| /* |
| * Copyright (c) 2015 Cisco and/or its affiliates. |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| /* |
| * buffer_node.h: VLIB buffer handling node helper macros/inlines |
| * |
| * Copyright (c) 2008 Eliot Dresselhaus |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining |
| * a copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sublicense, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be |
| * included in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #ifndef included_vlib_buffer_node_h |
| #define included_vlib_buffer_node_h |
| |
| /** \file |
| vlib buffer/node functions |
| */ |
| |
| /** \brief Finish enqueueing two buffers forward in the graph. |
| Standard dual loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0 == next1</code>, |
| which means that the speculative enqueue at the top of the dual loop |
| has correctly dealt with both packets. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param bi1 second buffer index |
| @param next0 actual next index to be used for the first packet |
| @param next1 actual next index to be used for the second packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| |
| #define vlib_validate_buffer_enqueue_x2(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,next0,next1) \ |
| do { \ |
| int enqueue_code = (next0 != next_index) + 2*(next1 != next_index); \ |
| \ |
| if (PREDICT_FALSE (enqueue_code != 0)) \ |
| { \ |
| switch (enqueue_code) \ |
| { \ |
| case 1: \ |
| /* A B A */ \ |
| to_next[-2] = bi1; \ |
| to_next -= 1; \ |
| n_left_to_next += 1; \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| break; \ |
| \ |
| case 2: \ |
| /* A A B */ \ |
| to_next -= 1; \ |
| n_left_to_next += 1; \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| break; \ |
| \ |
| case 3: \ |
| /* A B B or A B C */ \ |
| to_next -= 2; \ |
| n_left_to_next += 2; \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| if (next0 == next1) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, \ |
| n_left_to_next); \ |
| next_index = next1; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| |
| /** \brief Finish enqueueing four buffers forward in the graph. |
| Standard quad loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0 == next1 == next2 == next3</code>, |
| which means that the speculative enqueue at the top of the quad loop |
| has correctly dealt with all four packets. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param bi1 second buffer index |
| @param bi2 third buffer index |
| @param bi3 fourth buffer index |
| @param next0 actual next index to be used for the first packet |
| @param next1 actual next index to be used for the second packet |
| @param next2 actual next index to be used for the third packet |
| @param next3 actual next index to be used for the fourth packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| |
| #define vlib_validate_buffer_enqueue_x4(vm,node,next_index,to_next,n_left_to_next,bi0,bi1,bi2,bi3,next0,next1,next2,next3) \ |
| do { \ |
| /* After the fact: check the [speculative] enqueue to "next" */ \ |
| u32 fix_speculation = (next_index ^ next0) | (next_index ^ next1) \ |
| | (next_index ^ next2) | (next_index ^ next3); \ |
| if (PREDICT_FALSE(fix_speculation)) \ |
| { \ |
| /* rewind... */ \ |
| to_next -= 4; \ |
| n_left_to_next += 4; \ |
| \ |
| /* If bi0 belongs to "next", send it there */ \ |
| if (next_index == next0) \ |
| { \ |
| to_next[0] = bi0; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else /* send it where it needs to go */ \ |
| vlib_set_next_frame_buffer (vm, node, next0, bi0); \ |
| \ |
| if (next_index == next1) \ |
| { \ |
| to_next[0] = bi1; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| vlib_set_next_frame_buffer (vm, node, next1, bi1); \ |
| \ |
