blob: a827e3594e870d9184c5d405776b300c7dae4de6 [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define _GNU_SOURCE
#include <signal.h>
#include <math.h>
#include <vppinfra/format.h>
#include <vppinfra/linux/sysfs.h>
#include <vlib/vlib.h>
#include <vlib/threads.h>
#include <vlib/unix/cj.h>
#include <vlib/stat_weak_inlines.h>
DECLARE_CJ_GLOBAL_LOG;
u32
vl (void *p)
{
return vec_len (p);
}
vlib_worker_thread_t *vlib_worker_threads;
vlib_thread_main_t vlib_thread_main;
/*
* Barrier tracing can be enabled on a normal build to collect information
* on barrier use, including timings and call stacks. Deliberately not
* keyed off CLIB_DEBUG, because that can add significant overhead which
* imapacts observed timings.
*/
static inline void
barrier_trace_sync (f64 t_entry, f64 t_open, f64 t_closed)
{
if (!vlib_worker_threads->barrier_elog_enabled)
return;
/* *INDENT-OFF* */
ELOG_TYPE_DECLARE (e) =
{
.format = "bar-trace-%s-#%d",
.format_args = "T4i4",
};
/* *INDENT-ON* */
struct
{
u32 caller, count, t_entry, t_open, t_closed;
} *ed = 0;
ed = ELOG_DATA (&vlib_global_main.elog_main, e);
ed->count = (int) vlib_worker_threads[0].barrier_sync_count;
ed->caller = elog_string (&vlib_global_main.elog_main,
(char *) vlib_worker_threads[0].barrier_caller);
ed->t_entry = (int) (1000000.0 * t_entry);
ed->t_open = (int) (1000000.0 * t_open);
ed->t_closed = (int) (1000000.0 * t_closed);
}
static inline void
barrier_trace_sync_rec (f64 t_entry)
{
if (!vlib_worker_threads->barrier_elog_enabled)
return;
/* *INDENT-OFF* */
ELOG_TYPE_DECLARE (e) =
{
.format = "bar-syncrec-%s-#%d",
.format_args = "T4i4",
};
/* *INDENT-ON* */
struct
{
u32 caller, depth;
} *ed = 0;
ed = ELOG_DATA (&vlib_global_main.elog_main, e);
ed->depth = (int) vlib_worker_threads[0].recursion_level - 1;
ed->caller = elog_string (&vlib_global_main.elog_main,
(char *) vlib_worker_threads[0].barrier_caller);
}
static inline void
barrier_trace_release_rec (f64 t_entry)
{
if (!vlib_worker_threads->barrier_elog_enabled)
return;
/* *INDENT-OFF* */
ELOG_TYPE_DECLARE (e) =
{
.format = "bar-relrrec-#%d",
.format_args = "i4",
};
/* *INDENT-ON* */
struct
{
u32 depth;
} *ed = 0;
ed = ELOG_DATA (&vlib_global_main.elog_main, e);
ed->depth = (int) vlib_worker_threads[0].recursion_level;
}
static inline void
barrier_trace_release (f64 t_entry, f64 t_closed_total, f64 t_update_main)
{
if (!vlib_worker_threads->barrier_elog_enabled)
return;
/* *INDENT-OFF* */
ELOG_TYPE_DECLARE (e) =
{
.format = "bar-rel-#%d-e%d-u%d-t%d",
.format_args = "i4i4i4i4",
};
/* *INDENT-ON* */
struct
{
u32 count, t_entry, t_update_main, t_closed_total;
} *ed = 0;
ed = ELOG_DATA (&vlib_global_main.elog_main, e);
ed->t_entry = (int) (1000000.0 * t_entry);
ed->t_update_main = (int) (1000000.0 * t_update_main);
ed->t_closed_total = (int) (1000000.0 * t_closed_total);
ed->count = (int) vlib_worker_threads[0].barrier_sync_count;
/* Reset context for next trace */
vlib_worker_threads[0].barrier_context = NULL;
}
uword
os_get_nthreads (void)
{
return vec_len (vlib_thread_stacks);
}
void
vlib_set_thread_name (char *name)
{
int pthread_setname_np (pthread_t __target_thread, const char *__name);
int rv;
pthread_t thread = pthread_self ();
if (thread)
{
rv = pthread_setname_np (thread, name);
if (rv)
clib_warning ("pthread_setname_np returned %d", rv);
}
}
static int
sort_registrations_by_no_clone (void *a0, void *a1)
{
vlib_thread_registration_t **tr0 = a0;
vlib_thread_registration_t **tr1 = a1;
return ((i32) ((*tr0)->no_data_structure_clone)
- ((i32) ((*tr1)->no_data_structure_clone)));
}
static uword *
clib_sysfs_list_to_bitmap (char *filename)
{
FILE *fp;
uword *r = 0;
fp = fopen (filename, "r");
if (fp != NULL)
{
u8 *buffer = 0;
vec_validate (buffer, 256 - 1);
if (fgets ((char *) buffer, 256, fp))
{
unformat_input_t in;
unformat_init_string (&in, (char *) buffer,
strlen ((char *) buffer));
if (unformat (&in, "%U", unformat_bitmap_list, &r) != 1)
clib_warning ("unformat_bitmap_list failed");
unformat_free (&in);
}
vec_free (buffer);
fclose (fp);
}
return r;
}
/* Called early in the init sequence */
clib_error_t *
vlib_thread_init (vlib_main_t * vm)
{
vlib_thread_main_t *tm = &vlib_thread_main;
vlib_worker_thread_t *w;
vlib_thread_registration_t *tr;
u32 n_vlib_mains = 1;
u32 first_index = 1;
u32 i;
uword *avail_cpu;
/* get bitmaps of active cpu cores and sockets */
tm->cpu_core_bitmap =
clib_sysfs_list_to_bitmap ("/sys/devices/system/cpu/online");
tm->cpu_socket_bitmap =
clib_sysfs_list_to_bitmap ("/sys/devices/system/node/online");
avail_cpu = clib_bitmap_dup (tm->cpu_core_bitmap);
/* skip cores */
for (i = 0; i < tm->skip_cores; i++)
{
uword c = clib_bitmap_first_set (avail_cpu);
if (c == ~0)
return clib_error_return (0, "no available cpus to skip");
avail_cpu = clib_bitmap_set (avail_cpu, c, 0);
}
/* grab cpu for main thread */
if (tm->main_lcore == ~0)
{
/* if main-lcore is not set, we try to use lcore 1 */
if (clib_bitmap_get (avail_cpu, 1))
tm->main_lcore = 1;
else
tm->main_lcore = clib_bitmap_first_set (avail_cpu);
if (tm->main_lcore == (u8) ~ 0)
return clib_error_return (0, "no available cpus to be used for the"
" main thread");
}
else
{
if (clib_bitmap_get (avail_cpu, tm->main_lcore) == 0)
return clib_error_return (0, "cpu %u is not available to be used"
" for the main thread", tm->main_lcore);
}
avail_cpu = clib_bitmap_set (avail_cpu, tm->main_lcore, 0);
/* assume that there is socket 0 only if there is no data from sysfs */
if (!tm->cpu_socket_bitmap)
tm->cpu_socket_bitmap = clib_bitmap_set (0, 0, 1);
/* pin main thread to main_lcore */
if (tm->cb.vlib_thread_set_lcore_cb)
{
tm->cb.vlib_thread_set_lcore_cb (0, tm->main_lcore);
}
else
{
cpu_set_t cpuset;
CPU_ZERO (&cpuset);
CPU_SET (tm->main_lcore, &cpuset);
