vppinfra: AES-CBC and AES-GCM refactor and optimizations

- crypto code moved to vppinfra for better testing and reuse
- added 256-bit VAES support (Intel Client CPUs)
- added AES_GMAC functions

Change-Id: I960c8e14ca0a0126703e8f1589d86f32e2a98361
Type: improvement
Signed-off-by: Damjan Marion <damarion@cisco.com>
diff --git a/src/vppinfra/crypto/ghash.h b/src/vppinfra/crypto/ghash.h
new file mode 100644
index 0000000..bae8bad
--- /dev/null
+++ b/src/vppinfra/crypto/ghash.h
@@ -0,0 +1,515 @@
+/*
+ *------------------------------------------------------------------
+ * Copyright (c) 2019 Cisco and/or its affiliates.
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at:
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *------------------------------------------------------------------
+ */
+
+/*
+ *------------------------------------------------------------------
+ *  Copyright(c) 2018, Intel Corporation All rights reserved.
+ *
+ *  Redistribution and use in source and binary forms, with or without
+ *  modification, are permitted provided that the following conditions
+ *  are met:
+ *    * Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *    * Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in
+ *      the documentation and/or other materials provided with the
+ *      distribution.
+ *    * Neither the name of Intel Corporation nor the names of its
+ *      contributors may be used to endorse or promote products derived
+ *      from this software without specific prior written permission.
+ *
+ *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
+ *  DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *------------------------------------------------------------------
+ */
+
+/*
+ * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
+ *                   Vinodh Gopal, James Guilford, Tomasz Kantecki
+ *
+ * References:
+ * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
+ *     Intel Architecture Processors. August, 2010
+ * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
+ *     Intel Architecture Processors. October, 2012.
+ * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
+ *
+ * Definitions:
+ *  GF    Galois Extension Field GF(2^128) - finite field where elements are
+ *        represented as polynomials with coefficients in GF(2) with the
+ *        highest degree of 127. Polynomials are represented as 128-bit binary
+ *        numbers where each bit represents one coefficient.
+ *        e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
+ *  H     hash key (128 bit)
+ *  POLY  irreducible polynomial x^127 + x^7 + x^2 + x + 1
+ *  RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
+ *  +     addition in GF, which equals to XOR operation
+ *  *     multiplication in GF
+ *
+ * GF multiplication consists of 2 steps:
+ *  - carry-less multiplication of two 128-bit operands into 256-bit result
+ *  - reduction of 256-bit result into 128-bit with modulo POLY
+ *
+ * GHash is calculated on 128-bit blocks of data according to the following
+ * formula:
+ *    GH = (GH + data) * hash_key
+ *
+ * To avoid bit-reflection of data, this code uses GF multipication
+ * with reversed polynomial:
+ *   a * b * x^-127 mod RPOLY
+ *
+ * To improve computation speed table Hi is precomputed with powers of H',
+ * where H' is calculated as H<<1 mod RPOLY.
+ * This allows us to improve performance by deferring reduction. For example
+ * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
+ *
+ * u8x16 Hi[4];
+ * ghash_precompute (H, Hi, 4);
+ *
+ * ghash_data_t _gd, *gd = &_gd;
+ * ghash_mul_first (gd, GH ^ b0, Hi[3]);
+ * ghash_mul_next (gd, b1, Hi[2]);
+ * ghash_mul_next (gd, b2, Hi[1]);
+ * ghash_mul_next (gd, b3, Hi[0]);
+ * ghash_reduce (gd);
+ * ghash_reduce2 (gd);
+ * GH = ghash_final (gd);
+ *
+ * Reduction step is split into 3 functions so it can be better interleaved
+ * with other code, (i.e. with AES computation).
