blob: 82b0343348d40a93c74858cfcc189f2df228abfc [file] [log] [blame]
Neale Ranns32e1c012016-11-22 17:07:28 +00001/* $NetBSD: radix.c,v 1.47 2016/12/12 03:55:57 ozaki-r Exp $ */
2
3/*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 */
33
34/*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38#include <vnet/util/radix.h>
39
40typedef void (*rn_printer_t)(void *, const char *fmt, ...);
41
42static int max_keylen = 33; // me
43struct radix_mask *rn_mkfreelist;
44struct radix_node_head *mask_rnhead;
45static char *addmask_key;
46static const char normal_chars[] =
47 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
48static char *rn_zeros, *rn_ones;
49
50#define rn_masktop (mask_rnhead->rnh_treetop)
51
52static int rn_satisfies_leaf(const char *, struct radix_node *, int);
53static int rn_lexobetter(const void *, const void *);
54static struct radix_mask *rn_new_radix_mask(struct radix_node *,
55 struct radix_mask *);
56static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
57 void *);
58static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
59 void *);
60static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
61 const char *);
62
63#define SUBTREE_OPEN "[ "
64#define SUBTREE_CLOSE " ]"
65
66#ifdef RN_DEBUG
67static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
68#endif /* RN_DEBUG */
69
70#define MIN(x,y) (((x)<(y))?(x):(y))
71
72static struct radix_mask*
73rm_alloc (void)
74{
75 struct radix_mask *rm = clib_mem_alloc(sizeof(struct radix_mask));
76
Dave Barachb7b92992018-10-17 10:38:51 -040077 clib_memset(rm, 0, sizeof(*rm));
Neale Ranns32e1c012016-11-22 17:07:28 +000078
79 return (rm);
80}
81
82static void
83rm_free (struct radix_mask *rm)
84{
85 clib_mem_free(rm);
86}
87
88#define R_Malloc(p, t, n) \
89{ \
90 p = (t) clib_mem_alloc((unsigned int)(n)); \
Dave Barachb7b92992018-10-17 10:38:51 -040091 clib_memset(p, 0, n); \
Neale Ranns32e1c012016-11-22 17:07:28 +000092}
93#define Free(p) clib_mem_free((p))
94#define log(a,b, c...)
95#define bool i32
96
97/*
98 * The data structure for the keys is a radix tree with one way
99 * branching removed. The index rn_b at an internal node n represents a bit
100 * position to be tested. The tree is arranged so that all descendants
101 * of a node n have keys whose bits all agree up to position rn_b - 1.
102 * (We say the index of n is rn_b.)
103 *
104 * There is at least one descendant which has a one bit at position rn_b,
105 * and at least one with a zero there.
106 *
107 * A route is determined by a pair of key and mask. We require that the
108 * bit-wise logical and of the key and mask to be the key.
109 * We define the index of a route to associated with the mask to be
110 * the first bit number in the mask where 0 occurs (with bit number 0
111 * representing the highest order bit).
112 *
113 * We say a mask is normal if every bit is 0, past the index of the mask.
114 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
115 * and m is a normal mask, then the route applies to every descendant of n.
116 * If the index(m) < rn_b, this implies the trailing last few bits of k
117 * before bit b are all 0, (and hence consequently true of every descendant
118 * of n), so the route applies to all descendants of the node as well.
119 *
120 * Similar logic shows that a non-normal mask m such that
121 * index(m) <= index(n) could potentially apply to many children of n.
122 * Thus, for each non-host route, we attach its mask to a list at an internal
123 * node as high in the tree as we can go.
124 *
125 * The present version of the code makes use of normal routes in short-
126 * circuiting an explicit mask and compare operation when testing whether
127 * a key satisfies a normal route, and also in remembering the unique leaf
128 * that governs a subtree.