pthread_setaffinity_np (pthread_self (), sizeof (cpu_set_t), &cpuset);
}
/* Set up thread 0 */
vec_validate_aligned (vlib_worker_threads, 0, CLIB_CACHE_LINE_BYTES);
_vec_len (vlib_worker_threads) = 1;
w = vlib_worker_threads;
w->thread_mheap = clib_mem_get_heap ();
w->thread_stack = vlib_thread_stacks[0];
w->cpu_id = tm->main_lcore;
w->lwp = syscall (SYS_gettid);
w->thread_id = pthread_self ();
tm->n_vlib_mains = 1;
if (tm->sched_policy != ~0)
{
struct sched_param sched_param;
if (!sched_getparam (w->lwp, &sched_param))
{
if (tm->sched_priority != ~0)
sched_param.sched_priority = tm->sched_priority;
sched_setscheduler (w->lwp, tm->sched_policy, &sched_param);
}
}
/* assign threads to cores and set n_vlib_mains */
tr = tm->next;
while (tr)
{
vec_add1 (tm->registrations, tr);
tr = tr->next;
}
vec_sort_with_function (tm->registrations, sort_registrations_by_no_clone);
for (i = 0; i < vec_len (tm->registrations); i++)
{
int j;
tr = tm->registrations[i];
tr->first_index = first_index;
first_index += tr->count;
n_vlib_mains += (tr->no_data_structure_clone == 0) ? tr->count : 0;
/* construct coremask */
if (tr->use_pthreads || !tr->count)
continue;
if (tr->coremask)
{
uword c;
/* *INDENT-OFF* */
clib_bitmap_foreach (c, tr->coremask, ({
if (clib_bitmap_get(avail_cpu, c) == 0)
return clib_error_return (0, "cpu %u is not available to be used"
" for the '%s' thread",c, tr->name);
avail_cpu = clib_bitmap_set(avail_cpu, c, 0);
}));
/* *INDENT-ON* */
}
else
{
for (j = 0; j < tr->count; j++)
{
uword c = clib_bitmap_first_set (avail_cpu);
if (c == ~0)
return clib_error_return (0,
"no available cpus to be used for"
" the '%s' thread", tr->name);
avail_cpu = clib_bitmap_set (avail_cpu, c, 0);
tr->coremask = clib_bitmap_set (tr->coremask, c, 1);
}
}
}
clib_bitmap_free (avail_cpu);
tm->n_vlib_mains = n_vlib_mains;
/*
* Allocate the remaining worker threads, and thread stack vector slots
* from now on, calls to os_get_nthreads() will return the correct
* answer.
*/
vec_validate_aligned (vlib_worker_threads, first_index - 1,
CLIB_CACHE_LINE_BYTES);
vec_validate (vlib_thread_stacks, vec_len (vlib_worker_threads) - 1);
return 0;
}
vlib_frame_queue_t *
vlib_frame_queue_alloc (int nelts)
{
vlib_frame_queue_t *fq;
fq = clib_mem_alloc_aligned (sizeof (*fq), CLIB_CACHE_LINE_BYTES);
clib_memset (fq, 0, sizeof (*fq));
fq->nelts = nelts;
fq->vector_threshold = 128; // packets
vec_validate_aligned (fq->elts, nelts - 1, CLIB_CACHE_LINE_BYTES);
if (1)
{
if (((uword) & fq->tail) & (CLIB_CACHE_LINE_BYTES - 1))
fformat (stderr, "WARNING: fq->tail unaligned\n");
if (((uword) & fq->head) & (CLIB_CACHE_LINE_BYTES - 1))
fformat (stderr, "WARNING: fq->head unaligned\n");
if (((uword) fq->elts) & (CLIB_CACHE_LINE_BYTES - 1))
fformat (stderr, "WARNING: fq->elts unaligned\n");
if (sizeof (fq->elts[0]) % CLIB_CACHE_LINE_BYTES)
fformat (stderr, "WARNING: fq->elts[0] size %d\n",
sizeof (fq->elts[0]));
if (nelts & (nelts - 1))
{
fformat (stderr, "FATAL: nelts MUST be a power of 2\n");
abort ();
}
}
return (fq);
}
void vl_msg_api_handler_no_free (void *) __attribute__ ((weak));
void
vl_msg_api_handler_no_free (void *v)
{
}
/* Turned off, save as reference material... */
#if 0
static inline int
vlib_frame_queue_dequeue_internal (int thread_id,
vlib_main_t * vm, vlib_node_main_t * nm)
{
vlib_frame_queue_t *fq = vlib_frame_queues[thread_id];
vlib_frame_queue_elt_t *elt;
vlib_frame_t *f;
vlib_pending_frame_t *p;
vlib_node_runtime_t *r;
u32 node_runtime_index;
int msg_type;
u64 before;
int processed = 0;
ASSERT (vm == vlib_mains[thread_id]);
while (1)
{
if (fq->head == fq->tail)
return processed;
elt = fq->elts + ((fq->head + 1) & (fq->nelts - 1));
if (!elt->valid)
return processed;
before = clib_cpu_time_now ();
f = elt->frame;
node_runtime_index = elt->node_runtime_index;
msg_type = elt->msg_type;
switch (msg_type)
{
case VLIB_FRAME_QUEUE_ELT_FREE_BUFFERS:
vlib_buffer_free (vm, vlib_frame_vector_args (f), f->n_vectors);
/* note fallthrough... */
case VLIB_FRAME_QUEUE_ELT_FREE_FRAME:
r = vec_elt_at_index (nm->nodes_by_type[VLIB_NODE_TYPE_INTERNAL],
node_runtime_index);
vlib_frame_free (vm, r, f);
break;
case VLIB_FRAME_QUEUE_ELT_DISPATCH_FRAME:
vec_add2 (vm->node_main.pending_frames, p, 1);
f->flags |= (VLIB_FRAME_PENDING | VLIB_FRAME_FREE_AFTER_DISPATCH);
p->node_runtime_index = elt->node_runtime_index;
p->frame_index = vlib_frame_index (vm, f);
p->next_frame_index = VLIB_PENDING_FRAME_NO_NEXT_FRAME;
fq->dequeue_vectors += (u64) f->n_vectors;
break;
case VLIB_FRAME_QUEUE_ELT_API_MSG:
vl_msg_api_handler_no_free (f);
break;
default:
clib_warning ("bogus frame queue message, type %d", msg_type);
break;
}
elt->valid = 0;
fq->dequeues++;
fq->dequeue_ticks += clib_cpu_time_now () - before;
CLIB_MEMORY_BARRIER ();
fq->head++;
processed++;
}
ASSERT (0);
return processed;
}
int
vlib_frame_queue_dequeue (int thread_id,
vlib_main_t * vm, vlib_node_main_t * nm)
{
return vlib_frame_queue_dequeue_internal (thread_id, vm, nm);
}
int
vlib_frame_queue_enqueue (vlib_main_t * vm, u32 node_runtime_index,
u32 frame_queue_index, vlib_frame_t * frame,
vlib_frame_queue_msg_type_t type)
{
vlib_frame_queue_t *fq = vlib_frame_queues[frame_queue_index];
vlib_frame_queue_elt_t *elt;
u32 save_count;
u64 new_tail;
u64 before = clib_cpu_time_now ();
ASSERT (fq);
new_tail = clib_atomic_add_fetch (&fq->tail, 1);
/* Wait until a ring slot is available */
while (new_tail >= fq->head + fq->nelts)
{
f64 b4 = vlib_time_now_ticks (vm, before);
vlib_worker_thread_barrier_check (vm, b4);
/* Bad idea. Dequeue -> enqueue -> dequeue -> trouble */
// vlib_frame_queue_dequeue (vm->thread_index, vm, nm);
}
elt = fq->elts + (new_tail & (fq->nelts - 1));
/* this would be very bad... */
while (elt->valid)
{
}