| if (next_index == next2) \ |
| { \ |
| to_next[0] = bi2; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| vlib_set_next_frame_buffer (vm, node, next2, bi2); \ |
| \ |
| if (next_index == next3) \ |
| { \ |
| to_next[0] = bi3; \ |
| to_next++; \ |
| n_left_to_next --; \ |
| } \ |
| else \ |
| { \ |
| vlib_set_next_frame_buffer (vm, node, next3, bi3); \ |
| \ |
| /* Change speculation: last 2 packets went to the same node*/ \ |
| if (next2 == next3) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); \ |
| next_index = next3; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| } \ |
| } \ |
| } \ |
| } while(0); |
| |
| /** \brief Finish enqueueing one buffer forward in the graph. |
| Standard single loop boilerplate element. This is a MACRO, |
| with MULTIPLE SIDE EFFECTS. In the ideal case, |
| <code>next_index == next0</code>, |
| which means that the speculative enqueue at the top of the single loop |
| has correctly dealt with the packet in hand. In that case, the macro does |
| nothing at all. |
| |
| @param vm vlib_main_t pointer, varies by thread |
| @param node current node vlib_node_runtime_t pointer |
| @param next_index speculated next index used for both packets |
| @param to_next speculated vector pointer used for both packets |
| @param n_left_to_next number of slots left in speculated vector |
| @param bi0 first buffer index |
| @param next0 actual next index to be used for the first packet |
| |
| @return @c next_index -- speculative next index to be used for future packets |
| @return @c to_next -- speculative frame to be used for future packets |
| @return @c n_left_to_next -- number of slots left in speculative frame |
| */ |
| #define vlib_validate_buffer_enqueue_x1(vm,node,next_index,to_next,n_left_to_next,bi0,next0) \ |
| do { \ |
| if (PREDICT_FALSE (next0 != next_index)) \ |
| { \ |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next + 1); \ |
| next_index = next0; \ |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); \ |
| \ |
| to_next[0] = bi0; \ |
| to_next += 1; \ |
| n_left_to_next -= 1; \ |
| } \ |
| } while (0) |
| |
| always_inline uword |
| generic_buffer_node_inline (vlib_main_t * vm, |
| vlib_node_runtime_t * node, |
| vlib_frame_t * frame, |
| uword sizeof_trace, |
| void *opaque1, |
| uword opaque2, |
| void (*two_buffers) (vlib_main_t * vm, |
| void *opaque1, |
| uword opaque2, |
| vlib_buffer_t * b0, |
| vlib_buffer_t * b1, |
| u32 * next0, u32 * next1), |
| void (*one_buffer) (vlib_main_t * vm, |
| void *opaque1, uword opaque2, |
| vlib_buffer_t * b0, |
| u32 * next0)) |
| { |
| u32 n_left_from, *from, *to_next; |
| u32 next_index; |
| |
| from = vlib_frame_vector_args (frame); |
| n_left_from = frame->n_vectors; |
| next_index = node->cached_next_index; |
| |
| if (node->flags & VLIB_NODE_FLAG_TRACE) |
| vlib_trace_frame_buffers_only (vm, node, from, frame->n_vectors, |
| /* stride */ 1, sizeof_trace); |
| |
| while (n_left_from > 0) |
| { |
| u32 n_left_to_next; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| while (n_left_from >= 4 && n_left_to_next >= 2) |
| { |
| vlib_buffer_t *p0, *p1; |
| u32 pi0, next0; |
| u32 pi1, next1; |
| |
| /* Prefetch next iteration. */ |
| { |
| vlib_buffer_t *p2, *p3; |
| |
| p2 = vlib_get_buffer (vm, from[2]); |
| p3 = vlib_get_buffer (vm, from[3]); |
| |
| vlib_prefetch_buffer_header (p2, LOAD); |
| vlib_prefetch_buffer_header (p3, LOAD); |
| |
| CLIB_PREFETCH (p2->data, 64, LOAD); |
| CLIB_PREFETCH (p3->data, 64, LOAD); |
| } |
| |
| pi0 = to_next[0] = from[0]; |
| pi1 = to_next[1] = from[1]; |
| from += 2; |
| to_next += 2; |
| n_left_from -= 2; |
| n_left_to_next -= 2; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| p1 = vlib_get_buffer (vm, pi1); |
| |
| two_buffers (vm, opaque1, opaque2, p0, p1, &next0, &next1); |
