acl-plugin: create forward and return sessions in lieu of making a special per-packet session key

Using a separate session key has proven to be tricky for the following reasons:

- it's a lot of storage to have what looks to be nearly identical to 5tuple,
just maybe with some fields swapped

- shuffling the fields from 5tuple adds to memory pressure

- the fact that the fields do not coincide with the packet memory
  means for any staged processing we need to use up a lot of memory

Thus, just add two entries into the bihash table pointing to
the same session entry, so we could match the packets from either
direction.

With this we have the key layout of L3 info (which takes up
the majority of space for IPv6 case) the same as in the packet,
thus, opening up the possibility for other optimizations.

Not having to create and store a separate session key
should also give us a small performance win in itself.

Also, add the routine to show the session bihash in a better
way than a bunch of numbers.

Alas, the memory usage in the bihash obviously doubles.

Change-Id: I8fd2ed4714ad7fc447c4fa224d209bc0b736b371
Signed-off-by: Andrew Yourtchenko <ayourtch@gmail.com>
5 files changed
tree: 961461e2a4261dcea81b21e2eddfb026c3d01b8e
  1. build-data/
  2. build-root/
  3. doxygen/
  4. dpdk/
  5. extras/
  6. gmod/
  7. src/
  8. test/
  9. .clang-format
  10. .gitignore
  11. .gitreview
  12. LICENSE
  13. MAINTAINERS
  14. Makefile
  15. README.md
  16. RELEASE.md
README.md

Vector Packet Processing

Introduction

The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. It is the open source version of Cisco's Vector Packet Processing (VPP) technology: a high performance, packet-processing stack that can run on commodity CPUs.

The benefits of this implementation of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set.

For more information on VPP and its features please visit the FD.io website and What is VPP? pages.

Changes

Details of the changes leading up to this version of VPP can be found under @ref release_notes.

Directory layout

Directory nameDescription
build-dataBuild metadata
build-rootBuild output directory
doxygenDocumentation generator configuration
dpdkDPDK patches and build infrastructure
@ref extras/libmemifClient library for memif
@ref src/examplesVPP example code
@ref src/pluginsVPP bundled plugins directory
@ref src/svmShared virtual memory allocation library
src/testsStandalone tests (not part of test harness)
src/vatVPP API test program
@ref src/vlibVPP application library
@ref src/vlibapiVPP API library
@ref src/vlibmemoryVPP Memory management
@ref src/vlibsocketVPP Socket I/O
@ref src/vnetVPP networking
@ref src/vppVPP application
@ref src/vpp-apiVPP application API bindings
@ref src/vppinfraVPP core library
@ref src/vpp/apiNot-yet-relocated API bindings
testUnit tests and Python test harness

Getting started

In general anyone interested in building, developing or running VPP should consult the VPP wiki for more complete documentation.

In particular, readers are recommended to take a look at [Pulling, Building, Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step coverage of the topic.

For the impatient, some salient information is distilled below.

Quick-start: On an existing Linux host

To install system dependencies, build VPP and then install it, simply run the build script. This should be performed a non-privileged user with sudo access from the project base directory:

./extras/vagrant/build.sh

If you want a more fine-grained approach because you intend to do some development work, the Makefile in the root directory of the source tree provides several convenience shortcuts as make targets that may be of interest. To see the available targets run:

make

Quick-start: Vagrant

The directory extras/vagrant contains a VagrantFile and supporting scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine. This VM can then be used to test concepts with VPP or as a development platform to extend VPP. Some obvious caveats apply when using a VM for VPP since its performance will never match that of bare metal; if your work is timing or performance sensitive, consider using bare metal in addition or instead of the VM.

For this to work you will need a working installation of Vagrant. Instructions for this can be found [on the Setting up Vagrant wiki page] (https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).

More information

Several modules provide documentation, see @subpage user_doc for more end-user-oriented information. Also see @subpage dev_doc for developer notes.

Visit the VPP wiki for details on more advanced building strategies and other development notes.

Test Framework

There is PyDoc generated documentation available for the VPP test framework. See @ref test_framework_doc for details.