/* Once we enqueue the frame, frame->n_vectors is owned elsewhere... */
save_count = frame->n_vectors;
elt->frame = frame;
elt->node_runtime_index = node_runtime_index;
elt->msg_type = type;
CLIB_MEMORY_BARRIER ();
elt->valid = 1;
return save_count;
}
#endif /* 0 */
/* To be called by vlib worker threads upon startup */
void
vlib_worker_thread_init (vlib_worker_thread_t * w)
{
vlib_thread_main_t *tm = vlib_get_thread_main ();
/*
* Note: disabling signals in worker threads as follows
* prevents the api post-mortem dump scheme from working
* {
* sigset_t s;
* sigfillset (&s);
* pthread_sigmask (SIG_SETMASK, &s, 0);
* }
*/
clib_mem_set_heap (w->thread_mheap);
if (vec_len (tm->thread_prefix) && w->registration->short_name)
{
w->name = format (0, "%v_%s_%d%c", tm->thread_prefix,
w->registration->short_name, w->instance_id, '\0');
vlib_set_thread_name ((char *) w->name);
}
if (!w->registration->use_pthreads)
{
/* Initial barrier sync, for both worker and i/o threads */
clib_atomic_fetch_add (vlib_worker_threads->workers_at_barrier, 1);
while (*vlib_worker_threads->wait_at_barrier)
;
clib_atomic_fetch_add (vlib_worker_threads->workers_at_barrier, -1);
}
}
void *
vlib_worker_thread_bootstrap_fn (void *arg)
{
void *rv;
vlib_worker_thread_t *w = arg;
w->lwp = syscall (SYS_gettid);
w->thread_id = pthread_self ();
__os_thread_index = w - vlib_worker_threads;
rv = (void *) clib_calljmp
((uword (*)(uword)) w->thread_function,
(uword) arg, w->thread_stack + VLIB_THREAD_STACK_SIZE);
/* NOTREACHED, we hope */
return rv;
}
void
vlib_get_thread_core_numa (vlib_worker_thread_t * w, unsigned cpu_id)
{
const char *sys_cpu_path = "/sys/devices/system/cpu/cpu";
u8 *p = 0;
int core_id = -1, numa_id = -1;
p = format (p, "%s%u/topology/core_id%c", sys_cpu_path, cpu_id, 0);
clib_sysfs_read ((char *) p, "%d", &core_id);
vec_reset_length (p);
p =
format (p, "%s%u/topology/physical_package_id%c", sys_cpu_path, cpu_id,
0);
clib_sysfs_read ((char *) p, "%d", &numa_id);
vec_free (p);
w->core_id = core_id;
w->numa_id = numa_id;
}
static clib_error_t *
vlib_launch_thread_int (void *fp, vlib_worker_thread_t * w, unsigned cpu_id)
{
vlib_thread_main_t *tm = &vlib_thread_main;
void *(*fp_arg) (void *) = fp;
void *numa_heap;
w->cpu_id = cpu_id;
vlib_get_thread_core_numa (w, cpu_id);
os_set_numa_index (w->numa_id);
/* Set up NUMA-bound heap if indicated */
if (clib_per_numa_mheaps[w->numa_id] == 0)
{
/* If the user requested a NUMA heap, create it... */
if (tm->numa_heap_size)
{
numa_heap = clib_mem_init_thread_safe_numa
(0 /* DIY */ , tm->numa_heap_size);
clib_per_numa_mheaps[w->numa_id] = numa_heap;
}
else
{
/* Or, use the main heap */
clib_per_numa_mheaps[w->numa_id] = w->thread_mheap;
}
}
if (tm->cb.vlib_launch_thread_cb && !w->registration->use_pthreads)
return tm->cb.vlib_launch_thread_cb (fp, (void *) w, cpu_id);
else
{
pthread_t worker;
cpu_set_t cpuset;
CPU_ZERO (&cpuset);
CPU_SET (cpu_id, &cpuset);
if (pthread_create (&worker, NULL /* attr */ , fp_arg, (void *) w))
return clib_error_return_unix (0, "pthread_create");
if (pthread_setaffinity_np (worker, sizeof (cpu_set_t), &cpuset))
return clib_error_return_unix (0, "pthread_setaffinity_np");
return 0;
}
}
static clib_error_t *
start_workers (vlib_main_t * vm)
{
int i, j;
vlib_worker_thread_t *w;
vlib_main_t *vm_clone;
void *oldheap;
vlib_thread_main_t *tm = &vlib_thread_main;
vlib_thread_registration_t *tr;
vlib_node_runtime_t *rt;
u32 n_vlib_mains = tm->n_vlib_mains;
u32 worker_thread_index;
u8 *main_heap = clib_mem_get_per_cpu_heap ();
vec_reset_length (vlib_worker_threads);
/* Set up the main thread */
vec_add2_aligned (vlib_worker_threads, w, 1, CLIB_CACHE_LINE_BYTES);
w->elog_track.name = "main thread";
elog_track_register (&vm->elog_main, &w->elog_track);
if (vec_len (tm->thread_prefix))
{
w->name = format (0, "%v_main%c", tm->thread_prefix, '\0');
vlib_set_thread_name ((char *) w->name);
}
vm->elog_main.lock =
clib_mem_alloc_aligned (CLIB_CACHE_LINE_BYTES, CLIB_CACHE_LINE_BYTES);
vm->elog_main.lock[0] = 0;
if (n_vlib_mains > 1)
{
/* Replace hand-crafted length-1 vector with a real vector */
vlib_mains = 0;
vec_validate_aligned (vlib_mains, tm->n_vlib_mains - 1,
CLIB_CACHE_LINE_BYTES);
_vec_len (vlib_mains) = 0;
vec_add1_aligned (vlib_mains, vm, CLIB_CACHE_LINE_BYTES);
vlib_worker_threads->wait_at_barrier =
clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES);
vlib_worker_threads->workers_at_barrier =
clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES);
vlib_worker_threads->node_reforks_required =
clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES);
/* We'll need the rpc vector lock... */
clib_spinlock_init (&vm->pending_rpc_lock);
/* Ask for an initial barrier sync */
*vlib_worker_threads->workers_at_barrier = 0;
*vlib_worker_threads->wait_at_barrier = 1;
/* Without update or refork */
*vlib_worker_threads->node_reforks_required = 0;
vm->need_vlib_worker_thread_node_runtime_update = 0;
/* init timing */
vm->barrier_epoch = 0;
vm->barrier_no_close_before = 0;
worker_thread_index = 1;
for (i = 0; i < vec_len (tm->registrations); i++)
{
vlib_node_main_t *nm, *nm_clone;
int k;
tr = tm->registrations[i];
if (tr->count == 0)
continue;
for (k = 0; k < tr->count; k++)
{
vlib_node_t *n;
vec_add2 (vlib_worker_threads, w, 1);
/* Currently unused, may not really work */
if (tr->mheap_size)
{
#if USE_DLMALLOC == 0
w->thread_mheap =
mheap_alloc (0 /* use VM */ , tr->mheap_size);
#else
w->thread_mheap = create_mspace (tr->mheap_size,
0 /* unlocked */ );
#endif
}
else
w->thread_mheap = main_heap;
w->thread_stack =
vlib_thread_stack_init (w - vlib_worker_threads);
w->thread_function = tr->function;
w->thread_function_arg = w;
w->instance_id = k;
w->registration = tr;
w->elog_track.name =
