Repair vlib API socket server

- Teach vpp_api_test to send/receive API messages over sockets
- Add memfd-based shared memory
- Add api messages to create memfd-based shared memory segments
- vpp_api_test supports both socket and shared memory segment connections
- vpp_api_test pivot from socket to shared memory API messaging
- add socket client support to libvlibclient.so
- dead client reaper sends ping messages, container-friendly
- dead client reaper falls back to kill (<pid>, 0) live checking
  if e.g. a python app goes silent for tens of seconds
- handle ping messages in python client support code
- teach show api ring about pairwise shared-memory segments
- fix ip probing of already resolved destinations (VPP-998)

We'll need this work to implement proper host-stack client isolation

Change-Id: Ic23b65f75c854d0393d9a2e9d6b122a9551be769
Signed-off-by: Dave Barach <dave@barachs.net>
Signed-off-by: Dave Wallace <dwallacelf@gmail.com>
Signed-off-by: Florin Coras <fcoras@cisco.com>
90 files changed
tree: 1ae3b8d69d7952500b07186169fb31e0f72ae04e
  1. build-data/
  2. build-root/
  3. doxygen/
  4. dpdk/
  5. extras/
  6. gmod/
  7. src/
  8. test/
  9. .clang-format
  10. .gitignore
  11. .gitreview
  12. LICENSE
  13. MAINTAINERS
  14. Makefile
  15. README.md
  16. RELEASE.md
README.md

Vector Packet Processing

Introduction

The VPP platform is an extensible framework that provides out-of-the-box production quality switch/router functionality. It is the open source version of Cisco's Vector Packet Processing (VPP) technology: a high performance, packet-processing stack that can run on commodity CPUs.

The benefits of this implementation of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set.

For more information on VPP and its features please visit the FD.io website and What is VPP? pages.

Changes

Details of the changes leading up to this version of VPP can be found under @ref release_notes.

Directory layout

Directory nameDescription
build-dataBuild metadata
build-rootBuild output directory
doxygenDocumentation generator configuration
dpdkDPDK patches and build infrastructure
@ref extras/libmemifClient library for memif
@ref src/examplesVPP example code
@ref src/pluginsVPP bundled plugins directory
@ref src/svmShared virtual memory allocation library
src/testsStandalone tests (not part of test harness)
src/vatVPP API test program
@ref src/vlibVPP application library
@ref src/vlibapiVPP API library
@ref src/vlibmemoryVPP Memory management
@ref src/vlibsocketVPP Socket I/O
@ref src/vnetVPP networking
@ref src/vppVPP application
@ref src/vpp-apiVPP application API bindings
@ref src/vppinfraVPP core library
@ref src/vpp/apiNot-yet-relocated API bindings
testUnit tests and Python test harness

Getting started

In general anyone interested in building, developing or running VPP should consult the VPP wiki for more complete documentation.

In particular, readers are recommended to take a look at [Pulling, Building, Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step coverage of the topic.

For the impatient, some salient information is distilled below.

Quick-start: On an existing Linux host

To install system dependencies, build VPP and then install it, simply run the build script. This should be performed a non-privileged user with sudo access from the project base directory:

./extras/vagrant/build.sh

If you want a more fine-grained approach because you intend to do some development work, the Makefile in the root directory of the source tree provides several convenience shortcuts as make targets that may be of interest. To see the available targets run:

make

Quick-start: Vagrant

The directory extras/vagrant contains a VagrantFile and supporting scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine. This VM can then be used to test concepts with VPP or as a development platform to extend VPP. Some obvious caveats apply when using a VM for VPP since its performance will never match that of bare metal; if your work is timing or performance sensitive, consider using bare metal in addition or instead of the VM.

For this to work you will need a working installation of Vagrant. Instructions for this can be found [on the Setting up Vagrant wiki page] (https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).

More information

Several modules provide documentation, see @subpage user_doc for more end-user-oriented information. Also see @subpage dev_doc for developer notes.

Visit the VPP wiki for details on more advanced building strategies and other development notes.

Test Framework

There is PyDoc generated documentation available for the VPP test framework. See @ref test_framework_doc for details.