129 */
130
131struct radix_node *
132rn_search(
133 const void *v_arg,
134 struct radix_node *head)
135{
136 const u8 * const v = v_arg;
137 struct radix_node *x;
138
139 for (x = head; x->rn_b >= 0;) {
140 if (x->rn_bmask & v[x->rn_off])
141 x = x->rn_r;
142 else
143 x = x->rn_l;
144 }
145 return x;
146}
147
148struct radix_node *
149rn_search_m(
150 const void *v_arg,
151 struct radix_node *head,
152 const void *m_arg)
153{
154 struct radix_node *x;
155 const u8 * const v = v_arg;
156 const u8 * const m = m_arg;
157
158 for (x = head; x->rn_b >= 0;) {
159 if ((x->rn_bmask & m[x->rn_off]) &&
160 (x->rn_bmask & v[x->rn_off]))
161 x = x->rn_r;
162 else
163 x = x->rn_l;
164 }
165 return x;
166}
167
168int
169rn_refines(
170 const void *m_arg,
171 const void *n_arg)
172{
173 const char *m = m_arg;
174 const char *n = n_arg;
175 const char *lim = n + *(const u8 *)n;
176 const char *lim2 = lim;
177 int longer = (*(const u8 *)n++) - (int)(*(const u8 *)m++);
178 int masks_are_equal = 1;
179
180 if (longer > 0)
181 lim -= longer;
182 while (n < lim) {
183 if (*n & ~(*m))
184 return 0;
185 if (*n++ != *m++)
186 masks_are_equal = 0;
187 }
188 while (n < lim2)
189 if (*n++)
190 return 0;
191 if (masks_are_equal && (longer < 0))
192 for (lim2 = m - longer; m < lim2; )
193 if (*m++)
194 return 1;
195 return !masks_are_equal;
196}
197
198struct radix_node *
199rn_lookup(
200 const void *v_arg,
201 const void *m_arg,
202 struct radix_node_head *head)
203{
204 struct radix_node *x;
205 const char *netmask = NULL;
206
207 if (m_arg) {
208 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
209 return NULL;
210 netmask = x->rn_key;
211 }
212 x = rn_match(v_arg, head);
213 if (x != NULL && netmask != NULL) {
214 while (x != NULL && x->rn_mask != netmask)
215 x = x->rn_dupedkey;
216 }
217 return x;
218}
219
220static int
221rn_satisfies_leaf(
222 const char *trial,
223 struct radix_node *leaf,
224 int skip)
225{
226 const char *cp = trial;
227 const char *cp2 = leaf->rn_key;
228 const char *cp3 = leaf->rn_mask;
229 const char *cplim;
230 int length = MIN(*(const u8 *)cp, *(const u8 *)cp2);
231
232 if (cp3 == 0)
233 cp3 = rn_ones;
234 else
235 length = MIN(length, *(const u8 *)cp3);
236 cplim = cp + length; cp3 += skip; cp2 += skip;
237 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
238 if ((*cp ^ *cp2) & *cp3)
239 return 0;
240 return 1;
241}
242
243struct radix_node *
244rn_match(
245 const void *v_arg,
246 struct radix_node_head *head)
247{
248 const char * const v = v_arg;
249 struct radix_node *t = head->rnh_treetop;
250 struct radix_node *top = t;
251 struct radix_node *x;
252 struct radix_node *saved_t;
253 const char *cp = v;
254 const char *cp2;
255 const char *cplim;
256 int off = t->rn_off;
257 int vlen = *(const u8 *)cp;
258 int matched_off;
259 int test, b, rn_b;
260
261 /*
262 * Open code rn_search(v, top) to avoid overhead of extra
263 * subroutine call.
264 */
265 for (; t->rn_b >= 0; ) {
266 if (t->rn_bmask & cp[t->rn_off])
267 t = t->rn_r;
268 else
269 t = t->rn_l;
270 }
271 /*
272 * See if we match exactly as a host destination
273 * or at least learn how many bits match, for normal mask finesse.
274 *
275 * It doesn't hurt us to limit how many bytes to check
276 * to the length of the mask, since if it matches we had a genuine
277 * match and the leaf we have is the most specific one anyway;
278 * if it didn't match with a shorter length it would fail
279 * with a long one. This wins big for class B&C netmasks which
280 * are probably the most common case...
281 */
282 if (t->rn_mask)
283 vlen = *(const u8 *)t->rn_mask;
284 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
285 for (; cp < cplim; cp++, cp2++)
286 if (*cp != *cp2)
287 goto on1;
288 /*
289 * This extra grot is in case we are explicitly asked
290 * to look up the default. Ugh!
