commit | 9f781d84b0943b03af2a9fd0b7c4cef721d1d4c6 | [log] [tgz] |
---|---|---|
author | Steven <sluong@cisco.com> | Tue Jun 05 11:09:32 2018 -0700 |
committer | Steven <sluong@cisco.com> | Tue Jun 05 11:09:32 2018 -0700 |
tree | a78172c460d265c89d3717a5cb8cb45775fe523b | |
parent | 439a122f3acd745dcb70e9b32bb518e43967afe4 [diff] |
bond: send gratuitous arp when the active slave went down in active-backup mode - Modify the API send_ip6_na and send_ip4_garp to take sw_if_index instead of vnet_hw_interface_t and add call to build_ethernet_rewrite to support subinterface/vlan - Add code to bonding driver to send an event to bond_process when the first interface becomes active or when the active interface is down - Create a bond_process to walk the interface and the corresponding subinterfaces to send garp/ip6_na when an event is received. - Minor cleanup in bonding/node.c Note: dpdk bonding driver does not send garp/ip6_na for subinterfaces. There is no attempt to fix it here. But the infra is now done and should be easy to add the support. Change-Id: If3ecc4cd0fb3051330f7fa11ca0dab3e18557ce1 Signed-off-by: Steven <sluong@cisco.com>
The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. It is the open source version of Cisco's Vector Packet Processing (VPP) technology: a high performance, packet-processing stack that can run on commodity CPUs.
The benefits of this implementation of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set.
For more information on VPP and its features please visit the FD.io website and What is VPP? pages.
Details of the changes leading up to this version of VPP can be found under @ref release_notes.
Directory name | Description |
---|---|
build-data | Build metadata |
build-root | Build output directory |
doxygen | Documentation generator configuration |
dpdk | DPDK patches and build infrastructure |
@ref extras/libmemif | Client library for memif |
@ref src/examples | VPP example code |
@ref src/plugins | VPP bundled plugins directory |
@ref src/svm | Shared virtual memory allocation library |
src/tests | Standalone tests (not part of test harness) |
src/vat | VPP API test program |
@ref src/vlib | VPP application library |
@ref src/vlibapi | VPP API library |
@ref src/vlibmemory | VPP Memory management |
@ref src/vlibsocket | VPP Socket I/O |
@ref src/vnet | VPP networking |
@ref src/vpp | VPP application |
@ref src/vpp-api | VPP application API bindings |
@ref src/vppinfra | VPP core library |
@ref src/vpp/api | Not-yet-relocated API bindings |
test | Unit tests and Python test harness |
In general anyone interested in building, developing or running VPP should consult the VPP wiki for more complete documentation.
In particular, readers are recommended to take a look at [Pulling, Building, Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step coverage of the topic.
For the impatient, some salient information is distilled below.
To install system dependencies, build VPP and then install it, simply run the build script. This should be performed a non-privileged user with sudo
access from the project base directory:
./extras/vagrant/build.sh
If you want a more fine-grained approach because you intend to do some development work, the Makefile
in the root directory of the source tree provides several convenience shortcuts as make
targets that may be of interest. To see the available targets run:
make
The directory extras/vagrant
contains a VagrantFile
and supporting scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine. This VM can then be used to test concepts with VPP or as a development platform to extend VPP. Some obvious caveats apply when using a VM for VPP since its performance will never match that of bare metal; if your work is timing or performance sensitive, consider using bare metal in addition or instead of the VM.
For this to work you will need a working installation of Vagrant. Instructions for this can be found [on the Setting up Vagrant wiki page] (https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).
Several modules provide documentation, see @subpage user_doc for more end-user-oriented information. Also see @subpage dev_doc for developer notes.
Visit the VPP wiki for details on more advanced building strategies and other development notes.
There is PyDoc generated documentation available for the VPP test framework. See @ref test_framework_doc for details.