(char *) format (0, "%s %d", tr->name, k + 1);
vec_add1 (w->elog_track.name, 0);
elog_track_register (&vm->elog_main, &w->elog_track);
if (tr->no_data_structure_clone)
continue;
/* Fork vlib_global_main et al. Look for bugs here */
oldheap = clib_mem_set_heap (w->thread_mheap);
vm_clone = clib_mem_alloc_aligned (sizeof (*vm_clone),
CLIB_CACHE_LINE_BYTES);
clib_memcpy (vm_clone, vlib_mains[0], sizeof (*vm_clone));
vm_clone->thread_index = worker_thread_index;
vm_clone->heap_base = w->thread_mheap;
vm_clone->heap_aligned_base = (void *)
(((uword) w->thread_mheap) & ~(VLIB_FRAME_ALIGN - 1));
vm_clone->init_functions_called =
hash_create (0, /* value bytes */ 0);
vm_clone->pending_rpc_requests = 0;
vec_validate (vm_clone->pending_rpc_requests, 0);
_vec_len (vm_clone->pending_rpc_requests) = 0;
clib_memset (&vm_clone->random_buffer, 0,
sizeof (vm_clone->random_buffer));
nm = &vlib_mains[0]->node_main;
nm_clone = &vm_clone->node_main;
/* fork next frames array, preserving node runtime indices */
nm_clone->next_frames = vec_dup_aligned (nm->next_frames,
CLIB_CACHE_LINE_BYTES);
for (j = 0; j < vec_len (nm_clone->next_frames); j++)
{
vlib_next_frame_t *nf = &nm_clone->next_frames[j];
u32 save_node_runtime_index;
u32 save_flags;
save_node_runtime_index = nf->node_runtime_index;
save_flags = nf->flags & VLIB_FRAME_NO_FREE_AFTER_DISPATCH;
vlib_next_frame_init (nf);
nf->node_runtime_index = save_node_runtime_index;
nf->flags = save_flags;
}
/* fork the frame dispatch queue */
nm_clone->pending_frames = 0;
vec_validate (nm_clone->pending_frames, 10);
_vec_len (nm_clone->pending_frames) = 0;
/* fork nodes */
nm_clone->nodes = 0;
/* Allocate all nodes in single block for speed */
n = clib_mem_alloc_no_fail (vec_len (nm->nodes) * sizeof (*n));
for (j = 0; j < vec_len (nm->nodes); j++)
{
clib_memcpy (n, nm->nodes[j], sizeof (*n));
/* none of the copied nodes have enqueue rights given out */
n->owner_node_index = VLIB_INVALID_NODE_INDEX;
clib_memset (&n->stats_total, 0, sizeof (n->stats_total));
clib_memset (&n->stats_last_clear, 0,
sizeof (n->stats_last_clear));
vec_add1 (nm_clone->nodes, n);
n++;
}
nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INTERNAL],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt,
nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy initial runtime_data from node */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INPUT],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy initial runtime_data from node */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt,
nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy initial runtime_data from node */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
nm_clone->processes = vec_dup_aligned (nm->processes,
CLIB_CACHE_LINE_BYTES);
/* Create per-thread frame freelist */
nm_clone->frame_sizes = vec_new (vlib_frame_size_t, 1);
#ifdef VLIB_SUPPORTS_ARBITRARY_SCALAR_SIZES
nm_clone->frame_size_hash = hash_create (0, sizeof (uword));
#endif
nm_clone->node_by_error = nm->node_by_error;
/* Packet trace buffers are guaranteed to be empty, nothing to do here */
clib_mem_set_heap (oldheap);
vec_add1_aligned (vlib_mains, vm_clone, CLIB_CACHE_LINE_BYTES);
/* Switch to the stats segment ... */
void *oldheap = vlib_stats_push_heap (0);
vm_clone->error_main.counters = vec_dup_aligned
(vlib_mains[0]->error_main.counters, CLIB_CACHE_LINE_BYTES);
vlib_stats_pop_heap2 (vm_clone->error_main.counters,
worker_thread_index, oldheap, 1);
vm_clone->error_main.counters_last_clear = vec_dup_aligned
(vlib_mains[0]->error_main.counters_last_clear,
CLIB_CACHE_LINE_BYTES);
worker_thread_index++;
}
}
}
else
{
/* only have non-data-structure copy threads to create... */
for (i = 0; i < vec_len (tm->registrations); i++)
{
tr = tm->registrations[i];
for (j = 0; j < tr->count; j++)
{
vec_add2 (vlib_worker_threads, w, 1);
if (tr->mheap_size)
{
#if USE_DLMALLOC == 0
w->thread_mheap =
mheap_alloc (0 /* use VM */ , tr->mheap_size);
#else
w->thread_mheap =
create_mspace (tr->mheap_size, 0 /* locked */ );
#endif
}
else
w->thread_mheap = main_heap;
w->thread_stack =
vlib_thread_stack_init (w - vlib_worker_threads);
w->thread_function = tr->function;
w->thread_function_arg = w;
w->instance_id = j;
w->elog_track.name =
(char *) format (0, "%s %d", tr->name, j + 1);
w->registration = tr;
vec_add1 (w->elog_track.name, 0);
elog_track_register (&vm->elog_main, &w->elog_track);
}
}
}
worker_thread_index = 1;
for (i = 0; i < vec_len (tm->registrations); i++)
{
clib_error_t *err;
int j;
tr = tm->registrations[i];
if (tr->use_pthreads || tm->use_pthreads)
{
for (j = 0; j < tr->count; j++)
{
w = vlib_worker_threads + worker_thread_index++;
err = vlib_launch_thread_int (vlib_worker_thread_bootstrap_fn,
w, 0);
if (err)
clib_error_report (err);
}
}
else
{
uword c;
/* *INDENT-OFF* */
clib_bitmap_foreach (c, tr->coremask, ({
w = vlib_worker_threads + worker_thread_index++;
err = vlib_launch_thread_int (vlib_worker_thread_bootstrap_fn,
w, c);
if (err)
clib_error_report (err);
}));
/* *INDENT-ON* */
}
}
vlib_worker_thread_barrier_sync (vm);
vlib_worker_thread_barrier_release (vm);
return 0;
}
VLIB_MAIN_LOOP_ENTER_FUNCTION (start_workers);
static inline void
worker_thread_node_runtime_update_internal (void)
{
int i, j;
vlib_main_t *vm;
vlib_node_main_t *nm, *nm_clone;
vlib_main_t *vm_clone;
vlib_node_runtime_t *rt;
never_inline void
vlib_node_runtime_sync_stats (vlib_main_t * vm,
vlib_node_runtime_t * r,
uword n_calls,
uword n_vectors, uword n_clocks);
ASSERT (vlib_get_thread_index () == 0);
vm = vlib_mains[0];
nm = &vm->node_main;
ASSERT (*vlib_worker_threads->wait_at_barrier == 1);
/*
* Scrape all runtime stats, so we don't lose node runtime(s) with
* pending counts, or throw away worker / io thread counts.