291 */
292 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
293 t = t->rn_dupedkey;
294 return t;
295on1:
296 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
297 for (b = 7; (test >>= 1) > 0;)
298 b--;
299 matched_off = cp - v;
300 b += matched_off << 3;
301 rn_b = -1 - b;
302 /*
303 * If there is a host route in a duped-key chain, it will be first.
304 */
305 if ((saved_t = t)->rn_mask == 0)
306 t = t->rn_dupedkey;
307 for (; t; t = t->rn_dupedkey)
308 /*
309 * Even if we don't match exactly as a host,
310 * we may match if the leaf we wound up at is
311 * a route to a net.
312 */
313 if (t->rn_flags & RNF_NORMAL) {
314 if (rn_b <= t->rn_b)
315 return t;
316 } else if (rn_satisfies_leaf(v, t, matched_off))
317 return t;
318 t = saved_t;
319 /* start searching up the tree */
320 do {
321 struct radix_mask *m;
322 t = t->rn_p;
323 m = t->rn_mklist;
324 if (m) {
325 /*
326 * If non-contiguous masks ever become important
327 * we can restore the masking and open coding of
328 * the search and satisfaction test and put the
329 * calculation of "off" back before the "do".
330 */
331 do {
332 if (m->rm_flags & RNF_NORMAL) {
333 if (rn_b <= m->rm_b)
334 return m->rm_leaf;
335 } else {
336 off = MIN(t->rn_off, matched_off);
337 x = rn_search_m(v, t, m->rm_mask);
338 while (x && x->rn_mask != m->rm_mask)
339 x = x->rn_dupedkey;
340 if (x && rn_satisfies_leaf(v, x, off))
341 return x;
342 }
343 m = m->rm_mklist;
344 } while (m);
345 }
346 } while (t != top);
347 return NULL;
348}
349
350static void
351rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
352 const char *delim)
353{
354 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
355 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
356 rn->rn_l, rn->rn_r);
357}
358
359#ifdef RN_DEBUG
360int rn_debug = 1;
361
362static void
363rn_dbg_print(void *arg, const char *fmt, ...)
364{
365 va_list ap;
366
367 va_start(ap, fmt);
368 vlog(LOG_DEBUG, fmt, ap);
369 va_end(ap);
370}
371
372static void
373rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
374{
375 struct radix_node *dup, *rn;
376 const char *delim;
377
378 if (printer == NULL)
379 return;
380
381 rn = rn_walkfirst(h->rnh_treetop, printer, arg);
382 for (;;) {
383 /* Process leaves */
384 delim = "";
385 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
386 if ((dup->rn_flags & RNF_ROOT) != 0)
387 continue;
388 rn_nodeprint(dup, printer, arg, delim);
389 delim = ", ";
390 }
391 rn = rn_walknext(rn, printer, arg);
392 if (rn->rn_flags & RNF_ROOT)
393 return;
394 }
395 /* NOTREACHED */
396}
397
398#define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
399#endif /* RN_DEBUG */
400
401struct radix_node *
402rn_newpair(
403 const void *v,
404 int b,
405 struct radix_node nodes[2])
406{
407 struct radix_node *tt = nodes;
408 struct radix_node *t = tt + 1;
409 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
410 t->rn_l = tt; t->rn_off = b >> 3;
411 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
412 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
413 return t;
414}
415
416struct radix_node *
417rn_insert(
418 const void *v_arg,
419 struct radix_node_head *head,
420 int *dupentry,
421 struct radix_node nodes[2])
422{
423 struct radix_node *top = head->rnh_treetop;