+ */
+
+#ifndef __ghash_h__
+#define __ghash_h__
+
+static_always_inline u8x16
+gmul_lo_lo (u8x16 a, u8x16 b)
+{
+#if defined (__PCLMUL__)
+  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00);
+#elif defined (__ARM_FEATURE_CRYPTO)
+  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
+			    (poly64_t) vget_low_p64 ((poly64x2_t) b));
+#endif
+}
+
+static_always_inline u8x16
+gmul_hi_lo (u8x16 a, u8x16 b)
+{
+#if defined (__PCLMUL__)
+  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01);
+#elif defined (__ARM_FEATURE_CRYPTO)
+  return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a),
+			    (poly64_t) vget_low_p64 ((poly64x2_t) b));
+#endif
+}
+
+static_always_inline u8x16
+gmul_lo_hi (u8x16 a, u8x16 b)
+{
+#if defined (__PCLMUL__)
+  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10);
+#elif defined (__ARM_FEATURE_CRYPTO)
+  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
+			    (poly64_t) vget_high_p64 ((poly64x2_t) b));
+#endif
+}
+
+static_always_inline u8x16
+gmul_hi_hi (u8x16 a, u8x16 b)
+{
+#if defined (__PCLMUL__)
+  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11);
+#elif defined (__ARM_FEATURE_CRYPTO)
+  return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b);
+#endif
+}
+
+typedef struct
+{
+  u8x16 mid, hi, lo, tmp_lo, tmp_hi;
+  u8x32 hi2, lo2, mid2, tmp_lo2, tmp_hi2;
+  u8x64 hi4, lo4, mid4, tmp_lo4, tmp_hi4;
+  int pending;
+} ghash_data_t;
+
+static const u8x16 ghash_poly = {
+  0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
+};
+
+static const u8x16 ghash_poly2 = {
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
+};
+
+static_always_inline void
+ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b)
+{
+  /* a1 * b1 */
+  gd->hi = gmul_hi_hi (a, b);
+  /* a0 * b0 */
+  gd->lo = gmul_lo_lo (a, b);
+  /* a0 * b1 ^ a1 * b0 */
+  gd->mid = gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b);
+
+  /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
+     there is no pending data in tmp_lo and tmp_hi */
+  gd->pending = 0;
+}
+
+static_always_inline void
+ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b)
+{
+  /* a1 * b1 */
+  u8x16 hi = gmul_hi_hi (a, b);
+  /* a0 * b0 */
+  u8x16 lo = gmul_lo_lo (a, b);
+
+  /* this branch will be optimized out by the compiler, and it allows us to
+     reduce number of XOR operations by using ternary logic */
+  if (gd->pending)
+    {
+      /* there is peding data from previous invocation so we can XOR */
+      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi);
+      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo);
+      gd->pending = 0;
+    }
+  else
+    {
+      /* there is no peding data from previous invocation so we postpone XOR */
+      gd->tmp_hi = hi;
+      gd->tmp_lo = lo;
+      gd->pending = 1;
+    }
+
+  /* gd->mid ^= a0 * b1 ^ a1 * b0  */
+  gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b));
+}
+
+static_always_inline void
+ghash_reduce (ghash_data_t * gd)
+{
+  u8x16 r;
+
+  /* Final combination:
+     gd->lo ^= gd->mid << 64
+     gd->hi ^= gd->mid >> 64 */
+  u8x16 midl = u8x16_word_shift_left (gd->mid, 8);
+  u8x16 midr = u8x16_word_shift_right (gd->mid, 8);
+
+  if (gd->pending)
+    {
+      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl);
+      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr);
+    }
+  else
+    {
+      gd->lo ^= midl;
+      gd->hi ^= midr;
+    }