*/
for (j = 0; j < vec_len (nm->nodes); j++)
{
vlib_node_t *n;
n = nm->nodes[j];
vlib_node_sync_stats (vm, n);
}
for (i = 1; i < vec_len (vlib_mains); i++)
{
vlib_node_t *n;
vm_clone = vlib_mains[i];
nm_clone = &vm_clone->node_main;
for (j = 0; j < vec_len (nm_clone->nodes); j++)
{
n = nm_clone->nodes[j];
rt = vlib_node_get_runtime (vm_clone, n->index);
vlib_node_runtime_sync_stats (vm_clone, rt, 0, 0, 0);
}
}
/* Per-worker clone rebuilds are now done on each thread */
}
void
vlib_worker_thread_node_refork (void)
{
vlib_main_t *vm, *vm_clone;
vlib_node_main_t *nm, *nm_clone;
vlib_node_t **old_nodes_clone;
vlib_node_runtime_t *rt, *old_rt;
vlib_node_t *new_n_clone;
int j;
vm = vlib_mains[0];
nm = &vm->node_main;
vm_clone = vlib_get_main ();
nm_clone = &vm_clone->node_main;
/* Re-clone error heap */
u64 *old_counters = vm_clone->error_main.counters;
u64 *old_counters_all_clear = vm_clone->error_main.counters_last_clear;
clib_memcpy_fast (&vm_clone->error_main, &vm->error_main,
sizeof (vm->error_main));
j = vec_len (vm->error_main.counters) - 1;
/* Switch to the stats segment ... */
void *oldheap = vlib_stats_push_heap (0);
vec_validate_aligned (old_counters, j, CLIB_CACHE_LINE_BYTES);
vm_clone->error_main.counters = old_counters;
vlib_stats_pop_heap2 (vm_clone->error_main.counters, vm_clone->thread_index,
oldheap, 0);
vec_validate_aligned (old_counters_all_clear, j, CLIB_CACHE_LINE_BYTES);
vm_clone->error_main.counters_last_clear = old_counters_all_clear;
nm_clone = &vm_clone->node_main;
vec_free (nm_clone->next_frames);
nm_clone->next_frames = vec_dup_aligned (nm->next_frames,
CLIB_CACHE_LINE_BYTES);
for (j = 0; j < vec_len (nm_clone->next_frames); j++)
{
vlib_next_frame_t *nf = &nm_clone->next_frames[j];
u32 save_node_runtime_index;
u32 save_flags;
save_node_runtime_index = nf->node_runtime_index;
save_flags = nf->flags & VLIB_FRAME_NO_FREE_AFTER_DISPATCH;
vlib_next_frame_init (nf);
nf->node_runtime_index = save_node_runtime_index;
nf->flags = save_flags;
}
old_nodes_clone = nm_clone->nodes;
nm_clone->nodes = 0;
/* re-fork nodes */
/* Allocate all nodes in single block for speed */
new_n_clone =
clib_mem_alloc_no_fail (vec_len (nm->nodes) * sizeof (*new_n_clone));
for (j = 0; j < vec_len (nm->nodes); j++)
{
vlib_node_t *new_n = nm->nodes[j];
clib_memcpy_fast (new_n_clone, new_n, sizeof (*new_n));
/* none of the copied nodes have enqueue rights given out */
new_n_clone->owner_node_index = VLIB_INVALID_NODE_INDEX;
if (j >= vec_len (old_nodes_clone))
{
/* new node, set to zero */
clib_memset (&new_n_clone->stats_total, 0,
sizeof (new_n_clone->stats_total));
clib_memset (&new_n_clone->stats_last_clear, 0,
sizeof (new_n_clone->stats_last_clear));
}
else
{
vlib_node_t *old_n_clone = old_nodes_clone[j];
/* Copy stats if the old data is valid */
clib_memcpy_fast (&new_n_clone->stats_total,
&old_n_clone->stats_total,
sizeof (new_n_clone->stats_total));
clib_memcpy_fast (&new_n_clone->stats_last_clear,
&old_n_clone->stats_last_clear,
sizeof (new_n_clone->stats_last_clear));
/* keep previous node state */
new_n_clone->state = old_n_clone->state;
}
vec_add1 (nm_clone->nodes, new_n_clone);
new_n_clone++;
}
/* Free the old node clones */
clib_mem_free (old_nodes_clone[0]);
vec_free (old_nodes_clone);
/* re-clone internal nodes */
old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL];
nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INTERNAL],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy runtime_data, will be overwritten later for existing rt */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy_fast (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
for (j = 0; j < vec_len (old_rt); j++)
{
rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index);
rt->state = old_rt[j].state;
clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data,
VLIB_NODE_RUNTIME_DATA_SIZE);
}
vec_free (old_rt);
/* re-clone input nodes */
old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT];
nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INPUT],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy runtime_data, will be overwritten later for existing rt */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy_fast (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
for (j = 0; j < vec_len (old_rt); j++)
{
rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index);
rt->state = old_rt[j].state;
clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data,
VLIB_NODE_RUNTIME_DATA_SIZE);
}
vec_free (old_rt);
/* re-clone pre-input nodes */
old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT];
nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT] =
vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT],
CLIB_CACHE_LINE_BYTES);
vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT])
{
vlib_node_t *n = vlib_get_node (vm, rt->node_index);
rt->thread_index = vm_clone->thread_index;
/* copy runtime_data, will be overwritten later for existing rt */
if (n->runtime_data && n->runtime_data_bytes > 0)
clib_memcpy_fast (rt->runtime_data, n->runtime_data,
clib_min (VLIB_NODE_RUNTIME_DATA_SIZE,
n->runtime_data_bytes));
}
for (j = 0; j < vec_len (old_rt); j++)
{
rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index);
rt->state = old_rt[j].state;
clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data,
VLIB_NODE_RUNTIME_DATA_SIZE);
}
vec_free (old_rt);
nm_clone->processes = vec_dup_aligned (nm->processes,
CLIB_CACHE_LINE_BYTES);
nm_clone->node_by_error = nm->node_by_error;
}
void
vlib_worker_thread_node_runtime_update (void)
{
/*
* Make a note that we need to do a node runtime update
* prior to releasing the barrier.