424 struct radix_node *t = rn_search(v_arg, top);
425 struct radix_node *tt;
426 const char *v = v_arg;
427 int head_off = top->rn_off;
428 int vlen = *((const u8 *)v);
429 const char *cp = v + head_off;
430 int b;
431 /*
432 * Find first bit at which v and t->rn_key differ
433 */
434 {
435 const char *cp2 = t->rn_key + head_off;
436 const char *cplim = v + vlen;
437 int cmp_res;
438
439 while (cp < cplim)
440 if (*cp2++ != *cp++)
441 goto on1;
442 *dupentry = 1;
443 return t;
444on1:
445 *dupentry = 0;
446 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
447 for (b = (cp - v) << 3; cmp_res; b--)
448 cmp_res >>= 1;
449 }
450 {
451 struct radix_node *p, *x = top;
452 cp = v;
453 do {
454 p = x;
455 if (cp[x->rn_off] & x->rn_bmask)
456 x = x->rn_r;
457 else x = x->rn_l;
458 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
459#ifdef RN_DEBUG
460 if (rn_debug)
461 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
462#endif
463 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
464 if ((cp[p->rn_off] & p->rn_bmask) == 0)
465 p->rn_l = t;
466 else
467 p->rn_r = t;
468 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
469 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
470 t->rn_r = x;
471 } else {
472 t->rn_r = tt; t->rn_l = x;
473 }
474#ifdef RN_DEBUG
475 if (rn_debug) {
476 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
477 traverse(head, p);
478 }
479#endif /* RN_DEBUG */
480 }
481 return tt;
482}
483
484struct radix_node *
485rn_addmask(
486 const void *n_arg,
487 int search,
488 int skip)
489{
490 const char *netmask = n_arg;
491 const char *cp;
492 const char *cplim;
493 struct radix_node *x;
494 struct radix_node *saved_x;
495 int b = 0, mlen, j;
496 int maskduplicated, m0, isnormal;
497 static int last_zeroed = 0;
498
499 if ((mlen = *(const u8 *)netmask) > max_keylen)
500 mlen = max_keylen;
501 if (skip == 0)
502 skip = 1;
503 if (mlen <= skip)
504 return mask_rnhead->rnh_nodes;
505 if (skip > 1)
506 memmove(addmask_key + 1, rn_ones + 1, skip - 1);
507 if ((m0 = mlen) > skip)
508 memmove(addmask_key + skip, netmask + skip, mlen - skip);
509 /*
510 * Trim trailing zeroes.
511 */
512 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
513 cp--;
514 mlen = cp - addmask_key;
515 if (mlen <= skip) {
516 if (m0 >= last_zeroed)
517 last_zeroed = mlen;
518 return mask_rnhead->rnh_nodes;
519 }
520 if (m0 < last_zeroed)
Dave Barachb7b92992018-10-17 10:38:51 -0400521 clib_memset(addmask_key + m0, 0, last_zeroed - m0);
Neale Ranns32e1c012016-11-22 17:07:28 +0000522 *addmask_key = last_zeroed = mlen;
523 x = rn_search(addmask_key, rn_masktop);
524 if (memcmp(addmask_key, x->rn_key, mlen) != 0)
525 x = 0;
526 if (x || search)
527 return x;
528 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
529 if ((saved_x = x) == NULL)
530 return NULL;
Dave Barachb7b92992018-10-17 10:38:51 -0400531 clib_memset(x, 0, max_keylen + 2 * sizeof (*x));
Neale Ranns32e1c012016-11-22 17:07:28 +0000532 cp = netmask = (void *)(x + 2);
533 memmove(x + 2, addmask_key, mlen);
534 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
535 if (maskduplicated) {
536 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
537 Free(saved_x);
538 return x;
539 }
540 /*
541 * Calculate index of mask, and check for normalcy.
