ~0, sizeof (p[0]));
}
always_inline void
vlib_signal_one_time_waiting_process_vector (vlib_main_t * vm,
vlib_one_time_waiting_process_t
** wps)
{
vlib_one_time_waiting_process_t *wp;
vec_foreach (wp, *wps) vlib_signal_one_time_waiting_process (vm, wp);
vec_free (*wps);
}
always_inline void
vlib_current_process_wait_for_one_time_event (vlib_main_t * vm,
vlib_one_time_waiting_process_t
* p)
{
p->node_index = vlib_current_process (vm);
p->one_time_event = vlib_process_create_one_time_event (vm, p->node_index, /* type opaque */
~0);
vlib_process_wait_for_one_time_event (vm,
/* don't care about data */ 0,
p->one_time_event);
}
always_inline void
vlib_current_process_wait_for_one_time_event_vector (vlib_main_t * vm,
vlib_one_time_waiting_process_t
** wps)
{
vlib_one_time_waiting_process_t *wp;
vec_add2 (*wps, wp, 1);
vlib_current_process_wait_for_one_time_event (vm, wp);
}
always_inline u32
vlib_node_runtime_update_main_loop_vector_stats (vlib_main_t * vm,
vlib_node_runtime_t * node,
uword n_vectors)
{
u32 i, d, vi0, vi1;
u32 i0, i1;
ASSERT (is_pow2 (ARRAY_LEN (node->main_loop_vector_stats)));
i = ((vm->main_loop_count >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE)
& (ARRAY_LEN (node->main_loop_vector_stats) - 1));
i0 = i ^ 0;
i1 = i ^ 1;
d = ((vm->main_loop_count >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE)
-
(node->main_loop_count_last_dispatch >>
VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE));
vi0 = node->main_loop_vector_stats[i0];
vi1 = node->main_loop_vector_stats[i1];
vi0 = d == 0 ? vi0 : 0;
vi1 = d <= 1 ? vi1 : 0;
vi0 += n_vectors;
node->main_loop_vector_stats[i0] = vi0;
node->main_loop_vector_stats[i1] = vi1;
node->main_loop_count_last_dispatch = vm->main_loop_count;
/* Return previous counter. */
return node->main_loop_vector_stats[i1];
}
always_inline f64
vlib_node_vectors_per_main_loop_as_float (vlib_main_t * vm, u32 node_index)
{
vlib_node_runtime_t *rt = vlib_node_get_runtime (vm, node_index);
u32 v;
v = vlib_node_runtime_update_main_loop_vector_stats (vm, rt, /* n_vectors */
0);
return (f64) v / (1 << VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE);
}
always_inline u32
vlib_node_vectors_per_main_loop_as_integer (vlib_main_t * vm, u32 node_index)
{
vlib_node_runtime_t *rt = vlib_node_get_runtime (vm, node_index);
u32 v;
v = vlib_node_runtime_update_main_loop_vector_stats (vm, rt, /* n_vectors */
0);
return v >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE;
}
void
vlib_frame_free (vlib_main_t * vm, vlib_node_runtime_t * r, vlib_frame_t * f);
/* Return the edge index if present, ~0 otherwise */
uword vlib_node_get_next (vlib_main_t * vm, uword node, uword next_node);
/* Add next node to given node in given slot. */
uword
vlib_node_add_next_with_slot (vlib_main_t * vm,
uword node, uword next_node, uword slot);
/* As above but adds to end of node's next vector. */
always_inline uword
vlib_node_add_next (vlib_main_t * vm, uword node, uword next_node)
{
return vlib_node_add_next_with_slot (vm, node, next_node, ~0);
}
/* Add next node to given node in given slot. */
uword
vlib_node_add_named_next_with_slot (vlib_main_t * vm,
uword node, char *next_name, uword slot);
/* As above but adds to end of node's next vector. */
always_inline uword
vlib_node_add_named_next (vlib_main_t * vm, uword node, char *name)
{
return vlib_node_add_named_next_with_slot (vm, node, name, ~0);
}
/**
* Get list of nodes
*/
void
vlib_node_get_nodes (vlib_main_t * vm, u32 max_threads, int include_stats,
int barrier_sync, vlib_node_t **** node_dupsp,
vlib_main_t *** stat_vmsp);
/* Query node given name. */
vlib_node_t *vlib_get_node_by_name (vlib_main_t * vm, u8 * name);
/* Rename a node. */
void vlib_node_rename (vlib_main_t * vm, u32 node_index, char *fmt, ...);
/* Register new packet processing node. Nodes can be registered
dynamically via this call or statically via the VLIB_REGISTER_NODE
macro. */
u32 vlib_register_node (vlib_main_t *vm, vlib_node_registration_t *r,
char *fmt, ...);
/* Register all node function variants */
void vlib_register_all_node_march_variants (vlib_main_t *vm);
/* Register all static nodes registered via VLIB_REGISTER_NODE. */
