blob: 034168e85ab138f730dfdc6bf0fdd3a39a583d4c [file] [log] [blame]
/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vppinfra/fheap.h>
/* Fibonacci heaps. */
always_inline fheap_node_t *
fheap_get_node (fheap_t * f, u32 i)
{
return i != ~0 ? vec_elt_at_index (f->nodes, i) : 0;
}
always_inline fheap_node_t *
fheap_get_root (fheap_t * f)
{
return fheap_get_node (f, f->min_root);
}
static void
fheap_validate (fheap_t * f)
{
fheap_node_t *n, *m;
uword ni, si;
if (!CLIB_DEBUG || !f->enable_validate)
return;
vec_foreach_index (ni, f->nodes)
{
n = vec_elt_at_index (f->nodes, ni);
if (!n->is_valid)
continue;
/* Min root must have minimal key. */
m = vec_elt_at_index (f->nodes, f->min_root);
ASSERT (n->key >= m->key);
/* Min root must have no parent. */
if (ni == f->min_root)
ASSERT (n->parent == ~0);
/* Check sibling linkages. */
if (n->next_sibling == ~0)
ASSERT (n->prev_sibling == ~0);
else if (n->prev_sibling == ~0)
ASSERT (n->next_sibling == ~0);
else
{
fheap_node_t *prev, *next;
u32 si = n->next_sibling, si_start = si;
do
{
m = vec_elt_at_index (f->nodes, si);
prev = vec_elt_at_index (f->nodes, m->prev_sibling);
next = vec_elt_at_index (f->nodes, m->next_sibling);
ASSERT (prev->next_sibling == si);
ASSERT (next->prev_sibling == si);
si = m->next_sibling;
}
while (si != si_start);
}
/* Loop through all siblings. */
{
u32 n_siblings = 0;
foreach_fheap_node_sibling (f, si, n->next_sibling, (
{
m =
vec_elt_at_index
(f->nodes, si);
/* All siblings must have same parent. */
ASSERT (m->parent
==
n->
parent);
n_siblings += 1;}
));
/* Either parent is non-empty or there are siblings present. */
if (n->parent == ~0 && ni != f->min_root)
ASSERT (n_siblings > 0);
}
/* Loop through all children. */
{
u32 found_first_child = n->first_child == ~0;
u32 n_children = 0;
foreach_fheap_node_sibling (f, si, n->first_child, (
{
m =
vec_elt_at_index
(f->nodes, si);
/* Children must have larger keys than their parent. */
ASSERT (m->key >=
n->key);
if
(!found_first_child)
found_first_child =
si ==
n->first_child;
n_children += 1;}
));
/* Check that first child is present on list. */
ASSERT (found_first_child);
/* Make sure rank is correct. */
ASSERT (n->rank == n_children);
}
}
/* Increment serial number for each successful validate.
Failure can be used as condition for gdb breakpoints. */
f->validate_serial++;
}
always_inline void
fheap_node_add_sibling (fheap_t * f, u32 ni, u32 ni_to_add)
{
fheap_node_t *n = vec_elt_at_index (f->nodes, ni);
fheap_node_t *n_to_add = vec_elt_at_index (f->nodes, ni_to_add);
fheap_node_t *n_next = fheap_get_node (f, n->next_sibling);
fheap_node_t *parent;
/* Empty list? */
if (n->next_sibling == ~0)
{
ASSERT (n->prev_sibling == ~0);
n->next_sibling = n->prev_sibling = ni_to_add;
n_to_add->next_sibling = n_to_add->prev_sibling = ni;
}
else
{
/* Add node after existing node. */
n_to_add->prev_sibling = ni;
n_to_add->next_sibling = n->next_sibling;
n->next_sibling = ni_to_add;
n_next->prev_sibling = ni_to_add;
}
n_to_add->parent = n->parent;
parent = fheap_get_node (f, n->parent);
if (parent)
parent->rank += 1;
}
void
fheap_add (fheap_t * f, u32 ni, u32 key)
{
fheap_node_t *r, *n;
u32 ri;
n = vec_elt_at_index (f->nodes, ni);
clib_memset (n, 0, sizeof (n[0]));
n->parent = n->first_child = n->next_sibling = n->prev_sibling = ~0;
n->key = key;
r = fheap_get_root (f);
ri = f->min_root;
if (!r)
{
/* No root? Add node as new root. */
f->min_root = ni;
}
else
{
/* Add node as sibling of current root. */
fheap_node_add_sibling (f, ri, ni);
/* New node may become new root. */
if (r->key > n->key)
f->min_root = ni;
}
fheap_validate (f);
}
always_inline u32
fheap_node_remove_internal (fheap_t * f, u32 ni, u32 invalidate)
{
fheap_node_t *n = vec_elt_at_index (f->nodes, ni);
u32 prev_ni = n->prev_sibling;
u32 next_ni = n->next_sibling;
u32 list_has_single_element = prev_ni == ni;
fheap_node_t *prev = fheap_get_node (f, prev_ni);
fheap_node_t *next = fheap_get_node (f, next_ni);
fheap_node_t *p = fheap_get_node (f, n->parent);
if (p)
{
ASSERT (p->rank > 0);
p->rank -= 1;
p->first_child = list_has_single_element ? ~0 : next_ni;
}
if (prev)
{
ASSERT (prev->next_sibling == ni);
prev->next_sibling = next_ni;
}
if (next)
{
ASSERT (next->prev_sibling == ni);
next->prev_sibling = prev_ni;
}
n->prev_sibling = n->next_sibling = ni;
n->parent = ~0;
n->is_valid = invalidate == 0;