542 */
543 cplim = netmask + mlen; isnormal = 1;
544 for (cp = netmask + skip; (cp < cplim) && *(const u8 *)cp == 0xff;)
545 cp++;
546 if (cp != cplim) {
547 for (j = 0x80; (j & *cp) != 0; j >>= 1)
548 b++;
549 if (*cp != normal_chars[b] || cp != (cplim - 1))
550 isnormal = 0;
551 }
552 b += (cp - netmask) << 3;
553 x->rn_b = -1 - b;
554 if (isnormal)
555 x->rn_flags |= RNF_NORMAL;
556 return x;
557}
558
559static int /* XXX: arbitrary ordering for non-contiguous masks */
560rn_lexobetter(
561 const void *m_arg,
562 const void *n_arg)
563{
564 const u8 *mp = m_arg;
565 const u8 *np = n_arg;
566 const u8 *lim;
567
568 if (*mp > *np)
569 return 1; /* not really, but need to check longer one first */
570 if (*mp == *np)
571 for (lim = mp + *mp; mp < lim;)
572 if (*mp++ > *np++)
573 return 1;
574 return 0;
575}
576
577static struct radix_mask *
578rn_new_radix_mask(
579 struct radix_node *tt,
580 struct radix_mask *next)
581{
582 struct radix_mask *m;
583
584 m = rm_alloc();
585 if (m == NULL) {
586 log(LOG_ERR, "Mask for route not entered\n");
587 return NULL;
588 }
Dave Barachb7b92992018-10-17 10:38:51 -0400589 clib_memset(m, 0, sizeof(*m));
Neale Ranns32e1c012016-11-22 17:07:28 +0000590 m->rm_b = tt->rn_b;
591 m->rm_flags = tt->rn_flags;
592 if (tt->rn_flags & RNF_NORMAL)
593 m->rm_leaf = tt;
594 else
595 m->rm_mask = tt->rn_mask;
596 m->rm_mklist = next;
597 tt->rn_mklist = m;
598 return m;
599}
600
601struct radix_node *
602rn_addroute(
603 const void *v_arg,
604 const void *n_arg,
605 struct radix_node_head *head,
606 struct radix_node treenodes[2])
607{
608 const char *v = v_arg, *netmask = n_arg;
609 struct radix_node *t, *x = NULL, *tt;
610 struct radix_node *saved_tt, *top = head->rnh_treetop;
611 short b = 0, b_leaf = 0;
612 int keyduplicated;
613 const char *mmask;
614 struct radix_mask *m, **mp;
615
616 /*
617 * In dealing with non-contiguous masks, there may be
618 * many different routes which have the same mask.
619 * We will find it useful to have a unique pointer to
620 * the mask to speed avoiding duplicate references at
621 * nodes and possibly save time in calculating indices.
622 */
623 if (netmask != NULL) {
624 if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
625 return NULL;
626 b_leaf = x->rn_b;
627 b = -1 - x->rn_b;
628 netmask = x->rn_key;
629 }
630 /*
631 * Deal with duplicated keys: attach node to previous instance
632 */
633 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
634 if (keyduplicated) {
635 for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
636 if (tt->rn_mask == netmask)
637 return NULL;
638 if (netmask == NULL ||
639 (tt->rn_mask != NULL &&
640 (b_leaf < tt->rn_b || /* index(netmask) > node */
641 rn_refines(netmask, tt->rn_mask) ||
642 rn_lexobetter(netmask, tt->rn_mask))))
643 break;
644 }
645 /*
646 * If the mask is not duplicated, we wouldn't
647 * find it among possible duplicate key entries
648 * anyway, so the above test doesn't hurt.
649 *
650 * We sort the masks for a duplicated key the same way as
651 * in a masklist -- most specific to least specific.
652 * This may require the unfortunate nuisance of relocating
653 * the head of the list.
654 *
655 * We also reverse, or doubly link the list through the
656 * parent pointer.
657 */
658 if (tt == saved_tt) {
659 struct radix_node *xx = x;
660 /* link in at head of list */
661 (tt = treenodes)->rn_dupedkey = t;
662 tt->rn_flags = t->rn_flags;
663 tt->rn_p = x = t->rn_p;
664 t->rn_p = tt;
665 if (x->rn_l == t)
666 x->rn_l = tt;
667 else
668 x->rn_r = tt;
669 saved_tt = tt;
670 x = xx;
671 } else {
672 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
673 t->rn_dupedkey = tt;
674 tt->rn_p = t;
675 if (tt->rn_dupedkey)
676 tt->rn_dupedkey->rn_p = tt;
677 }
678 tt->rn_key = v;
679 tt->rn_b = -1;
680 tt->rn_flags = RNF_ACTIVE;
681 }
682 /*
683 * Put mask in tree.