void vlib_register_all_static_nodes (vlib_main_t * vm);
/* Start a process. */
void vlib_start_process (vlib_main_t * vm, uword process_index);
/* Sync up runtime and main node stats. */
void vlib_node_sync_stats (vlib_main_t * vm, vlib_node_t * n);
void vlib_node_runtime_sync_stats (vlib_main_t *vm, vlib_node_runtime_t *r,
uword n_calls, uword n_vectors,
uword n_clocks);
void vlib_node_runtime_sync_stats_node (vlib_node_t *n, vlib_node_runtime_t *r,
uword n_calls, uword n_vectors,
uword n_clocks);
/* Node graph initialization function. */
clib_error_t *vlib_node_main_init (vlib_main_t * vm);
format_function_t format_vlib_node_graph;
format_function_t format_vlib_node_name;
format_function_t format_vlib_next_node_name;
format_function_t format_vlib_node_and_next;
format_function_t format_vlib_cpu_time;
format_function_t format_vlib_time;
/* Parse node name -> node index. */
unformat_function_t unformat_vlib_node;
always_inline void
vlib_node_increment_counter (vlib_main_t * vm, u32 node_index,
u32 counter_index, u64 increment)
{
vlib_node_t *n = vlib_get_node (vm, node_index);
vlib_error_main_t *em = &vm->error_main;
u32 node_counter_base_index = n->error_heap_index;
em->counters[node_counter_base_index + counter_index] += increment;
}
/** @brief Create a vlib process
* @param vm &vlib_global_main
* @param f the process node function
* @param log2_n_stack_bytes size of the process stack, defaults to 16K
* @return newly-create node index
* @warning call only on the main thread. Barrier sync required
*/
u32 vlib_process_create (vlib_main_t * vm, char *name,
vlib_node_function_t * f, u32 log2_n_stack_bytes);
always_inline int
vlib_node_set_dispatch_wrapper (vlib_main_t *vm, vlib_node_function_t *fn)
{
if (fn && vm->dispatch_wrapper_fn)
return 1;
vm->dispatch_wrapper_fn = fn;
return 0;
}
int vlib_node_set_march_variant (vlib_main_t *vm, u32 node_index,
clib_march_variant_type_t march_variant);
vlib_node_function_t *
vlib_node_get_preferred_node_fn_variant (vlib_main_t *vm,
vlib_node_fn_registration_t *regs);
/*
* vlib_frame_bitmap functions
*/
#define VLIB_FRAME_BITMAP_N_UWORDS \
(((VLIB_FRAME_SIZE + uword_bits - 1) & ~(uword_bits - 1)) / uword_bits)
typedef uword vlib_frame_bitmap_t[VLIB_FRAME_BITMAP_N_UWORDS];
static_always_inline void
vlib_frame_bitmap_init (uword *bmp, u32 n_first_bits_set)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
while (n_first_bits_set >= (sizeof (uword) * 8) && n_left)
{
bmp++[0] = ~0;
n_first_bits_set -= sizeof (uword) * 8;
n_left--;
}
if (n_first_bits_set && n_left)
{
bmp++[0] = pow2_mask (n_first_bits_set);
n_left--;
}
while (n_left--)
bmp++[0] = 0;
}
static_always_inline void
vlib_frame_bitmap_clear (uword *bmp)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
while (n_left--)
bmp++[0] = 0;
}
static_always_inline void
vlib_frame_bitmap_xor (uword *bmp, uword *bmp2)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
while (n_left--)
bmp++[0] ^= bmp2++[0];
}
static_always_inline void
vlib_frame_bitmap_or (uword *bmp, uword *bmp2)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
while (n_left--)
bmp++[0] |= bmp2++[0];
}
static_always_inline void
vlib_frame_bitmap_and (uword *bmp, uword *bmp2)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
while (n_left--)
bmp++[0] &= bmp2++[0];
}
static_always_inline u32
vlib_frame_bitmap_count_set_bits (uword *bmp)
{
u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS;
u32 count = 0;
while (n_left--)
count += count_set_bits (bmp++[0]);
return count;
}
static_always_inline int
vlib_frame_bitmap_find_first_set (uword *bmp)
{
uword *b = bmp;
while (b[0] == 0)
{
ASSERT (b - bmp < VLIB_FRAME_BITMAP_N_UWORDS);
b++;
}
return (b - bmp) * uword_bits + get_lowest_set_bit_index (b[0]);
}
#define foreach_vlib_frame_bitmap_set_bit_index(i, v) \
for (uword _off = 0; _off < ARRAY_LEN (v); _off++) \
for (uword _tmp = \
(v[_off]) + 0 * (uword) (i = _off * uword_bits + \
get_lowest_set_bit_index (v[_off])); \
_tmp; i = _off * uword_bits + get_lowest_set_bit_index ( \
_tmp = clear_lowest_set_bit (_tmp)))
#endif /* included_vlib_node_funcs_h */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/