+  r = gmul_hi_lo (ghash_poly2, gd->lo);
+  gd->lo ^= u8x16_word_shift_left (r, 8);
+}
+
+static_always_inline void
+ghash_reduce2 (ghash_data_t * gd)
+{
+  gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo);
+  gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo);
+}
+
+static_always_inline u8x16
+ghash_final (ghash_data_t * gd)
+{
+  return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4),
+		     u8x16_word_shift_left (gd->tmp_hi, 4));
+}
+
+static_always_inline u8x16
+ghash_mul (u8x16 a, u8x16 b)
+{
+  ghash_data_t _gd, *gd = &_gd;
+  ghash_mul_first (gd, a, b);
+  ghash_reduce (gd);
+  ghash_reduce2 (gd);
+  return ghash_final (gd);
+}
+
+#if defined(__VPCLMULQDQ__) && defined(__AVX512F__)
+
+static const u8x64 ghash4_poly2 = {
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
+};
+
+static_always_inline u8x64
+gmul4_lo_lo (u8x64 a, u8x64 b)
+{
+  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00);
+}
+
+static_always_inline u8x64
+gmul4_hi_lo (u8x64 a, u8x64 b)
+{
+  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01);
+}
+
+static_always_inline u8x64
+gmul4_lo_hi (u8x64 a, u8x64 b)
+{
+  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10);
+}
+
+static_always_inline u8x64
+gmul4_hi_hi (u8x64 a, u8x64 b)
+{
+  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11);
+}
+
+static_always_inline void
+ghash4_mul_first (ghash_data_t *gd, u8x64 a, u8x64 b)
+{
+  gd->hi4 = gmul4_hi_hi (a, b);
+  gd->lo4 = gmul4_lo_lo (a, b);
+  gd->mid4 = gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b);
+  gd->pending = 0;
+}
+
+static_always_inline void
+ghash4_mul_next (ghash_data_t *gd, u8x64 a, u8x64 b)
+{
+  u8x64 hi = gmul4_hi_hi (a, b);
+  u8x64 lo = gmul4_lo_lo (a, b);
+
+  if (gd->pending)
+    {
+      /* there is peding data from previous invocation so we can XOR */
+      gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, hi);
+      gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, lo);
+      gd->pending = 0;
+    }
+  else
+    {
+      /* there is no peding data from previous invocation so we postpone XOR */
+      gd->tmp_hi4 = hi;
+      gd->tmp_lo4 = lo;
+      gd->pending = 1;
+    }
+  gd->mid4 = u8x64_xor3 (gd->mid4, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b));
+}
+
+static_always_inline void
+ghash4_reduce (ghash_data_t *gd)
+{
+  u8x64 r;
+
+  /* Final combination:
+     gd->lo4 ^= gd->mid4 << 64
+     gd->hi4 ^= gd->mid4 >> 64 */
+
+  u8x64 midl = u8x64_word_shift_left (gd->mid4, 8);
+  u8x64 midr = u8x64_word_shift_right (gd->mid4, 8);
+
+  if (gd->pending)
+    {
+      gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, midl);
+      gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, midr);
+    }
+  else
+    {
+      gd->lo4 ^= midl;
+      gd->hi4 ^= midr;
+    }
+
+  r = gmul4_hi_lo (ghash4_poly2, gd->lo4);
+  gd->lo4 ^= u8x64_word_shift_left (r, 8);
+}
+
+static_always_inline void
+ghash4_reduce2 (ghash_data_t *gd)
+{
+  gd->tmp_lo4 = gmul4_lo_lo (ghash4_poly2, gd->lo4);
+  gd->tmp_hi4 = gmul4_lo_hi (ghash4_poly2, gd->lo4);
+}
+
+static_always_inline u8x16
+ghash4_final (ghash_data_t *gd)
+{
+  u8x64 r;
+  u8x32 t;
+
+  r = u8x64_xor3 (gd->hi4, u8x64_word_shift_right (gd->tmp_lo4, 4),
+		  u8x64_word_shift_left (gd->tmp_hi4, 4));
+
+  /* horizontal XOR of 4 128-bit lanes */
+  t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r);
+  return u8x32_extract_hi (t) ^ u8x32_extract_lo (t);