684 */
685 if (netmask != NULL) {
686 tt->rn_mask = netmask;
687 tt->rn_b = x->rn_b;
688 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
689 }
690 t = saved_tt->rn_p;
691 if (keyduplicated)
692 goto on2;
693 b_leaf = -1 - t->rn_b;
694 if (t->rn_r == saved_tt)
695 x = t->rn_l;
696 else
697 x = t->rn_r;
698 /* Promote general routes from below */
699 if (x->rn_b < 0) {
700 for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
701 if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
702 x->rn_mklist == NULL) {
703 *mp = m = rn_new_radix_mask(x, NULL);
704 if (m != NULL)
705 mp = &m->rm_mklist;
706 }
707 }
708 } else if (x->rn_mklist != NULL) {
709 /*
710 * Skip over masks whose index is > that of new node
711 */
712 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
713 if (m->rm_b >= b_leaf)
714 break;
715 t->rn_mklist = m;
716 *mp = NULL;
717 }
718on2:
719 /* Add new route to highest possible ancestor's list */
720 if (netmask == NULL || b > t->rn_b)
721 return tt; /* can't lift at all */
722 b_leaf = tt->rn_b;
723 do {
724 x = t;
725 t = t->rn_p;
726 } while (b <= t->rn_b && x != top);
727 /*
728 * Search through routes associated with node to
729 * insert new route according to index.
730 * Need same criteria as when sorting dupedkeys to avoid
731 * double loop on deletion.
732 */
733 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
734 if (m->rm_b < b_leaf)
735 continue;
736 if (m->rm_b > b_leaf)
737 break;
738 if (m->rm_flags & RNF_NORMAL) {
739 mmask = m->rm_leaf->rn_mask;
740 if (tt->rn_flags & RNF_NORMAL) {
741 log(LOG_ERR, "Non-unique normal route,"
742 " mask not entered\n");
743 return tt;
744 }
745 } else
746 mmask = m->rm_mask;
747 if (mmask == netmask) {
748 m->rm_refs++;
749 tt->rn_mklist = m;
750 return tt;
751 }
752 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
753 break;
754 }
755 *mp = rn_new_radix_mask(tt, *mp);
756 return tt;
757}
758
759struct radix_node *
760rn_delete1(
761 const void *v_arg,
762 const void *netmask_arg,
763 struct radix_node_head *head,
764 struct radix_node *rn)
765{
766 struct radix_node *t, *p, *x, *tt;
767 struct radix_mask *m, *saved_m, **mp;
768 struct radix_node *dupedkey, *saved_tt, *top;
769 const char *v, *netmask;
770 int b, head_off, vlen;
771
772 v = v_arg;
773 netmask = netmask_arg;
774 x = head->rnh_treetop;
775 tt = rn_search(v, x);
776 head_off = x->rn_off;
777 vlen = *(const u8 *)v;
778 saved_tt = tt;
779 top = x;
780 if (tt == NULL ||
781 memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
782 return NULL;
783 /*
784 * Delete our route from mask lists.
785 */
786 if (netmask != NULL) {
787 if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
788 return NULL;
789 netmask = x->rn_key;
790 while (tt->rn_mask != netmask)
791 if ((tt = tt->rn_dupedkey) == NULL)
792 return NULL;
793 }
794 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
795 goto on1;
796 if (tt->rn_flags & RNF_NORMAL) {
797 if (m->rm_leaf != tt || m->rm_refs > 0) {
798 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
799 return NULL; /* dangling ref could cause disaster */
800 }
801 } else {
802 if (m->rm_mask != tt->rn_mask) {
803 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
804 goto on1;
805 }
806 if (--m->rm_refs >= 0)
807 goto on1;
808 }
809 b = -1 - tt->rn_b;
810 t = saved_tt->rn_p;
811 if (b > t->rn_b)
812 goto on1; /* Wasn't lifted at all */
813 do {
814 x = t;
815 t = t->rn_p;
816 } while (b <= t->rn_b && x != top);
817 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
818 if (m == saved_m) {
819 *mp = m->rm_mklist;
820 rm_free(m);
821 break;
822 }
823 }
824 if (m == NULL) {
825 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
826 if (tt->rn_flags & RNF_NORMAL)
827 return NULL; /* Dangling ref to us */
828 }
829on1:
830 /*
831 * Eliminate us from tree
832 */
833 if (tt->rn_flags & RNF_ROOT)
834 return NULL;
835#ifdef RN_DEBUG
836 if (rn_debug)
837 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
838#endif
839 t = tt->rn_p;
840 dupedkey = saved_tt->rn_dupedkey;
841 if (dupedkey != NULL) {
842 /*
843 * Here, tt is the deletion target, and
844 * saved_tt is the head of the dupedkey chain.