*/
vlib_global_main.need_vlib_worker_thread_node_runtime_update = 1;
}
u32
unformat_sched_policy (unformat_input_t * input, va_list * args)
{
u32 *r = va_arg (*args, u32 *);
if (0);
#define _(v,f,s) else if (unformat (input, s)) *r = SCHED_POLICY_##f;
foreach_sched_policy
#undef _
else
return 0;
return 1;
}
static clib_error_t *
cpu_config (vlib_main_t * vm, unformat_input_t * input)
{
vlib_thread_registration_t *tr;
uword *p;
vlib_thread_main_t *tm = &vlib_thread_main;
u8 *name;
uword *bitmap;
u32 count;
tm->thread_registrations_by_name = hash_create_string (0, sizeof (uword));
tm->n_thread_stacks = 1; /* account for main thread */
tm->sched_policy = ~0;
tm->sched_priority = ~0;
tm->main_lcore = ~0;
tr = tm->next;
while (tr)
{
hash_set_mem (tm->thread_registrations_by_name, tr->name, (uword) tr);
tr = tr->next;
}
while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT)
{
if (unformat (input, "use-pthreads"))
tm->use_pthreads = 1;
else if (unformat (input, "thread-prefix %v", &tm->thread_prefix))
;
else if (unformat (input, "main-core %u", &tm->main_lcore))
;
else if (unformat (input, "skip-cores %u", &tm->skip_cores))
;
else if (unformat (input, "numa-heap-size %U",
unformat_memory_size, &tm->numa_heap_size))
;
else if (unformat (input, "coremask-%s %U", &name,
unformat_bitmap_mask, &bitmap) ||
unformat (input, "corelist-%s %U", &name,
unformat_bitmap_list, &bitmap))
{
p = hash_get_mem (tm->thread_registrations_by_name, name);
if (p == 0)
return clib_error_return (0, "no such thread type '%s'", name);
tr = (vlib_thread_registration_t *) p[0];
if (tr->use_pthreads)
return clib_error_return (0,
"corelist cannot be set for '%s' threads",
name);
tr->coremask = bitmap;
tr->count = clib_bitmap_count_set_bits (tr->coremask);
}
else
if (unformat
(input, "scheduler-policy %U", unformat_sched_policy,
&tm->sched_policy))
;
else if (unformat (input, "scheduler-priority %u", &tm->sched_priority))
;
else if (unformat (input, "%s %u", &name, &count))
{
p = hash_get_mem (tm->thread_registrations_by_name, name);
if (p == 0)
return clib_error_return (0, "no such thread type 3 '%s'", name);
tr = (vlib_thread_registration_t *) p[0];
if (tr->fixed_count)
return clib_error_return
(0, "number of %s threads not configurable", tr->name);
tr->count = count;
}
else
break;
}
if (tm->sched_priority != ~0)
{
if (tm->sched_policy == SCHED_FIFO || tm->sched_policy == SCHED_RR)
{
u32 prio_max = sched_get_priority_max (tm->sched_policy);
u32 prio_min = sched_get_priority_min (tm->sched_policy);
if (tm->sched_priority > prio_max)
tm->sched_priority = prio_max;
if (tm->sched_priority < prio_min)
tm->sched_priority = prio_min;
}
else
{
return clib_error_return
(0,
"scheduling priority (%d) is not allowed for `normal` scheduling policy",
tm->sched_priority);
}
}
tr = tm->next;
if (!tm->thread_prefix)
tm->thread_prefix = format (0, "vpp");
while (tr)
{
tm->n_thread_stacks += tr->count;
tm->n_pthreads += tr->count * tr->use_pthreads;
tm->n_threads += tr->count * (tr->use_pthreads == 0);
tr = tr->next;
}
return 0;
}
VLIB_EARLY_CONFIG_FUNCTION (cpu_config, "cpu");
void vnet_main_fixup (vlib_fork_fixup_t which) __attribute__ ((weak));
void
vnet_main_fixup (vlib_fork_fixup_t which)
{
}
void
vlib_worker_thread_fork_fixup (vlib_fork_fixup_t which)
{
vlib_main_t *vm = vlib_get_main ();
if (vlib_mains == 0)
return;
ASSERT (vlib_get_thread_index () == 0);
vlib_worker_thread_barrier_sync (vm);
switch (which)
{
case VLIB_WORKER_THREAD_FORK_FIXUP_NEW_SW_IF_INDEX:
vnet_main_fixup (VLIB_WORKER_THREAD_FORK_FIXUP_NEW_SW_IF_INDEX);
break;
default:
ASSERT (0);
}
vlib_worker_thread_barrier_release (vm);
}
/*
* Enforce minimum open time to minimize packet loss due to Rx overflow,
* based on a test based heuristic that barrier should be open for at least
* 3 time as long as it is closed (with an upper bound of 1ms because by that
* point it is probably too late to make a difference)
*/
#ifndef BARRIER_MINIMUM_OPEN_LIMIT
#define BARRIER_MINIMUM_OPEN_LIMIT 0.001
#endif
#ifndef BARRIER_MINIMUM_OPEN_FACTOR
#define BARRIER_MINIMUM_OPEN_FACTOR 3
#endif
void
vlib_worker_thread_initial_barrier_sync_and_release (vlib_main_t * vm)
{
f64 deadline;
f64 now = vlib_time_now (vm);
u32 count = vec_len (vlib_mains) - 1;
/* No worker threads? */
if (count == 0)
return;
deadline = now + BARRIER_SYNC_TIMEOUT;
*vlib_worker_threads->wait_at_barrier = 1;
while (*vlib_worker_threads->workers_at_barrier != count)
{
if ((now = vlib_time_now (vm)) > deadline)
{
fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__);
os_panic ();
}
CLIB_PAUSE ();
}
*vlib_worker_threads->wait_at_barrier = 0;
}
void
vlib_worker_thread_barrier_sync_int (vlib_main_t * vm, const char *func_name)
{
f64 deadline;
f64 now;
f64 t_entry;
f64 t_open;
f64 t_closed;
f64 max_vector_rate;
u32 count;
int i;
if (vec_len (vlib_mains) < 2)
return;
ASSERT (vlib_get_thread_index () == 0);
vlib_worker_threads[0].barrier_caller = func_name;
count = vec_len (vlib_mains) - 1;
/* Record entry relative to last close */
now = vlib_time_now (vm);
t_entry = now - vm->barrier_epoch;
/* Tolerate recursive calls */
if (++vlib_worker_threads[0].recursion_level > 1)
{
barrier_trace_sync_rec (t_entry);
return;
}
/*
* Need data to decide if we're working hard enough to honor
* the barrier hold-down timer.