return list_has_single_element ? ~0 : next_ni;
}
always_inline u32
fheap_node_remove (fheap_t * f, u32 ni)
{
return fheap_node_remove_internal (f, ni, /* invalidate */ 0);
}
always_inline u32
fheap_node_remove_and_invalidate (fheap_t * f, u32 ni)
{
return fheap_node_remove_internal (f, ni, /* invalidate */ 1);
}
static void
fheap_link_root (fheap_t * f, u32 ni)
{
fheap_node_t *n = vec_elt_at_index (f->nodes, ni);
fheap_node_t *r, *lo, *hi;
u32 ri, lo_i, hi_i, k;
while (1)
{
k = n->rank;
vec_validate_init_empty (f->root_list_by_rank, k, ~0);
ri = f->root_list_by_rank[k];
r = fheap_get_node (f, ri);
if (!r)
{
f->root_list_by_rank[k] = ni;
return;
}
f->root_list_by_rank[k] = ~0;
/* Sort n/r into lo/hi by their keys. */
lo = r, lo_i = ri;
hi = n, hi_i = ni;
if (hi->key < lo->key)
{
u32 ti;
fheap_node_t *tn;
ti = lo_i, tn = lo;
lo = hi, lo_i = hi_i;
hi = tn, hi_i = ti;
}
/* Remove larger key. */
fheap_node_remove (f, hi_i);
/* Add larger key as child of smaller one. */
if (lo->first_child == ~0)
{
hi->parent = lo_i;
lo->first_child = hi_i;
lo->rank = 1;
}
else
fheap_node_add_sibling (f, lo->first_child, hi_i);
/* Following Fredman & Trajan: "When making a root node X a child of another node in a linking step,
we unmark X". */
hi->is_marked = 0;
ni = lo_i;
n = lo;
}
}
u32
fheap_del_min (fheap_t * f, u32 * min_key)
{
fheap_node_t *r = fheap_get_root (f);
u32 to_delete_min_ri = f->min_root;
u32 ri, ni;
/* Empty heap? */
if (!r)
return ~0;
/* Root's children become siblings. Call this step a; see below. */
if (r->first_child != ~0)
{
u32 ci, cni, rni;
fheap_node_t *c, *cn, *rn;
/* Splice child & root circular lists together. */
ci = r->first_child;
c = vec_elt_at_index (f->nodes, ci);
cni = c->next_sibling;
rni = r->next_sibling;
cn = vec_elt_at_index (f->nodes, cni);
rn = vec_elt_at_index (f->nodes, rni);
r->next_sibling = cni;
c->next_sibling = rni;
cn->prev_sibling = to_delete_min_ri;
rn->prev_sibling = ci;
}
/* Remove min root. */
ri = fheap_node_remove_and_invalidate (f, to_delete_min_ri);
/* Find new min root from among siblings including the ones we've just added. */
f->min_root = ~0;
if (ri != ~0)
{
u32 ri_last, ri_next, i, min_ds;
r = fheap_get_node (f, ri);
ri_last = r->prev_sibling;
while (1)
{
/* Step a above can put children (with r->parent != ~0) on root list. */
r->parent = ~0;
ri_next = r->next_sibling;
fheap_link_root (f, ri);
if (ri == ri_last)
break;
ri = ri_next;
r = fheap_get_node (f, ri);
}
min_ds = ~0;
vec_foreach_index (i, f->root_list_by_rank)
{
ni = f->root_list_by_rank[i];
if (ni == ~0)
continue;
f->root_list_by_rank[i] = ~0;
r = fheap_get_node (f, ni);
if (r->key < min_ds)
{
f->min_root = ni;
min_ds = r->key;
ASSERT (r->parent == ~0);
}
}
}
/* Return deleted min root. */
r = vec_elt_at_index (f->nodes, to_delete_min_ri);
if (min_key)
*min_key = r->key;
fheap_validate (f);
return to_delete_min_ri;
}
static void
fheap_mark_parent (fheap_t * f, u32 pi)
{
fheap_node_t *p = vec_elt_at_index (f->nodes, pi);
/* Parent is a root: do nothing. */
if (p->parent == ~0)
return;
/* If not marked, mark it. */
if (!p->is_marked)
{
p->is_marked = 1;
return;
}
/* Its a previously marked, non-root parent.
Cut edge to its parent and add to root list. */
fheap_node_remove (f, pi);
fheap_node_add_sibling (f, f->min_root, pi);
/* Unmark it since its now a root node. */
p->is_marked = 0;
/* "Cascading cuts": check parent. */
if (p->parent != ~0)
fheap_mark_parent (f, p->parent);
}
/* Set key to new smaller value. */
void
fheap_decrease_key (fheap_t * f, u32 ni, u32 new_key)
{
fheap_node_t *n = vec_elt_at_index (f->nodes, ni);
fheap_node_t *r = fheap_get_root (f);
n->key = new_key;
if (n->parent != ~0)
{
fheap_mark_parent (f, n->parent);
/* Remove node and add to root list. */
fheap_node_remove (f, ni);
fheap_node_add_sibling (f, f->min_root, ni);
}
if (n->key < r->key)
f->min_root = ni;
fheap_validate (f);
}
void
fheap_del (fheap_t * f, u32 ni)
{
fheap_node_t *n;
n = vec_elt_at_index (f->nodes, ni);
if (n->parent == ~0)
{
ASSERT (ni == f->min_root);
fheap_del_min (f, 0);
}
else
{
u32 ci;
fheap_mark_parent (f, n->parent);
/* Add children to root list. */
foreach_fheap_node_sibling (f, ci, n->first_child, (
{
fheap_node_remove
(f, ci);
fheap_node_add_sibling
(f, f->min_root,
ci);}
));
fheap_node_remove_and_invalidate (f, ni);
}
fheap_validate (f);
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/