845 */
846 if (tt == saved_tt) {
847 x = dupedkey;
848 x->rn_p = t;
849 if (t->rn_l == tt)
850 t->rn_l = x;
851 else
852 t->rn_r = x;
853 } else {
854 /* find node in front of tt on the chain */
855 for (x = p = saved_tt;
856 p != NULL && p->rn_dupedkey != tt;)
857 p = p->rn_dupedkey;
858 if (p != NULL) {
859 p->rn_dupedkey = tt->rn_dupedkey;
860 if (tt->rn_dupedkey != NULL)
861 tt->rn_dupedkey->rn_p = p;
862 } else
863 log(LOG_ERR, "rn_delete: couldn't find us\n");
864 }
865 t = tt + 1;
866 if (t->rn_flags & RNF_ACTIVE) {
867 *++x = *t;
868 p = t->rn_p;
869 if (p->rn_l == t)
870 p->rn_l = x;
871 else
872 p->rn_r = x;
873 x->rn_l->rn_p = x;
874 x->rn_r->rn_p = x;
875 }
876 goto out;
877 }
878 if (t->rn_l == tt)
879 x = t->rn_r;
880 else
881 x = t->rn_l;
882 p = t->rn_p;
883 if (p->rn_r == t)
884 p->rn_r = x;
885 else
886 p->rn_l = x;
887 x->rn_p = p;
888 /*
889 * Demote routes attached to us.
890 */
891 if (t->rn_mklist == NULL)
892 ;
893 else if (x->rn_b >= 0) {
894 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
895 ;
896 *mp = t->rn_mklist;
897 } else {
898 /* If there are any key,mask pairs in a sibling
899 duped-key chain, some subset will appear sorted
900 in the same order attached to our mklist */
901 for (m = t->rn_mklist;
902 m != NULL && x != NULL;
903 x = x->rn_dupedkey) {
904 if (m == x->rn_mklist) {
905 struct radix_mask *mm = m->rm_mklist;
906 x->rn_mklist = NULL;
907 if (--(m->rm_refs) < 0)
908 rm_free(m);
909 m = mm;
910 }
911 }
912 if (m != NULL) {
913 log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
914 m, x);
915 }
916 }
917 /*
918 * We may be holding an active internal node in the tree.
919 */
920 x = tt + 1;
921 if (t != x) {
922 *t = *x;
923 t->rn_l->rn_p = t;
924 t->rn_r->rn_p = t;
925 p = x->rn_p;
926 if (p->rn_l == x)
927 p->rn_l = t;
928 else
929 p->rn_r = t;
930 }
931out:
932#ifdef RN_DEBUG
933 if (rn_debug) {
934 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
935 traverse(head, tt);
936 }
937#endif /* RN_DEBUG */
938 tt->rn_flags &= ~RNF_ACTIVE;
939 tt[1].rn_flags &= ~RNF_ACTIVE;
940 return tt;
941}
942
943struct radix_node *
944rn_delete(
945 const void *v_arg,
946 const void *netmask_arg,
947 struct radix_node_head *head)
948{
949 return rn_delete1(v_arg, netmask_arg, head, NULL);
950}
951
952static struct radix_node *
953rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
954{
955 /* If at right child go back up, otherwise, go right */
956 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
957 if (printer != NULL)
958 (*printer)(arg, SUBTREE_CLOSE);
959 rn = rn->rn_p;
960 }
961 if (printer)
962 rn_nodeprint(rn->rn_p, printer, arg, "");
963 /* Find the next *leaf* since next node might vanish, too */
964 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
965 if (printer != NULL)
966 (*printer)(arg, SUBTREE_OPEN);
967 rn = rn->rn_l;
968 }
969 return rn;
970}
971
972static struct radix_node *
973rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
974{
975 /* First time through node, go left */
976 while (rn->rn_b >= 0) {
977 if (printer != NULL)
978 (*printer)(arg, SUBTREE_OPEN);
979 rn = rn->rn_l;
980 }
981 return rn;
982}
983
984int
985rn_walktree(
986 struct radix_node_head *h,
987 int (*f)(struct radix_node *, void *),
988 void *w)
989{
990 int error;
991 struct radix_node *base, *next, *rn;
992 /*
993 * This gets complicated because we may delete the node
994 * while applying the function f to it, so we need to calculate
995 * the successor node in advance.