*/
max_vector_rate = 0.0;
for (i = 1; i < vec_len (vlib_mains); i++)
max_vector_rate =
clib_max (max_vector_rate,
(f64) vlib_last_vectors_per_main_loop (vlib_mains[i]));
vlib_worker_threads[0].barrier_sync_count++;
/* Enforce minimum barrier open time to minimize packet loss */
ASSERT (vm->barrier_no_close_before <= (now + BARRIER_MINIMUM_OPEN_LIMIT));
/*
* If any worker thread seems busy, which we define
* as a vector rate above 10, we enforce the barrier hold-down timer
*/
if (max_vector_rate > 10.0)
{
while (1)
{
now = vlib_time_now (vm);
/* Barrier hold-down timer expired? */
if (now >= vm->barrier_no_close_before)
break;
if ((vm->barrier_no_close_before - now)
> (2.0 * BARRIER_MINIMUM_OPEN_LIMIT))
{
clib_warning
("clock change: would have waited for %.4f seconds",
(vm->barrier_no_close_before - now));
break;
}
}
}
/* Record time of closure */
t_open = now - vm->barrier_epoch;
vm->barrier_epoch = now;
deadline = now + BARRIER_SYNC_TIMEOUT;
*vlib_worker_threads->wait_at_barrier = 1;
while (*vlib_worker_threads->workers_at_barrier != count)
{
if ((now = vlib_time_now (vm)) > deadline)
{
fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__);
os_panic ();
}
}
t_closed = now - vm->barrier_epoch;
barrier_trace_sync (t_entry, t_open, t_closed);
}
void
vlib_worker_thread_barrier_release (vlib_main_t * vm)
{
f64 deadline;
f64 now;
f64 minimum_open;
f64 t_entry;
f64 t_closed_total;
f64 t_update_main = 0.0;
int refork_needed = 0;
if (vec_len (vlib_mains) < 2)
return;
ASSERT (vlib_get_thread_index () == 0);
now = vlib_time_now (vm);
t_entry = now - vm->barrier_epoch;
if (--vlib_worker_threads[0].recursion_level > 0)
{
barrier_trace_release_rec (t_entry);
return;
}
/* Update (all) node runtimes before releasing the barrier, if needed */
if (vm->need_vlib_worker_thread_node_runtime_update)
{
/*
* Lock stat segment here, so we's safe when
* rebuilding the stat segment node clones from the
* stat thread...
*/
vlib_stat_segment_lock ();
/* Do stats elements on main thread */
worker_thread_node_runtime_update_internal ();
vm->need_vlib_worker_thread_node_runtime_update = 0;
/* Do per thread rebuilds in parallel */
refork_needed = 1;
clib_atomic_fetch_add (vlib_worker_threads->node_reforks_required,
(vec_len (vlib_mains) - 1));
now = vlib_time_now (vm);
t_update_main = now - vm->barrier_epoch;
}
deadline = now + BARRIER_SYNC_TIMEOUT;
/*
* Note when we let go of the barrier.
* Workers can use this to derive a reasonably accurate
* time offset. See vlib_time_now(...)
*/
vm->time_last_barrier_release = vlib_time_now (vm);
CLIB_MEMORY_STORE_BARRIER ();
*vlib_worker_threads->wait_at_barrier = 0;
while (*vlib_worker_threads->workers_at_barrier > 0)
{
if ((now = vlib_time_now (vm)) > deadline)
{
fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__);
os_panic ();
}
}
/* Wait for reforks before continuing */
if (refork_needed)
{
now = vlib_time_now (vm);
deadline = now + BARRIER_SYNC_TIMEOUT;
while (*vlib_worker_threads->node_reforks_required > 0)
{
if ((now = vlib_time_now (vm)) > deadline)
{
fformat (stderr, "%s: worker thread refork deadlock\n",
__FUNCTION__);
os_panic ();
}
}
vlib_stat_segment_unlock ();
}
t_closed_total = now - vm->barrier_epoch;
minimum_open = t_closed_total * BARRIER_MINIMUM_OPEN_FACTOR;
if (minimum_open > BARRIER_MINIMUM_OPEN_LIMIT)
{
minimum_open = BARRIER_MINIMUM_OPEN_LIMIT;
}
vm->barrier_no_close_before = now + minimum_open;
/* Record barrier epoch (used to enforce minimum open time) */
vm->barrier_epoch = now;
barrier_trace_release (t_entry, t_closed_total, t_update_main);
}
/*
* Check the frame queue to see if any frames are available.
* If so, pull the packets off the frames and put them to
* the handoff node.