| |
| vlib_validate_buffer_enqueue_x2 (vm, node, next_index, |
| to_next, n_left_to_next, |
| pi0, pi1, next0, next1); |
| } |
| |
| while (n_left_from > 0 && n_left_to_next > 0) |
| { |
| vlib_buffer_t *p0; |
| u32 pi0, next0; |
| |
| pi0 = from[0]; |
| to_next[0] = pi0; |
| from += 1; |
| to_next += 1; |
| n_left_from -= 1; |
| n_left_to_next -= 1; |
| |
| p0 = vlib_get_buffer (vm, pi0); |
| |
| one_buffer (vm, opaque1, opaque2, p0, &next0); |
| |
| vlib_validate_buffer_enqueue_x1 (vm, node, next_index, |
| to_next, n_left_to_next, |
| pi0, next0); |
| } |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| return frame->n_vectors; |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_next (vlib_main_t * vm, vlib_node_runtime_t * node, |
| u32 * buffers, u16 * nexts, uword count) |
| { |
| u32 *to_next, n_left_to_next, max; |
| u16 next_index; |
| |
| next_index = nexts[0]; |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| max = clib_min (n_left_to_next, count); |
| |
| while (count) |
| { |
| u32 n_enqueued; |
| if ((nexts[0] != next_index) || n_left_to_next == 0) |
| { |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| next_index = nexts[0]; |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| max = clib_min (n_left_to_next, count); |
| } |
| #if defined(CLIB_HAVE_VEC512) |
| u16x32 next32 = u16x32_load_unaligned (nexts); |
| next32 = (next32 == u16x32_splat (next32[0])); |
| u64 bitmap = u16x32_msb_mask (next32); |
| n_enqueued = count_trailing_zeros (~bitmap); |
| #elif defined(CLIB_HAVE_VEC256) |
| u16x16 next16 = u16x16_load_unaligned (nexts); |
| next16 = (next16 == u16x16_splat (next16[0])); |
| u64 bitmap = u8x32_msb_mask ((u8x32) next16); |
| n_enqueued = count_trailing_zeros (~bitmap) / 2; |
| #elif defined(CLIB_HAVE_VEC128) && defined(CLIB_HAVE_VEC128_MSB_MASK) |
| u16x8 next8 = u16x8_load_unaligned (nexts); |
| next8 = (next8 == u16x8_splat (next8[0])); |
| u64 bitmap = u8x16_msb_mask ((u8x16) next8); |
| n_enqueued = count_trailing_zeros (~bitmap) / 2; |
| #else |
| u16 x = 0; |
| if (count + 3 < max) |
| { |
| x |= next_index ^ nexts[1]; |
| x |= next_index ^ nexts[2]; |
| x |= next_index ^ nexts[3]; |
| n_enqueued = (x == 0) ? 4 : 1; |
| } |
| else |
| n_enqueued = 1; |
| #endif |
| |
| if (PREDICT_FALSE (n_enqueued > max)) |
| n_enqueued = max; |
| |
| #ifdef CLIB_HAVE_VEC512 |
| if (n_enqueued >= 32) |
| { |
| vlib_buffer_copy_indices (to_next, buffers, 32); |
| nexts += 32; |
| to_next += 32; |
| buffers += 32; |
| n_left_to_next -= 32; |
| count -= 32; |
| max -= 32; |
| continue; |
| } |
| #endif |
| |
| #ifdef CLIB_HAVE_VEC256 |
| if (n_enqueued >= 16) |
| { |
| vlib_buffer_copy_indices (to_next, buffers, 16); |
| nexts += 16; |
| to_next += 16; |
| buffers += 16; |
| n_left_to_next -= 16; |
| count -= 16; |
| max -= 16; |
| continue; |
| } |
| #endif |
| |
| #ifdef CLIB_HAVE_VEC128 |
| if (n_enqueued >= 8) |
| { |
| vlib_buffer_copy_indices (to_next, buffers, 8); |
| nexts += 8; |
| to_next += 8; |
| buffers += 8; |
| n_left_to_next -= 8; |
| count -= 8; |
| max -= 8; |
| continue; |
| } |
| #endif |
| |
| if (n_enqueued >= 4) |
| { |
| vlib_buffer_copy_indices (to_next, buffers, 4); |
| nexts += 4; |
| to_next += 4; |
| buffers += 4; |
| n_left_to_next -= 4; |
| count -= 4; |
| max -= 4; |
| continue; |
| } |
| |
| /* copy */ |
| to_next[0] = buffers[0]; |
| |
| /* next */ |
| nexts += 1; |
| to_next += 1; |
| buffers += 1; |
| n_left_to_next -= 1; |
| count -= 1; |
| max -= 1; |
| } |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| static_always_inline void |
| vlib_buffer_enqueue_to_single_next (vlib_main_t * vm, |
| vlib_node_runtime_t * node, u32 * buffers, |
| u16 next_index, u32 count) |
| { |
| u32 *to_next, n_left_to_next, n_enq; |