+}
+#endif
+
+#if defined(__VPCLMULQDQ__)
+
+static const u8x32 ghash2_poly2 = {
+  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00,
+  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
+};
+
+static_always_inline u8x32
+gmul2_lo_lo (u8x32 a, u8x32 b)
+{
+  return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x00);
+}
+
+static_always_inline u8x32
+gmul2_hi_lo (u8x32 a, u8x32 b)
+{
+  return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x01);
+}
+
+static_always_inline u8x32
+gmul2_lo_hi (u8x32 a, u8x32 b)
+{
+  return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x10);
+}
+
+static_always_inline u8x32
+gmul2_hi_hi (u8x32 a, u8x32 b)
+{
+  return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x11);
+}
+
+static_always_inline void
+ghash2_mul_first (ghash_data_t *gd, u8x32 a, u8x32 b)
+{
+  gd->hi2 = gmul2_hi_hi (a, b);
+  gd->lo2 = gmul2_lo_lo (a, b);
+  gd->mid2 = gmul2_hi_lo (a, b) ^ gmul2_lo_hi (a, b);
+  gd->pending = 0;
+}
+
+static_always_inline void
+ghash2_mul_next (ghash_data_t *gd, u8x32 a, u8x32 b)
+{
+  u8x32 hi = gmul2_hi_hi (a, b);
+  u8x32 lo = gmul2_lo_lo (a, b);
+
+  if (gd->pending)
+    {
+      /* there is peding data from previous invocation so we can XOR */
+      gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, hi);
+      gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, lo);
+      gd->pending = 0;
+    }
+  else
+    {
+      /* there is no peding data from previous invocation so we postpone XOR */
+      gd->tmp_hi2 = hi;
+      gd->tmp_lo2 = lo;
+      gd->pending = 1;
+    }
+  gd->mid2 = u8x32_xor3 (gd->mid2, gmul2_hi_lo (a, b), gmul2_lo_hi (a, b));
+}
+
+static_always_inline void
+ghash2_reduce (ghash_data_t *gd)
+{
+  u8x32 r;
+
+  /* Final combination:
+     gd->lo2 ^= gd->mid2 << 64
+     gd->hi2 ^= gd->mid2 >> 64 */
+
+  u8x32 midl = u8x32_word_shift_left (gd->mid2, 8);
+  u8x32 midr = u8x32_word_shift_right (gd->mid2, 8);
+
+  if (gd->pending)
+    {
+      gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, midl);
+      gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, midr);
+    }
+  else
+    {
+      gd->lo2 ^= midl;
+      gd->hi2 ^= midr;
+    }
+
+  r = gmul2_hi_lo (ghash2_poly2, gd->lo2);
+  gd->lo2 ^= u8x32_word_shift_left (r, 8);
+}
+
+static_always_inline void
+ghash2_reduce2 (ghash_data_t *gd)
+{
+  gd->tmp_lo2 = gmul2_lo_lo (ghash2_poly2, gd->lo2);
+  gd->tmp_hi2 = gmul2_lo_hi (ghash2_poly2, gd->lo2);
+}
+
+static_always_inline u8x16
+ghash2_final (ghash_data_t *gd)
+{
+  u8x32 r;
+
+  r = u8x32_xor3 (gd->hi2, u8x32_word_shift_right (gd->tmp_lo2, 4),
+		  u8x32_word_shift_left (gd->tmp_hi2, 4));
+
+  /* horizontal XOR of 2 128-bit lanes */
+  return u8x32_extract_hi (r) ^ u8x32_extract_lo (r);
+}
+#endif
+
+static_always_inline void
+ghash_precompute (u8x16 H, u8x16 * Hi, int n)
+{
+  u8x16 r8;
+  u32x4 r32;
+  /* calcullate H<<1 mod poly from the hash key */
+  r8 = (u8x16) ((u64x2) H >> 63);
+  H = (u8x16) ((u64x2) H << 1);
+  H |= u8x16_word_shift_left (r8, 8);
+  r32 = (u32x4) u8x16_word_shift_right (r8, 8);
+#ifdef __SSE2__
+  r32 = u32x4_shuffle (r32, 0, 1, 2, 0);
+#else
+  r32[3] = r32[0];
+#endif
+  r32 = r32 == (u32x4) {1, 0, 0, 1};
+  Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly);
+
+  /* calculate H^(i + 1) */
+  for (int i = n - 2; i >= 0; i--)
+    Hi[i] = ghash_mul (H, Hi[i + 1]);
+}
+
+#endif /* __ghash_h__ */
+