996 */
997 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
998 for (;;) {
999 base = rn;
1000 next = rn_walknext(rn, NULL, NULL);
1001 /* Process leaves */
1002 while ((rn = base) != NULL) {
1003 base = rn->rn_dupedkey;
1004 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1005 return error;
1006 }
1007 rn = next;
1008 if (rn->rn_flags & RNF_ROOT)
1009 return 0;
1010 }
1011 /* NOTREACHED */
1012}
1013
1014struct radix_node *
1015rn_search_matched(struct radix_node_head *h,
1016 int (*matcher)(struct radix_node *, void *), void *w)
1017{
1018 bool matched;
1019 struct radix_node *base, *next, *rn;
1020 /*
1021 * This gets complicated because we may delete the node
1022 * while applying the function f to it, so we need to calculate
1023 * the successor node in advance.
1024 */
1025 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
1026 for (;;) {
1027 base = rn;
1028 next = rn_walknext(rn, NULL, NULL);
1029 /* Process leaves */
1030 while ((rn = base) != NULL) {
1031 base = rn->rn_dupedkey;
1032 if (!(rn->rn_flags & RNF_ROOT)) {
1033 matched = (*matcher)(rn, w);
1034 if (matched)
1035 return rn;
1036 }
1037 }
1038 rn = next;
1039 if (rn->rn_flags & RNF_ROOT)
1040 return NULL;
1041 }
1042 /* NOTREACHED */
1043}
1044
1045int
1046rn_inithead(void **head, int off)
1047{
1048 struct radix_node_head *rnh;
1049
1050 if (*head != NULL)
1051 return 1;
1052 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1053 if (rnh == NULL)
1054 return 0;
1055 *head = rnh;
1056 return rn_inithead0(rnh, off);
1057}
1058
1059int
1060rn_inithead0(struct radix_node_head *rnh, int off)
1061{
1062 struct radix_node *t;
1063 struct radix_node *tt;
1064 struct radix_node *ttt;
1065
Dave Barachb7b92992018-10-17 10:38:51 -04001066 clib_memset(rnh, 0, sizeof(*rnh));
Neale Ranns32e1c012016-11-22 17:07:28 +00001067 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1068 ttt = rnh->rnh_nodes + 2;
1069 t->rn_r = ttt;
1070 t->rn_p = t;
1071 tt = t->rn_l;
1072 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1073 tt->rn_b = -1 - off;
1074 *ttt = *tt;
1075 ttt->rn_key = rn_ones;
1076 rnh->rnh_addaddr = rn_addroute;
1077 rnh->rnh_deladdr = rn_delete;
1078 rnh->rnh_matchaddr = rn_match;
1079 rnh->rnh_lookup = rn_lookup;
1080 rnh->rnh_treetop = t;
1081 return 1;
1082}
1083
1084static clib_error_t *
1085rn_module_init (vlib_main_t * vm)
1086{
1087 char *cp, *cplim;
1088
1089 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1090 if (rn_zeros == NULL)
1091 return (clib_error_return (0, "RN Zeros..."));
1092
Dave Barachb7b92992018-10-17 10:38:51 -04001093 clib_memset(rn_zeros, 0, 3 * max_keylen);
Neale Ranns32e1c012016-11-22 17:07:28 +00001094 rn_ones = cp = rn_zeros + max_keylen;
1095 addmask_key = cplim = rn_ones + max_keylen;
1096 while (cp < cplim)
1097 *cp++ = -1;
1098 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1099 return (clib_error_return (0, "RN Init 2"));
1100
1101 return (NULL);
1102}
1103
1104VLIB_INIT_FUNCTION(rn_module_init);