| |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| |
| if (PREDICT_TRUE (n_left_to_next >= count)) |
| { |
| vlib_buffer_copy_indices (to_next, buffers, count); |
| n_left_to_next -= count; |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| return; |
| } |
| |
| n_enq = n_left_to_next; |
| next: |
| vlib_buffer_copy_indices (to_next, buffers, n_enq); |
| n_left_to_next -= n_enq; |
| |
| if (PREDICT_FALSE (count > n_enq)) |
| { |
| count -= n_enq; |
| buffers += n_enq; |
| |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| vlib_get_next_frame (vm, node, next_index, to_next, n_left_to_next); |
| n_enq = clib_min (n_left_to_next, count); |
| goto next; |
| } |
| vlib_put_next_frame (vm, node, next_index, n_left_to_next); |
| } |
| |
| static_always_inline u32 |
| vlib_buffer_enqueue_to_thread (vlib_main_t * vm, u32 frame_queue_index, |
| u32 * buffer_indices, u16 * thread_indices, |
| u32 n_packets, int drop_on_congestion) |
| { |
| vlib_thread_main_t *tm = vlib_get_thread_main (); |
| vlib_frame_queue_main_t *fqm; |
| vlib_frame_queue_per_thread_data_t *ptd; |
| u32 n_left = n_packets; |
| u32 drop_list[VLIB_FRAME_SIZE], *dbi = drop_list, n_drop = 0; |
| vlib_frame_queue_elt_t *hf = 0; |
| u32 n_left_to_next_thread = 0, *to_next_thread = 0; |
| u32 next_thread_index, current_thread_index = ~0; |
| int i; |
| |
| fqm = vec_elt_at_index (tm->frame_queue_mains, frame_queue_index); |
| ptd = vec_elt_at_index (fqm->per_thread_data, vm->thread_index); |
| |
| while (n_left) |
| { |
| next_thread_index = thread_indices[0]; |
| |
| if (next_thread_index != current_thread_index) |
| { |
| if (drop_on_congestion && |
| is_vlib_frame_queue_congested |
| (frame_queue_index, next_thread_index, fqm->queue_hi_thresh, |
| ptd->congested_handoff_queue_by_thread_index)) |
| { |
| dbi[0] = buffer_indices[0]; |
| dbi++; |
| n_drop++; |
| goto next; |
| } |
| vlib_mains[next_thread_index]->check_frame_queues = 1; |
| |
| if (hf) |
| hf->n_vectors = VLIB_FRAME_SIZE - n_left_to_next_thread; |
| |
| hf = vlib_get_worker_handoff_queue_elt (frame_queue_index, |
| next_thread_index, |
| ptd->handoff_queue_elt_by_thread_index); |
| |
| n_left_to_next_thread = VLIB_FRAME_SIZE - hf->n_vectors; |
| to_next_thread = &hf->buffer_index[hf->n_vectors]; |
| current_thread_index = next_thread_index; |
| } |
| |
| to_next_thread[0] = buffer_indices[0]; |
| to_next_thread++; |
| n_left_to_next_thread--; |
| |
| if (n_left_to_next_thread == 0) |
| { |
| hf->n_vectors = VLIB_FRAME_SIZE; |
| vlib_put_frame_queue_elt (hf); |
| current_thread_index = ~0; |
| ptd->handoff_queue_elt_by_thread_index[next_thread_index] = 0; |
| hf = 0; |
| } |
| |
| /* next */ |
| next: |
| thread_indices += 1; |
| buffer_indices += 1; |
| n_left -= 1; |
| } |
| |
| if (hf) |
| hf->n_vectors = VLIB_FRAME_SIZE - n_left_to_next_thread; |
| |
| /* Ship frames to the thread nodes */ |
| for (i = 0; i < vec_len (ptd->handoff_queue_elt_by_thread_index); i++) |
| { |
| if (ptd->handoff_queue_elt_by_thread_index[i]) |
| { |
| hf = ptd->handoff_queue_elt_by_thread_index[i]; |
| /* |
| * It works better to let the handoff node |
| * rate-adapt, always ship the handoff queue element. |
| */ |
| if (1 || hf->n_vectors == hf->last_n_vectors) |
| { |
| vlib_put_frame_queue_elt (hf); |
| ptd->handoff_queue_elt_by_thread_index[i] = 0; |
| } |
| else |
| hf->last_n_vectors = hf->n_vectors; |
| } |
| ptd->congested_handoff_queue_by_thread_index[i] = |
| (vlib_frame_queue_t *) (~0); |
| } |
| |
| if (drop_on_congestion && n_drop) |
| vlib_buffer_free (vm, drop_list, n_drop); |
| |
| return n_packets - n_drop; |
| } |
| |
| #endif /* included_vlib_buffer_node_h */ |
| |
| /* |
| * fd.io coding-style-patch-verification: ON |
| * |
| * Local Variables: |
| * eval: (c-set-style "gnu") |
| * End: |
| */ |