*/
int
vlib_frame_queue_dequeue (vlib_main_t * vm, vlib_frame_queue_main_t * fqm)
{
u32 thread_id = vm->thread_index;
vlib_frame_queue_t *fq = fqm->vlib_frame_queues[thread_id];
vlib_frame_queue_elt_t *elt;
u32 *from, *to;
vlib_frame_t *f;
int msg_type;
int processed = 0;
u32 n_left_to_node;
u32 vectors = 0;
ASSERT (fq);
ASSERT (vm == vlib_mains[thread_id]);
if (PREDICT_FALSE (fqm->node_index == ~0))
return 0;
/*
* Gather trace data for frame queues
*/
if (PREDICT_FALSE (fq->trace))
{
frame_queue_trace_t *fqt;
frame_queue_nelt_counter_t *fqh;
u32 elix;
fqt = &fqm->frame_queue_traces[thread_id];
fqt->nelts = fq->nelts;
fqt->head = fq->head;
fqt->head_hint = fq->head_hint;
fqt->tail = fq->tail;
fqt->threshold = fq->vector_threshold;
fqt->n_in_use = fqt->tail - fqt->head;
if (fqt->n_in_use >= fqt->nelts)
{
// if beyond max then use max
fqt->n_in_use = fqt->nelts - 1;
}
/* Record the number of elements in use in the histogram */
fqh = &fqm->frame_queue_histogram[thread_id];
fqh->count[fqt->n_in_use]++;
/* Record a snapshot of the elements in use */
for (elix = 0; elix < fqt->nelts; elix++)
{
elt = fq->elts + ((fq->head + 1 + elix) & (fq->nelts - 1));
if (1 || elt->valid)
{
fqt->n_vectors[elix] = elt->n_vectors;
}
}
fqt->written = 1;
}
while (1)
{
vlib_buffer_t *b;
if (fq->head == fq->tail)
{
fq->head_hint = fq->head;
return processed;
}
elt = fq->elts + ((fq->head + 1) & (fq->nelts - 1));
if (!elt->valid)
{
fq->head_hint = fq->head;
return processed;
}
from = elt->buffer_index;
msg_type = elt->msg_type;
ASSERT (msg_type == VLIB_FRAME_QUEUE_ELT_DISPATCH_FRAME);
ASSERT (elt->n_vectors <= VLIB_FRAME_SIZE);
f = vlib_get_frame_to_node (vm, fqm->node_index);
/* If the first vector is traced, set the frame trace flag */
b = vlib_get_buffer (vm, from[0]);
if (b->flags & VLIB_BUFFER_IS_TRACED)
f->frame_flags |= VLIB_NODE_FLAG_TRACE;
to = vlib_frame_vector_args (f);
n_left_to_node = elt->n_vectors;
while (n_left_to_node >= 4)
{
to[0] = from[0];
to[1] = from[1];
to[2] = from[2];
to[3] = from[3];
to += 4;
from += 4;
n_left_to_node -= 4;
}
while (n_left_to_node > 0)
{
to[0] = from[0];
to++;
from++;
n_left_to_node--;
}
vectors += elt->n_vectors;
f->n_vectors = elt->n_vectors;
vlib_put_frame_to_node (vm, fqm->node_index, f);
elt->valid = 0;
elt->n_vectors = 0;
elt->msg_type = 0xfefefefe;
CLIB_MEMORY_BARRIER ();
fq->head++;
processed++;
/*
* Limit the number of packets pushed into the graph
*/
if (vectors >= fq->vector_threshold)
{
fq->head_hint = fq->head;
return processed;
}
}
ASSERT (0);
return processed;
}
void
vlib_worker_thread_fn (void *arg)
{
vlib_worker_thread_t *w = (vlib_worker_thread_t *) arg;
vlib_thread_main_t *tm = vlib_get_thread_main ();
vlib_main_t *vm = vlib_get_main ();
clib_error_t *e;
ASSERT (vm->thread_index == vlib_get_thread_index ());
vlib_worker_thread_init (w);
clib_time_init (&vm->clib_time);
clib_mem_set_heap (w->thread_mheap);
e = vlib_call_init_exit_functions_no_sort
(vm, &vm->worker_init_function_registrations, 1 /* call_once */ );
if (e)
clib_error_report (e);
/* Wait until the dpdk init sequence is complete */
while (tm->extern_thread_mgmt && tm->worker_thread_release == 0)
vlib_worker_thread_barrier_check ();
vlib_worker_loop (vm);
}
/* *INDENT-OFF* */
VLIB_REGISTER_THREAD (worker_thread_reg, static) = {
.name = "workers",
.short_name = "wk",
.function = vlib_worker_thread_fn,
};
/* *INDENT-ON* */
u32
vlib_frame_queue_main_init (u32 node_index, u32 frame_queue_nelts)
{
vlib_thread_main_t *tm = vlib_get_thread_main ();
vlib_frame_queue_main_t *fqm;
vlib_frame_queue_t *fq;
int i;
if (frame_queue_nelts == 0)
frame_queue_nelts = FRAME_QUEUE_MAX_NELTS;
ASSERT (frame_queue_nelts >= 8);
vec_add2 (tm->frame_queue_mains, fqm, 1);
fqm->node_index = node_index;
fqm->frame_queue_nelts = frame_queue_nelts;
fqm->queue_hi_thresh = frame_queue_nelts - 2;
vec_validate (fqm->vlib_frame_queues, tm->n_vlib_mains - 1);
vec_validate (fqm->per_thread_data, tm->n_vlib_mains - 1);
_vec_len (fqm->vlib_frame_queues) = 0;
for (i = 0; i < tm->n_vlib_mains; i++)
{
vlib_frame_queue_per_thread_data_t *ptd;
fq = vlib_frame_queue_alloc (frame_queue_nelts);
vec_add1 (fqm->vlib_frame_queues, fq);
ptd = vec_elt_at_index (fqm->per_thread_data, i);
vec_validate (ptd->handoff_queue_elt_by_thread_index,
tm->n_vlib_mains - 1);
vec_validate_init_empty (ptd->congested_handoff_queue_by_thread_index,
tm->n_vlib_mains - 1,
(vlib_frame_queue_t *) (~0));
}
return (fqm - tm->frame_queue_mains);
}
int
vlib_thread_cb_register (struct vlib_main_t *vm, vlib_thread_callbacks_t * cb)
{
vlib_thread_main_t *tm = vlib_get_thread_main ();
if (tm->extern_thread_mgmt)
return -1;
tm->cb.vlib_launch_thread_cb = cb->vlib_launch_thread_cb;
tm->extern_thread_mgmt = 1;
return 0;
}
void
vlib_process_signal_event_mt_helper (vlib_process_signal_event_mt_args_t *
args)
{
ASSERT (vlib_get_thread_index () == 0);
vlib_process_signal_event (vlib_get_main (), args->node_index,
args->type_opaque, args->data);
}
void *rpc_call_main_thread_cb_fn;
void
vlib_rpc_call_main_thread (void *callback, u8 * args, u32 arg_size)
{
if (rpc_call_main_thread_cb_fn)
{
void (*fp) (void *, u8 *, u32) = rpc_call_main_thread_cb_fn;
(*fp) (callback, args, arg_size);
}
else
clib_warning ("BUG: rpc_call_main_thread_cb_fn NULL!");
}
clib_error_t *
threads_init (vlib_main_t * vm)
{
return 0;
}
VLIB_INIT_FUNCTION (threads_init);
static clib_error_t *
show_clock_command_fn (vlib_main_t * vm,
unformat_input_t * input, vlib_cli_command_t * cmd)
{
int i;
int verbose = 0;
(void) unformat (input, "verbose %=", &verbose, 1);
vlib_cli_output (vm, "%U", format_clib_time, &vm->clib_time, verbose);
if (vec_len (vlib_mains) == 1)
return 0;
vlib_cli_output (vm, "Time last barrier release %.9f",
vm->time_last_barrier_release);
for (i = 1; i < vec_len (vlib_mains); i++)
{
if (vlib_mains[i] == 0)
continue;
vlib_cli_output (vm, "%d: %U", i, format_clib_time,
&vlib_mains[i]->clib_time, verbose);
vlib_cli_output (vm, "Thread %d offset %.9f error %.9f", i,
vlib_mains[i]->time_offset,
vm->time_last_barrier_release -
vlib_mains[i]->time_last_barrier_release);
}
return 0;
}
/* *INDENT-OFF* */
VLIB_CLI_COMMAND (f_command, static) =
{
.path = "show clock",
.short_help = "show clock",
.function = show_clock_command_fn,
};
/* *INDENT-ON* */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/