commit | abd5669422c5805da5135496d5e5a394fa5aa602 | [log] [tgz] |
---|---|---|
author | Marvin Liu <yong.liu@intel.com> | Wed Aug 17 09:38:40 2022 +0800 |
committer | Damjan Marion <dmarion@0xa5.net> | Thu Aug 25 19:05:40 2022 +0000 |
tree | a464eb14b5e04b19042e92bb83ca7b8567731f19 | |
parent | 9a6ad01c0d443f002eafa709813d021bf0c98eac [diff] |
vlib: introduce DMA infrastructure This patch introduces DMA infrastructure into vlib. This is well known that large amount of memory movements will drain core resource. Nowadays more and more hardware accelerators were designed out for freeing core from this burden. Meanwhile some restrictions still remained when utilizing hardware accelerators, e.g. cross numa throughput will have a significant drop compared to same node. Normally the number of hardware accelerator instances will less than cores number, not to mention that applications number will even beyond the number of cores. Some hardware may support share virtual address with cores, while others are not. Here we introduce new DMA infrastructure which can fulfill the requirements of vpp applications like session and memif and in the meantime dealing with hardware limitations. Here is some design backgrounds: Backend is the abstract of resource which allocated from DMA device and can do some basic operations like configuration, DMA copy and result query. Config is the abstract of application DMA requirement. Application need to request an unique config index from DMA infrastructure. This unique config index is associated with backend resource. Two options cpu fallback and barrier before last can be specified in config. DMA transfer will be performed by CPU when backend is busy if cpu fallback option is enabled. DMA transfer callback will be in order if barrier before last option is enabled. We constructs all the stuffs that DMA transfer request needed into DMA batch. It contains the pattern of DMA descriptors and function pointers for submission and callback. One DMA transfer request need multiple times batch update and one time batch submission. DMA backends will assigned to config's workers threads equally. Lock will be used for thread-safety if same backends assigned to multiple threads. Backend node will check all the pending requests in worker thread and do callback with the pointer of DMA batch if transfer completed. Application can utilize cookie in DMA batch for selves usage. DMA architecture: +----------+ +----------+ +----------+ +----------+ | Config1 | | Config2 | | Config1 | | Config2 | +----------+ +----------+ +----------+ +----------+ || || || || +-------------------------+ +-------------------------+ | DMA polling thread A | | DMA polling thread B | +-------------------------+ +-------------------------+ || || +----------+ +----------+ | Backend1 | | Backend2 | +----------+ +----------+ Type: feature Signed-off-by: Marvin Liu <yong.liu@intel.com> Change-Id: I1725e0c26687985aac29618c9abe4f5e0de08ebf
The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. It is the open source version of Cisco's Vector Packet Processing (VPP) technology: a high performance, packet-processing stack that can run on commodity CPUs.
The benefits of this implementation of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set.
For more information on VPP and its features please visit the FD.io website and What is VPP? pages.
Details of the changes leading up to this version of VPP can be found under doc/releasenotes.
Directory name | Description |
---|---|
build-data | Build metadata |
build-root | Build output directory |
docs | Sphinx Documentation |
dpdk | DPDK patches and build infrastructure |
extras/libmemif | Client library for memif |
src/examples | VPP example code |
src/plugins | VPP bundled plugins directory |
src/svm | Shared virtual memory allocation library |
src/tests | Standalone tests (not part of test harness) |
src/vat | VPP API test program |
src/vlib | VPP application library |
src/vlibapi | VPP API library |
src/vlibmemory | VPP Memory management |
src/vnet | VPP networking |
src/vpp | VPP application |
src/vpp-api | VPP application API bindings |
src/vppinfra | VPP core library |
src/vpp/api | Not-yet-relocated API bindings |
test | Unit tests and Python test harness |
In general anyone interested in building, developing or running VPP should consult the VPP wiki for more complete documentation.
In particular, readers are recommended to take a look at [Pulling, Building, Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step coverage of the topic.
For the impatient, some salient information is distilled below.
To install system dependencies, build VPP and then install it, simply run the build script. This should be performed a non-privileged user with sudo
access from the project base directory:
./extras/vagrant/build.sh
If you want a more fine-grained approach because you intend to do some development work, the Makefile
in the root directory of the source tree provides several convenience shortcuts as make
targets that may be of interest. To see the available targets run:
make
The directory extras/vagrant
contains a VagrantFile
and supporting scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine. This VM can then be used to test concepts with VPP or as a development platform to extend VPP. Some obvious caveats apply when using a VM for VPP since its performance will never match that of bare metal; if your work is timing or performance sensitive, consider using bare metal in addition or instead of the VM.
For this to work you will need a working installation of Vagrant. Instructions for this can be found [on the Setting up Vagrant wiki page] (https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).
Several modules provide documentation, see @subpage user_doc for more end-user-oriented information. Also see @subpage dev_doc for developer notes.
Visit the VPP wiki for details on more advanced building strategies and other development notes.